1
|
Wang Q, Wang Z, Guan J, Song J. Transcriptome Analysis Reveals the Important Role of Vitamin B 12 in the Response of Natronorubrum daqingense to Salt Stress. Int J Mol Sci 2024; 25:4168. [PMID: 38673755 PMCID: PMC11050368 DOI: 10.3390/ijms25084168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Natronorubrum daqingense JX313T is an extremely halophilic archaea that can grow in a NaCl-saturated environment. The excellent salt tolerance of N. daqingense makes it a high-potential candidate for researching the salt stress mechanisms of halophilic microorganisms from Natronorubrum. In this study, transcriptome analysis revealed that three genes related to the biosynthesis of vitamin B12 were upregulated in response to salt stress. For the wild-type (WT) strain JX313T, the low-salt adaptive mutant LND5, and the vitamin B12 synthesis-deficient strain ΔcobC, the exogenous addition of 10 mg/L of vitamin B12 could maximize their cell survival and biomass in both optimal and salt stress environments. Knockout of cobC resulted in changes in the growth boundary of the strain, as well as a significant decrease in cell survival and biomass, and the inability to synthesize vitamin B12. According to the HPLC analysis, when the external NaCl concentration (w/v) increased from 17.5% (optimal) to 22.5% (5% salt stress), the intracellular accumulation of vitamin B12 in WT increased significantly from (11.54 ± 0.44) mg/L to (15.23 ± 0.20) mg/L. In summary, N. daqingense is capable of absorbing or synthesizing vitamin B12 in response to salt stress, suggesting that vitamin B12 serves as a specific compatible solute effector for N. daqingense during salt stress.
Collapse
Affiliation(s)
| | | | | | - Jinzhu Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China; (Q.W.); (Z.W.); (J.G.)
| |
Collapse
|
2
|
Hernández Villamizar S, Chica Cárdenas LA, Morales Mancera LT, Vives Florez MJ. Anaerobiosis, a neglected factor in phage-bacteria interactions. Appl Environ Microbiol 2023; 89:e0149123. [PMID: 37966212 PMCID: PMC10734468 DOI: 10.1128/aem.01491-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Many parameters affect phage-bacteria interaction. Some of these parameters depend on the environment in which the bacteria are present. Anaerobiosis effect on phage infection in facultative anaerobic bacteria has not yet been studied. The absence of oxygen triggers metabolic changes in facultative bacteria and this affects phage infection and viral life cycle. Understanding how an anaerobic environment can alter the behavior of phages during infection is relevant for the phage therapy success.
Collapse
|
3
|
Liu Y, Huang W, Wang Q, Ma C, Chang Y, Su J. Research on the targeted improvement of the yield of a new VB 12-producing strain, Ensifer adhaerens S305, based on genomic and transcriptomic analysis. BMC Biotechnol 2023; 23:53. [PMID: 38082291 PMCID: PMC10712150 DOI: 10.1186/s12896-023-00824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Vitamin B12 (VB12) has a wide range of applications and high economic value. In this study, a new strain with high VB12 production potential, Ensifer adhaerens S305, was identified in sewage. Because E. adhaerens strains have become the main strains for VB12 production via fermentation in recent years, the directional modification of the S305 strain to obtain a strain suitable for the industrial production of VB12 has great potential and commercial value. RESULTS 16S rRNA and genome-wide phylogenetic tree analysis combined with average nucleotide identity (ANI) analysis showed that the high-yielding VB12 strain was a E. adhaerens strain and that its VB12 synthesis pathway genes were highly similar to related genes of strains of this and other species, including E. adhaerens Casida A, Pseudomonas denitrificans SC 510, and E. adhaerens Corn53. High-pressure liquid chromatography (HPLC) results indicated that the VB12 yields of the S305 strain were more than double those of the Casida A strain under different medium components. Multiple genes with significantly upregulated and downregulated transcription were identified by comparing the transcription intensity of different genes through transcriptome sequencing. KEGG enrichment analysis of the porphyrin metabolism pathway identified 9 significantly upregulated and downregulated differentially expressed genes (DEGs) in the VB12 synthesis pathway, including 7 transcriptionally upregulated genes (cobA, cobT, hemA, cobJ, cobN, cobR, and cobP) that were episomally overexpressed in the Casida A strain. The results showed that the VB12 yield of the overexpressed strain was higher than that of the wild-type strain. Notably, the strains overexpressing the cobA and cobT genes exhibited the most significant increases in VB12 yield, i.e., 31.4% and 24.8%, respectively. The VB12 yield of the S305 strain in shake-flask culture was improved from 176.6 ± 8.21 mg/L to 245.6 ± 4.36 mg/L by integrating the cobA and cobT genes into the strain. CONCLUSION Phylogenetic tree and ANI analysis showed that the Ensifer and Sinorhizobium strains were quite different at the genome level; the overexpression and integrated expression of significantly upregulated genes in the VB12 synthesis pathway could increase the yield of VB12, further improving the VB12 yield of the E. adhaerens S305 strain.
Collapse
Affiliation(s)
- Yongheng Liu
- School of Life Science, Ningxia University, Xixia District, No. 539, Helan Moutain-West Road, Yinchuan, 750021, Ningxia, China
| | - Wei Huang
- School of Life Science, Ningxia University, Xixia District, No. 539, Helan Moutain-West Road, Yinchuan, 750021, Ningxia, China
| | - Qi Wang
- School of Life Science, Ningxia University, Xixia District, No. 539, Helan Moutain-West Road, Yinchuan, 750021, Ningxia, China
| | - Cilang Ma
- School of Life Science, Ningxia University, Xixia District, No. 539, Helan Moutain-West Road, Yinchuan, 750021, Ningxia, China
| | - Yongyong Chang
- School of Life Science, Ningxia University, Xixia District, No. 539, Helan Moutain-West Road, Yinchuan, 750021, Ningxia, China
| | - Jianyu Su
- School of Life Science, Ningxia University, Xixia District, No. 539, Helan Moutain-West Road, Yinchuan, 750021, Ningxia, China.
| |
Collapse
|
4
|
Nava-Galeana J, Núñez C, Bustamante VH. Proteomic analysis reveals the global effect of the BarA/SirA-Csr regulatory cascade in Salmonella Typhimurium grown in conditions that favor the expression of invasion genes. J Proteomics 2023; 286:104960. [PMID: 37451358 DOI: 10.1016/j.jprot.2023.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
In many bacteria, the BarA/SirA and Csr regulatory systems control expression of genes encoding a wide variety of cellular functions. The BarA/SirA two-component system induces the expression of CsrB and CsrC, two small non-coding RNAs that sequester CsrA, a protein that binds to target mRNAs and thus negatively or positively regulates their expression. BarA/SirA and CsrB/C induce expression of the Salmonella Pathogenicity Island 1 (SPI-1) genes required for Salmonella invasion of host cells. To further investigate the regulatory role of the BarA/SirA and Csr systems in Salmonella, we performed LC-MS/MS proteomic analysis using the WT S. Typhimurium strain and its derived ΔsirA and ΔcsrB ΔcsrC mutants grown in SPI-1-inducing conditions. The expression of 164 proteins with a wide diversity, or unknown, functions was significantly affected positively or negatively by the absence of SirA and/or CsrB/C. Interestingly, 19 proteins were identified as new targets for SirA-CsrB/C. Our results support that SirA and CsrB/C act in a cascade fashion to regulate gene expression in S. Typhimurium in the conditions tested. Notably, our results show that SirA-CsrB/C-CsrA controls expression of proteins required for the replication of Salmonella in the intestinal lumen, in an opposite way to its control exerted on the SPI-1 proteins. SIGNIFICANCE: The BarA/SirA and Csr global regulatory systems control a wide range of cellular processes, including the expression of virulence genes. For instance, in Salmonella, BarA/SirA and CsrB/C positively regulate expression of the SPI-1 genes, which are required for Salmonella invasion to host cells. In this study, by performing a proteomic analysis, we identified 164 proteins whose expression was positively or negatively controlled by SirA and CsrB/C in SPI-1-inducing conditions, including 19 new possible targets of these systems. Our results support the action of SirA and CsrB/C in a cascade fashion to control different cellular processes in Salmonella. Interestingly, our data indicate that SirA-CsrB/C-CsrA controls inversely the expression of proteins required for invasion of the intestinal epithelium and for replication in the intestinal lumen, which suggests a role for this regulatory cascade as a molecular switch for Salmonella virulence. Thus, our study further expands the insight into the regulatory mechanisms governing the virulence and physiology of an important pathogen.
Collapse
Affiliation(s)
- Jessica Nava-Galeana
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
5
|
Kang Q, Fang H, Xiang M, Xiao K, Jiang P, You C, Lee SY, Zhang D. A synthetic cell-free 36-enzyme reaction system for vitamin B 12 production. Nat Commun 2023; 14:5177. [PMID: 37620358 PMCID: PMC10449867 DOI: 10.1038/s41467-023-40932-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Adenosylcobalamin (AdoCbl), a biologically active form of vitamin B12 (coenzyme B12), is one of the most complex metal-containing natural compounds and an essential vitamin for animals. However, AdoCbl can only be de novo synthesized by prokaryotes, and its industrial manufacturing to date was limited to bacterial fermentation. Here, we report a method for the synthesis of AdoCbl based on a cell-free reaction system performing a cascade of catalytic reactions from 5-aminolevulinic acid (5-ALA), an inexpensive compound. More than 30 biocatalytic reactions are integrated and optimized to achieve the complete cell-free synthesis of AdoCbl, after overcoming feedback inhibition, the complicated detection, instability of intermediate products, as well as imbalance and competition of cofactors. In the end, this cell-free system produces 417.41 μg/L and 5.78 mg/L of AdoCbl using 5-ALA and the purified intermediate product hydrogenobyrate as substrates, respectively. The strategies of coordinating synthetic modules of complex cell-free system describe here will be generally useful for developing cell-free platforms to produce complex natural compounds with long and complicated biosynthetic pathways.
Collapse
Affiliation(s)
- Qian Kang
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, 100049, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
| | - Huan Fang
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, 100049, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
| | - Mengjie Xiang
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, 100049, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, 300308, Tianjin, China
| | - Kaixing Xiao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
| | - Pingtao Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
| | - Chun You
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, 100049, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, 300308, Tianjin, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 four program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Dawei Zhang
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, 100049, Beijing, China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, 300308, Tianjin, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China.
| |
Collapse
|
6
|
Nava-Galeana J, Yakhnin H, Babitzke P, Bustamante VH. CsrA Positively and Directly Regulates the Expression of the pdu, pocR, and eut Genes Required for the Luminal Replication of Salmonella Typhimurium. Microbiol Spectr 2023; 11:e0151623. [PMID: 37358421 PMCID: PMC10433801 DOI: 10.1128/spectrum.01516-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023] Open
Abstract
Enteric pathogens, such as Salmonella, have evolved to thrive in the inflamed gut. Genes located within the Salmonella pathogenicity island 1 (SPI-1) mediate the invasion of cells from the intestinal epithelium and the induction of an intestinal inflammatory response. Alternative electron acceptors become available in the inflamed gut and are utilized by Salmonella for luminal replication through the metabolism of propanediol and ethanolamine, using the enzymes encoded by the pdu and eut genes. The RNA-binding protein CsrA inhibits the expression of HilD, which is the central transcriptional regulator of the SPI-1 genes. Previous studies suggest that CsrA also regulates the expression of the pdu and eut genes, but the mechanism for this regulation is unknown. In this work, we show that CsrA positively regulates the pdu genes by binding to the pocR and pduA transcripts as well as the eut genes by binding to the eutS transcript. Furthermore, our results show that the SirA-CsrB/CsrC-CsrA regulatory cascade controls the expression of the pdu and eut genes mediated by PocR or EutR, which are the positive AraC-like transcriptional regulators for the pdu and eut genes, respectively. By oppositely regulating the expression of genes for invasion and for luminal replication, the SirA-CsrB/CsrC-CsrA regulatory cascade could be involved in the generation of two Salmonella populations that cooperate for intestinal colonization and transmission. Our study provides new insight into the regulatory mechanisms that govern Salmonella virulence. IMPORTANCE The regulatory mechanisms that control the expression of virulence genes are essential for bacteria to infect hosts. Salmonella has developed diverse regulatory mechanisms to colonize the host gut. For instance, the SirA-CsrB/CsrC-CsrA regulatory cascade controls the expression of the SPI-1 genes, which are required for this bacterium to invade intestinal epithelium cells and for the induction of an intestinal inflammatory response. In this study, we determine the mechanisms by which the SirA-CsrB/CsrC-CsrA regulatory cascade controls the expression of the pdu and eut genes, which are necessary for the replication of Salmonella in the intestinal lumen. Thus, our data, together with the results of previous reports, indicate that the SirA-CsrB/CsrC-CsrA regulatory cascade has an important role in the intestinal colonization by Salmonella.
Collapse
Affiliation(s)
- Jessica Nava-Galeana
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
7
|
Abellon-Ruiz J, Jana K, Silale A, Frey AM, Baslé A, Trost M, Kleinekathöfer U, van den Berg B. BtuB TonB-dependent transporters and BtuG surface lipoproteins form stable complexes for vitamin B 12 uptake in gut Bacteroides. Nat Commun 2023; 14:4714. [PMID: 37543597 PMCID: PMC10404256 DOI: 10.1038/s41467-023-40427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Vitamin B12 (cobalamin) is required for most human gut microbes, many of which are dependent on scavenging to obtain this vitamin. Since bacterial densities in the gut are extremely high, competition for this keystone micronutrient is severe. Contrasting with Enterobacteria, members of the dominant genus Bacteroides often encode several BtuB vitamin B12 outer membrane transporters together with a conserved array of surface-exposed B12-binding lipoproteins. Here we show that the BtuB transporters from Bacteroides thetaiotaomicron form stable, pedal bin-like complexes with surface-exposed BtuG lipoprotein lids, which bind B12 with high affinities. Closing of the BtuG lid following B12 capture causes destabilisation of the bound B12 by a conserved BtuB extracellular loop, causing translocation of the vitamin to BtuB and subsequent transport. We propose that TonB-dependent, lipoprotein-assisted small molecule uptake is a general feature of Bacteroides spp. that is important for the success of this genus in colonising the human gut.
Collapse
Affiliation(s)
- Javier Abellon-Ruiz
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Kalyanashis Jana
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Augustinas Silale
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Andrew M Frey
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Arnaud Baslé
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Matthias Trost
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | - Bert van den Berg
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
8
|
Sultana S, Bruns S, Wilkes H, Simon M, Wienhausen G. Vitamin B 12 is not shared by all marine prototrophic bacteria with their environment. THE ISME JOURNAL 2023; 17:836-845. [PMID: 36914732 DOI: 10.1038/s41396-023-01391-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/14/2023]
Abstract
Vitamin B12 (cobalamin, herein B12) is an essential cofactor involved in amino acid synthesis and carbon resupply to the TCA cycle for most prokaryotes, eukaryotic microorganisms, and animals. Despite being required by most, B12 is produced by only a minor fraction of prokaryotes and therefore leads to complex interaction between prototrophs and auxotrophs. However, it is unknown how B12 is provided by prototrophs to auxotrophs. In this study, 33 B12 prototrophic alphaproteobacterial strains were grown in co-culture with Thalassiosira pseudonana, a B12 auxotrophic diatom, to determine the bacterial ability to support the growth of the diatom by sharing B12. Among these strains, 18 were identified to share B12 with the diatom, while nine were identified to retain B12 and not support growth of the diatom. The other bacteria either shared B12 with the diatom only with the addition of substrate or inhibited the growth of the diatom. Extracellular B12 measurements of B12-provider and B12-retainer strains confirmed that the cofactor could only be detected in the environment of the tested B12-provider strains. Intracellular B12 was measured by LC-MS and showed that the concentrations of the different B12-provider as well as B12-retainer strains differed substantially. Although B12 is essential for the vast majority of microorganisms, mechanisms that export this essential cofactor are still unknown. Our results suggest that a large proportion of bacteria that can synthesise B12 de novo cannot share the cofactor with their environment.
Collapse
Affiliation(s)
- Sabiha Sultana
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Stefan Bruns
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, D-26129, Oldenburg, Germany
| | - Gerrit Wienhausen
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany. .,Institute for Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, D-26129, Oldenburg, Germany.
| |
Collapse
|
9
|
Dawson RA, Rix GD, Crombie AT, Murrell JC. 'Omics-guided prediction of the pathway for metabolism of isoprene by Variovorax sp. WS11. Environ Microbiol 2022; 24:5151-5164. [PMID: 35920040 PMCID: PMC9804861 DOI: 10.1111/1462-2920.16149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 07/22/2022] [Indexed: 01/09/2023]
Abstract
Bacteria that inhabit soils and the leaves of trees partially mitigate the release of the abundant volatile organic compound, isoprene (2-methyl-1,3-butadiene). While the initial steps of isoprene metabolism were identified in Rhodococcus sp. AD45 two decades ago, the isoprene metabolic pathway still remains largely undefined. Limited understanding of the functions of isoG, isoJ and aldH and uncertainty in the route of isoprene-derived carbon into central metabolism have hindered our understanding of isoprene metabolism. These previously uncharacterised iso genes are essential in Variovorax sp. WS11, determined by targeted mutagenesis. Using combined 'omics-based approaches, we propose the complete isoprene metabolic pathway. Isoprene is converted to propionyl-CoA, which is assimilated by the chromosomally encoded methylmalonyl-CoA pathway, requiring biotin and vitamin B12, with the plasmid-encoded methylcitrate pathway potentially providing robustness against limitations in these vitamins. Key components of this pathway were induced by both isoprene and its initial oxidation product, epoxyisoprene, the principal inducer of isoprene metabolism in both Variovorax sp. WS11 and Rhodococcus sp. AD45. Analysis of the genomes of distinct isoprene-degrading bacteria indicated that all of the genetic components of the methylcitrate and methylmalonyl-CoA pathways are not always present in isoprene degraders, although incorporation of isoprene-derived carbon via propionyl-CoA and acetyl-CoA is universally indicated.
Collapse
Affiliation(s)
- Robin A. Dawson
- School of Environmental ScienceUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Gregory D. Rix
- School of Environmental ScienceUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Andrew T. Crombie
- School of Environmental ScienceUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - J. Colin Murrell
- School of Environmental ScienceUniversity of East Anglia, Norwich Research ParkNorwichUK
| |
Collapse
|
10
|
Liang B, Sun G, Zhang X, Nie Q, Zhao Y, Yang J. Recent Advances, Challenges and Metabolic Engineering Strategies in the Biosynthesis of 3-Hydroxypropionic Acid. Biotechnol Bioeng 2022; 119:2639-2668. [PMID: 35781640 DOI: 10.1002/bit.28170] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2022] [Accepted: 06/29/2022] [Indexed: 11/07/2022]
Abstract
As an attractive and valuable platform chemical, 3-hydroxypropionic acid (3-HP) can be used to produce a variety of industrially important commodity chemicals and biodegradable polymers. Moreover, the biosynthesis of 3-HP has drawn much attention in recent years due to its sustainability and environmental friendliness. Here, we focus on recent advances, challenges and metabolic engineering strategies in the biosynthesis of 3-HP. While glucose and glycerol are major carbon sources for its production of 3-HP via microbial fermentation, other carbon sources have also been explored. To increase yield and titer, synthetic biology and metabolic engineering strategies have been explored, including modifying pathway enzymes, eliminating flux blockages due to byproduct synthesis, eliminating toxic byproducts, and optimizing via genome-scale models. This review also provides insights on future directions for 3-HP biosynthesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guannan Sun
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xinping Zhang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qingjuan Nie
- Foreign Languages School, Qingdao Agricultural University, Qingdao, China
| | - Yukun Zhao
- Pony Testing International Group, Qingdao, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
11
|
Kyndt JA, Aviles FA, Imhoff JF, Künzel S, Neulinger SC, Meyer TE. Comparative Genome Analysis of the Photosynthetic Betaproteobacteria of the Genus Rhodocyclus: Heterogeneity within Strains Assigned to Rhodocyclus tenuis and Description of Rhodocyclus gracilis sp. nov. as a New Species. Microorganisms 2022; 10:microorganisms10030649. [PMID: 35336224 PMCID: PMC8954225 DOI: 10.3390/microorganisms10030649] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/09/2023] Open
Abstract
The genome sequences for Rhodocyclus purpureus DSM 168T and four strains assigned to Rhodocyclus tenuis (DSM 110, DSM 111, DSM 112, and IM 230) have been determined. One of the strains studied (IM 230) has an average nucleotide identity (ANI) of 97% to the recently reported genome of the type strain DSM 109 of Rcy. tenuis and is regarded as virtually identical at the species level. The ANI of 80% for three other strains (DSM 110, DSM 111, DSM 112) to the type strain of Rcy. tenuis points to a differentiation of these at the species level. Rcy. purpureus is equidistant from Rcy. tenuis and the new species, based on both ANI (78–80%) and complete proteome comparisons (70% AAI). Strains DSM 110, DSM 111, and DSM 112 are very closely related to each other based on ANI, whole genome, and proteome comparisons but clearly distinct from the Rcy. tenuis type strain DSM 109. In addition to the whole genome differentiation, these three strains also contain unique genetic differences in cytochrome genes and contain genes for an anaerobic cobalamin synthesis pathway that is lacking from both Rcy. tenuis and Rcy. purpureus. Based on genomic and genetic differences, these three strains should be considered to represent a new species, which is distinctly different from both Rcy. purpureus and Rcy. tenuis, for which the new name Rhodocyclus gracilis sp. nov. is proposed.
Collapse
Affiliation(s)
- John A. Kyndt
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA;
- Correspondence:
| | - Fabiola A. Aviles
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA;
| | - Johannes F. Imhoff
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105 Kiel, Germany;
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
| | | | - Terrance E. Meyer
- Department of Biochemistry, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
12
|
Madhubalaji CK, Ravi S, Mudliar SN. Unraveling of Chlorella-associated bacterial load, diversity, and their imputed functions at high- and low-yield conditions through metagenome sequencing. JOURNAL OF PHYCOLOGY 2022; 58:133-145. [PMID: 34850388 DOI: 10.1111/jpy.13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Chlorella-associated bacteria can have a significant influence on facilitating higher Chlorella biomass yield due to their symbiotic relationship. In this study, non-axenic Chlorella was cultivated in an airlift photobioreactor at high and low-yield conditions. The associated bacterial diversity was analyzed using 16S rRNA metagenome sequencing. At high-yield conditions, the bacterial load was observed in the range of 108 -1010 CFU · mL-1 , whereas at low-yield conditions, bacteria were more dominant and observed in the range of 1014 -1015 CFU · mL-1 . The majority of the bacterial species associated with Chlorella at high-yield conditions belongs to Proteobacteria and Bacteroidetes. Further, Bacteroidetes levels were decreased at low-yield conditions and were highly diversified with Planctomycetes, Firmicutes, and 18 others. Predicted functional genes indicated that Chlorella-associated bacteria have the enzymes involved in the metabolism and biosynthesis of B-complex vitamins (i.e., vitamin B12 , thiamin, biotin, pyridoxine, and riboflavin). A critical evaluation revealed that vitamin biosynthesis genes were more abundant at low-yield conditions; however, vitamin B12 transport genes (B12 transport ATP-binding protein, B12 substrate-binding transportation, and B12 permease protein) were less abundant, indicating even though vitamins production occurs, but their availability to Chlorella was limited due to the lack of vitamin transport genes. Further, at high yield, Chlorella-associated bacteria enabled higher growth by supplementing the vitamins. In contrast, at low-yield condition-an increased bacterial load, diversity, and limited vitamin transport functional genes affected the Chlorella yield. It can be inferred that Chlorella yield was significantly affected by three factors: associated bacterial load, diversity, and transport functional genes of vitamins.
Collapse
Affiliation(s)
- Chegu Krishnamurthi Madhubalaji
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sarada Ravi
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandeep N Mudliar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
13
|
Zhang J, Cui Z, Zhu Y, Zhu Z, Qi Q, Wang Q. Recent advances in microbial production of high-value compounds in the tetrapyrrole biosynthesis pathway. Biotechnol Adv 2022; 55:107904. [PMID: 34999139 DOI: 10.1016/j.biotechadv.2021.107904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/25/2021] [Accepted: 12/31/2021] [Indexed: 01/23/2023]
Abstract
Tetrapyrroles are essential metabolic components produced by almost all organisms, and they participate in various fundamental biological processes. Tetrapyrroles are used as pharmaceuticals, food additives, and nutraceuticals, as well as in agricultural applications. However, their production is limited by their low extraction yields from natural resources and by the complex reaction steps involved in their chemical synthesis. Through advances in metabolic engineering and synthetic biology strategies, microbial cell factories were developed as an alternative method for tetrapyrrole production. Herein, we review recent developments in metabolic engineering and synthetic biology strategies that promote the microbial production of high-value compounds in the tetrapyrrole biosynthesis pathway (e.g., 5-aminolevulinic acid, heme, bilins, chlorophyll, and vitamin B12). Furthermore, outstanding challenges to the microbial production of tetrapyrrole compounds, as well as their possible solutions, are discussed.
Collapse
Affiliation(s)
- Jian Zhang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhiyong Cui
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yuan Zhu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Ziwei Zhu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Qingsheng Qi
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China; CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| | - Qian Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China; CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| |
Collapse
|
14
|
Stasiuk R, Krucoń T, Matlakowska R. Biosynthesis of Tetrapyrrole Cofactors by Bacterial Community Inhabiting Porphyrine-Containing Shale Rock (Fore-Sudetic Monocline). Molecules 2021; 26:6746. [PMID: 34771152 PMCID: PMC8587615 DOI: 10.3390/molecules26216746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
This study describes for the first time the comprehensive characterization of tetrapyrrole cofactor biosynthetic pathways developed for bacterial community (BC) inhabiting shale rock. Based on the genomic and proteomic metadata, we have detailed the biosynthesis of siroheme, heme, cobalamin, and the major precursor uroporphyrinogen III by a deep BC living on a rock containing sedimentary tetrapyrrole compounds. The obtained results showed the presence of incomplete heme and cobalamin biosynthesis pathways in the studied BC. At the same time, the production of proteins containing these cofactors, such as cytochromes, catalases and sulfite reductase, was observed. The results obtained are crucial for understanding the ecology of bacteria inhabiting shale rock, as well as their metabolism and potential impact on the biogeochemistry of these rocks. Based on the findings, we hypothesize that the bacteria may use primary or modified sedimentary porphyrins and their degradation products as precursors for synthesizing tetrapyrrole cofactors. Experimental testing of this hypothesis is of course necessary, but its evidence would point to an important and unique phenomenon of the tetrapyrrole ring cycle on Earth involving bacteria.
Collapse
Affiliation(s)
- Robert Stasiuk
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Tomasz Krucoń
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Renata Matlakowska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| |
Collapse
|
15
|
Simon MA, Ongpipattanakul C, Nair SK, van der Donk WA. Biosynthesis of fosfomycin in pseudomonads reveals an unexpected enzymatic activity in the metallohydrolase superfamily. Proc Natl Acad Sci U S A 2021; 118:e2019863118. [PMID: 34074759 PMCID: PMC8201877 DOI: 10.1073/pnas.2019863118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The epoxide-containing phosphonate natural product fosfomycin is a broad-spectrum antibiotic used in the treatment of cystitis. Fosfomycin is produced by both the plant pathogen Pseudomonas syringae and soil-dwelling streptomycetes. While the streptomycete pathway has recently been fully elucidated, the pseudomonad pathway is still mostly elusive. Through a systematic evaluation of heterologous expression of putative biosynthetic enzymes, we identified the central enzyme responsible for completing the biosynthetic pathway in pseudomonads. The missing transformation involves the oxidative decarboxylation of the intermediate 2-phosphonomethylmalate to a new intermediate, 3-oxo-4-phosphonobutanoate, by PsfC. Crystallographic studies reveal that PsfC unexpectedly belongs to a new class of diiron metalloenzymes that are part of the polymerase and histidinol phosphatase superfamily.
Collapse
Affiliation(s)
- Max A Simon
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Chayanid Ongpipattanakul
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Satish K Nair
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Wilfred A van der Donk
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- HHMI, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
16
|
Alanin KWS, Jørgensen TS, Browne PD, Petersen B, Riber L, Kot W, Hansen LH. An improved direct metamobilome approach increases the detection of larger-sized circular elements across kingdoms. Plasmid 2021; 115:102576. [PMID: 33872684 DOI: 10.1016/j.plasmid.2021.102576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Mobile genetic elements (MGEs) are instrumental in natural prokaryotic genome editing, permitting genome plasticity and allowing microbes to accumulate genetic diversity. MGEs serve as a vast communal gene pool and include DNA elements such as plasmids and bacteriophages (phages) among others. These mobile DNA elements represent a human health risk as they can introduce new traits, such as antibiotic resistance or virulence, to a bacterial strain. Sequencing libraries targeting environmental circular MGEs, referred to as metamobilomes, may broaden our current understanding of the mechanisms behind the mobility, prevalence and content of these elements. However, metamobilomics is affected by a severe bias towards small circular elements, introduced by multiple displacement amplification (MDA). MDA is typically used to overcome limiting DNA quantities after the removal of non-circular DNA during library preparations. By examining the relationship between sequencing coverage and the size of circular MGEs in paired metamobilome datasets with and without MDA, we show that larger circular elements are lost when using MDA. This study is the first to systematically demonstrate that MDA is detrimental to detecting larger-sized plasmids if small plasmids are present. It is also the first to show that MDA can be omitted when using enzyme-based DNA fragmentation and PCR in library preparation kits such as Nextera XT® from Illumina.
Collapse
Affiliation(s)
- Katrine Wacenius Skov Alanin
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tue Sparholt Jørgensen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark; Department of Science and Environment, Roskilde University, Denmark
| | - Patrick Denis Browne
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bent Petersen
- Globe Institute, Faculty of Health and Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Leise Riber
- Department of Biology, Functional Genomics, University of Copenhagen, Copenhagen, Denmark
| | - Witold Kot
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lars Hestbjerg Hansen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Orłowska M, Steczkiewicz K, Muszewska A. Utilization of cobalamin is ubiquitous in early-branching fungal phyla. Genome Biol Evol 2021; 13:6157828. [PMID: 33682003 PMCID: PMC8085122 DOI: 10.1093/gbe/evab043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Cobalamin is a cofactor present in essential metabolic pathways in animals and one of the water-soluble vitamins. It is a complex compound synthesized solely by prokaryotes. Cobalamin dependence is scattered across the tree of life. In particular, fungi and plants were deemed devoid of cobalamin. We demonstrate that cobalamin is utilized by all non-Dikarya fungi lineages. This observation is supported by the genomic presence of both B12-dependent enzymes and cobalamin modifying enzymes. Fungal cobalamin-dependent enzymes are highly similar to their animal homologs. Phylogenetic analyses support a scenario of vertical inheritance of the cobalamin usage with several losses. Cobalamin usage was probably lost in Mucorinae and at the base of Dikarya which groups most of the model organisms and which hindered B12-dependent metabolism discovery in fungi. Our results indicate that cobalamin dependence was a widely distributed trait at least in Opisthokonta, across diverse microbial eukaryotes and was likely present in the LECA.
Collapse
Affiliation(s)
- Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
18
|
Kampers LFC, Koehorst JJ, van Heck RJA, Suarez-Diez M, Stams AJM, Schaap PJ. A metabolic and physiological design study of Pseudomonas putida KT2440 capable of anaerobic respiration. BMC Microbiol 2021; 21:9. [PMID: 33407113 PMCID: PMC7789669 DOI: 10.1186/s12866-020-02058-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pseudomonas putida KT2440 is a metabolically versatile, HV1-certified, genetically accessible, and thus interesting microbial chassis for biotechnological applications. However, its obligate aerobic nature hampers production of oxygen sensitive products and drives up costs in large scale fermentation. The inability to perform anaerobic fermentation has been attributed to insufficient ATP production and an inability to produce pyrimidines under these conditions. Addressing these bottlenecks enabled growth under micro-oxic conditions but does not lead to growth or survival under anoxic conditions. RESULTS Here, a data-driven approach was used to develop a rational design for a P. putida KT2440 derivative strain capable of anaerobic respiration. To come to the design, data derived from a genome comparison of 1628 Pseudomonas strains was combined with genome-scale metabolic modelling simulations and a transcriptome dataset of 47 samples representing 14 environmental conditions from the facultative anaerobe Pseudomonas aeruginosa. CONCLUSIONS The results indicate that the implementation of anaerobic respiration in P. putida KT2440 would require at least 49 additional genes of known function, at least 8 genes encoding proteins of unknown function, and 3 externally added vitamins.
Collapse
Affiliation(s)
- Linde F C Kampers
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Ruben J A van Heck
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.
| |
Collapse
|
19
|
Osman D, Cooke A, Young TR, Deery E, Robinson NJ, Warren MJ. The requirement for cobalt in vitamin B 12: A paradigm for protein metalation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118896. [PMID: 33096143 PMCID: PMC7689651 DOI: 10.1016/j.bbamcr.2020.118896] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Vitamin B12, cobalamin, is a cobalt-containing ring-contracted modified tetrapyrrole that represents one of the most complex small molecules made by nature. In prokaryotes it is utilised as a cofactor, coenzyme, light sensor and gene regulator yet has a restricted role in assisting only two enzymes within specific eukaryotes including mammals. This deployment disparity is reflected in another unique attribute of vitamin B12 in that its biosynthesis is limited to only certain prokaryotes, with synthesisers pivotal in establishing mutualistic microbial communities. The core component of cobalamin is the corrin macrocycle that acts as the main ligand for the cobalt. Within this review we investigate why cobalt is paired specifically with the corrin ring, how cobalt is inserted during the biosynthetic process, how cobalt is made available within the cell and explore the cellular control of cobalt and cobalamin levels. The partitioning of cobalt for cobalamin biosynthesis exemplifies how cells assist metalation.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Anastasia Cooke
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Tessa R Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
20
|
Park S, Nam EW, Kim Y, Lee S, Kim SI, Yoon H. Transcriptomic Approach for Understanding the Adaptation of Salmonella enterica to Contaminated Produce. J Microbiol Biotechnol 2020; 30:1729-1738. [PMID: 32830190 PMCID: PMC9728351 DOI: 10.4014/jmb.2007.07036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Salmonellosis is a form of gastroenteritis caused by Salmonella infection. The main transmission route of salmonellosis has been identified as poorly cooked meat and poultry products contaminated with Salmonella. However, in recent years, the number of outbreaks attributed to contaminated raw produce has increased dramatically. To understand how Salmonella adapts to produce, transcriptomic analysis was conducted on Salmonella enterica serovar Virchow exposed to fresh-cut radish greens. Considering the different Salmonella lifestyles in contact with fresh produce, such as motile and sessile lifestyles, total RNA was extracted from planktonic and epiphytic cells separately. Transcriptomic analysis of S. Virchow cells revealed different transcription profiles between lifestyles. During bacterial adaptation to fresh-cut radish greens, planktonic cells were likely to shift toward anaerobic metabolism, exploiting nitrate as an electron acceptor of anaerobic respiration, and utilizing cobalamin as a cofactor for coupled metabolic pathways. Meanwhile, Salmonella cells adhering to plant surfaces showed coordinated upregulation in genes associated with translation and ribosomal biogenesis, indicating dramatic cellular reprogramming in response to environmental changes. In accordance with the extensive translational response, epiphytic cells showed an increase in the transcription of genes that are important for bacterial motility, nucleotide transporter/metabolism, cell envelope biogenesis, and defense mechanisms. Intriguingly, Salmonella pathogenicity island (SPI)-1 and SPI-2 displayed up- and downregulation, respectively, regardless of lifestyles in contact with the radish greens, suggesting altered Salmonella virulence during adaptation to plant environments. This study provides molecular insights into Salmonella adaptation to plants as an alternative environmental reservoir.
Collapse
Affiliation(s)
- Sojung Park
- Department of Molecular Science and Technology, Ajou University, Suwon6499, Republic of Korea
| | - Eun woo Nam
- Department of Molecular Science and Technology, Ajou University, Suwon6499, Republic of Korea
| | - Yeeun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon6499, Republic of Korea
| | - Seohyeon Lee
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon16499 Republic of Korea
| | - Seul I Kim
- Department of Molecular Science and Technology, Ajou University, Suwon6499, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon6499, Republic of Korea,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon16499 Republic of Korea,Corresponding author Phone: +82-31-219-2450 Fax: +82-31-219-1610 E-mail:
| |
Collapse
|
21
|
Jochim A, Adolf L, Belikova D, Schilling NA, Setyawati I, Chin D, Meyers S, Verhamme P, Heinrichs DE, Slotboom DJ, Heilbronner S. An ECF-type transporter scavenges heme to overcome iron-limitation in Staphylococcus lugdunensis. eLife 2020; 9:e57322. [PMID: 32515736 PMCID: PMC7299338 DOI: 10.7554/elife.57322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/09/2020] [Indexed: 01/03/2023] Open
Abstract
Energy-coupling factor type transporters (ECF) represent trace nutrient acquisition systems. Substrate binding components of ECF-transporters are membrane proteins with extraordinary affinity, allowing them to scavenge trace amounts of ligand. A number of molecules have been described as substrates of ECF-transporters, but an involvement in iron-acquisition is unknown. Host-induced iron limitation during infection represents an effective mechanism to limit bacterial proliferation. We identified the iron-regulated ECF-transporter Lha in the opportunistic bacterial pathogen Staphylococcus lugdunensis and show that the transporter is specific for heme. The recombinant substrate-specific subunit LhaS accepted heme from diverse host-derived hemoproteins. Using isogenic mutants and recombinant expression of Lha, we demonstrate that its function is independent of the canonical heme acquisition system Isd and allows proliferation on human cells as sources of nutrient iron. Our findings reveal a unique strategy of nutritional heme acquisition and provide the first example of an ECF-transporter involved in overcoming host-induced nutritional limitation.
Collapse
Affiliation(s)
- Angelika Jochim
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of TübingenTübingenGermany
| | - Lea Adolf
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of TübingenTübingenGermany
| | - Darya Belikova
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of TübingenTübingenGermany
| | | | - Inda Setyawati
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Denny Chin
- Department of Microbiology and Immunology, University of Western OntarioLondonCanada
| | | | | | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western OntarioLondonCanada
| | - Dirk J Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of TübingenTübingenGermany
- German Centre for Infection Research (DZIF), Partner Site TübingenTübingenGermany
- (DFG) Cluster of Excellence EXC 2124 Controlling Microbes to Fight InfectionsTübingenGermany
| |
Collapse
|
22
|
Abstract
Modified tetrapyrroles are large macrocyclic compounds, consisting of diverse conjugation and metal chelation systems and imparting an array of colors to the biological structures that contain them. Tetrapyrroles represent some of the most complex small molecules synthesized by cells and are involved in many essential processes that are fundamental to life on Earth, including photosynthesis, respiration, and catalysis. These molecules are all derived from a common template through a series of enzyme-mediated transformations that alter the oxidation state of the macrocycle and also modify its size, its side-chain composition, and the nature of the centrally chelated metal ion. The different modified tetrapyrroles include chlorophylls, hemes, siroheme, corrins (including vitamin B12), coenzyme F430, heme d1, and bilins. After nearly a century of study, almost all of the more than 90 different enzymes that synthesize this family of compounds are now known, and expression of reconstructed operons in heterologous hosts has confirmed that most pathways are complete. Aside from the highly diverse nature of the chemical reactions catalyzed, an interesting aspect of comparative biochemistry is to see how different enzymes and even entire pathways have evolved to perform alternative chemical reactions to produce the same end products in the presence and absence of oxygen. Although there is still much to learn, our current understanding of tetrapyrrole biogenesis represents a remarkable biochemical milestone that is summarized in this review.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| |
Collapse
|
23
|
Assis DAD, Matte C, Aschidamini B, Rodrigues E, Záchia Ayub MA. Biosynthesis of vitamin B12 by Propionibacterium freudenreichii subsp. shermanii ATCC 13673 using liquid acid protein residue of soybean as culture medium. Biotechnol Prog 2020; 36:e3011. [PMID: 32356411 DOI: 10.1002/btpr.3011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
Vitamin B12 deficiency still persists, mainly caused by low intake of animal food products affecting vegetarians, vegans, and populations of underdeveloped countries. In this study, we investigate the biosynthesis of vitamin B12 by potential probiotic bacterium using an agroindustry residue, the liquid acid protein residue of soybean (LAPRS), as a low-cost, animal derivate-free alternative culture medium. Cultures of Propionibacterium freudenreichii subsp. shermanii ATCC 13673 growing in LAPRS for vitamin B12 biosynthesis were studied using the Plackett-Burman experimental approach, followed by a central composite design 22 to optimize the concentration of significant variables. We also performed a proteolytic treatment of LAPRS and evaluated the optimized-hydrolyzed medium influence on the microbial growth and metabolism in shaker flask and bioreactor experiments. In this all-plant source medium, P. freudenreichii subsp. shermanii produced high concentrations of cells and high amounts of vitamin B12 (0.6 mg/g cells) after process optimization. These results suggest the possibility of producing vitamin B12 by a potential probiotic bacterium in a very cheap, animal derivate-free medium to address the needs of specific population groups, at the same time reducing the production costs of this essential vitamin.
Collapse
Affiliation(s)
- Dener Acosta de Assis
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Matte
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruno Aschidamini
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Eliseu Rodrigues
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
24
|
Puentes Jácome LA, Wang PH, Molenda O, Li YXJJ, Islam MA, Edwards EA. Sustained Dechlorination of Vinyl Chloride to Ethene in Dehalococcoides-Enriched Cultures Grown without Addition of Exogenous Vitamins and at Low pH. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11364-11374. [PMID: 31441646 DOI: 10.1021/acs.est.9b02339] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trichloroethene (TCE) bioremediation has been demonstrated at field sites using microbial cultures harboring TCE-respiring Dehalococcoides whose growth is cobalamin (vitamin B12)-dependent. Bioaugmentation cultures grown ex situ with ample exogenous vitamins and at neutral pH may become vitamin-limited or inhibited by acidic pH once injected into field sites, resulting in incomplete TCE dechlorination and accumulation of vinyl chloride (VC). Here, we report growth of the Dehalococcoides-containing bioaugmentation culture KB-1 in a TCE-amended mineral medium devoid of vitamins and in a VC-amended mineral medium at low pH (6.0 and 5.5). In these cultures, Acetobacterium, which can synthesize 5,6-dimethylbenzimidazole (DMB), the lower ligand of cobalamin, and Sporomusa are dominant acetogens. At neutral pH, Acetobacterium supports complete TCE dechlorination by Dehalococcoides at millimolar levels with a substantial increase in cobalamin (∼20-fold). Sustained dechlorination of VC to ethene was achieved at pH as low as 5.5. Below pH 5.0, dechlorination was not stimulated by DMB supplementation but was restored by raising pH to neutral. Cell-extract assays revealed that vinyl chloride reductase activity declines significantly below pH 6.0 and is undetectable below pH 5.0. This study highlights the importance of cobamide-producing populations and pH in microbial dechlorinating communities for successful bioremediation at field sites.
Collapse
Affiliation(s)
- Luz A Puentes Jácome
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Po-Hsiang Wang
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Olivia Molenda
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Yi Xuan Jine-Jine Li
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - M Ahsanul Islam
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
- Department of Cell and Systems Biology , University of Toronto , Toronto , Ontario M5S 3G5 , Canada
| |
Collapse
|
25
|
Metagenomic and chemical characterization of soil cobalamin production. ISME JOURNAL 2019; 14:53-66. [PMID: 31492962 PMCID: PMC6908642 DOI: 10.1038/s41396-019-0502-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023]
Abstract
Cobalamin (vitamin B12) is an essential enzyme cofactor for most branches of life. Despite the potential importance of this cofactor for soil microbial communities, the producers and consumers of cobalamin in terrestrial environments are still unknown. Here we provide the first metagenome-based assessment of soil cobalamin-producing bacteria and archaea, quantifying and classifying genes encoding proteins for cobalamin biosynthesis, transport, remodeling, and dependency in 155 soil metagenomes with profile hidden Markov models. We also measured several forms of cobalamin (CN-, Me-, OH-, Ado-B12) and the cobalamin lower ligand (5,6-dimethylbenzimidazole; DMB) in 40 diverse soil samples. Metagenomic analysis revealed that less than 10% of soil bacteria and archaea encode the genetic potential for de novo synthesis of this important enzyme cofactor. Predominant soil cobalamin producers were associated with the Proteobacteria, Actinobacteria, Firmicutes, Nitrospirae, and Thaumarchaeota. In contrast, a much larger proportion of abundant soil genera lacked cobalamin synthesis genes and instead were associated with gene sequences encoding cobalamin transport and cobalamin-dependent enzymes. The enrichment of DMB and corresponding DMB synthesis genes, relative to corrin ring synthesis genes, suggests an important role for cobalamin remodelers in terrestrial habitats. Together, our results indicate that microbial cobalamin production and repair serve as keystone functions that are significantly correlated with microbial community size, diversity, and biogeochemistry of terrestrial ecosystems.
Collapse
|
26
|
Finkenwirth F, Eitinger T. ECF-type ABC transporters for uptake of vitamins and transition metal ions into prokaryotic cells. Res Microbiol 2019; 170:358-365. [PMID: 31283960 DOI: 10.1016/j.resmic.2019.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022]
Abstract
Energy-coupling factor (ECF) transporters mediate the uptake of micronutrients in prokaryotes. They consist of two ATP-binding-cassette family ATPases, a transmembrane coupling protein (T component) and a substrate-binding membrane protein (S component). ECF transporters for Co2+ and Ni2+ ions have one or two additional proteins with extracytoplasmic regions but poorly understood function. Homologs of T components with a predicted localization in plastids are widespread in plants but their physiological role is unclear. S components in eukaryotes are very rare and restricted to biotin-specific variants. Apart from a potential contribution to the export of flavins to serve the assembly of extracytoplasmic electron transfer chains, ECF transporters function as importers.
Collapse
Affiliation(s)
- Friedrich Finkenwirth
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.
| |
Collapse
|
27
|
Massoud R, Khosravi-Darani K, Bagheri SM, Mortazavian AM, Sohrabvandi S. Vitamin B12: From Deficiency to Biotechnological Solution. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401314666171207145429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vitamin B12 production by using propionibacteria and enriching food to produce functional foods is an important subject for researches. Some microorganisms have the potential to produce a wide range of components that are health promoting for human. Among them Propionibacteria has been identified as an effective producer of vitamin B12 and anti-microbial compounds such as propionic acid for decades. In this study at first, the structure, health beneficial effects and properties of vitamin B12 as well as scaled up production of vitamin are mentioned. Then biotechnological strategy is described as a solution to overcome vitamin deficiency and production of functional food. Finally, the specification of propionibacteria and its growth condition as well as bacterium ability to produce some other interesting metabolite in human food as byproduct are discussed.
Collapse
Affiliation(s)
- Ramona Massoud
- Department of Food Research, Standards Organization, Tehran, Iran
| | - Kianoush Khosravi-Darani
- Research Department of Food Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4741, Tehran, Iran
| | - Seyed M.H. Bagheri
- Department of Food Sciences and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M. Mortazavian
- Department of Food Sciences and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Research Department of Food Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4741, Tehran, Iran
| |
Collapse
|
28
|
Peinado RDS, Olivier DS, Eberle RJ, de Moraes FR, Amaral MS, Arni RK, Coronado MA. Binding studies of a putative C. pseudotuberculosis target protein from Vitamin B 12 Metabolism. Sci Rep 2019; 9:6350. [PMID: 31015525 PMCID: PMC6478909 DOI: 10.1038/s41598-019-42935-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/13/2019] [Indexed: 01/20/2023] Open
Abstract
Vitamin B12 acts as a cofactor for various metabolic reactions important in living organisms. The Vitamin B12 biosynthesis is restricted to prokaryotes, which means, all eukaryotic organisms must acquire this molecule through diet. This study presents the investigation of Vitamin B12 metabolism and the characterization of precorrin-4 C(11)-methyltransferase (CobM), an enzyme involved in the biosynthesis of Vitamin B12 in Corynebacterium pseudotuberculosis. The analysis of the C. pseudotuberculosis genome identified two Vitamin B12-dependent pathways, which can be strongly affected by a disrupted vitamin metabolism. Molecular dynamics, circular dichroism, and NMR-STD experiments identified regions in CobM that undergo conformational changes after s-adenosyl-L-methionine binding to promote the interaction of precorrin-4, a Vitamin B12 precursor. The binding of s-adenosyl-L-methionine was examined along with the competitive binding of adenine, dATP, and suramin. Based on fluorescence spectroscopy experiments the dissociation constant for the four ligands and the target protein could be determined; SAM (1.4 ± 0.7 µM), adenine (17.8 ± 1.5 µM), dATP (15.8 ± 2.0 µM), and Suramin (6.3 ± 1.1 µM). The results provide rich information for future investigations of potential drug targets within the C. pseudotuberculosis's Vitamin B12 metabolism and related pathways to reduce the pathogen's virulence in its hosts.
Collapse
Affiliation(s)
- Rafaela Dos S Peinado
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil
| | - Danilo S Olivier
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil
| | - Raphael J Eberle
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil
| | - Fabio R de Moraes
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil
| | - Marcos S Amaral
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, MS, 79090-700, Brazil
| | - Raghuvir K Arni
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil.
| | - Monika A Coronado
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil.
| |
Collapse
|
29
|
Agarwal S, Dey S, Ghosh B, Biswas M, Dasgupta J. Mechanistic basis of vitamin B12 and cobinamide salvaging by the Vibrio species. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140-151. [DOI: 10.1016/j.bbapap.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022]
|
30
|
Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B 12. Nat Commun 2018; 9:4917. [PMID: 30464241 PMCID: PMC6249242 DOI: 10.1038/s41467-018-07412-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/01/2018] [Indexed: 11/30/2022] Open
Abstract
The only known source of vitamin B12 (adenosylcobalamin) is from bacteria and archaea. Here, using genetic and metabolic engineering, we generate an Escherichia coli strain that produces vitamin B12 via an engineered de novo aerobic biosynthetic pathway. In vitro and/or in vivo analysis of genes involved in adenosylcobinamide phosphate biosynthesis from Rhodobacter capsulatus suggest that the biosynthetic steps from co(II)byrinic acid a,c-diamide to adocobalamin are the same in both the aerobic and anaerobic pathways. Finally, we increase the vitamin B12 yield of a recombinant E. coli strain by more than ∼250-fold to 307.00 µg g−1 DCW via metabolic engineering and optimization of fermentation conditions. Beyond our demonstration of E. coli as a microbial biosynthetic platform for vitamin B12 production, our study offers an encouraging example of how the several dozen proteins of a complex biosynthetic pathway can be transferred between organisms to facilitate industrial production. Vitamin B12 is an essential nutrient with limited natural sources. Here the authors transfer 28 pathway synthesis genes from several bacteria including R. capsulatus to E. coli and, using metabolic engineering and optimised fermentation conditions, achieve high yields.
Collapse
|
31
|
Wexler AG, Schofield WB, Degnan PH, Folta-Stogniew E, Barry NA, Goodman AL. Human gut Bacteroides capture vitamin B 12 via cell surface-exposed lipoproteins. eLife 2018; 7:37138. [PMID: 30226189 PMCID: PMC6143338 DOI: 10.7554/elife.37138] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/26/2018] [Indexed: 01/02/2023] Open
Abstract
Human gut Bacteroides use surface-exposed lipoproteins to bind and metabolize complex polysaccharides. Although vitamins and other nutrients are also essential for commensal fitness, much less is known about how commensal bacteria compete with each other or the host for these critical resources. Unlike in Escherichia coli, transport loci for vitamin B12 (cobalamin) and other corrinoids in human gut Bacteroides are replete with conserved genes encoding proteins whose functions are unknown. Here we report that one of these proteins, BtuG, is a surface-exposed lipoprotein that is essential for efficient B12 transport in B. thetaiotaomicron. BtuG binds B12 with femtomolar affinity and can remove B12 from intrinsic factor, a critical B12 transport protein in humans. Our studies suggest that Bacteroides use surface-exposed lipoproteins not only for capturing polysaccharides, but also to acquire key vitamins in the gut. Eating is the first step in an hours-long process that extracts the nutrients we need to live. It not only nourishes us, but also a vast community of bacteria in our gut called the microbiota. The gut microbiota acts like an extension of our immune system and helps us stay healthy in many ways. For example, it blocks pathogens from making us sick. But too many gut bacteria in the wrong parts of our intestines can be harmful. Some people are prone to developing a dangerous overgrowth of bacteria in their small intestine where most of our dietary nutrients get absorbed. This overgrowth can lead to many problems including vitamin B12 deficiency even when they eat plenty of it. To understand why, scientists must learn how microbes affect our ability to absorb nutrients from food and how the microbes themselves capture nutrients like vitamin B12 as they pass through our digestive tract. Now, Wexler et al. show that some gut microbes may be able to pirate vitamin B12 from us as it passes through the digestive tract. Wexler et al. showed that a protein called BtuG on the surface of a type of gut bacteria called Bacteriodes grabs onto vitamin B12 with extraordinary strength. In fact, these bacterial proteins bind to vitamin B12 so strongly that they can even pry it away from our own vitamin B12 collecting protein. When Bacteriodes with and without BtuG were placed in mice with no gut bacteria of their own, bacteria with BtuG rapidly outcompeted those lacking the protein. The experiments suggest that competition for vitamin B12 among microbes has favored bacteria that are better at capturing the nutrient. More studies are needed to learn whether BtuG contributes to vitamin B12 deficiencies in humans with gut bacteria overgrowth and determine the best ways to combat such deficiencies.
Collapse
Affiliation(s)
- Aaron G Wexler
- Department of Microbial Pathogenesis, Yale University, New Haven, United States.,Microbial Sciences Institute, Yale University, New Haven, United States
| | - Whitman B Schofield
- Department of Microbial Pathogenesis, Yale University, New Haven, United States.,Microbial Sciences Institute, Yale University, New Haven, United States
| | - Patrick H Degnan
- Department of Microbial Pathogenesis, Yale University, New Haven, United States.,Microbial Sciences Institute, Yale University, New Haven, United States
| | - Ewa Folta-Stogniew
- W.M. Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, United States
| | - Natasha A Barry
- Department of Microbial Pathogenesis, Yale University, New Haven, United States.,Microbial Sciences Institute, Yale University, New Haven, United States
| | - Andrew L Goodman
- Department of Microbial Pathogenesis, Yale University, New Haven, United States.,Microbial Sciences Institute, Yale University, New Haven, United States
| |
Collapse
|
32
|
Crespo A, Blanco-Cabra N, Torrents E. Aerobic Vitamin B 12 Biosynthesis Is Essential for Pseudomonas aeruginosa Class II Ribonucleotide Reductase Activity During Planktonic and Biofilm Growth. Front Microbiol 2018; 9:986. [PMID: 29867886 PMCID: PMC5962746 DOI: 10.3389/fmicb.2018.00986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/26/2018] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is a major pathogenic bacterium in chronic infections and is a model organism for studying biofilms. P. aeruginosa is considered an aerobic bacterium, but in the presence of nitrate, it also grows in anaerobic conditions. Oxygen diffusion through the biofilm generates metabolic and genetic diversity in P. aeruginosa growth, such as in ribonucleotide reductase activity. These essential enzymes are necessary for DNA synthesis and repair. Oxygen availability determines the activity of the three-ribonucleotide reductase (RNR) classes. Class II and III RNRs are active in the absence of oxygen; however, class II RNRs, which are important in P. aeruginosa biofilm growth, require a vitamin B12 cofactor for their enzymatic activity. In this work, we elucidated the conditions in which class II RNRs are active due to vitamin B12 concentration constraints (biosynthesis or environmental availability). We demonstrated that increased vitamin B12 levels during aerobic, stationary and biofilm growth activate class II RNR activity. We also established that the cobN gene is essentially responsible for B12 biosynthesis under planktonic and biofilm growth. Our results unravel the mechanisms of dNTP synthesis by P. aeruginosa during biofilm growth, which appear to depend on the bacterial strain (laboratory-type or clinical isolate).
Collapse
Affiliation(s)
- Anna Crespo
- Bacterial Infections and Antimicrobial Therapies, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapies, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
33
|
Activity-Based Protein Profiling-Enabling Multimodal Functional Studies of Microbial Communities. Curr Top Microbiol Immunol 2018; 420:1-21. [PMID: 30406866 DOI: 10.1007/82_2018_128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microorganisms living in community are critical to life on Earth, playing numerous and profound roles in the environment and human and animal health. Though their essentiality to life is clear, the mechanistic underpinnings of community structure, interactions, and functions are largely unexplored and in need of function-dependent technologies to unravel the mysteries. Activity-based protein profiling offers unprecedented molecular-level characterization of functions within microbial communities and provides an avenue to determine how external exposures result in functional alterations to microbiomes. Herein, we illuminate the current state and prospective contributions of ABPP as it relates to microbial communities. We provide details on the design, development, and validation of probes, challenges associated with probing in complex microbial communities, provide some specific examples of the biological applications of ABPP in microbes and microbial communities, and highlight potential areas for development. The future of ABPP holds real promise for understanding and considerable impact in microbiome studies associated with personalized medicine, precision agriculture, veterinary health, environmental studies, and beyond.
Collapse
|
34
|
Piwowarek K, Lipińska E, Hać-Szymańczuk E, Kieliszek M, Ścibisz I. Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Appl Microbiol Biotechnol 2018; 102:515-538. [PMID: 29167919 PMCID: PMC5756557 DOI: 10.1007/s00253-017-8616-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 01/09/2023]
Abstract
Bacteria from the Propionibacterium genus consists of two principal groups: cutaneous and classical. Cutaneous Propionibacterium are considered primary pathogens to humans, whereas classical Propionibacterium are widely used in the food and pharmaceutical industries. Bacteria from the Propionibacterium genus are capable of synthesizing numerous valuable compounds with a wide industrial usage. Biomass of the bacteria from the Propionibacterium genus constitutes sources of vitamins from the B group, including B12, trehalose, and numerous bacteriocins. These bacteria are also capable of synthesizing organic acids such as propionic acid and acetic acid. Because of GRAS status and their health-promoting characteristics, bacteria from the Propionibacterium genus and their metabolites (propionic acid, vitamin B12, and trehalose) are commonly used in the cosmetic, pharmaceutical, food, and other industries. They are also used as additives in fodders for livestock. In this review, we present the major species of Propionibacterium and their properties and provide an overview of their functions and applications. This review also presents current literature concerned with the possibilities of using Propionibacterium spp. to obtain valuable metabolites. It also presents the biosynthetic pathways as well as the impact of the genetic and environmental factors on the efficiency of their production.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland.
| | - Edyta Lipińska
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Elżbieta Hać-Szymańczuk
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Iwona Ścibisz
- Department of Food Technology, Division of Fruit and Vegetable Technology, Faculty of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| |
Collapse
|
35
|
Zheng K, Ngo PD, Owens VL, Yang XP, Mansoorabadi SO. The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea. Science 2017; 354:339-342. [PMID: 27846569 DOI: 10.1126/science.aag2947] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/07/2016] [Indexed: 11/02/2022]
Abstract
Methyl-coenzyme M reductase (MCR) is the key enzyme of methanogenesis and anaerobic methane oxidation. The activity of MCR is dependent on the unique nickel-containing tetrapyrrole known as coenzyme F430. We used comparative genomics to identify the coenzyme F430 biosynthesis (cfb) genes and characterized the encoded enzymes from Methanosarcina acetivorans C2A. The pathway involves nickelochelation by a nickel-specific chelatase, followed by amidation to form Ni-sirohydrochlorin a,c-diamide. Next, a primitive homolog of nitrogenase mediates a six-electron reduction and γ-lactamization reaction before a Mur ligase homolog forms the six-membered carbocyclic ring in the final step of the pathway. These data show that coenzyme F430 can be synthesized from sirohydrochlorin using Cfb enzymes produced heterologously in a nonmethanogen host and identify several targets for inhibitors of biological methane formation.
Collapse
Affiliation(s)
- Kaiyuan Zheng
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - Phong D Ngo
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - Victoria L Owens
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - Xue-Peng Yang
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
36
|
Kamneva OK. Genome composition and phylogeny of microbes predict their co-occurrence in the environment. PLoS Comput Biol 2017; 13:e1005366. [PMID: 28152007 PMCID: PMC5313232 DOI: 10.1371/journal.pcbi.1005366] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 02/16/2017] [Accepted: 01/17/2017] [Indexed: 12/15/2022] Open
Abstract
The genomic information of microbes is a major determinant of their phenotypic properties, yet it is largely unknown to what extent ecological associations between different species can be explained by their genome composition. To bridge this gap, this study introduces two new genome-wide pairwise measures of microbe-microbe interaction. The first (genome content similarity index) quantifies similarity in genome composition between two microbes, while the second (microbe-microbe functional association index) summarizes the topology of a protein functional association network built for a given pair of microbes and quantifies the fraction of network edges crossing organismal boundaries. These new indices are then used to predict co-occurrence between reference genomes from two 16S-based ecological datasets, accounting for phylogenetic relatedness of the taxa. Phylogenetic relatedness was found to be a strong predictor of ecological associations between microbes which explains about 10% of variance in co-occurrence data, but genome composition was found to be a strong predictor as well, it explains up to 4% the variance in co-occurrence when all genomic-based indices are used in combination, even after accounting for evolutionary relationships between the species. On their own, the metrics proposed here explain a larger proportion of variance than previously reported more complex methods that rely on metabolic network comparisons. In summary, results of this study indicate that microbial genomes do indeed contain detectable signal of organismal ecology, and the methods described in the paper can be used to improve mechanistic understanding of microbe-microbe interactions. It is still unknown to what extent ecological associations between microbes, as measured by co-occurrence of different taxa in 16S rRNA surveys, can be explained, or predicted, using composition and structure of microbial genomes alone. Here I introduce two new genome-wide, pairwise indices for quantifying the propensity of microbial species to interact with each other. The first measure quantifies similarity in genome composition between two microbes. The second measure summarizes the topology of a protein functional association network built for a given pair of microbes and quantifies the fraction of network edges crossing organismal boundaries. I then study the ability of two newly proposed and two previously reported indices to explain variation in microbial co-occurrence. All four measures are significantly correlated with co-occurrence of microbes even when accounting for evolutionary relationships between the species. One of the newly developed indices outperforms previously proposed ones and explains up to 3.5% of the variance in co-occurrence. In summary, the indices described here are able to detect ecological associations between species using only their genomic information; however, additional methods are needed to provide more reliable genomic tools for microbial ecology.
Collapse
Affiliation(s)
- Olga K. Kamneva
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Fang H, Kang J, Zhang D. Microbial production of vitamin B 12: a review and future perspectives. Microb Cell Fact 2017; 16:15. [PMID: 28137297 PMCID: PMC5282855 DOI: 10.1186/s12934-017-0631-y] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/20/2017] [Indexed: 12/21/2022] Open
Abstract
Vitamin B12 is an essential vitamin that is widely used in medical and food industries. Vitamin B12 biosynthesis is confined to few bacteria and archaea, and as such its production relies on microbial fermentation. Rational strain engineering is dependent on efficient genetic tools and a detailed knowledge of metabolic pathways, regulation of which can be applied to improve product yield. Recent advances in synthetic biology and metabolic engineering have been used to efficiently construct many microbial chemical factories. Many published reviews have probed the vitamin B12 biosynthetic pathway. To maximize the potential of microbes for vitamin B12 production, new strategies and tools are required. In this review, we provide a comprehensive understanding of advances in the microbial production of vitamin B12, with a particular focus on establishing a heterologous host for the vitamin B12 production, as well as on strategies and tools that have been applied to increase microbial cobalamin production. Several worthy strategies employed for other products are also included.
Collapse
Affiliation(s)
- Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jie Kang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134 China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
38
|
Mulley G, Beeton ML, Wilkinson P, Vlisidou I, Ockendon-Powell N, Hapeshi A, Tobias NJ, Nollmann FI, Bode HB, van den Elsen J, ffrench-Constant RH, Waterfield NR. From Insect to Man: Photorhabdus Sheds Light on the Emergence of Human Pathogenicity. PLoS One 2015; 10:e0144937. [PMID: 26681201 PMCID: PMC4683029 DOI: 10.1371/journal.pone.0144937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/25/2015] [Indexed: 12/27/2022] Open
Abstract
Photorhabdus are highly effective insect pathogenic bacteria that exist in a mutualistic relationship with Heterorhabditid nematodes. Unlike other members of the genus, Photorhabdus asymbiotica can also infect humans. Most Photorhabdus cannot replicate above 34°C, limiting their host-range to poikilothermic invertebrates. In contrast, P. asymbiotica must necessarily be able to replicate at 37°C or above. Many well-studied mammalian pathogens use the elevated temperature of their host as a signal to regulate the necessary changes in gene expression required for infection. Here we use RNA-seq, proteomics and phenotype microarrays to examine temperature dependent differences in transcription, translation and phenotype of P. asymbiotica at 28°C versus 37°C, relevant to the insect or human hosts respectively. Our findings reveal relatively few temperature dependant differences in gene expression. There is however a striking difference in metabolism at 37°C, with a significant reduction in the range of carbon and nitrogen sources that otherwise support respiration at 28°C. We propose that the key adaptation that enables P. asymbiotica to infect humans is to aggressively acquire amino acids, peptides and other nutrients from the human host, employing a so called “nutritional virulence” strategy. This would simultaneously cripple the host immune response while providing nutrients sufficient for reproduction. This might explain the severity of ulcerated lesions observed in clinical cases of Photorhabdosis. Furthermore, while P. asymbiotica can invade mammalian cells they must also resist immediate killing by humoral immunity components in serum. We observed an increase in the production of the insect Phenol-oxidase inhibitor Rhabduscin normally deployed to inhibit the melanisation immune cascade. Crucially we demonstrated this molecule also facilitates protection against killing by the alternative human complement pathway.
Collapse
Affiliation(s)
- Geraldine Mulley
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AJ, United Kingdom
| | - Michael L Beeton
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, Western Avenue, Cardiff, CF5 2YB, United Kingdom
| | - Paul Wilkinson
- Life Sciences Building, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Isabella Vlisidou
- Life Sciences Building, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Nina Ockendon-Powell
- Primary Care Unit, Microbiology Department, Public Health England, Gloucester Royal Hospital, Great Western Road, Gloucester, GL1 3NN, United Kingdom
| | - Alexia Hapeshi
- Division of Biomedical Sciences, Warwick Medical School, Medical School Building, The University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Nick J Tobias
- Buchmann Center for Life Sciences (BMLS), Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438, Frankfurt, Germany
| | - Friederike I Nollmann
- Buchmann Center for Life Sciences (BMLS), Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438, Frankfurt, Germany
| | - Helge B Bode
- Buchmann Center for Life Sciences (BMLS), Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438, Frankfurt, Germany
| | - Jean van den Elsen
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | | | - Nicholas R Waterfield
- Division of Biomedical Sciences, Warwick Medical School, Medical School Building, The University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
39
|
Abstract
This review summarizes research performed over the last 23 years on the genetics, enzyme structures and functions, and regulation of the expression of the genes encoding functions involved in adenosylcobalamin (AdoCbl, or coenzyme B12) biosynthesis. It also discusses the role of coenzyme B12 in the physiology of Salmonella enterica serovar Typhimurium LT2 and Escherichia coli. John Roth's seminal contributions to the field of coenzyme B12 biosynthesis research brought the power of classical and molecular genetic, biochemical, and structural approaches to bear on the extremely challenging problem of dissecting the steps of what has turned out to be one of the most complex biosynthetic pathways known. In E. coli and serovar Typhimurium, uro'gen III represents the first branch point in the pathway, where the routes for cobalamin and siroheme synthesis diverge from that for heme synthesis. The cobalamin biosynthetic pathway in P. denitrificans was the first to be elucidated, but it was soon realized that there are at least two routes for cobalamin biosynthesis, representing aerobic and anaerobic variations. The expression of the AdoCbl biosynthetic operon is complex and is modulated at different levels. At the transcriptional level, a sensor response regulator protein activates the transcription of the operon in response to 1,2-Pdl in the environment. Serovar Typhimurium and E. coli use ethanolamine as a source of carbon, nitrogen, and energy. In addition, and unlike E. coli, serovar Typhimurium can also grow on 1,2-Pdl as the sole source of carbon and energy.
Collapse
|
40
|
Manzoor I, Shafeeq S, Kloosterman TG, Kuipers OP. Co(2+)-dependent gene expression in Streptococcus pneumoniae: opposite effect of Mn(2+) and Co(2+) on the expression of the virulence genes psaBCA, pcpA, and prtA. Front Microbiol 2015; 6:748. [PMID: 26257722 PMCID: PMC4513243 DOI: 10.3389/fmicb.2015.00748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/08/2015] [Indexed: 11/13/2022] Open
Abstract
Manganese (Mn(2+))-, zinc (Zn(2+))- and copper (Cu(2+)) play significant roles in transcriptional gene regulation, physiology, and virulence of Streptococcus pneumoniae. So far, the effect of the important transition metal ion cobalt (Co(2+)) on gene expression of S. pneumoniae has not yet been explored. Here, we study the impact of Co(2+) stress on the transcriptome of S. pneumoniae strain D39. BLAST searches revealed that the genome of S. pneumoniae encodes a putative Co(2+)-transport operon (cbi operon), the expression of which we show here to be induced by a high Co(2+) concentration. Furthermore, we found that Co(2+), as has been shown previously for Zn(2+), can cause derepression of the genes of the PsaR virulence regulon, encoding the Mn(2+)-uptake system PsaBCA, the choline binding protein PcpA and the cell-wall associated serine protease PrtA. Interestingly, although Mn(2+) represses expression of the PsaR regulon and Co(2+) leads to derepression, both metal ions stimulate interaction of PsaR with its target promoters. These data will be discussed in the light of previous studies on similar metal-responsive transcriptional regulators.
Collapse
Affiliation(s)
- Irfan Manzoor
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands ; Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Sulman Shafeeq
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands ; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm Sweden
| | - Tomas G Kloosterman
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| |
Collapse
|
41
|
Matthews TD, Schmieder R, Silva GGZ, Busch J, Cassman N, Dutilh BE, Green D, Matlock B, Heffernan B, Olsen GJ, Farris Hanna L, Schifferli DM, Maloy S, Dinsdale EA, Edwards RA. Genomic Comparison of the Closely-Related Salmonella enterica Serovars Enteritidis, Dublin and Gallinarum. PLoS One 2015; 10:e0126883. [PMID: 26039056 PMCID: PMC4454671 DOI: 10.1371/journal.pone.0126883] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/08/2015] [Indexed: 11/18/2022] Open
Abstract
The Salmonella enterica serovars Enteritidis, Dublin, and Gallinarum are closely related but differ in virulence and host range. To identify the genetic elements responsible for these differences and to better understand how these serovars are evolving, we sequenced the genomes of Enteritidis strain LK5 and Dublin strain SARB12 and compared these genomes to the publicly available Enteritidis P125109, Dublin CT 02021853 and Dublin SD3246 genome sequences. We also compared the publicly available Gallinarum genome sequences from biotype Gallinarum 287/91 and Pullorum RKS5078. Using bioinformatic approaches, we identified single nucleotide polymorphisms, insertions, deletions, and differences in prophage and pseudogene content between strains belonging to the same serovar. Through our analysis we also identified several prophage cargo genes and pseudogenes that affect virulence and may contribute to a host-specific, systemic lifestyle. These results strongly argue that the Enteritidis, Dublin and Gallinarum serovars of Salmonella enterica evolve by acquiring new genes through horizontal gene transfer, followed by the formation of pseudogenes. The loss of genes necessary for a gastrointestinal lifestyle ultimately leads to a systemic lifestyle and niche exclusion in the host-specific serovars.
Collapse
Affiliation(s)
- T. David Matthews
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Robert Schmieder
- Department of Computer Science, San Diego State University, San Diego, California, 92182, United States of America
| | - Genivaldo G. Z. Silva
- Computational Science Research Center, San Diego State University, San Diego, California, 92182, United States of America
| | - Julia Busch
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Noriko Cassman
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dawn Green
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Brian Matlock
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Brian Heffernan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gary J. Olsen
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Leigh Farris Hanna
- Molecular Sciences Department, University of Tennessee Health Sciences Center, 858 Madison Ave, Memphis, Tennessee, United States of America
| | - Dieter M. Schifferli
- University of Pennsylvania School of Veterinary Medicine, 3800 Spruce St, Philadelphia, Pennsylvania, 19104, United States of America
| | - Stanley Maloy
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Elizabeth A. Dinsdale
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Robert A. Edwards
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
- Department of Computer Science, San Diego State University, San Diego, California, 92182, United States of America
- Department of Marine Biology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, Illinois, 60349, United States of America
- * E-mail:
| |
Collapse
|
42
|
Chaudhary AK, Na D, Lee EY. Rapid and high-throughput construction of microbial cell-factories with regulatory noncoding RNAs. Biotechnol Adv 2015; 33:914-30. [PMID: 26027891 DOI: 10.1016/j.biotechadv.2015.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 12/11/2022]
Abstract
Due to global crises such as pollution and depletion of fossil fuels, sustainable technologies based on microbial cell-factories have been garnering great interest as an alternative to chemical factories. The development of microbial cell-factories is imperative in cutting down the overall manufacturing cost. Thus, diverse metabolic engineering strategies and engineering tools have been established to obtain a preferred genotype and phenotype displaying superior productivity. However, these tools are limited to only a handful of genes with permanent modification of a genome and significant labor costs, and this is one of the bottlenecks associated with biofactory construction. Therefore, a groundbreaking rapid and high-throughput engineering tool is needed for efficient construction of microbial cell-factories. During the last decade, copious small noncoding RNAs (ncRNAs) have been discovered in bacteria. These are involved in substantial regulatory roles like transcriptional and post-transcriptional gene regulation by modulating mRNA elongation, stability, or translational efficiency. Because of their vulnerability, ncRNAs can be used as another layer of conditional control over gene expression without modifying chromosomal sequences, and hence would be a promising high-throughput tool for metabolic engineering. Here, we review successful design principles and applications of ncRNAs for high-throughput metabolic engineering or physiological studies of diverse industrially important microorganisms.
Collapse
Affiliation(s)
- Amit Kumar Chaudhary
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 446-701, Republic of Korea
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
43
|
Abstract
Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles.
Collapse
|
44
|
Genomic and proteomic characterization of "Candidatus Nitrosopelagicus brevis": an ammonia-oxidizing archaeon from the open ocean. Proc Natl Acad Sci U S A 2015; 112:1173-8. [PMID: 25587132 DOI: 10.1073/pnas.1416223112] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Thaumarchaeota are among the most abundant microbial cells in the ocean, but difficulty in cultivating marine Thaumarchaeota has hindered investigation into the physiological and evolutionary basis of their success. We report here a closed genome assembled from a highly enriched culture of the ammonia-oxidizing pelagic thaumarchaeon CN25, originating from the open ocean. The CN25 genome exhibits strong evidence of genome streamlining, including a 1.23-Mbp genome, a high coding density, and a low number of paralogous genes. Proteomic analysis recovered nearly 70% of the predicted proteins encoded by the genome, demonstrating that a high fraction of the genome is translated. In contrast to other minimal marine microbes that acquire, rather than synthesize, cofactors, CN25 encodes and expresses near-complete biosynthetic pathways for multiple vitamins. Metagenomic fragment recruitment indicated the presence of DNA sequences >90% identical to the CN25 genome throughout the oligotrophic ocean. We propose the provisional name "Candidatus Nitrosopelagicus brevis" str. CN25 for this minimalist marine thaumarchaeon and suggest it as a potential model system for understanding archaeal adaptation to the open ocean.
Collapse
|
45
|
Ortiz de Orué Lucana D, Fedosov SN, Wedderhoff I, Che EN, Torda AE. The extracellular heme-binding protein HbpS from the soil bacterium Streptomyces reticuli is an aquo-cobalamin binder. J Biol Chem 2014; 289:34214-28. [PMID: 25342754 PMCID: PMC4256353 DOI: 10.1074/jbc.m114.585489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/22/2014] [Indexed: 11/06/2022] Open
Abstract
The extracellular protein HbpS from Streptomyces reticuli interacts with iron ions and heme. It also acts in concert with the two-component sensing system SenS-SenR in response to oxidative stress. Sequence comparisons suggested that the protein may bind a cobalamin. UV-visible spectroscopy confirmed binding (Kd = 34 μm) to aquo-cobalamin (H2OCbl(+)) but not to other cobalamins. Competition experiments with the H2OCbl(+)-coordinating ligand CN(-) and comparison of mutants identified a histidine residue (His-156) that coordinates the cobalt ion of H2OCbl(+) and substitutes for water. HbpS·Cobalamin lacks the Asp-X-His-X-X-Gly motif seen in some cobalamin binding enzymes. Preliminary tests showed that a related HbpS protein from a different species also binds H2OCbl(+). Furthermore, analyses of HbpS-heme binding kinetics are consistent with the role of HbpS as a heme-sensor and suggested a role in heme transport. Given the high occurrence of HbpS-like sequences among Gram-positive and Gram-negative bacteria, our findings suggest a great functional versatility among these proteins.
Collapse
Affiliation(s)
- Darío Ortiz de Orué Lucana
- From the Applied Genetics of Microorganisms, Department of Biology/Chemistry, University of Osnabrueck, 49067 Osnabrueck, Germany,
| | - Sergey N Fedosov
- Department of Engineering, Aarhus University, 8000 Aarhus, Denmark, and
| | - Ina Wedderhoff
- From the Applied Genetics of Microorganisms, Department of Biology/Chemistry, University of Osnabrueck, 49067 Osnabrueck, Germany
| | - Edith N Che
- From the Applied Genetics of Microorganisms, Department of Biology/Chemistry, University of Osnabrueck, 49067 Osnabrueck, Germany
| | - Andrew E Torda
- Centre for Bioinformatics, Hamburg University, 20146 Hamburg, Germany
| |
Collapse
|
46
|
Kim EY, Jakobson CM, Tullman-Ercek D. Engineering transcriptional regulation to control Pdu microcompartment formation. PLoS One 2014; 9:e113814. [PMID: 25427074 PMCID: PMC4245221 DOI: 10.1371/journal.pone.0113814] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/30/2014] [Indexed: 12/18/2022] Open
Abstract
Bacterial microcompartments (MCPs) show great promise for the organization of engineered metabolic pathways within the bacterial cytoplasm. This subcellular organelle is composed of a protein shell of 100-200 nm diameter that natively encapsulates multi-enzyme pathways. The high energy cost of synthesizing the thousands of protein subunits required for each MCP demands precise regulation of MCP formation for both native and engineered systems. Here, we study the regulation of the propanediol utilization (Pdu) MCP, for which growth on 1,2-propanediol induces expression of the Pdu operon for the catabolism of 1,2-propanediol. We construct a fluorescence-based transcriptional reporter to investigate the activation of the Ppdu promoter, which drives the transcription of 21 pdu genes. Guided by this reporter, we find that MCPs can be expressed in strains grown in rich media, provided that glucose is not present. We also characterize the response of the Ppdu promoter to a transcriptional activator of the pdu operon, PocR, and find PocR to be a necessary component of Pdu MCP formation. Furthermore, we find that MCPs form normally upon the heterologous expression of PocR even in the absence of the natural inducer 1,2-propanediol and in the presence of glucose, and that Pdu MCPs formed in response to heterologous PocR expression can metabolize 1,2-propanediol in vivo. We anticipate that this technique of overexpressing a key transcription factor may be used to study and engineer the formation, size, and/or number of MCPs for the Pdu and related MCP systems.
Collapse
Affiliation(s)
- Edward Y. Kim
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States of America
| | - Christopher M. Jakobson
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States of America
| | - Danielle Tullman-Ercek
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Ko Y, Ashok S, Ainala SK, Sankaranarayanan M, Chun AY, Jung GY, Park S. Coenzyme B12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions. Biotechnol J 2014; 9:1526-35. [PMID: 25146562 DOI: 10.1002/biot.201400221] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/23/2014] [Accepted: 08/20/2014] [Indexed: 01/27/2023]
Abstract
Coenzyme B12 (Vitamin B12 ) is one of the most complex biomolecules and an essential cofactor required for the catalytic activity of many enzymes. Pseudomonas denitrificans synthesizes coenzyme B12 in an oxygen-dependent manner using a pathway encoded by more than 25 genes that are located in six different operons. Escherichia coli, a robust and suitable host for metabolic engineering was used to produce coenzyme B12 . These genes were cloned into three compatible plasmids and expressed heterologously in E. coli BL21 (DE3). Real-time PCR, SDS-PAGE analysis and bioassay showed that the recombinant E. coli expressed the coenzyme B12 synthetic genes and successfully produced coenzyme B12 . However, according to the quantitative determination by inductively coupled plasma-mass spectrometry, the amount of coenzyme B12 produced by the recombinant E. coli (0.21 ± 0.02 μg/g cdw) was approximately 13-fold lower than that by P. denitrificans (2.75 ± 0.22 μg/g cdw). Optimization of the culture conditions to improve the production of coenzyme B12 by the recombinant E. coli was successful, and the highest titer (0.65 ± 0.03 μg/g cdw) of coenzyme B12 was obtained. Interestingly, although the synthesis of coenzyme B12 in P. denitrificans is strictly oxygen-dependent, the recombinant E. coli could produce coenzyme B12 under anaerobic conditions.
Collapse
Affiliation(s)
- Yeounjoo Ko
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, South Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Chowdhury C, Sinha S, Chun S, Yeates TO, Bobik TA. Diverse bacterial microcompartment organelles. Microbiol Mol Biol Rev 2014. [PMID: 25184561 DOI: 10.1128/mmbr.00009–14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles.
Collapse
Affiliation(s)
- Chiranjit Chowdhury
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Sharmistha Sinha
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Sunny Chun
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Todd O Yeates
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA Department of Energy Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, USA Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Thomas A Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
49
|
Moore SJ, Mayer MJ, Biedendieck R, Deery E, Warren MJ. Towards a cell factory for vitamin B12 production in Bacillus megaterium: bypassing of the cobalamin riboswitch control elements. N Biotechnol 2014; 31:553-61. [PMID: 24657453 DOI: 10.1016/j.nbt.2014.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 12/27/2022]
Abstract
Bacillus megaterium is a bacterium that has been used in the past for the industrial production of vitamin B12 (cobalamin), the anti-pernicious anaemia factor. Cobalamin is a modified tetrapyrrole with a cobalt ion coordinated within its macrocycle. More recently, B. megaterium has been developed as a host for the high-yield production of recombinant proteins using a xylose inducible promoter system. Herein, we revisit cobalamin production in B. megaterium DSM319. We have investigated the importance of cobalt for optimum growth and cobalamin production. The cobaltochelatase (CbiX(L)) is encoded within a 14-gene cobalamin biosynthetic (cbi) operon, whose gene-products oversee the transformation of uroporphyrinogen III into adenosylcobyrinic acid a,c-diamide, a key precursor of cobalamin synthesis. The production of CbiX(L) in response to exogenous cobalt was monitored. The metal was found to stimulate cobalamin biosynthesis and decrease the levels of CbiX(L). From this we were able to show that the entire cbi operon is transcriptionally regulated by a B12-riboswitch, with a switch-off point at approximately 5 nM cobalamin. To bypass the effects of the B12-riboswitch the cbi operon was cloned without these regulatory elements. Growth of these strains on minimal media supplemented with glycerol as a carbon source resulted in significant increases in cobalamin production (up to 200 μg L(-1)). In addition, a range of partially amidated intermediates up to adenosylcobyric acid was detected. These findings outline a potential way to develop B. megaterium as a cell factory for cobalamin production using cheap raw materials.
Collapse
Affiliation(s)
- Simon J Moore
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK
| | - Matthias J Mayer
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK
| | - Rebekka Biedendieck
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Evelyne Deery
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK
| | - Martin J Warren
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK.
| |
Collapse
|
50
|
Wang H, Liu B, Wang Q, Wang L. Genome-wide analysis of the salmonella Fis regulon and its regulatory mechanism on pathogenicity islands. PLoS One 2013; 8:e64688. [PMID: 23717649 PMCID: PMC3662779 DOI: 10.1371/journal.pone.0064688] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/17/2013] [Indexed: 11/19/2022] Open
Abstract
Fis, one of the most important nucleoid-associated proteins, functions as a global regulator of transcription in bacteria that has been comprehensively studied in Escherichia coli K12. Fis also influences the virulence of Salmonella enterica and pathogenic E. coli by regulating their virulence genes, however, the relevant mechanism is unclear. In this report, using combined RNA-seq and chromatin immunoprecipitation (ChIP)-seq technologies, we first identified 1646 Fis-regulated genes and 885 Fis-binding targets in the S. enterica serovar Typhimurium, and found a Fis regulon different from that in E. coli. Fis has been reported to contribute to the invasion ability of S. enterica. By using cell infection assays, we found it also enhances the intracellular replication ability of S. enterica within macrophage cell, which is of central importance for the pathogenesis of infections. Salmonella pathogenicity islands (SPI)-1 and SPI-2 are crucial for the invasion and survival of S. enterica in host cells. Using mutation and overexpression experiments, real-time PCR analysis, and electrophoretic mobility shift assays, we demonstrated that Fis regulates 63 of the 94 Salmonella pathogenicity island (SPI)-1 and SPI-2 genes, by three regulatory modes: i) binds to SPI regulators in the gene body or in upstream regions; ii) binds to SPI genes directly to mediate transcriptional activation of themselves and downstream genes; iii) binds to gene encoding OmpR which affects SPI gene expression by controlling SPI regulators SsrA and HilD. Our results provide new insights into the impact of Fis on SPI genes and the pathogenicity of S. enterica.
Collapse
Affiliation(s)
- Hui Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P. R. China
| | - Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P. R. China
| | - Quan Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P. R. China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- * E-mail:
| |
Collapse
|