1
|
Ye D, Nguyen PT, Bourgault S, Couture M. The heme binding protein ChuX is a regulator of heme degradation by the ChuS protein in Escherichia coli O157:H7. J Inorg Biochem 2024; 256:112575. [PMID: 38678912 DOI: 10.1016/j.jinorgbio.2024.112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Escherichia coli O157:H7 possesses an 8-gene cluster (chu genes) that contains genes involved in heme transport and processing from the human host. Among the chu genes, four encode cytoplasmic proteins (ChuS, ChuX, ChuY and ChuW). ChuX was previously shown to be a heme binding protein and to assist ChuW in heme degradation under anaerobic conditions. The purpose of this work was to investigate if ChuX works in concert with ChuS, which is a protein able to degrade heme by a non-canonical mechanism and release the iron from the porphyrin under aerobic conditions using hydrogen peroxide as the oxidant. We showed that when the heme-bound ChuX and apo-ChuS protein are mixed, heme is efficiently transferred from ChuX to ChuS. Heme-bound ChuX displayed a peroxidase activity with ABTS and H2O2 but not heme-bound ChuS, which is an efficient test to determine the protein to which heme is bound in the ChuS-ChuX complex. We found that ChuX protects heme from chemical oxidation and that it has no heme degradation activity by itself. Unexpectedly, we found that ChuX inhibits heme degradation by ChuS and stops the reaction at an early intermediate. We determined using surface plasmon resonance that ChuX interacts with ChuS and that it forms a relatively stable complex. These results indicate that ChuX in addition to its heme transfer activity is a regulator of ChuS activity, a function that was not described before for any of the heme carrier protein that delivers heme to heme degradation enzymes.
Collapse
Affiliation(s)
- Danrong Ye
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec City, QC, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS) and PROTEO, Université Laval, Quebec city, QC, Canada; Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC, Canada
| | - Phuong Trang Nguyen
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC, Canada; Departement of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada
| | - Steve Bourgault
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC, Canada; Departement of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada
| | - Manon Couture
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec City, QC, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS) and PROTEO, Université Laval, Quebec city, QC, Canada; Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC, Canada.
| |
Collapse
|
2
|
Bloomer BJ, Clark DS, Hartwig JF. Progress, Challenges, and Opportunities with Artificial Metalloenzymes in Biosynthesis. Biochemistry 2023; 62:221-228. [PMID: 35195998 DOI: 10.1021/acs.biochem.1c00829] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this Perspective, we present progress, outstanding challenges, and opportunities for the incorporation of artificial metalloenzymes (ArMs) into biosynthetic pathways. We first explain discoveries within the field of ArMs that led to the potential inclusion of these enzymes in biosynthesis. We then describe the specific barriers that our laboratory, in collaboration with the laboratories of Keasling and Mukhopadhyay, addressed to establish a biosynthetic pathway containing an ArM. This biosynthesis produced an unnatural cyclopropyl terpenoid by combining heterologous production of the terpene with modification of its terminal alkene by an ArM built from a cytochrome P450. Finally, we describe the remaining challenges and opportunities related to the application of ArMs in synthetic biology.
Collapse
Affiliation(s)
- Brandon J Bloomer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Douglas S Clark
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Boeckman JX, Sprayberry S, Korn AM, Suchodolski JS, Paulk C, Genovese K, Rech RR, Giaretta PR, Blick AK, Callaway T, Gill JJ. Effect of chronic and acute enterotoxigenic E. coli challenge on growth performance, intestinal inflammation, microbiome, and metabolome of weaned piglets. Sci Rep 2022; 12:5024. [PMID: 35323827 PMCID: PMC8943154 DOI: 10.1038/s41598-022-08446-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Post-weaning enteropathies in swine caused by pathogenic E. coli, such as post-weaning diarrhea (PWD) or edema disease (ED), remain a significant problem for the swine industry. Reduction in the use of antibiotics over concerns of antibiotic resistance and public health concerns, necessitate the evaluation of effective antibiotic alternatives to prevent significant loss of livestock and/or reductions in swine growth performance. For this purpose, an appropriate piglet model of pathogenic E. coli enteropathy is required. In this study, we attempted to induce clinical signs of post-weaning disease in a piglet model using a one-time acute or lower daily chronic dose of a pathogenic E. coli strain containing genes for both heat stable and labile toxins, as well as Shiga toxin. The induced disease state was monitored by determining fecal shedding and colonization of the challenge strain, animal growth performance, cytokine levels, fecal calprotectin, histology, fecal metabolomics, and fecal microbiome shifts. The most informative analyses were colonization and shedding of the pathogen, serum cytokines, metabolomics, and targeted metagenomics to determine dysbiosis. Histopathological changes of the gastrointestinal (GI) tract and tight junction leakage as measured by fecal calprotectin concentrations were not observed. Chronic dosing was similar to the acute regimen suggesting that a high dose of pathogen, as used in many studies, may not be necessary. The piglet disease model presented here can be used to evaluate alternative PWD treatment options.
Collapse
Affiliation(s)
- Justin X Boeckman
- Department of Animal Science, Texas A&M University, College Station, TX, USA.,Center for Phage Technology, Texas A&M University, College Station, TX, USA
| | - Sarah Sprayberry
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Abby M Korn
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Chad Paulk
- Department of Animal Science, Texas A&M University, College Station, TX, USA.,Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Kenneth Genovese
- USDA-ARS, Food and Feed Safety Research Unit, College Station, TX, USA
| | - Raquel R Rech
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Paula R Giaretta
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,School of Veterinary Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anna K Blick
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Todd Callaway
- USDA-ARS, Food and Feed Safety Research Unit, College Station, TX, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Jason J Gill
- Department of Animal Science, Texas A&M University, College Station, TX, USA. .,Center for Phage Technology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
4
|
Kim IJ, Bayer T, Terholsen H, Bornscheuer U. α-Dioxygenases (α-DOXs): Promising biocatalysts for the environmentally friendly production of aroma compounds. Chembiochem 2022; 23:e202100693. [PMID: 35107200 PMCID: PMC9305512 DOI: 10.1002/cbic.202100693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/02/2022] [Indexed: 11/14/2022]
Abstract
Fatty aldehydes (FALs) can be derived from fatty acids (FAs) and related compounds and are frequently used as flavors and fragrances. Although chemical methods have been conventionally used, their selective biotechnological production aiming at more efficient and eco‐friendly synthetic routes is in demand. α‐Dioxygenases (α‐DOXs) are heme‐dependent oxidative enzymes biologically involved in the initial step of plant FA α‐oxidation during which molecular oxygen is incorporated into the Cα‐position of a FA (Cn) to generate the intermediate FA hydroperoxide, which is subsequently converted into the shortened corresponding FAL (Cn‐1). α‐DOXs are promising biocatalysts for the flavor and fragrance industries, they do not require NAD(P)H as cofactors or redox partner proteins, and they have a broad substrate scope. Here, we highlight recent advances in the biocatalytic utilization of α‐DOXs with emphasis on newly discovered cyanobacterial α‐DOXs as well as analytical methods to measure α‐DOX activity in vitro and in vivo.
Collapse
Affiliation(s)
- In Jung Kim
- University of Greifswald: Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Thomas Bayer
- University of Greifswald: Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Henrik Terholsen
- Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Uwe Bornscheuer
- Greifswald University, Dept. of Biotechnology & Enzyme Catalysis, Felix-Hausdorff-Str. 4, 17487, Greifswald, GERMANY
| |
Collapse
|
5
|
Brimberry MA, Mathew L, Lanzilotta W. Making and breaking carbon-carbon bonds in class C radical SAM methyltransferases. J Inorg Biochem 2022; 226:111636. [PMID: 34717253 PMCID: PMC8667262 DOI: 10.1016/j.jinorgbio.2021.111636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
Radical S-adenosylmethionine (SAM) enzymes utilize a [4Fe-4S]1+ cluster and S-(5'-adenosyl)-L-methionine, (SAM), to generate a highly reactive radical and catalyze what is arguably the most diverse set of chemical reactions for any known enzyme family. At the heart of radical SAM catalysis is a highly reactive 5'-deoxyadenosyl radical intermediate (5'-dAdo●) generated through reductive cleavage of SAM or nucleophilic attack of the unique iron of the [4Fe-4S]+ cluster on the 5' C atom of SAM. Spectroscopic studies reveal the 5'-dAdo● is transiently captured in an FeC bond (Ω species). In the presence of substrate, homolytic scission of this metal‑carbon bond regenerates the 5'-dAdo● for catalytic hydrogen atom abstraction. While reminiscent of the adenosylcobalamin mechanism, radical SAM enzymes appear to encompass greater catalytic diversity. In this review we discuss recent developments for radical SAM enzymes involved in unique chemical rearrangements, specifically regarding class C radical SAM methyltransferases. Illuminating this class of radical SAM enzymes is especially significant as many enzymes have been shown to play critical roles in pathogenesis and the synthesis of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Marley A. Brimberry
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602
| | - Liju Mathew
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602
| | - William Lanzilotta
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602.,To whom correspondence should be addressed. Phone, (706) 542-1324; fax, (706) 542-1738;
| |
Collapse
|
6
|
Abstract
Iron is an essential element for Escherichia, Salmonella, and Shigella species. The acquisition of sufficient amounts of iron is difficult in many environments, including the intestinal tract, where these bacteria usually reside. Members of these genera have multiple iron transport systems to transport both ferrous and ferric iron. These include transporters for free ferrous iron, ferric iron associated with chelators, and heme. The numbers and types of transport systems in any species reflect the diversity of niches that it can inhabit. Many of the iron transport genes are found on mobile genetic elements or pathogenicity islands, and there is evidence of the spread of the genes among different species and pathotypes. This is notable among the pathogenic members of the genera in which iron transport systems acquired by horizontal gene transfer allow the bacteria to overcome host innate defenses that act to restrict the availability of iron to the pathogen. The need for iron is balanced by the need to avoid iron overload since excess iron is toxic to the cell. Genes for iron transport and metabolism are tightly regulated and respond to environmental cues, including iron availability, oxygen, and temperature. Master regulators, the iron sensor Fur and the Fur-regulated small RNA (sRNA) RyhB, coordinate the expression of iron transport and cellular metabolism genes in response to the availability of iron.
Collapse
|
7
|
Do Primocolonizing Bacteria Enable Bacteroides thetaiotaomicron Intestinal Colonization Independently of the Capacity To Consume Oxygen? mSphere 2021; 6:6/3/e00232-19. [PMID: 33952662 PMCID: PMC8103986 DOI: 10.1128/msphere.00232-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aerobic bacteria are frequent primocolonizers of the human naive intestine. Their generally accepted role is to eliminate oxygen, which would allow colonization by anaerobes that subsequently dominate bacterial gut populations. Aerobic bacteria are frequent primocolonizers of the human naive intestine. Their generally accepted role is to eliminate oxygen, which would allow colonization by anaerobes that subsequently dominate bacterial gut populations. In this hypothesis-based study, we revisited this dogma experimentally in a germfree mouse model as a mimic of the germfree newborn. We varied conditions leading to the establishment of the dominant intestinal anaerobe Bacteroides thetaiotaomicron. Two variables were introduced: Bacteroides inoculum size and preestablishment by bacteria capable or not of consuming oxygen. High Bacteroides inoculum size enabled its primocolonization. At low inocula, we show that bacterial preestablishment was decisive for subsequent Bacteroides colonization. However, even non-oxygen-respiring bacteria, a hemAEscherichia coli mutant and the intestinal obligate anaerobe Clostridium scindens, facilitated Bacteroides establishment. These findings, which are supported by recent reports, revise the long-held assumption that oxygen scavenging is the main role for aerobic primocolonizing bacteria. Instead, we suggest that better survival of aerobic bacteria ex vivo during vectorization between hosts could be a reason for their frequent primocolonization.
Collapse
|
8
|
Franco M, D'haeseleer PM, Branda SS, Liou MJ, Haider Y, Segelke BW, El-Etr SH. Proteomic Profiling of Burkholderia thailandensis During Host Infection Using Bio-Orthogonal Noncanonical Amino Acid Tagging (BONCAT). Front Cell Infect Microbiol 2018; 8:370. [PMID: 30406044 PMCID: PMC6206043 DOI: 10.3389/fcimb.2018.00370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023] Open
Abstract
Burkholderia pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, and are often fatal to humans and animals. Owing to the high fatality rate, potential for spread by aerosolization, and the lack of efficacious therapeutics, B. pseudomallei and B. mallei are considered biothreat agents of concern. In this study, we investigate the proteome of Burkholderia thailandensis, a closely related surrogate for the two more virulent Burkholderia species, during infection of host cells, and compare to that of B. thailandensis in culture. Studying the proteome of Burkholderia spp. during infection is expected to reveal molecular mechanisms of intracellular survival and host immune evasion; but proteomic profiling of Burkholderia during host infection is challenging. Proteomic analyses of host-associated bacteria are typically hindered by the overwhelming host protein content recovered from infected cultures. To address this problem, we have applied bio-orthogonal noncanonical amino acid tagging (BONCAT) to B. thailandensis, enabling the enrichment of newly expressed bacterial proteins from virtually any growth condition, including host cell infection. In this study, we show that B. thailandensis proteins were selectively labeled and efficiently enriched from infected host cells using BONCAT. We also demonstrate that this method can be used to label bacteria in situ by fluorescent tagging. Finally, we present a global proteomic profile of B. thailandensis as it infects host cells and a list of proteins that are differentially regulated in infection conditions as compared to bacterial monoculture. Among the identified proteins are quorum sensing regulated genes as well as homologs to previously identified virulence factors. This method provides a powerful tool to study the molecular processes during Burkholderia infection, a much-needed addition to the Burkholderia molecular toolbox.
Collapse
Affiliation(s)
- Magdalena Franco
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | | | | | - Megan J Liou
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Yasmeen Haider
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Brent W Segelke
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Sahar H El-Etr
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
9
|
Jaworska K, Nieckarz M, Ludwiczak M, Raczkowska A, Brzostek K. OmpR-Mediated Transcriptional Regulation and Function of Two Heme Receptor Proteins of Yersinia enterocolitica Bio-Serotype 2/O:9. Front Cell Infect Microbiol 2018; 8:333. [PMID: 30294593 PMCID: PMC6158557 DOI: 10.3389/fcimb.2018.00333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022] Open
Abstract
We show that Yersinia enterocolitica strain Ye9 (bio-serotype 2/O:9) utilizes heme-containing molecules as an iron source. The Ye9 genome contains two multigenic clusters, hemPRSTUV-1 and hemPRST-2, encoding putative heme receptors HemR1 and HemR2, that share 62% amino acid identity. Expression of these proteins in an Escherichia coli mutant defective in heme biosynthesis allowed this strain to use hemin and hemoglobin as a source of porphyrin. The hemPRSTUV-1 and hemPRST-2 clusters are organized as operons, expressed from the phem−1 and weaker phem−2 promoters, respectively. Expression of both operons is negatively regulated by iron and the iron-responsive transcriptional repressor Fur. In addition, OmpR, the response regulator of two component system (TCSs) EnvZ/OmpR, represses transcription of both operons through interaction with binding sequences overlapping the −35 region of their promoters. Western blot analysis of the level of HemR1 in ompR, fur, and ompRfur mutants, showed an additive effect of these mutations, indicating that OmpR may regulate HemR expression independently of Fur. However, the effect of OmpR on the activity of the phem−1 promoter and on HemR1 production was observed in both iron-depleted and iron-replete conditions, i.e., when Fur represses the iron-regulated promoter. In addition, a hairpin RNA thermometer, composed of four uracil residues (FourU) that pair with the ribosome-binding site in the 5′-untranslated region (5′-UTR) of hemR1 was predicted by in silico analysis. However, thermoregulated expression of HemR1 could not be demonstrated. Taken together, these data suggest that Fur and OmpR control iron/heme acquisition via a complex mechanism based on negative regulation of hemR1 and hemR2 at the transcriptional level. This interplay could fine-tune the level of heme receptor proteins to allow Y. enterocolitica to fulfill its iron/heme requirements without over-accumulation, which might be important for pathogenic growth within human hosts.
Collapse
Affiliation(s)
- Karolina Jaworska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Nieckarz
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Ludwiczak
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Abduljalil JM. Bacterial riboswitches and RNA thermometers: Nature and contributions to pathogenesis. Noncoding RNA Res 2018; 3:54-63. [PMID: 30159440 PMCID: PMC6096418 DOI: 10.1016/j.ncrna.2018.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
Abstract
Bacterial pathogens are always challenged by fluctuations of chemical and physical parameters that pose serious threats to cellular integrity and metabolic status. Sudden deprivation of nutrients or key metabolites, changes in surrounding pH, and temperature shifts are the most important examples of such parameters. To elicit a proper response to such fluctuations, bacterial cells coordinate the expression of parameter-relevant genes. Although protein-mediated control of gene expression is well appreciated since many decades, RNA-based regulation has been discovered in early 2000s as a parallel level of regulation. Small regulatory RNAs have emerged as one of the most widespread and important gene regulatory systems in bacteria with rare representatives found in Archaea and Eukarya. Riboswitches and thermosensors are cis-encoded RNA regulatory elements that employ different mechanisms to regulate the expression of related genes controlling key metabolic pathways and genes of temperature relevant proteins including virulence factors. The extent of RNA contributions to gene regulation is not completely known even in well-studied models such E. coli and B. subtilis. In depth understanding of riboswitches is promising for opportunity to discover a narrow spectrum antibacterial drugs that target riboswitches of essential metabolic pathways.
Collapse
Key Words
- 5ʹ-UTRs, 5ʹ-untranslated region
- AdoCbl, adenosylcobalamine
- Aptamer
- Bacterial pathogenicity
- CSPs, Cold Shock Proteins
- FMN, Flavin mononucleotide
- Gene expression
- ORFs, open reading frames
- RBS, Ribosomal Binding Site
- RNA thermometer
- RNAP, RNA polymerase
- RNAT, RNA thermometer
- Riboswitches
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SD, Shine-Dalgarno
- TPP, Thiamine pyrophosphate
- Transcription termination
- Virulence
Collapse
|
11
|
Fiege K, Querebillo CJ, Hildebrandt P, Frankenberg-Dinkel N. Improved Method for the Incorporation of Heme Cofactors into Recombinant Proteins Using Escherichia coli Nissle 1917. Biochemistry 2018; 57:2747-2755. [DOI: 10.1021/acs.biochem.8b00242] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kerstin Fiege
- Technische Universität Kaiserslautern, Fachbereich Biologie, Abt. Mikrobiologie, Erwin-Schrödinger-Straße 56, D-67663 Kaiserslautern, Germany
| | - Christine Joy Querebillo
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Nicole Frankenberg-Dinkel
- Technische Universität Kaiserslautern, Fachbereich Biologie, Abt. Mikrobiologie, Erwin-Schrödinger-Straße 56, D-67663 Kaiserslautern, Germany
| |
Collapse
|
12
|
Regeneration of Escherichia coli from Minicells through Lateral Gene Transfer. J Bacteriol 2018; 200:JB.00630-17. [PMID: 29463604 PMCID: PMC5892112 DOI: 10.1128/jb.00630-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/07/2018] [Indexed: 11/20/2022] Open
Abstract
Recently, artificial life has been created with artificial materials and methods. Life can be created when genomic DNA molecules are integrated in liposomes containing biochemical reactions for biogenic needs. However, it is not yet known whether the integration of these parts will be able to occur in nature and constitute a living system. I planned to regenerate bacteria from biologically active liposomes by inserting genomic DNA using only natural materials and methods. Minicells of Escherichia coli, containing plasmids and activated SOS proteins, act as protocells. Four new E. coli strains were regenerated from minicells by inserting the genomes by using the system for conjugation between F- and Hfr strains. Cells of the four regenerated strains showed the same genetic markers as the two genome donors. Pulse-field gel electrophoresis of their genomes showed admixing of those of both donors. In addition, the genomes of the four regenerated strains had chimeric genome of the two donors. These results show that synthesis of life can occur in nature without artificial arrangement.IMPORTANCE What is the difference between inanimate objects and organisms? Organisms always have genomic DNA. When organisms lose their genomes, they can neither grow nor reproduce. As the result, organisms turn into inanimate objects without their genomes. In this study, I regenerated microbes from cells that had lost their genomes (cell corpses) by inserting another genome. All steps of regeneration used the natural behavior of microbes. The same regeneration of microbes could happen in nature. These primitive lives have plasticity, which accelerates evolution and provides various kinds of life in the world.
Collapse
|
13
|
Liu C, Zheng K, Xu Y, Stephen LT, Wang J, Zhao H, Yue T, Nian R, Zhang H, Xian M, Liu H. Expression and characterization of soybean seed coat peroxidase in Escherichia coli BL21(DE3). Prep Biochem Biotechnol 2017; 47:768-775. [PMID: 28644760 DOI: 10.1080/10826068.2017.1342258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Soybean seed coat peroxidase (SBP) is a valuable enzyme having a broad variety of applications in analytical chemistry, biochemistry, and food processing. In the present study, the sscp gene (Gene ID: 548068) was optimized based on the preferred codon usage of Escherichia coli, synthesized, and expressed in E. coli BL21(DE3). SDS-PAGE and western blot analysis of this expressed protein revealed that its molecular weight is approximately 39 kDa. The effects of induction temperature, concentration of isopropyl-β-D-thiogalactoside and hemin, induction time, expression time were optimized to enhance SBP production with a maximum activity of 11.23 U/mL (8.64 U/mg total protein). Furthermore, the kinetics of enzyme-catalyzed reactions of recombinant protein was determined. When 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) was used as substrate, optimum reaction temperature and pH of the enzyme were 85°C and 5.0, respectively. The effects of metal ions on the enzymatic reaction were also further investigated. The SBP was successfully expressed in E. coli BL21(DE3) which would provide a more efficient production strategy for industrial applications of SBP.
Collapse
Affiliation(s)
- Changqing Liu
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
| | - Kai Zheng
- b Qilu University of Technology , Jinan , Shandong Province , P. R. China
| | - Ying Xu
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
| | - Lacmata Tamekou Stephen
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
- d Laboratory of Microbiology and Antimicrobials Substances, Department of Biochemistry , Faculty of Sciences, University of Dschang , Dschang , Cameroon
| | - Jiming Wang
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
| | - Hongwei Zhao
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
| | - Tongqing Yue
- c College of Life Science , Qingdao University , Qingdao , P.R. China
| | - Rui Nian
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
| | - Haibo Zhang
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
| | - Mo Xian
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
| | - Huizhou Liu
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China ; University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
14
|
Matos RG, Casinhas J, Bárria C, dos Santos RF, Silva IJ, Arraiano CM. The Role of Ribonucleases and sRNAs in the Virulence of Foodborne Pathogens. Front Microbiol 2017; 8:910. [PMID: 28579982 PMCID: PMC5437115 DOI: 10.3389/fmicb.2017.00910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/04/2017] [Indexed: 12/02/2022] Open
Abstract
Contaminated food is the source of many severe infections in humans. Recent advances in food science have discovered new foodborne pathogens and progressed in characterizing their biology, life cycle, and infection processes. All this knowledge has been contributing to prevent food contamination, and to develop new therapeutics to treat the infections caused by these pathogens. RNA metabolism is a crucial biological process and has an enormous potential to offer new strategies to fight foodborne pathogens. In this review, we will summarize what is known about the role of bacterial ribonucleases and sRNAs in the virulence of several foodborne pathogens and how can we use that knowledge to prevent infection.
Collapse
Affiliation(s)
- Rute G. Matos
- Control of Gene Expression Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de LisboaOeiras, Portugal
| | | | | | | | | | - Cecília M. Arraiano
- Control of Gene Expression Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de LisboaOeiras, Portugal
| |
Collapse
|
15
|
Wei Y, Kouse AB, Murphy ER. Transcriptional and posttranscriptional regulation of Shigella shuT in response to host-associated iron availability and temperature. Microbiologyopen 2017; 6. [PMID: 28127899 PMCID: PMC5458455 DOI: 10.1002/mbo3.442] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/17/2022] Open
Abstract
Like most bacteria, Shigella must maintain a precise balance between the necessity and toxicity of iron; a balance that is achieved, at least in part, by regulating the production of bacterial iron acquisition systems in response to specific environmental signals. Using the Shigella heme utilization (Shu) system, S. dysenteriae is able to acquire iron from heme, a potentially rich source of nutritional iron within the otherwise iron-limited environment of the human host. Investigations presented within reveal two distinct molecular mechanisms underlying previously uncharacterized transcriptional and translational regulation of shuT, a gene encoding the periplasmic-binding component of the Shu system. While shuT transcription is regulated in response to iron availability via a process dependent upon the global regulator Fur and a Fur-binding site located immediately downstream of the promoter, shuT translation is regulated in response to environmental temperature via the activity of an RNA thermometer located within the 5' untranslated region of the gene. Such complex regulation likely increases the fitness of S. dysenteriae by ensuring maximal ShuT production when the pathogen is within the iron-limited and relatively warm environment of the infected host, the only environment in which heme will be encountered as a potential source of essential iron.
Collapse
Affiliation(s)
- Yahan Wei
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Andrew B Kouse
- Cell Biology and Metabolism Program, NICHD, NIH, Bethesda, MD, USA
| | - Erin R Murphy
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
| |
Collapse
|
16
|
Diverse structural approaches to haem appropriation by pathogenic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:422-433. [PMID: 28130069 DOI: 10.1016/j.bbapap.2017.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 11/24/2022]
Abstract
The critical need for iron presents a challenge for pathogenic bacteria that must survive in an environment bereft of accessible iron due to a natural low bioavailability and their host's nutritional immunity. Appropriating haem, either direct from host haemoproteins or by secreting haem-scavenging haemophores, is one way pathogenic bacteria can overcome this challenge. After capturing their target, haem appropriation systems must remove haem from a high-affinity binding site (on the host haemoprotein or bacterial haemophore) and transfer it to a binding site of lower affinity on a bacterial receptor. Structural information is now available to show how, using a combination of induced structural changes and steric clashes, bacteria are able to extract haem from haemophores, haemopexin and haemoglobin. This review focuses on structural descriptions of these bacterial haem acquisition systems, summarising how they bind haem and their target haemoproteins with particularly emphasis on the mechanism of haem extraction.
Collapse
|
17
|
Fris ME, Murphy ER. Riboregulators: Fine-Tuning Virulence in Shigella. Front Cell Infect Microbiol 2016; 6:2. [PMID: 26858941 PMCID: PMC4728522 DOI: 10.3389/fcimb.2016.00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/08/2016] [Indexed: 11/13/2022] Open
Abstract
Within the past several years, RNA-mediated regulation (ribo-regulation) has become increasingly recognized for its importance in controlling critical bacterial processes. Regulatory RNA molecules, or riboregulators, are perpetually responsive to changes within the micro-environment of a bacterium. Notably, several characterized riboregulators control virulence in pathogenic bacteria, as is the case for each riboregulator characterized to date in Shigella. The timing of virulence gene expression and the ability of the pathogen to adapt to rapidly changing environmental conditions is critical to the establishment and progression of infection by Shigella species; ribo-regulators mediate each of these important processes. This mini review will present the current state of knowledge regarding RNA-mediated regulation in Shigella by detailing the characterization and function of each identified riboregulator in these pathogens.
Collapse
Affiliation(s)
- Megan E Fris
- Department of Biological Science, Ohio University Athens, OH, USA
| | - Erin R Murphy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University Athens, OH, USA
| |
Collapse
|
18
|
Guimarães RA, Lugo Neto DF, Saraiva MDMS, Lima RP, Barros MR, Costa MMD, Oliveira CB, Stipp DT. CARACTERIZAÇÃO FILOGENÉTICA MOLECULAR E RESISTÊNCIA ANTIMICROBIANA DE Escherichia coli ISOLADAS DE CAPRINOS NEONATOS COM DIARREIA. CIÊNCIA ANIMAL BRASILEIRA 2015. [DOI: 10.1590/1089-6891v16i433639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resumo A diarreia neonatal determina alterações significativas na conversão alimentar, resultando na queda da produtividade de caprinos. A resistência antimicrobiana em bactérias caracteriza-se como importante problema de saúde pública, assim, a Escherichia coli pode ser caracterizada como importante patógeno por expressar mecanismos de virulência responsáveis por significativas afecções clínicas em seres humanos e animais. O presente estudo avaliou a presença de E. coli em 117 amostras fecais de caprinos e analisou a resistência antimicrobiana dos isolados. Colônias sugestivas foram submetidas a testes bioquímicos, seguido de determinação do grupo genotípico e análise filogenética; posteriormente foram submetidas à prova de suscetibilidade a antimicrobianos. Foram identificados isolados de E. coli, Salmonella spp, Shigella sonnei e Enterobacter aerogenes. Isolados de E. coli foram classificados filogeneticamente em B2 (9/39), D (19/39), B1 (7/39) e A (4/29). Os fatores de virulência identificados foram K99 (04/39) e Stx (02/39). À prova de suscetibilidade antimicrobiana, os isolados foram sensíveis a Cloranfenicol, Estreptomicina, Amoxicilina e Ciprofloxacina, sendo todos resistentes à Lincomicina, Vancomicina e Penicilina. Os resultados reforçam a necessidade de estabelecimento de protocolos criteriosos para o uso de antimicrobianos, medida fundamental para o aprimoramento da sanidade dos rebanhos caprinos brasileiros.
Collapse
|
19
|
Krajewski SS, Narberhaus F. Temperature-driven differential gene expression by RNA thermosensors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:978-988. [PMID: 24657524 DOI: 10.1016/j.bbagrm.2014.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/28/2014] [Accepted: 03/14/2014] [Indexed: 12/20/2022]
Abstract
Many prokaryotic genes are organized in operons. Genes organized in such transcription units are co-transcribed into a polycistronic mRNA. Despite being clustered in a single mRNA, individual genes can be subjected to differential regulation, which is mainly achieved at the level of translation depending on initiation and elongation. Efficiency of translation initiation is primarily determined by the structural accessibility of the ribosome binding site (RBS). Structured cis-regulatory elements like RNA thermometers (RNATs) can contribute to differential regulation of individual genes within a polycistronic mRNA. RNATs are riboregulators that mediate temperature-responsive regulation of a downstream gene by modulating the accessibility of its RBS. At low temperature, the RBS is trapped by intra-molecular base pairing prohibiting translation initiation. The secondary structure melts with increasing temperature thus liberating the RBS. Here, we present an overview of different RNAT types and specifically highlight recently discovered RNATs. The main focus of this review is on RNAT-based differential control of polycistronic operons. Finally, we discuss the influence of temperature on other riboregulators and the potential of RNATs in synthetic RNA biology. This article is part of a Special Issue entitled: Riboswitches.
Collapse
|
20
|
Carpenter C, Payne SM. Regulation of iron transport systems in Enterobacteriaceae in response to oxygen and iron availability. J Inorg Biochem 2014; 133:110-7. [PMID: 24485010 DOI: 10.1016/j.jinorgbio.2014.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
Iron is an essential nutrient for most bacteria. Depending on the oxygen available in the surrounding environment, iron is found in two distinct forms: ferrous (Fe(II)) or ferric (Fe(III)). Bacteria utilize different transport systems for the uptake of the two different forms of iron. In oxic growth conditions, iron is found in its insoluble, ferric form, and in anoxic growth conditions iron is found in its soluble, ferrous form. Enterobacteriaceae have adapted to transporting the two forms of iron by utilizing the global, oxygen-sensing regulators, ArcA and Fnr to regulate iron transport genes in response to oxygen.
Collapse
Affiliation(s)
- Chandra Carpenter
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Shelley M Payne
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
21
|
Runyen-Janecky LJ. Role and regulation of heme iron acquisition in gram-negative pathogens. Front Cell Infect Microbiol 2013; 3:55. [PMID: 24116354 PMCID: PMC3792355 DOI: 10.3389/fcimb.2013.00055] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/10/2013] [Indexed: 12/14/2022] Open
Abstract
Bacteria that reside in animal tissues and/or cells must acquire iron from their host. However, almost all of the host iron is sequestered in iron-containing compounds and proteins, the majority of which is found within heme molecules. Thus, likely iron sources for bacterial pathogens (and non-pathogenic symbionts) are free heme and heme-containing proteins. Furthermore, the cellular location of the bacterial within the host (intra or extracellular) influences the amount and nature of the iron containing compounds available for transport. The low level of free iron in the host, coupled with the presence of numerous different heme sources, has resulted in a wide range of high-affinity iron acquisition strategies within bacteria. However, since excess iron and heme are toxic to bacteria, expression of these acquisition systems is highly regulated. Precise expression in the correct host environment at the appropriate times enables heme iron acquisitions systems to contribute to the growth of bacterial pathogens within the host. This mini-review will highlight some of the recent findings in these areas for gram-negative pathogens.
Collapse
|
22
|
Kelson AB, Carnevali M, Truong-Le V. Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms. Curr Opin Pharmacol 2013; 13:707-16. [DOI: 10.1016/j.coph.2013.07.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/22/2013] [Accepted: 07/01/2013] [Indexed: 11/28/2022]
|
23
|
RNA-mediated thermoregulation of iron-acquisition genes in Shigella dysenteriae and pathogenic Escherichia coli. PLoS One 2013; 8:e63781. [PMID: 23704938 PMCID: PMC3660397 DOI: 10.1371/journal.pone.0063781] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/07/2013] [Indexed: 12/29/2022] Open
Abstract
The initiation, progression and transmission of most bacterial infections is dependent upon the ability of the invading pathogen to acquire iron from each of the varied environments encountered during the course of a natural infection. In total, 95% of iron within the human body is complexed within heme, making heme a potentially rich source of host-associated nutrient iron for invading bacteria. As heme is encountered only within the host, pathogenic bacteria often regulate synthesis of heme utilization factors such that production is maximal under host-associated environmental conditions. This study examines the regulated production of ShuA, an outer-membrane receptor required for the utilization of heme as a source of nutrient iron by Shigella dysenteriae, a pathogenic bacterium that causes severe diarrheal diseases in humans. Specifically, the impact of the distinct environmental temperatures encountered during infection within a host (37°C) and transmission between hosts (25°C) on shuA expression is investigated. We show that shuA expression is subject to temperature-dependent post-transcriptional regulation resulting in increased ShuA production at 37°C. The observed thermoregulation is mediated by nucleic acid sequences within the 5' untranslated region. In addition, we have identified similar nucleotide sequences within the 5' untranslated region of the orthologous chuA transcript of enteropathogenic E. coli and have demonstrated that it also functions to confer temperature-dependent post-transcriptional regulation. In both function and predicted structure, the regulatory element within the shuA and chuA 5' untranslated regions closely resembles a FourU RNA thermometer, a zipper-like RNA structure that occludes the Shine-Dalgarno sequence at low temperatures. Increased production of ShuA and ChuA in response to the host body temperature allows for maximal production of these heme acquisition factors within the environment where S. dysenteriae and pathogenic E. coli strains would encounter heme, a host-specific iron source.
Collapse
|
24
|
Järvinen J, Taskila S, Isomäki R, Ojamo H. Screening of white-rot fungi manganese peroxidases: a comparison between the specific activities of the enzyme from different native producers. AMB Express 2012. [PMID: 23190610 PMCID: PMC3549895 DOI: 10.1186/2191-0855-2-62] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study manganese peroxidase (MnP) enzymes from selected white-rot fungi were isolated and compared for potential future recombinant production. White-rot fungi were cultivated in small-scale in liquid media and a simplified process was established for the purification of extracellular enzymes. Five lignin degrading organisms were selected (Bjerkandera sp., Phanerochaete (P.) chrysosporium, Physisporinus (P.) rivulosus, Phlebia (P.) radiata and Phlebia sp. Nf b19) and studied for MnP production in small-scale. Extracellular MnP activity was followed and cultivations were harvested at proximity of the peak activity. The production of MnPs varied in different organisms but was clearly regulated by inducing liquid media components (Mn2+, veratryl alcohol and malonate). In total 8 different MnP isoforms were purified. Results of this study reinforce the conception that MnPs from distinct organisms differ substantially in their properties. Production of the extracellular enzyme in general did not reach a substantial level. This further suggests that these native producers are not suitable for industrial scale production of the enzyme. The highest specific activities were observed with MnPs from P. chrysosporium (200 U mg-1), Phlebia sp. Nf b19 (55 U mg-1) and P. rivulosus (89 U mg-1) and these MnPs are considered as the most potential candidates for further studies. The molecular weight of the purified MnPs was estimated to be between 45–50 kDa.
Collapse
|
25
|
Lee HJ, Mochizuki N, Masuda T, Buckhout TJ. Disrupting the bimolecular binding of the haem-binding protein 5 (AtHBP5) to haem oxygenase 1 (HY1) leads to oxidative stress in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2012. [PMID: 22991161 DOI: 10.1093/jxb/errs321432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Arabidopsis thaliana L. SOUL/haem-binding proteins, AtHBPs belong to a family of five members. The Arabidopsis cytosolic AtHBP1 (At1g17100) and AtHBP2 (At2g37970) have been shown to bind porphyrins and metalloporphyrins including haem. In contrast to the cytosolic localization of these haem-binding proteins, AtHBP5 (At5g20140) encodes a protein with an N-terminal transit peptide that probably directs targeting to the chloroplast. In this report, it is shown that AtHBP5 binds haem and interacts with the haem oxygenase, HY1, in both yeast two-hybrid and BiFC assays. The expression of HY1 is repressed in the athbp5 T-DNA knockdown mutant and the accumulation of H(2)O(2) is observed in athbp5 seedlings that are treated with methyl jasmonate (MeJA), a ROS-producing stress hormone. In contrast, AtHBP5 over-expressing plants show a decreased accumulation of H(2)O(2) after MeJA treatment compared with the controls. It is proposed that the interaction between the HY1 and AtHBP5 proteins participate in an antioxidant pathway that might be mediated by reaction products of haem catabolism.
Collapse
Affiliation(s)
- Hye-Jung Lee
- Applied Botany, Institute of Biology, Humboldt University Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
26
|
Lee HJ, Mochizuki N, Masuda T, Buckhout TJ. Disrupting the bimolecular binding of the haem-binding protein 5 (AtHBP5) to haem oxygenase 1 (HY1) leads to oxidative stress in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5967-78. [PMID: 22991161 PMCID: PMC3467301 DOI: 10.1093/jxb/ers242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis thaliana L. SOUL/haem-binding proteins, AtHBPs belong to a family of five members. The Arabidopsis cytosolic AtHBP1 (At1g17100) and AtHBP2 (At2g37970) have been shown to bind porphyrins and metalloporphyrins including haem. In contrast to the cytosolic localization of these haem-binding proteins, AtHBP5 (At5g20140) encodes a protein with an N-terminal transit peptide that probably directs targeting to the chloroplast. In this report, it is shown that AtHBP5 binds haem and interacts with the haem oxygenase, HY1, in both yeast two-hybrid and BiFC assays. The expression of HY1 is repressed in the athbp5 T-DNA knockdown mutant and the accumulation of H(2)O(2) is observed in athbp5 seedlings that are treated with methyl jasmonate (MeJA), a ROS-producing stress hormone. In contrast, AtHBP5 over-expressing plants show a decreased accumulation of H(2)O(2) after MeJA treatment compared with the controls. It is proposed that the interaction between the HY1 and AtHBP5 proteins participate in an antioxidant pathway that might be mediated by reaction products of haem catabolism.
Collapse
Affiliation(s)
- Hye-Jung Lee
- Applied Botany, Institute of Biology, Humboldt University
Berlin, Invalidenstraße 42, 10115 Berlin,
Germany
| | - Nobuyoshi Mochizuki
- Department of Botany, Graduate School of Science, Kyoto
University, Kitashirakawa, Kyoto 606–8502,
Japan
| | - Tatsuru Masuda
- Department of General Systems Studies, Graduate School of Arts and Sciences,
University of Tokyo, Komaba 3-8-1, Tokyo,
153–8902, Japan
| | - Thomas J. Buckhout
- Applied Botany, Institute of Biology, Humboldt University
Berlin, Invalidenstraße 42, 10115 Berlin,
Germany
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
27
|
Identification and characterization of Cronobacter iron acquisition systems. Appl Environ Microbiol 2012; 78:6035-50. [PMID: 22706064 DOI: 10.1128/aem.01457-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cronobacter spp. are emerging pathogens that cause severe infantile meningitis, septicemia, or necrotizing enterocolitis. Contaminated powdered infant formula has been implicated as the source of Cronobacter spp. in most cases, but questions still remain regarding the natural habitat and virulence potential for each strain. The iron acquisition systems in 231 Cronobacter strains isolated from different sources were identified and characterized. All Cronobacter spp. have both the Feo and Efe systems for acquisition of ferrous iron, and all plasmid-harboring strains (98%) have the aerobactin-like siderophore, cronobactin, for transport of ferric iron. All Cronobacter spp. have the genes encoding an enterobactin-like siderophore, although it was not functional under the conditions tested. Furthermore, all Cronobacter spp. have genes encoding five receptors for heterologous siderophores. A ferric dicitrate transport system (fec system) is encoded specifically by a subset of Cronobacter sakazakii and C. malonaticus strains, of which a high percentage were isolated from clinical samples. Phylogenetic analysis confirmed that the fec system is most closely related to orthologous genes present in human-pathogenic bacterial strains. Moreover, all strains of C. dublinensis and C. muytjensii encode two receptors, FcuA and Fct, for heterologous siderophores produced by plant pathogens. Identification of putative Fur boxes and expression of the genes under iron-depleted conditions revealed which genes and operons are components of the Fur regulon. Taken together, these results support the proposition that C. sakazakii and C. malonaticus may be more associated with the human host and C. dublinensis and C. muytjensii with plants.
Collapse
|
28
|
Evolutionary silence of the acid chaperone protein HdeB in enterohemorrhagic Escherichia coli O157:H7. Appl Environ Microbiol 2011; 78:1004-14. [PMID: 22179243 DOI: 10.1128/aem.07033-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The periplasmic chaperones HdeA and HdeB are known to be important for cell survival at low pH (pH < 3) in Escherichia coli and Shigella spp. Here we investigated the roles of HdeA and HdeB in the survival of various enterohemorrhagic E. coli (EHEC) following exposure to pH 2.0. Similar to K-12 strains, the acid protections conferred by HdeA and HdeB in EHEC O145 were significant: loss of HdeA and HdeB led to over 100- to 1,000-fold reductions in acid survival, depending on the growth condition of prechallenge cells. However, this protection was much less in E. coli O157:H7 strains. Deletion of hdeB did not affect the acid survival of cells, and deletion of hdeA led to less than a 5-fold decrease in survival. Sequence analysis of the hdeAB operon revealed a point mutation at the putative start codon of the hdeB gene in all 26 E. coli O157:H7 strains analyzed, which shifted the ATG start codon to ATA. This mutation correlated with the lack of HdeB in E. coli O157:H7; however, the plasmid-borne O157-hdeB was able to restore partially the acid resistance in an E. coli O145ΔhdeAB mutant, suggesting the potential function of O157-HdeB as an acid chaperone. We conclude that E. coli O157:H7 strains have evolved acid survival strategies independent of the HdeA/B chaperones and are more acid resistant than nonpathogenic K-12 for cells grown under nonfavorable culturing conditions such as in Luria-Bertani no-salt broth at 28°C. These results suggest a divergent evolution of acid resistance mechanisms within E. coli.
Collapse
|
29
|
Chu BCH, Vogel HJ. A structural and functional analysis of type III periplasmic and substrate binding proteins: their role in bacterial siderophore and heme transport. Biol Chem 2011; 392:39-52. [PMID: 21194366 DOI: 10.1515/bc.2011.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In Escherichia coli the Fhu, Fep and Fec transport systems are involved in the uptake of chelated ferric iron-siderophore complexes, whereas in pathogenic strains heme can also be used as an iron source. An essential step in these pathways is the movement of the ferric-siderophore complex or heme from the outer membrane transporter across the periplasm to the cognate cytoplasmic membrane ATP-dependent transporter. This is accomplished in each case by a dedicated periplasmic binding protein (PBP). Ferric-siderophore binding PBPs belong to the PBP protein superfamily and adopt a bilobal type III structural fold in which the two independently folded amino and carboxy terminal domains are linked together by a single long α-helix of approximately 20 amino acids. Recent structural studies reveal how the PBPs of the Fhu, Fep, Fec and Chu systems are able to bind their corresponding ligands. These complex structures will be discussed and placed in the context of our current understanding of the entire type III family of Gram-negative periplasmic binding proteins and related Gram-positive substrate binding proteins.
Collapse
Affiliation(s)
- Byron C H Chu
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
30
|
Oashi T, Ringer AL, Raman EP, MacKerell AD. Automated selection of compounds with physicochemical properties to maximize bioavailability and druglikeness. J Chem Inf Model 2011; 51:148-58. [PMID: 21142079 PMCID: PMC3160130 DOI: 10.1021/ci100359a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adequate bioavailability is one of the essential properties for an orally administered drug. Lipinski and others have formulated simplified rules in which compounds that satisfy selected physiochemical properties, for example, molecular weight (MW) ≤ 500 or the logarithm of the octanol-water partition coefficient, log P(o/w) < 5, are anticipated to likely have pharmacokinetic properties appropriate for oral administration. However, these schemes do not simultaneously consider the combination of the physiochemical properties, complicating their application in a more automated fashion. To overcome this, we present a novel method to select compounds with a combination of physicochemical properties that maximize bioavailability and druglikeness based on compounds in the World Drug Index database. In the study four properties, MW, log P(o/w), number of hydrogen bond donors, and number of hydrogen acceptors, were combined into a 4-dimensional (4D) histogram, from which a scoring function was defined on the basis of a 4D dependent multivariate Gaussian model. The resulting equation allows for assigning compounds a bioavailability score, termed 4D-BA, such that chemicals with higher 4D-BA scores are more likely to have oral druglike characteristics. The descriptor is validated by applying the function to drugs previously categorized in the Biopharmaceutics Classification System, and examples of application of the descriptor are given in the context of previously published studies targeting heme oxygenase and SHP2 phosphatase. The approach is anticipated to be useful in early lead identification studies in combination with clustering methods to maximize chemical and structural diversity when selecting compounds for biological assays from large database screens. It may also be applied to prioritize synthetically feasible chemical modifications during lead compound optimization.
Collapse
Affiliation(s)
- Taiji Oashi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn Street, Baltimore, MD 21201
| | - Ashley L. Ringer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn Street, Baltimore, MD 21201
| | - E. Prabhu Raman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn Street, Baltimore, MD 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn Street, Baltimore, MD 21201
| |
Collapse
|
31
|
Honsa ES, Maresso AW. Mechanisms of iron import in anthrax. Biometals 2011; 24:533-45. [PMID: 21258843 DOI: 10.1007/s10534-011-9413-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/08/2011] [Indexed: 12/18/2022]
Abstract
During an infection, bacterial pathogens must acquire iron from the host to survive. However, free iron is sequestered in host proteins, which presents a barrier to iron-dependent bacterial replication. In response, pathogens have developed mechanisms to acquire iron from the host during infection. Interestingly, a significant portion of the iron pool is sequestered within heme, which is further bound to host proteins such as hemoglobin. The copious amount of heme-iron makes hemoglobin an ideal molecule for targeted iron uptake during infection. While the study of heme acquisition is well represented in Gram-negative bacteria, the systems and mechanism of heme uptake in Gram-positive bacteria has only recently been investigated. Bacillus anthracis, the causative agent of anthrax disease, represents an excellent model organism to study iron acquisition processes owing to a multifaceted lifecycle consisting of intra- and extracellular phases and a tremendous replicative potential upon infection. This review provides an in depth description of the current knowledge of B. anthracis iron acquisition and applies these findings to a general understanding of how pathogenic Gram-positive bacteria transport this critical nutrient during infection.
Collapse
Affiliation(s)
- Erin Sarah Honsa
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
32
|
Chim N, Habel JE, Johnston JM, Krieger I, Miallau L, Sankaranarayanan R, Morse RP, Bruning J, Swanson S, Kim H, Kim CY, Li H, Bulloch EM, Payne RJ, Manos-Turvey A, Hung LW, Baker EN, Lott JS, James MNG, Terwilliger TC, Eisenberg DS, Sacchettini JC, Goulding CW. The TB Structural Genomics Consortium: a decade of progress. Tuberculosis (Edinb) 2011; 91:155-72. [PMID: 21247804 DOI: 10.1016/j.tube.2010.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/19/2010] [Accepted: 11/26/2010] [Indexed: 01/03/2023]
Abstract
The TB Structural Genomics Consortium is a worldwide organization of collaborators whose mission is the comprehensive structural determination and analyses of Mycobacterium tuberculosis proteins to ultimately aid in tuberculosis diagnosis and treatment. Congruent to the overall vision, Consortium members have additionally established an integrated facilities core to streamline M. tuberculosis structural biology and developed bioinformatics resources for data mining. This review aims to share the latest Consortium developments with the TB community, including recent structures of proteins that play significant roles within M. tuberculosis. Atomic resolution details may unravel mechanistic insights and reveal unique and novel protein features, as well as important protein-protein and protein-ligand interactions, which ultimately lead to a better understanding of M. tuberculosis biology and may be exploited for rational, structure-based therapeutics design.
Collapse
Affiliation(s)
- Nicholas Chim
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Suits MDL, Lang J, Pal GP, Couture M, Jia Z. Structure and heme binding properties of Escherichia coli O157:H7 ChuX. Protein Sci 2009; 18:825-38. [PMID: 19319934 PMCID: PMC2762594 DOI: 10.1002/pro.84] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For many pathogenic microorganisms, iron acquisition from host heme sources stimulates growth, multiplication, ultimately enabling successful survival and colonization. In gram-negative Escherichia coli O157:H7, Shigella dysenteriae and Yersinia enterocolitica the genes encoded within the heme utilization operon enable the effective uptake and utilization of heme as an iron source. While the complement of proteins responsible for heme internalization has been determined in these organisms, the fate of heme once it has reached the cytoplasm has only recently begun to be resolved. Here we report the first crystal structure of ChuX, a member of the conserved heme utilization operon from pathogenic E. coli O157:H7 determined at 2.05 A resolution. ChuX forms a dimer which remarkably given low sequence homology, displays a very similar fold to the monomer structure of ChuS and HemS, two other heme utilization proteins. Absorption spectral analysis of heme reconstituted ChuX demonstrates that ChuX binds heme in a 1:1 manner implying that each ChuX homodimer has the potential to coordinate two heme molecules in contrast to ChuS and HemS where only one heme molecule is bound. Resonance Raman spectroscopy indicates that the heme of ferric ChuX is composed of a mixture of coordination states: 5-coordinate and high-spin, 6-coordinate and low-spin, and 6-coordinate and high-spin. In contrast, the reduced ferrous form displays mainly a 5-coordinate and high-spin state with a minor contribution from a 6-coordinate and low-spin state. The nu(Fe-CO) and nu(C-O) frequencies of ChuX-bound CO fall on the correlation line expected for histidine-coordinated hemoproteins indicating that the fifth axial ligand of the ferrous heme is the imidazole ring of a histidine residue. Based on sequence and structural comparisons, we designed a number of site-directed mutations in ChuX to probe the heme binding sites and dimer interface. Spectral analysis of ChuX and mutants suggests involvement of H65 and H98 in heme coordination as mutations of both residues were required to abolish the formation of the hexacoordination state of heme-bound ChuX.
Collapse
Affiliation(s)
- Michael D L Suits
- Department of Biochemistry, Queen's UniversityKingston, Ontario, Canada K7L 3N6
| | - Jérôme Lang
- Département de Biochimie et de Microbiologie, Université LavalQuebec City, Quebec, Canada G1K 7P4
| | - Gour P Pal
- Department of Biochemistry, Queen's UniversityKingston, Ontario, Canada K7L 3N6
| | - Manon Couture
- Département de Biochimie et de Microbiologie, Université LavalQuebec City, Quebec, Canada G1K 7P4
| | - Zongchao Jia
- Department of Biochemistry, Queen's UniversityKingston, Ontario, Canada K7L 3N6,*Correspondence to: Zongchao Jia, Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6. E-mail:
| |
Collapse
|
34
|
Genetics and virulence association of the Shigella flexneri sit iron transport system. Infect Immun 2009; 77:1992-9. [PMID: 19289511 DOI: 10.1128/iai.00064-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The sit-encoded iron transport system is present within pathogenicity islands in all Shigella spp. and some pathogenic Escherichia coli strains. The islands contain numerous insertion elements and sequences with homology to bacteriophage genes. The Shigella flexneri sit genes can be lost as a result of deletion within the island. The formation of deletions was dependent upon RecA and occurred at relatively high frequency. This suggests that the sit region is inherently unstable, yet sit genes are maintained in all of the clinical isolates tested. Characterization of the sitABCD genes in S. flexneri indicates that they encode a ferrous iron transport system, although the genes are induced aerobically. The sit genes provide a competitive advantage to S. flexneri growing within epithelial cells, and a sitA mutant is outcompeted by the wild type in cultured epithelial cells. The Sit system is also required for virulence in a mouse lung model. The sitA mutant was able to infect the mice and induce a protective immune response but was avirulent compared to its wild-type parent strain.
Collapse
|
35
|
Cavallaro G, Decaria L, Rosato A. Genome-Based Analysis of Heme Biosynthesis and Uptake in Prokaryotic Systems. J Proteome Res 2008; 7:4946-54. [DOI: 10.1021/pr8004309] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriele Cavallaro
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Leonardo Decaria
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
36
|
Escherichia coli O157:H7 survives within human macrophages: global gene expression profile and involvement of the Shiga toxins. Infect Immun 2008; 76:4814-22. [PMID: 18725421 DOI: 10.1128/iai.00446-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157:H7 is an important food-borne pathogen that specifically binds to the follicle-associated epithelium in the intestine, which rapidly brings this bacterial pathogen in contact with underlying human macrophages. Very little information is available about the interaction between E. coli O157:H7 and human macrophages. We evaluated the uptake and survival of strain EDL933 during infection of human macrophages. Surprisingly, EDL933 survived and multiplied in human macrophages at 24 h postinfection. The global gene expression profile of this pathogen during macrophage infection was determined. Inside human macrophages, upregulation of E. coli O157:H7 genes carried on O islands (such as pagC, the genes for both of the Shiga toxins, and the two iron transport system operons fit and chu) was observed. Genes involved in acid resistance and in the SOS response were upregulated. However, genes of the locus of enterocyte effacement or genes involved in peroxide resistance were not differentially expressed. Many genes with putative or unknown functions were upregulated inside human macrophages and may be newly discovered virulence factors. As the Shiga toxin genes were upregulated in macrophages, survival and cytotoxicity assays were performed with isogenic Shiga toxin mutants. The initial uptake of Shiga toxins mutants was higher than that of the wild type; however, the survival rates were significantly lower at 24 h postinfection. Thus, Shiga toxins are implicated in the interaction between E. coli O157:H7 and human macrophages. Understanding the molecular mechanisms used by E. coli to survive within macrophages may help in the identification of targets for new therapeutic agents.
Collapse
|
37
|
Hsieh PF, Lin TL, Lee CZ, Tsai SF, Wang JT. Serum-induced iron-acquisition systems and TonB contribute to virulence in Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis 2008; 197:1717-27. [PMID: 18433330 DOI: 10.1086/588383] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Klebsiella pneumoniae has become the predominant pathogen causing primary pyogenic liver abscess (PLA). METHODS K. pneumoniae was stimulated by human serum, and gene expression was analyzed by microarray. RESULTS Three putative iron acquisition systems, Yersinia high-pathogenicity island (HPI), iucABCDiutA, and iroA(iroNDCB), that increased in expression and predominated in PLA-associated K. pneumoniae strains were identified. By use of siderophore uptake assays, these 3 systems were confirmed to be siderophore-dependent iron acquisition systems. Only the irp2-iuc-iroA triple mutant showed decreased virulence in mice. Full-genome analysis of K. pneumoniae strain NTUH-K2044 identified 10 putative iron uptake systems. Seven of these 10 systems were TonB dependent, including Yersinia HPI, iucABCDiutA, and iroA. A tonB deletion mutant was demonstrated to have profound attenuation of virulence. Immunization with the tonB mutant resulted in seroconversion of extracellular polysaccharide antibodies and protective efficacy against subsequent exposure to the parental strain. CONCLUSIONS Iron uptake systems were the genes in K. pneumoniae that were highly up-regulated in response to sera. Although there are multiple iron transporter systems in NTUH-K2044, a mutation in all 3 loci (irp2, iuc, and iroA) is necessary to decrease virulence. The tonB mutant is a potential vaccine candidate because it can induce a significant protective immune response against challenge with a wild-type strain.
Collapse
Affiliation(s)
- Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Characterization of a yjjQ mutant of avian pathogenic Escherichia coli (APEC). Microbiology (Reading) 2008; 154:1082-1093. [DOI: 10.1099/mic.0.2007/015784-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Oldham AL, Wood TA, Henderson DP. Plesiomonas shigelloides hugZ encodes an iron-regulated heme binding protein required for heme iron utilization. Can J Microbiol 2008; 54:97-102. [DOI: 10.1139/w07-122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plesiomonas shigelloides is an intestinal pathogen that uses heme as an iron source. The P. shigelloides heme utilization system consists of 10 genes, 7 of which permit heme transport and 3 of which are associated with utilization of heme as an iron source once it is inside the cell. The goal of this study was to examine hugZ, 1 of the 3 genes associated with utilization of heme iron. DPH8, a hugZ mutant, failed to grow to full cell density in media containing heme as the iron source, indicating that hugZ is required for heme iron utilization. Western blots using antibodies against Vibrio cholerae HutZ to detect the P. shigelloides HugZ indicated that hugZ encodes an iron-regulated cytoplasmic protein, which is absent in DPH8. A heme affinity bead assay performed on soluble protein fractions from P. shigelloides DPH8/pHUG24.5 (pHUG24.5 encodes hugZ) indicated that HugZ binds heme. Heme utilization was restored in DPH8 by hox1, which encodes the α-heme oxygenase from Synechocystis sp. strain PCC6803. However, HugZ did not exhibit α-heme oxygenase activity in an assay that detects the conversion of heme to the bilin functional group present in phycobiliproteins. These results do not rule out that HugZ exhibits another type of heme oxygenase activity not detected in the assay.
Collapse
Affiliation(s)
- Athenia L. Oldham
- Department of Math and Science, The University of Texas of the Permian Basin, 4901 East University Boulevard, Odessa, TX 79762, USA
| | - Trisha A. Wood
- Department of Math and Science, The University of Texas of the Permian Basin, 4901 East University Boulevard, Odessa, TX 79762, USA
| | - Douglas P. Henderson
- Department of Math and Science, The University of Texas of the Permian Basin, 4901 East University Boulevard, Odessa, TX 79762, USA
| |
Collapse
|
40
|
Olczak T, Sroka A, Potempa J, Olczak M. Porphyromonas gingivalis HmuY and HmuR: further characterization of a novel mechanism of heme utilization. Arch Microbiol 2007; 189:197-210. [PMID: 17922109 DOI: 10.1007/s00203-007-0309-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/14/2007] [Accepted: 09/13/2007] [Indexed: 11/27/2022]
Abstract
Porphyromonas gingivalis HmuY is a putative heme-binding lipoprotein associated with the outer membrane. It is part of an operon together with a gene encoding an outer-membrane hemin utilization receptor (HmuR) and four uncharacterized genes. A similar operon organization was found in Bacteroides fragilis and B. thetaiotaomicron, with the former containing an additional HmuY homologue encoded upstream of the hmuR-like gene. In P. gingivalis cultured under heme-limited conditions, a approximately 1-kb hmuY transcript was produced at high levels along with some approximately 3.5 and approximately 9-kb transcripts. Compared with the parental strain, mutants deficient in hmuY or hmuR or hmuY-hmuR gene function grew more slowly and bound lower amounts of hemin and hemoglobin. Significantly, they grew more slowly or were unable to grow when human serum was used as the sole iron/heme source. Analysis of the hmu promoter showed that it is regulated by iron. The HmuY protein normally occurs as a homodimer, but in the presence of hemin it may form tetramers. These results show that HmuY may be the first reported member of a new class of proteins in Porphyromonas and Bacteroides species involved in heme utilization, a function being exerted in conjunction with HmuR, an outer-membrane heme transporter.
Collapse
Affiliation(s)
- Teresa Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland.
| | | | | | | |
Collapse
|
41
|
Furci LM, Lopes P, Eakanunkul S, Zhong S, MacKerell AD, Wilks A. Inhibition of the Bacterial Heme Oxygenases from Pseudomonas aeruginosa and Neisseria meningitidis: Novel Antimicrobial Targets. J Med Chem 2007; 50:3804-13. [PMID: 17629261 DOI: 10.1021/jm0700969] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The final step in heme utilization and iron acquisition in many pathogens is the oxidative cleavage of heme by heme oxygenase (HO), yielding iron, biliverdin, and carbon monoxide. Thus, the essential requirement for iron suggests that HO may provide a potential therapeutic target for antimicrobial drug development. Computer-aided drug design (CADD) combined with experimental assays identified small-molecule inhibitors of the Neisseria meningitidis HO (nm-HO). CADD virtual screening applied to 800 000 compounds identified 153 for biological assay. Several of the compounds were shown to have KD values in the micromolar range for nm-HO and the Pseudomonas aeruginosa HO (pa-HO). The compounds also inhibited the growth of P. aeruginosa as well as biliverdin formation in E. coli cells overexpressing nm-HO. Thus, CADD combined with experimental analysis has been used to identify novel inhibitors of the bacterial heme oxygenases that can cross the cell membrane and specifically inhibit HO activity.
Collapse
Affiliation(s)
- Lena M Furci
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201-1140, USA
| | | | | | | | | | | |
Collapse
|
42
|
Vidakovics MLP, Paba J, Lamberti Y, Ricart CA, de Sousa MV, Rodriguez ME. Profiling theBordetellapertussisProteome during Iron Starvation. J Proteome Res 2007; 6:2518-28. [PMID: 17523612 DOI: 10.1021/pr060681i] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regulation of gene expression in response to local iron concentration is commonly observed in bacterial pathogens that face this nutrient limitation during host infection. In this study, a proteomic approach was used to analyze the differential protein expression of Bordetella pertussis under iron limitation. Whole cell lysates (WCL) and outer membrane fractions of bacteria grown either under iron-starvation or iron-excess conditions were analyzed by two-dimensional (2-D) gel electrophoresis. Statistical analysis revealed 36 proteins displaying differential expression, 9 with higher expression under iron-excess and 27 with increased expression under iron-starvation. These proteins were subjected to tryptic digestion and MALDI-TOF MS. Apart from those previously reported, we identified new low-iron-induced proteins that might help to explain the increased virulence of this phenotype. Additionally, we found evidence that at least one of the identified proteins, solely expressed under iron starvation, is highly immunogenic in infected individuals.
Collapse
|
43
|
Burkhard KA, Wilks A. Characterization of the Outer Membrane Receptor ShuA from the Heme Uptake System of Shigella dysenteriae. J Biol Chem 2007; 282:15126-36. [PMID: 17387178 DOI: 10.1074/jbc.m611121200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Shigella dysenteriae, like many bacterial pathogens, has evolved outer membrane receptor-mediated pathways for the uptake and utilization of heme as an iron source. As a first step toward understanding the mechanism of heme uptake we have undertaken a site-directed mutagenesis, spectroscopic, and kinetic analysis of the outer membrane receptor ShuA of S. dysenteriae. Purification of the outer membrane receptor gave a single band of molecular mass 73 kDa on SDS-PAGE. Initial spectroscopic analysis of the protein in either detergent micelles or lipid bicelles revealed residual heme bound to the receptor, with a Soret maximum at 413 nm. Titration of the protein with exogenous heme gave a Soret peak at 437 nm in detergent micelles, and 402 nm in lipid bicelles. However, transfer of heme from hemoglobin yields a Soret maximum at 413 nm identical to that of the isolated protein. Further spectroscopic and kinetic analysis revealed that hemoglobin in the oxidized state is the most likely physiological substrate for ShuA. In addition, mutation of the conserved histidines, H86A or H420A, resulted in a loss of the ability of the receptor to efficiently extract heme from hemoglobin. In contrast the double mutant H86A/H420A was unable to extract heme from hemoglobin. These findings taken together confirm that both His-86 and His-420 are essential for substrate recognition, heme coordination, and transfer. Furthermore, the full-length TonB was shown to form a 1:1 complex with either apo-ShuA H86A/H420A or the wild-type ShuA. These observations provide a basis for future studies on the coordination and transport of heme by the TonB-dependent outer membrane receptors.
Collapse
Affiliation(s)
- Kimberly A Burkhard
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
44
|
Yu F, Anaya C, Lewis JP. Outer membrane proteome of Prevotella intermedia 17: identification of thioredoxin and iron-repressible hemin uptake loci. Proteomics 2007; 7:403-12. [PMID: 17177252 DOI: 10.1002/pmic.200600441] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although hemin is an indispensable nutrient for the oral pathogen Prevotella intermedia, not much is known regarding the molecular mechanisms of hemin acquisition. The availability of the genomic sequence of the bacterium allowed us to apply proteomic approaches to identify proteins that may be mediating the hemin acquisition process. As hemin acquisition mechanisms have been shown to be induced in iron-depleted conditions, we applied proteomic approaches to detect those proteins whose expressions were affected by iron. We analyzed 40 protein spots and identified 19 such proteins. Interestingly, two proteins drastically upregulated in iron-depleted conditions, PIN0009 and PINA0611, are homologs of hemin uptake receptors in other bacteria. PIN0009 is predicted to be an outer membrane lipoprotein. It is encoded by a gene that is the first of a seven-gene genomic locus encoding proteins of a novel hemin acquisition system. The second protein, PINA0611, is a homolog of numerous TonB-dependent outer membrane receptors including outer membrane iron uptake receptors of various Gram-negative bacteria. There was also another protein, regulated by iron, that was previously demonstrated to bind hemoglobin in P. intermedia. Finally, we identified a thioredoxin-like protein that has a novel outer membrane location.
Collapse
Affiliation(s)
- Fan Yu
- The Philips Institute, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| | | | | |
Collapse
|
45
|
Kaur AP, Wilks A. Heme inhibits the DNA binding properties of the cytoplasmic heme binding protein of Shigella dysenteriae (ShuS). Biochemistry 2007; 46:2994-3000. [PMID: 17323920 DOI: 10.1021/bi061722r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heme uptake and utilization by pathogenic bacteria are critical for virulence and disease, since heme and heme proteins are a major source of iron within the host. Although the role of outer membrane heme receptors in this process has been extensively characterized at the genetic and biochemical level, the role of the cytoplasmic heme binding proteins is not yet clear. The Shigella dysenteriae cytoplasmic heme binding protein, ShuS, has previously been shown to promote utilization of heme as an iron source at low to moderate heme concentrations and to protect against heme toxicity at high heme concentrations. Herein, we provide evidence that ShuS of S. dysenteriae sequesters DNA non-sequence-specifically with a binding affinity of 3.6 microM as determined by fluorescence anisotropy studies. The ability to bind DNA was observed to be restricted to the apoprotein only. The molecular mass of the apo-ShuS-DNA complex was estimated to be approximately 700 kDa by size exclusion chromatography. Atomic force microscopy (AFM) revealed that apo-ShuS forms aggregates in the presence of DNA and provides a scaffolding matrix from which DNA is observed to loop outward. The AFM images of apo-ShuS-DNA complexes were strikingly similar to the AFM images of the stress-induced Escherichia coli protein, Dps, when complexed with DNA; however, unlike the Dps protein, ShuS failed to protect DNA against oxidative stress in vitro and in vivo. Since free heme can generate reactive oxygen species which are damaging to cellular DNA, the ability of ShuS to physically sequester DNA may provide a molecular basis for its role in preventing toxicity associated with high heme concentrations.
Collapse
Affiliation(s)
- Ajinder P Kaur
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
46
|
Wilks A, Burkhard KA. Heme and virulence: how bacterial pathogens regulate, transport and utilize heme. Nat Prod Rep 2007; 24:511-22. [PMID: 17534527 DOI: 10.1039/b604193k] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
47
|
Jiang F, Kongsaeree P, Charron R, Lajoie C, Xu H, Scott G, Kelly C. Production and separation of manganese peroxidase from heme amended yeast cultures. Biotechnol Bioeng 2007; 99:540-9. [PMID: 17680655 DOI: 10.1002/bit.21590] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A method for the production and concentration of the lignin-degrading enzyme, manganese peroxidase (rMnP), was developed using the yeast Pichia pastoris in high cell density, fed-batch cultivations. A gene encoding manganese peroxidase (mnp1) from the white-rot fungus Phanerochaete chrysosporium was cloned into a protease deficient (pep4-) strain of the methylotrophic yeast P. pastoris. Heme is an important cofactor for active rMnP production, and amendment of yeast cultures with heme increased active rMnP concentrations. In both shake-flasks and fed-batch bioreactors, the relationship between heme concentration and rMnP activity was logarithmic, with increasing heme concentrations resulting in progressively lesser increases in enzyme activity. Scale-up from shake-flasks to 2 L fed-batch cultivations increased rMnP activities from 200 U/L to 2,500 U/L, with addition of 0.1 g/L heme (added heme per liquid volume) at the beginning of the fed-batch phase resulting in higher enzyme activities than addition at the beginning of the batch phase. A combination of centrifugation, acetone precipitation, dialysis, and freeze drying was found to be effective for concentrating the rMnP from 2,500 U/L in the P. pastoris bioreactor culture to 30,000 U/L in 0.1 M potassium phosphate buffer pH 6. The rMnP recovery yield was 60% and the purity was 1-4%. By using 0.1 g/L heme during the fed-batch cultivation, the heme content of the final enzyme preparation could be reduced by 97%, and had sufficiently high rMnP activity and low enough color to be suitable for pulp bleaching experiments.
Collapse
Affiliation(s)
- Fei Jiang
- Cell Genesys, Inc., South San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Bhakta MN, Wilks A. The mechanism of heme transfer from the cytoplasmic heme binding protein PhuS to the delta-regioselective heme oxygenase of Pseudomonas aeruginosa. Biochemistry 2006; 45:11642-9. [PMID: 16981723 PMCID: PMC2631378 DOI: 10.1021/bi060980l] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa has evolved two outer membrane receptor-mediated uptake systems (encoded by the phu and has operons) by which it can utilize the hosts heme and hemeproteins as a source of iron. PhuS is a cytoplasmic heme binding protein encoded within the phu operon and has previously been shown to function in the trafficking of heme to the iron-regulated heme oxygenase (pa-HO). While the heme association rate for PhuS was similar to that of myoglobin, a markedly higher rate of heme dissociation (approximately 10(5) s(-1)) was observed, in keeping with a function in heme-trafficking. Additionally, the transfer of heme from PhuS to pa-HO was shown to be specific and unidirectional when compared to transfer to the non-iron regulated heme oxygenase (BphO), in which heme distribution between the two proteins merely reflects their relative intrinsic affinities for heme. Furthermore, the rate of transfer of heme from holo-PhuS to pa-HO of 0.11 +/- 0.01 s(-1) is 30-fold faster than that to apo-myoglobin, despite the significant higher binding affinity of apo-myoglobin for heme (kH = 1.3 x 10(-8) microM) than that of PhuS (0.2 microM). This data suggests that heme transfer to pa-HO is independent of heme affinity and is consistent with temperature dependence studies which indicate the reaction is driven by a negative entropic contribution, typical of an ordered transition state, and supports the notion that heme transfer from PhuS to pa-HO is mediated via a specific protein-protein interaction. In addition, pH studies, and reactions conducted in the presence of cyanide, suggest the involvement of spin transition during the heme transfer process, whereby the heme undergoes spin change from 6-c LS to 6-c HS either in PhuS or pa-HO. On the basis of the magnitudes of the activation parameters obtained in the presence of cyanide, whereby both complexes are maintained in a 6-c LS state, and the biphasic kinetics of heme transfer from holo-PhuS to pa-HO-wt, supports the notion that the spin-state crossover occur within holo-PhuS prior to the heme transfer step. Alternatively, the lack of the biphasic kinetic with pa-HO-G125V, 6-c LS, and with comparable rate of heme transfer as pa-HO is supportive of a mechanism in which the spin-change could occur within pa-HO. The present data suggests either or both of the two pathways proposed for heme transfer may occur under the present experimental conditions. The dissection of which pathway is physiologically relevant is the focus of ongoing studies.
Collapse
Affiliation(s)
| | - Angela Wilks
- Address correspondence to: Angela Wilks Department of Pharmaceutical Sciences School of Pharmacy University of Maryland 20 Penn Street, Baltimore, MD 21201 Tel. 410 706−2537 Fax. 410 706−5017 e-mail:
| |
Collapse
|
49
|
Richard-Fogal CL, Frawley ER, Feissner RE, Kranz RG. Heme concentration dependence and metalloporphyrin inhibition of the system I and II cytochrome c assembly pathways. J Bacteriol 2006; 189:455-63. [PMID: 17085564 PMCID: PMC1797374 DOI: 10.1128/jb.01388-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Studies have indicated that specific heme delivery to apocytochrome c is a critical feature of the cytochrome c biogenesis pathways called system I and II. To determine directly the heme requirements of each system, including whether other metal porphyrins can be incorporated into cytochromes c, we engineered Escherichia coli so that the natural system I (ccmABCDEFGH) was deleted and exogenous porphyrins were the sole source of porphyrins (Delta hemA). The engineered E. coli strains that produced recombinant system I (from E. coli) or system II (from Helicobacter) facilitated studies of the heme concentration dependence of each system. Using this exogenous porphyrin approach, it was shown that in system I the levels of heme used are at least fivefold lower than the levels used in system II, providing an important advantage for system I. Neither system could assemble holocytochromes c with other metal porphyrins, suggesting that the attachment mechanism is specific for Fe protoporphyrin. Surprisingly, Zn and Sn protoporphyrins are potent inhibitors of the pathways, and exogenous heme competes with this inhibition. We propose that the targets are the heme binding proteins in the pathways (CcmC, CcmE, and CcmF for system I and CcsA for system II).
Collapse
|
50
|
Schneider S, Sharp KH, Barker PD, Paoli M. An Induced Fit Conformational Change Underlies the Binding Mechanism of the Heme Transport Proteobacteria-Protein HemS. J Biol Chem 2006; 281:32606-10. [PMID: 16943192 DOI: 10.1074/jbc.m607516200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteria rely on their environment and/or host to acquire iron and have evolved specialized systems to sequester and transport heme. The heme uptake system HemRSTUV is common to proteobacteria, and a major challenge is to understand the molecular mechanism of heme binding and transfer between the protein molecules that underlie this heme transport relay process. In the Gram-negative pathogen Yersinia enterocolitica, the HemRSTUV system culminates with the cytoplasmic recipient HemS, which stores and delivers heme for cellular needs. HemS belongs to a family of proteins essential and unique to proteobacteria. Here we report on the binding mechanism of HemS based on structural data from its apo- and ligand-loaded forms. This heme carrier protein associates with its cargo through a novel, partly preformed binding pocket, formed between a large beta-sheet dome and a three-helix subdomain. In addition to a histidine interacting with the iron, the complex is stabilized by a distal non-coordinating arginine that packs along the porphyrin plane and extensive electrostatic contacts that firmly anchor the heme propionate groups within the protein. Comparison of apo- and ligand-bound HemS crystal structures reveals striking conformational changes that underlie a "heme-induced fit" binding mechanism. Local shifts in amino acid positions combine with global, rigid body-like domain movements, and together, these bring about a switch from an open, apo-form to a closed, bound state. This is the first report in which both liganded and unliganded forms of a heme transport protein are described, thus providing penetrating insights into its mechanism of heme binding and release.
Collapse
Affiliation(s)
- Sabine Schneider
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD
| | | | | | | |
Collapse
|