1
|
Albin D, Ramsahoye M, Kochavi E, Alistar M. PhageScanner: a reconfigurable machine learning framework for bacteriophage genomic and metagenomic feature annotation. Front Microbiol 2024; 15:1446097. [PMID: 39355420 PMCID: PMC11442244 DOI: 10.3389/fmicb.2024.1446097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Bacteriophages are the most prolific organisms on Earth, yet many of their genomes and assemblies from metagenomic sources lack protein sequences with identified functions. While most bacteriophage proteins are structural proteins, categorized as Phage Virion Proteins (PVPs), a considerable number remain unclassified. Complicating matters further, traditional lab-based methods for PVP identification can be tedious. To expedite the process of identifying PVPs, machine-learning models are increasingly being employed. Existing tools have developed models for predicting PVPs from protein sequences as input. However, none of these efforts have built software allowing for both genomic and metagenomic data as input. In addition, there is currently no framework available for easily curating data and creating new types of machine learning models. In response, we introduce PhageScanner, an open-source platform that streamlines data collection for genomic and metagenomic datasets, model training and testing, and includes a prediction pipeline for annotating genomic and metagenomic data. PhageScanner also features a graphical user interface (GUI) for visualizing annotations on genomic and metagenomic data. We further introduce a BLAST-based classifier that outperforms ML-based models and an efficient Long Short-Term Memory (LSTM) classifier. We then showcase the capabilities of PhageScanner by predicting PVPs in six previously uncharacterized bacteriophage genomes. In addition, we create a new model that predicts phage-encoded toxins within bacteriophage genomes, thus displaying the utility of the framework.
Collapse
Affiliation(s)
- Dreycey Albin
- Department of Computer Science, University of Colorado at Boulder, Boulder, CO, United States
| | - Michelle Ramsahoye
- Department of Computer Science, University of Colorado at Boulder, Boulder, CO, United States
| | - Eitan Kochavi
- Department of Computer Science, University of Colorado at Boulder, Boulder, CO, United States
| | - Mirela Alistar
- Department of Computer Science, University of Colorado at Boulder, Boulder, CO, United States
- ATLAS Institute, University of Colorado at Boulder, Boulder, CO, United States
| |
Collapse
|
2
|
Nakamura K, Taniguchi I, Gotoh Y, Isobe J, Kimata K, Igawa Y, Kitahashi T, Takahashi Y, Nomoto R, Iwabuchi K, Morimoto Y, Iyoda S, Hayashi T. Diversity of Shiga toxin transducing phages in Escherichia coli O145:H28 and the different Shiga toxin 2 production levels associated with short- or long-tailed phages. Front Microbiol 2024; 15:1453887. [PMID: 39165568 PMCID: PMC11333237 DOI: 10.3389/fmicb.2024.1453887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) causes serious gastrointestinal illness, including hemorrhagic colitis and hemolytic uremic syndrome. Two types of Stxs (Stx1 and Stx2) are known and both are encoded by bacteriophages (Stx phages), but the production of Stx2 is known to be a major risk factor for severe STEC infections. The production of Stx2, but not Stx1, is tightly coupled with the induction of Stx phages, and Stx2 production levels vary between STEC strains even within the same serotype. Here, we analyzed the genomic diversity of all Stx phages in 71 strains representing the entire O145:H28 lineage, one of the often highly pathogenic STECs, and the relationship between the variations in Stx phage genomes and the levels of Stx2 production by host strains. Our analysis reveals highly dynamic natures of Stx phages in O145:H28, including the independent acquisition of similar Stx phages by different sublineages, the recent transfer of Stx phage between different sublineages, and the frequent gain and loss of Stx phages in some sublineages. We also show the association of the Stx2 phage types with the Stx2 production levels of host strains: strains carrying short-tailed Stx2 phages exhibited significantly higher Stx2 production levels than those carrying long-tailed Stx2 phages. Detailed analyses of the Stx2 phage genomes revealed that both of short- and long-tailed phages exhibited sequence diversification and they were divided into two groups, respectively, based on the sequence similarity of the phage early region encoding genes responsible for phage induction, short-tailed phages contained early regions clearly different in genetic organization from those in long-tailed phages. Therefore, the variations in the early regions between short-and long-tailed Stx2 phages appeared to be linked to a striking difference in Stx2 production levels in their host strains. These results broaden our understanding of the diversification and dynamism of Stx phages in O145:H28 and the association of Stx2 phage types with the Stx2 production level in this STEC lineage.
Collapse
Affiliation(s)
- Keiji Nakamura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Itsuki Taniguchi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | - Yukiko Igawa
- Nagano Prefecture Suwa Public Health and Welfare Office, Suwa, Japan
| | | | | | | | - Kaori Iwabuchi
- Iwate Prefectural Research Institute for Environmental Sciences and Public Health, Morioka, Japan
| | - Yo Morimoto
- Hokkaido Institute of Public Health, Sapporo, Japan
| | - Sunao Iyoda
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Yao G, Le T, Korn AM, Peterson HN, Liu M, Gonzalez CF, Gill JJ. Phage Milagro: a platform for engineering a broad host range virulent phage for Burkholderia. J Virol 2023; 97:e0085023. [PMID: 37943040 PMCID: PMC10688314 DOI: 10.1128/jvi.00850-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE Burkholderia infections are a significant concern in people with CF and other immunocompromising disorders, and are difficult to treat with conventional antibiotics due to their inherent drug resistance. Bacteriophages, or bacterial viruses, are now seen as a potential alternative therapy for these infections, but most of the naturally occurring phages are temperate and have narrow host ranges, which limit their utility as therapeutics. Here we describe the temperate Burkholderia phage Milagro and our efforts to engineer this phage into a potential therapeutic by expanding the phage host range and selecting for phage mutants that are strictly virulent. This approach may be used to generate new therapeutic agents for treating intractable infections in CF patients.
Collapse
Affiliation(s)
- Guichun Yao
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Tram Le
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Abby M. Korn
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Hannah N. Peterson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Mei Liu
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Carlos F. Gonzalez
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Jason J. Gill
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Rajput M, Thakur N. Editorial: Advances in host-pathogen interactions for diseases in animals and birds. Front Vet Sci 2023; 10:1282110. [PMID: 37766859 PMCID: PMC10520279 DOI: 10.3389/fvets.2023.1282110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Affiliation(s)
- Mrigendra Rajput
- Department of Biology, University of Dayton, Dayton, OH, United States
| | | |
Collapse
|
5
|
Nikulin N, Nikulina A, Zimin A, Aminov R. Phages for treatment of Escherichia coli infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:171-206. [PMID: 37739555 DOI: 10.1016/bs.pmbts.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Diseases due to infections by pathogenic Escherichia coli strains are on the rise and with the growing antimicrobial resistance among bacterial pathogens, including this group. Thus, alternative therapeutic options are actively investigated. Among these alternatives is phage therapy. In the case of E. coli, the combination of the well understood biology of this species and its bacteriophages represents a good guiding example for the establishment of phage therapy principles against this and other pathogenic bacteria. In this chapter, the procedures toward the development of phage therapy against pathogenic E. coli with the use of T-even group of phages are discussed. These steps involve the isolation, purification, characterisation and large-scale production of these phages, with formulation of phage cocktails for in vitro and in vivo studies. The main emphasis is made on phage therapy of enteropathogenic E. coli O157:H, which is one of the prominent human pathogens but persists as a commensal bacterium in many food animals. The implementation of phage therapy against E. coli O157:H within the One Health framework in carrier animals and for treatment of meat, vegetables, fruits and other agricultural produce thus would allow controlling and interrupting the transmission routes of this pathogen to the human food chain and preventing human disease. Examples of successful control and elimination of E. coli O157:H are given, while the problems encountered in phage treatment of this pathogen are also discussed.
Collapse
Affiliation(s)
- Nikita Nikulin
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Alexandra Nikulina
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Andrei Zimin
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
6
|
Gaougaou G, Vincent AT, Krylova K, Habouria H, Bessaiah H, Baraketi A, Veyrier FJ, Dozois CM, Déziel E, Lacroix M. Adaptive Radioresistance of Enterohemorrhagic Escherichia coli O157:H7 Results in Genomic Loss of Shiga Toxin-Encoding Prophages. Appl Environ Microbiol 2023; 89:e0130622. [PMID: 37014232 PMCID: PMC10132102 DOI: 10.1128/aem.01306-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a foodborne pathogen producing Shiga toxins (Stx1 and Stx2), which can cause hemorrhagic diarrhea and life-threatening infections. O157:H7 strain EDL933 carries prophages CP-933V and BP-933W, which encode Shiga toxin genes (stx1 and stx2, respectively). The aim of this work was to investigate the mechanisms of adaptive resistance of EHEC strain EDL933 to a typically lethal dose of gamma irradiation (1.5 kGy). Adaptive selection through six passages of exposure to 1.5 kGy resulted in the loss of CP-933V and BP-933W prophages from the genome and mutations within three genes: wrbA, rpoA, and Wt_02639 (molY). Three selected EHEC clones that became irradiation adapted to the 1.5-kGy dose (C1, C2, and C3) demonstrated increased resistance to oxidative stress, sensitivity to acid pH, and decreased cytotoxicity to Vero cells. To confirm that loss of prophages plays a role in increased radioresistance, clones C1 and C2 were exposed to bacteriophage-containing lysates. Although phage BP-933W could lysogenize C1, C2, and E. coli K-12 strain MG1655, it was not found to have integrated into the bacterial chromosome in C1-Φ and C2-Φ lysogens. Interestingly, for the E. coli K-12 lysogen (K-12-Φ), BP-933W DNA had integrated at the wrbA gene (K-12-Φ). Both C1-Φ and C2-Φ lysogens regained sensitivity to oxidative stress, were more effectively killed by a 1.5-kGy gamma irradiation dose, and had regained cytotoxicity and acid resistance phenotypes. Further, the K-12-Φ lysogen became cytotoxic, more sensitive to gamma irradiation and oxidative stress, and slightly more acid resistant. IMPORTANCE Gamma irradiation of food products can provide an effective means of eliminating bacterial pathogens such as enterohemorrhagic Escherichia coli (EHEC) O157:H7, a significant foodborne pathogen that can cause severe disease due to the production of Stx. To decipher the mechanisms of adaptive resistance of the O157:H7 strain EDL933, we evolved clones of this bacterium resistant to a lethal dose of gamma irradiation by repeatedly exposing bacterial cells to irradiation following a growth restoration over six successive passages. Our findings provide evidence that adaptive selection involved modifications in the bacterial genome, including deletion of the CP-933V and BP-933W prophages. These mutations in EHEC O157:H7 resulted in loss of stx1 and stx2, loss of cytotoxicity to epithelial cells, and decreased resistance to acidity, critical virulence determinants of EHEC, concomitant with increased resistance to lethal irradiation and oxidative stress. These findings demonstrate that the potential adaptation of EHEC to high doses of radiation would involve elimination of the Stx-encoding phages and likely lead to a substantial attenuation of virulence.
Collapse
Affiliation(s)
- Ghizlane Gaougaou
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Antony T. Vincent
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Kateryna Krylova
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Hajer Habouria
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Hicham Bessaiah
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Amina Baraketi
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | | | - Charles M. Dozois
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Eric Déziel
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Monique Lacroix
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| |
Collapse
|
7
|
The Prophage and Us-Shiga Toxin Phages Revisited. Pathogens 2023; 12:pathogens12020232. [PMID: 36839504 PMCID: PMC9960153 DOI: 10.3390/pathogens12020232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The authors first met in 1998 at the University of Würzburg, Germany, at the Institute of Hygiene and Microbiology, in Helge Karch's lab, where Herbert Schmidt worked as a PostDoc and Maite Muniesa visited the lab for a postdoctoral research stay to work on phages encoding Shiga toxin 2e (Stx2e) [...].
Collapse
|
8
|
Miyata T, Taniguchi I, Nakamura K, Gotoh Y, Yoshimura D, Itoh T, Hirai S, Yokoyama E, Ohnishi M, Iyoda S, Ogura Y, Hayashi T. Alteration of a Shiga toxin-encoding phage associated with a change in toxin production level and disease severity in Escherichia coli. Microb Genom 2023; 9:mgen000935. [PMID: 36821793 PMCID: PMC9997748 DOI: 10.1099/mgen.0.000935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/21/2022] [Indexed: 02/25/2023] Open
Abstract
Among the nine clades of Shiga toxin (Stx)-producing Escherichia coli O157:H7, clade 8 is thought to be highly pathogenic, as it causes severe disease more often than other clades. Two subclades have been proposed, but there are conflicting reports on intersubclade differences in Stx2 levels, although Stx2 production is a risk factor for severe disease development. The global population structure of clade 8 has also yet to be fully elucidated. Here, we present genome analyses of a global clade 8 strain set (n =510), including 147 Japanese strains sequenced in this study. The complete genome sequences of 18 of the 147 strains were determined to perform detailed clade-wide genome analyses together with 17 publicly available closed genomes. Intraclade variations in Stx2 production level and disease severity were also re-evaluated within the phylogenetic context. Based on phylogenomic analysis, clade 8 was divided into four lineages corresponding to the previously proposed SNP genotypes (SGs): SG8_30, SG8_31A, SG8_31B and SG8_32. SG8_30 and the common ancestor of the other SGs were first separated, with SG8_31A and SG8_31B emerging from the latter and SG8_32 emerging from SG8_31B. Comparison of 35 closed genomes revealed the overall structure of chromosomes and pO157 virulence plasmids and the prophage contents to be well conserved. However, Stx2a phages exhibit notable genomic diversity, even though all are integrated into the argW locus, indicating that subtype changes in Stx2a phage occurred from the γ subtype to its variant (γ_v1) in SG8_31A and from γ to δ in SG8_31B and SG8_32 via replacement of parts or almost entire phage genomes, respectively. We further show that SG8_30 strains (all carrying γ Stx2a phages) produce significantly higher levels of Stx2 and cause severe disease more frequently than SG8_32 strains (all carrying δ Stx2a phages). Clear conclusions on SG8_31A and SG8_31B cannot be made due to the small number of strains available, but as SG8_31A (carrying γ_v1 Stx2a phages) contains strains that produce much more Stx2 than SG8_30 strains, attention should also be paid to this SG.
Collapse
Affiliation(s)
- Tatsuya Miyata
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Itsuki Taniguchi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keiji Nakamura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Dai Yoshimura
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Shinichiro Hirai
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba 260-8715, Japan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba 260-8715, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
9
|
Feiss M, Young R, Ramsey J, Adhya S, Georgopoulos C, Hendrix RW, Hatfull GF, Gilcrease EB, Casjens SR. Hybrid Vigor: Importance of Hybrid λ Phages in Early Insights in Molecular Biology. Microbiol Mol Biol Rev 2022; 86:e0012421. [PMID: 36165780 PMCID: PMC9799177 DOI: 10.1128/mmbr.00124-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Laboratory-generated hybrids between phage λ and related phages played a seminal role in establishment of the λ model system, which, in turn, served to develop many of the foundational concepts of molecular biology, including gene structure and control. Important λ hybrids with phages 21 and 434 were the earliest of such phages. To understand the biology of these hybrids in full detail, we determined the complete genome sequences of phages 21 and 434. Although both genomes are canonical members of the λ-like phage family, they both carry unsuspected bacterial virulence gene types not previously described in this group of phages. In addition, we determined the sequences of the hybrid phages λ imm21, λ imm434, and λ h434 imm21. These sequences show that the replacements of λ DNA by nonhomologous segments of 21 or 434 DNA occurred through homologous recombination in adjacent sequences that are nearly identical in the parental phages. These five genome sequences correct a number of errors in published sequence fragments of the 21 and 434 genomes, and they point out nine nucleotide differences from Sanger's original λ sequence that are likely present in most extant λ strains in laboratory use today. We discuss the historical importance of these hybrid phages in the development of fundamental tenets of molecular biology and in some of the earliest gene cloning vectors. The 434 and 21 genomes reinforce the conclusion that the genomes of essentially all natural λ-like phages are mosaics of sequence modules from a pool of exchangeable segments.
Collapse
Affiliation(s)
- Michael Feiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ryland Young
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, Texas, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Jolene Ramsey
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, Texas, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, The National Cancer Institute, Bethesda, Maryland, USA
| | - Costa Georgopoulos
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Roger W. Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eddie B. Gilcrease
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Sherwood R. Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Impact of Shiga-toxin encoding gene transduction from O80:H2 Shiga toxigenic Escherichia coli (STEC) on non-STEC strains. Sci Rep 2022; 12:21587. [PMID: 36517572 PMCID: PMC9751135 DOI: 10.1038/s41598-022-26198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are major foodborne pathogens that cause human diseases ranging from diarrhea to life-threatening complications including hemolytic-uremic syndrome. Virulence of STEC strains and their ability to cause severe diseases are associated with the activity of prophage-encoded Shiga toxins (Stxs). The first objective of this work was to isolate and characterize the Stx2d phage from STEC O80:H2 and to study the transfer of this phage in non-STEC strains. The second objective was to assess the survival of Galleria mellonella larvae inoculated with these transduced strains. Firstly, one bacteriophage isolated from a STEC O80:H2 strain was used to infect six non-STEC strains, resulting in the conversion of three strains. Then, stability assays were performed, showing that this phage was stable in the new STEC strains after three successive subculturing steps, as confirmed by a combination of short and long read genome sequencing approaches. This phage, vB_EcoS_ULI-O80_Stx2d, is resistant to moderate temperature and pH. It belongs to a currently unclassified genus and family within the Caudoviricetes class, shares 98% identity with Stx2_112808 phage and encodes several proteins involved in the lysogenic cycle. The yecE gene was identified at the insertion site. Finally, G. mellonella experiments showed that the transduced strains caused significantly higher mortality rates than the corresponding non-STEC strains. In conclusion, this study showed that stx2d gene from O80:H2 E. coli can be transferred to non-STEC strains and contributes to their virulence.
Collapse
|
11
|
Abstract
Viruses are the most abundant biological entities on Earth, and yet, they have not received enough consideration in astrobiology. Viruses are also extraordinarily diverse, which is evident in the types of relationships they establish with their host, their strategies to store and replicate their genetic information and the enormous diversity of genes they contain. A viral population, especially if it corresponds to a virus with an RNA genome, can contain an array of sequence variants that greatly exceeds what is present in most cell populations. The fact that viruses always need cellular resources to multiply means that they establish very close interactions with cells. Although in the short term these relationships may appear to be negative for life, it is evident that they can be beneficial in the long term. Viruses are one of the most powerful selective pressures that exist, accelerating the evolution of defense mechanisms in the cellular world. They can also exchange genetic material with the host during the infection process, providing organisms with capacities that favor the colonization of new ecological niches or confer an advantage over competitors, just to cite a few examples. In addition, viruses have a relevant participation in the biogeochemical cycles of our planet, contributing to the recycling of the matter necessary for the maintenance of life. Therefore, although viruses have traditionally been excluded from the tree of life, the structure of this tree is largely the result of the interactions that have been established throughout the intertwined history of the cellular and the viral worlds. We do not know how other possible biospheres outside our planet could be, but it is clear that viruses play an essential role in the terrestrial one. Therefore, they must be taken into account both to improve our understanding of life that we know, and to understand other possible lives that might exist in the cosmos.
Collapse
Affiliation(s)
- Ignacio de la Higuera
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, OR, United States
| | - Ester Lázaro
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, Spain
| |
Collapse
|
12
|
Bruneaux M, Ashrafi R, Kronholm I, Laanto E, Örmälä‐Tiznado A, Galarza JA, Zihan C, Kubendran Sumathi M, Ketola T. The effect of a temperature-sensitive prophage on the evolution of virulence in an opportunistic bacterial pathogen. Mol Ecol 2022; 31:5402-5418. [PMID: 35917247 PMCID: PMC9826266 DOI: 10.1111/mec.16638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Viruses are key actors of ecosystems and have major impacts on global biogeochemical cycles. Prophages deserve particular attention as they are ubiquitous in bacterial genomes and can enter a lytic cycle when triggered by environmental conditions. We explored how temperature affects the interactions between prophages and other biological levels using an opportunistic pathogen, the bacterium Serratia marcescens, which harbours several prophages and that had undergone an evolution experiment under several temperature regimes. We found that the release of one of the prophages was temperature-sensitive and malleable to evolutionary changes. We further discovered that the virulence of the bacterium in an insect model also evolved and was positively correlated with phage release rates. We determined through analysis of genetic and epigenetic data that changes in the bacterial outer cell wall structure possibly explain this phenomenon. We hypothezise that the temperature-dependent phage release rate acted as a selection pressure on S. marcescens and that it resulted in modified bacterial virulence in the insect host. Our study system illustrates how viruses can mediate the influence of abiotic environmental changes to other biological levels and thus be involved in ecosystem feedback loops.
Collapse
Affiliation(s)
- Matthieu Bruneaux
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Roghaieh Ashrafi
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Ilkka Kronholm
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Elina Laanto
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | | | - Juan A. Galarza
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Chen Zihan
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland,Shenzhen Research InstituteThe Chinese University of Hong KongShenzhenChina
| | - Mruthyunjay Kubendran Sumathi
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland,Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Tarmo Ketola
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
13
|
Fagerlund A, Aspholm M, Węgrzyn G, Lindbäck T. High diversity in the regulatory region of Shiga toxin encoding bacteriophages. BMC Genomics 2022; 23:230. [PMID: 35331132 PMCID: PMC8951638 DOI: 10.1186/s12864-022-08428-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Background Enterohemorrhagic Escherichia coli (EHEC) is an emerging health challenge worldwide and outbreaks caused by this pathogen poses a serious public health concern. Shiga toxin (Stx) is the major virulence factor of EHEC, and the stx genes are carried by temperate bacteriophages (Stx phages). The switch between lysogenic and lytic life cycle of the phage, which is crucial for Stx production and for severity of the disease, is regulated by the CI repressor which maintain latency by preventing transcription of the replication proteins. Three EHEC phage replication units (Eru1-3) in addition to the classical lambdoid replication region have been described previously, and Stx phages carrying the Eru1 replication region were associated with highly virulent EHEC strains. Results In this study, we have classified the Eru replication region of 419 Stx phages. In addition to the lambdoid replication region and three already described Erus, ten novel Erus (Eru4 to Eru13) were detected. The lambdoid type, Eru1, Eru4 and Eru7 are widely distributed in Western Europe. Notably, EHEC strains involved in severe outbreaks in England and Norway carry Stx phages with Eru1, Eru2, Eru5 and Eru7 replication regions. Phylogenetic analysis of CI repressors from Stx phages revealed eight major clades that largely separate according to Eru type. Conclusion The classification of replication regions and CI proteins of Stx phages provides an important platform for further studies aimed to assess how characteristics of the replication region influence the regulation of phage life cycle and, consequently, the virulence potential of the host EHEC strain. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08428-5.
Collapse
Affiliation(s)
- Annette Fagerlund
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Toril Lindbäck
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
14
|
Shimizu T, Onuki M, Suzuki S, Hirai S, Yokoyama E, Matsumoto A, Hamabata T. Enhanced production of Shiga toxin 1 in enterohaemorrhagic Escherichia coli by oxygen. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34951398 DOI: 10.1099/mic.0.001122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) produces Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2). Although stx1 and stx2 were found within the late operons of the Stx-encoding phages (Stx-phages), stx1 could mainly be transcribed from the stx1 promoter (P Stx1), which represents the functional operator-binding site (Fur box) for the transcriptional regulator Fur (ferric uptake regulator), upstream of stx1. In this study, we found that the production of Stx1 by EHEC was affected by oxygen concentration. Increased Stx1 production in the presence of oxygen is dependent on Fur, which is an Fe2+-responsive transcription factor. The intracellular Fe2+ pool was lower under microaerobic conditions than under anaerobic conditions, suggesting that lower Fe2+ availability drove the formation of less Fe2+-Fur, less DNA binding to the P Stx1 region, and an increase in Stx1 production.
Collapse
Affiliation(s)
- Takeshi Shimizu
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Manami Onuki
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Shin Suzuki
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Shinichiro Hirai
- Department of Infectious Disease Risk Management Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo-ku, Chiba, 260-8715, Japan
| | - Akio Matsumoto
- Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Takashi Hamabata
- Department of Infectious Disease, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| |
Collapse
|
15
|
Bistable Expression of a Toxin-Antitoxin System Located in a Cryptic Prophage of Escherichia coli O157:H7. mBio 2021; 12:e0294721. [PMID: 34844426 PMCID: PMC8630535 DOI: 10.1128/mbio.02947-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Type II toxin-antitoxin (TA) systems are classically composed of two genes that encode a toxic protein and a cognate antitoxin protein. Both genes are organized in an operon whose expression is autoregulated at the level of transcription by the antitoxin-toxin complex, which binds operator DNA through the antitoxin’s DNA-binding domain. Here, we investigated the transcriptional regulation of a particular TA system located in the immunity region of a cryptic lambdoid prophage in the Escherichia coli O157:H7 EDL933 strain. This noncanonical paaA2-parE2 TA operon contains a third gene, paaR2, that encodes a transcriptional regulator that was previously shown to control expression of the TA. We provide direct evidence that the PaaR2 is a transcriptional regulator which shares functional similarities to the lambda CI repressor. Expression of the paaA2-parE2 TA operon is regulated by two other transcriptional regulators, YdaS and YdaT, encoded within the same region. We argue that YdaS and YdaT are analogous to lambda Cro and CII and that they do not constitute a TA system, as previously debated. We show that PaaR2 primarily represses the expression of YdaS and YdaT, which in turn controls the expression of paaR2-paaA2-parE2 operon. Overall, our results show that the paaA2-parE2 TA is embedded in an intricate lambdoid prophage-like regulation network. Using single-cell analysis, we observed that the entire locus exhibits bistability, which generates diversity of expression in the population. Moreover, we confirmed that paaA2-parE2 is addictive and propose that it could limit genomic rearrangements within the immunity region of the CP-933P cryptic prophage.
Collapse
|
16
|
Nishida R, Nakamura K, Taniguchi I, Murase K, Ooka T, Ogura Y, Gotoh Y, Itoh T, Toyoda A, Mainil JG, Piérard D, Seto K, Harada T, Isobe J, Kimata K, Etoh Y, Hamasaki M, Narimatsu H, Yatsuyanagi J, Kameyama M, Matsumoto Y, Nagai Y, Kawase J, Yokoyama E, Ishikawa K, Shiomoto T, Lee K, Kang D, Akashi K, Ohnishi M, Iyoda S, Hayashi T. The global population structure and evolutionary history of the acquisition of major virulence factor-encoding genetic elements in Shiga toxin-producing Escherichia coli O121:H19. Microb Genom 2021; 7. [PMID: 34878971 PMCID: PMC8767318 DOI: 10.1099/mgen.0.000716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) are foodborne pathogens causing serious diseases, such as haemorrhagic colitis and haemolytic uraemic syndrome. Although O157:H7 STEC strains have been the most prevalent, incidences of STEC infections by several other serotypes have recently increased. O121:H19 STEC is one of these major non-O157 STECs, but systematic whole genome sequence (WGS) analyses have not yet been conducted on this STEC. Here, we performed a global WGS analysis of 638 O121:H19 strains, including 143 sequenced in this study, and a detailed comparison of 11 complete genomes, including four obtained in this study. By serotype-wide WGS analysis, we found that O121:H19 strains were divided into four lineages, including major and second major lineages (named L1 and L3, respectively), and that the locus of enterocyte effacement (LEE) encoding a type III secretion system (T3SS) was acquired by the common ancestor of O121:H19. Analyses of 11 complete genomes belonging to L1 or L3 revealed remarkable interlineage differences in the prophage pool and prophage-encoded T3SS effector repertoire, independent acquisition of virulence plasmids by the two lineages, and high conservation in the prophage repertoire, including that for Stx2a phages in lineage L1. Further sequence determination of complete Stx2a phage genomes of 49 strains confirmed that Stx2a phages in lineage L1 are highly conserved short-tailed phages, while those in lineage L3 are long-tailed lambda-like phages with notable genomic diversity, suggesting that an Stx2a phage was acquired by the common ancestor of L1 and has been stably maintained. Consistent with these genomic features of Stx2a phages, most lineage L1 strains produced much higher levels of Stx2a than lineage L3 strains. Altogether, this study provides a global phylogenetic overview of O121:H19 STEC and shows the interlineage genomic differences and the highly conserved genomic features of the major lineage within this serotype of STEC.
Collapse
Affiliation(s)
- Ruriko Nishida
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiji Nakamura
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Itsuki Taniguchi
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Tadasuke Ooka
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | - Yasuhiro Gotoh
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takehiko Itoh
- Graduate School of Bioscience of Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan
| | | | - Denis Piérard
- Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kazuko Seto
- Osaka Institute of Public Health, Osaka, Japan
| | | | | | | | - Yoshiki Etoh
- Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | | | | | | | - Mitsuhiro Kameyama
- Yamaguchi Prefectural Institute of Public Health and Environment, Yamaguchi, Japan
| | - Yuko Matsumoto
- Yokohama City Institute of Public Health, Kanagawa, Japan
| | - Yuhki Nagai
- Mie Prefectural Institute of Public Health and Environmental Sciences, Mie, Japan
| | - Jun Kawase
- Shimane Prefectural Institute of Public Health and Environmental Science, Shimane, Japan
| | - Eiji Yokoyama
- Chiba Prefectural Institute of Public Health, Chiba, Japan
| | | | - Takayuki Shiomoto
- Ishikawa Prefectural Institute of Public Health and Environmental Science, Ishikawa, Japan
| | - Kenichi Lee
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Dongchon Kang
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Sunao Iyoda
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Hayashi
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- *Correspondence: Tetsuya Hayashi,
| |
Collapse
|
17
|
Kim KH, Yang M, Song Y, Kim CH, Jung YM, Bae NH, Chang SJ, Lee SJ, Kim YT, Choi BG, Lee KG. Touchable 3D hierarchically structured polyaniline nanoweb for capture and detection of pathogenic bacteria. NANO CONVERGENCE 2021; 8:30. [PMID: 34633558 PMCID: PMC8505581 DOI: 10.1186/s40580-021-00280-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/16/2021] [Indexed: 06/01/2023]
Abstract
A bacteria-capturing platform is a critical function of accurate, quantitative, and sensitive identification of bacterial pathogens for potential usage in the detection of foodborne diseases. Despite the development of various nanostructures and their surface chemical modification strategies, relative to the principal physical contact propagation of bacterial infections, mechanically robust and nanostructured platforms that are available to capture bacteria remain a significant problem. Here, a three-dimensional (3D) hierarchically structured polyaniline nanoweb film is developed for the efficient capture of bacterial pathogens by hand-touching. This unique nanostructure ensures sufficient mechanical resistance when exposed to compression and shear forces and facilitates the 3D interfacial interactions between bacterial extracellular organelles and polyaniline surfaces. The bacterial pathogens (Escherichia coli O157:H7, Salmonella enteritidis, and Staphylococcus aureus) are efficiently captured through finger-touching, as verified by the polymerase chain reaction (PCR) analysis. Moreover, the real-time PCR results of finger-touched cells on a 3D nanoweb film show a highly sensitive detection of bacteria, which is similar to those of the real-time PCR using cultured cells without the capturing step without any interfering of fluorescence signal and structural deformation during thermal cycling.
Collapse
Affiliation(s)
- Kyung Hoon Kim
- Department of Bioengineering, University of Washington, Seattle, WA, 98195-5061, USA
| | - MinHo Yang
- Department of Energy Engineering, Dankook University, Cheonan, 31116, Republic of Korea
| | - Younseong Song
- Center for Nano Bio Development, National Nanofab Center (NNFC), Daejeon, 34141, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chi Hyun Kim
- Center for Nano Bio Development, National Nanofab Center (NNFC), Daejeon, 34141, Republic of Korea
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Nam-Ho Bae
- Center for Nano Bio Development, National Nanofab Center (NNFC), Daejeon, 34141, Republic of Korea
| | - Sung-Jin Chang
- Center for Analysis and Evaluation, National Nanofab Center (NNFC), Daejeon, 34141, Republic of Korea
| | - Seok Jae Lee
- Center for Nano Bio Development, National Nanofab Center (NNFC), Daejeon, 34141, Republic of Korea
| | - Yong Tae Kim
- Department of Chemical Engineering & Biotechnology, Korea Polytechnic University, Siheung-si, 15073, Republic of Korea.
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Samcheok, 25913, Republic of Korea.
| | - Kyoung G Lee
- Center for Nano Bio Development, National Nanofab Center (NNFC), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
18
|
Ramstad SN, Wasteson Y, Lindstedt BA, Taxt AM, Bjørnholt JV, Brandal LT, Bohlin J. Characterization of Shiga Toxin 2a Encoding Bacteriophages Isolated From High-Virulent O145:H25 Shiga Toxin-Producing Escherichia coli. Front Microbiol 2021; 12:728116. [PMID: 34566932 PMCID: PMC8456039 DOI: 10.3389/fmicb.2021.728116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) may cause severe disease mainly due to the ability to produce Shiga toxins (Stx) encoded on bacteriophages. In Norway, more than 30% of the reported cases with STEC O145:H25 develop hemolytic uremic syndrome (HUS), and most cases, with known travel history, acquired the infection domestically. To describe phage characteristics associated with high virulence, we extracted the Stx2a phage sequences from eight clinical Norwegian O145:H25 STEC to conduct in-depth molecular characterization using long and short read sequencing. The Stx2a phages were annotated, characterized, and compared with previously published Stx2a phages isolated from STEC of different serotypes. The Norwegian O145:H25 Stx2a phages showed high sequence identity (>99%) with 100% coverage. The Stx2a phages were located at the integration site yciD, were approximately 45 kbp long, and harbored several virulence-associated genes, in addition to stx2a, such as nanS and nleC. We observed high sequence identity (>98%) and coverage (≥94%) between Norwegian O145:H25 Stx2a phages and publicly available Stx2a phages from O145:H25 and O145:H28 STEC, isolated from HUS cases in the USA and a hemorrhagic diarrhea case from Japan, respectively. However, low similarity was seen when comparing the Norwegian O145:H25 Stx2a phage to Stx2a phages from STEC of other serotypes. In all the Norwegian O145:H25 STEC, we identified a second phage or remnants of a phage (a shadow phage, 61 kbp) inserted at the same integration site as the Stx2a phage. The shadow phage shared similarity with the Stx2a phage, but lacked stx2a and harbored effector genes not present in the Stx2a phage. We identified a conserved Stx2a phage among the Norwegian O145:H25 STEC that shared integration site with a shadow phage in all isolates. Both phage and shadow phage harbored several virulence-associated genes that may contribute to the increased pathogenicity of O145:H25 STEC.
Collapse
Affiliation(s)
- Silje N Ramstad
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yngvild Wasteson
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Bjørn-Arne Lindstedt
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Arne M Taxt
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway.,Department of Infectious Diseases and Prevention, Norwegian Institute of Public Health, Oslo, Norway
| | - Jørgen V Bjørnholt
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lin T Brandal
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Jon Bohlin
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
19
|
Lodato PB. The effect of two ribonucleases on the production of Shiga toxin and stx-bearing bacteriophages in Enterohaemorrhagic Escherichia coli. Sci Rep 2021; 11:18372. [PMID: 34526533 PMCID: PMC8443680 DOI: 10.1038/s41598-021-97736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) comprise a group of intestinal pathogens responsible for a range of illnesses, including kidney failure and neurological compromise. EHEC produce critical virulence factors, Shiga toxin (Stx) 1 or 2, and the synthesis of Stx2 is associated with worse disease manifestations. Infected patients only receive supportive treatment because some conventional antibiotics enable toxin production. Shiga toxin 2 genes (stx2) are carried in λ-like bacteriophages (stx2-phages) inserted into the EHEC genome as prophages. Factors that cause DNA damage induce the lytic cycle of stx2-phages, leading to Stx2 production. The phage Q protein is critical for transcription antitermination of stx2 and phage lytic genes. This study reports that deficiency of two endoribonucleases (RNases), E and G, significantly delayed cell lysis and impaired production of both Stx2 and stx2-phages, unlike deficiency of either enzyme alone. Moreover, scarcity of both enzymes reduced the concentrations of Q and stx2 transcripts and slowed cell growth.
Collapse
Affiliation(s)
- Patricia B Lodato
- Department of Microbiology and Immunology, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, 63501, USA.
| |
Collapse
|
20
|
Thuthikkadu Indhuprakash S, Karthikeyan M, Gopal G, Ambi SV, Sekaran S, Palaniappan B, Diraviyam T. Antibody therapy against antibiotic-resistant diarrheagenic Escherichia coli: a systematic review. Immunotherapy 2021; 13:1305-1320. [PMID: 34463122 DOI: 10.2217/imt-2021-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Over four billion episodes of diarrhea occur annually in developing countries with diarrheagenic Escherichia coli (DEC) outbreaks also being reported, until now bacterial diarrhea is conventionally addressed by the antibiotic treatment regimes. In recent decades, the emergence of antimicrobial-resistant strains has become a major obstacle in diarrheal treatment; hence, novel and ideal therapeutics are needed. Notably, 80% of DEC is resistant to first-class antibiotics. Among the existing strategies, passive immunization is considered as an alternative to combat drug-resistant bacteria. Antibodies specific to an antigen can be used for prophylactic and therapeutic purposes. In this review, we have systematically discussed the effect of passive immunotherapy to combat DEC and explored the types and advancements in antibodies used against antibiotic-resistant DEC.
Collapse
Affiliation(s)
- Srichandrasekar Thuthikkadu Indhuprakash
- Department of Bioengineering, Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed-to-be-University, Thanjavur, 613401, Tamil Nadu, India
| | - Mukunthan Karthikeyan
- Department of Biotechnology, Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed-to-be-University, Thanjavur, 613401, Tamil Nadu, India
| | - Gayathri Gopal
- Department of Bioengineering, Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed-to-be-University, Thanjavur, 613401, Tamil Nadu, India
| | - Senthil Visaga Ambi
- Department of Bioengineering, Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed-to-be-University, Thanjavur, 613401, Tamil Nadu, India
| | - Saravanan Sekaran
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai-77, Tamil Nadu, India
| | - Balamurugan Palaniappan
- Department of Biotechnology, Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed-to-be-University, Thanjavur, 613401, Tamil Nadu, India
| | - Thirumalai Diraviyam
- Department of Bioengineering, Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed-to-be-University, Thanjavur, 613401, Tamil Nadu, India
| |
Collapse
|
21
|
Schroven K, Aertsen A, Lavigne R. Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation. FEMS Microbiol Rev 2021; 45:5902850. [PMID: 32897318 DOI: 10.1093/femsre/fuaa041] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Bacteria-infecting viruses (phages) and their hosts maintain an ancient and complex relationship. Bacterial predation by lytic phages drives an ongoing phage-host arms race, whereas temperate phages initiate mutualistic relationships with their hosts upon lysogenization as prophages. In human pathogens, these prophages impact bacterial virulence in distinct ways: by secretion of phage-encoded toxins, modulation of the bacterial envelope, mediation of bacterial infectivity and the control of bacterial cell regulation. This review builds the argument that virulence-influencing prophages hold extensive, unexplored potential for biotechnology. More specifically, it highlights the development potential of novel therapies against infectious diseases, to address the current antibiotic resistance crisis. First, designer bacteriophages may serve to deliver genes encoding cargo proteins which repress bacterial virulence. Secondly, one may develop small molecules mimicking phage-derived proteins targeting central regulators of bacterial virulence. Thirdly, bacteria equipped with phage-derived synthetic circuits which modulate key virulence factors could serve as vaccine candidates to prevent bacterial infections. The development and exploitation of such antibacterial strategies will depend on the discovery of other prophage-derived, virulence control mechanisms and, more generally, on the dissection of the mutualistic relationship between temperate phages and bacteria, as well as on continuing developments in the synthetic biology field.
Collapse
Affiliation(s)
- Kaat Schroven
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| |
Collapse
|
22
|
Jacobson TB, Callaghan MM, Amador-Noguez D. Hostile Takeover: How Viruses Reprogram Prokaryotic Metabolism. Annu Rev Microbiol 2021; 75:515-539. [PMID: 34348026 DOI: 10.1146/annurev-micro-060621-043448] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To reproduce, prokaryotic viruses must hijack the cellular machinery of their hosts and redirect it toward the production of viral particles. While takeover of the host replication and protein synthesis apparatus has long been considered an essential feature of infection, recent studies indicate that extensive reprogramming of host primary metabolism is a widespread phenomenon among prokaryotic viruses that is required to fulfill the biosynthetic needs of virion production. In this review we provide an overview of the most significant recent findings regarding virus-induced reprogramming of prokaryotic metabolism and suggest how quantitative systems biology approaches may be used to provide a holistic understanding of metabolic remodeling during lytic viral infection. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tyler B Jacobson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Melanie M Callaghan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
23
|
Pinto G, Minnich SA, Hovde CJ, Oliveira H, Smidt H, Almeida C, Azeredo J. The interactions of bacteriophage Ace and Shiga toxin-producing Escherichia coli during biocontrol. FEMS Microbiol Ecol 2021; 97:fiab105. [PMID: 34329454 PMCID: PMC8492476 DOI: 10.1093/femsec/fiab105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/28/2021] [Indexed: 11/15/2022] Open
Abstract
Strictly lytic phages are considered powerful tools for biocontrol of foodborne pathogens. Safety issues needed to be addressed for the biocontrol of Shiga toxin-producing Escherichia coli (STEC) include: lysogenic conversion, Shiga toxin production through phage induction, and emergence/proliferation of bacteriophage insensitive mutants (BIMs). To address these issues, two new lytic phages, vB_EcoS_Ace (Ace) and vB_EcoM_Shy (Shy), were isolated and characterized for life cycle, genome sequence and annotation, pH stability and efficacy at controlling STEC growth. Ace was efficient in controlling host planktonic cells and did not stimulate the production of the Stx prophage or Shiga toxin. A single dose of phage did not lead to the selection of BIMs. However, when reintroduced, BIMs were detected after 24 h of incubation. The gain of resistance was associated with lower virulence, as a subset of BIMs failed to agglutinate with O157-specific antibody and were more sensitive to human serum complement. BIM's biofilm formation capacity and susceptibility to disinfectants was equal to that of the wild-type strain. Overall, this work demonstrated that phage Ace is a safe biocontrol agent against STEC contamination and that the burden of BIM emergence did not represent a greater risk in environmental persistence and human pathogenicity.
Collapse
Affiliation(s)
- Graça Pinto
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação
em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar,
4710-057, Braga, Portugal
- Laboratory of Microbiology, Wageningen University &
Research, Stippeneng 4, 6708 WE, Wageningen, The
Netherlands
- INIAV, IP-National Institute for Agrarian and Veterinary
Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde,
Portugal
| | - Scott A Minnich
- Animal Veterinary and Food Science, University of Idaho,
Moscow, Idaho, 83844-3025 USA
| | - Carolyn J Hovde
- Animal Veterinary and Food Science, University of Idaho,
Moscow, Idaho, 83844-3025 USA
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação
em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar,
4710-057, Braga, Portugal
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University &
Research, Stippeneng 4, 6708 WE, Wageningen, The
Netherlands
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary
Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde,
Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação
em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar,
4710-057, Braga, Portugal
| |
Collapse
|
24
|
Cieślik M, Bagińska N, Jończyk-Matysiak E, Węgrzyn A, Węgrzyn G, Górski A. Temperate Bacteriophages-The Powerful Indirect Modulators of Eukaryotic Cells and Immune Functions. Viruses 2021; 13:v13061013. [PMID: 34071422 PMCID: PMC8228536 DOI: 10.3390/v13061013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages are natural biological entities that limit the growth and amplification of bacteria. They are important stimulators of evolutionary variability in bacteria, and currently are considered a weapon against antibiotic resistance of bacteria. Nevertheless, apart from their antibacterial activity, phages may act as modulators of mammalian immune responses. In this paper, we focus on temperate phages able to execute the lysogenic development, which may shape animal or human immune response by influencing various processes, including phagocytosis of bacterial invaders and immune modulation of mammalian host cells.
Collapse
Affiliation(s)
- Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
- Correspondence:
| |
Collapse
|
25
|
Pinto G, Sampaio M, Dias O, Almeida C, Azeredo J, Oliveira H. Insights into the genome architecture and evolution of Shiga toxin encoding bacteriophages of Escherichia coli. BMC Genomics 2021; 22:366. [PMID: 34011288 PMCID: PMC8136144 DOI: 10.1186/s12864-021-07685-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
Background A total of 179 Shiga toxin-producing Escherichia coli (STEC) complete genomes were analyzed in terms of serotypes, prophage coding regions, and stx gene variants and their distribution. We further examined the genetic diversity of Stx-converting phage genomes (Stx phages), focusing on the lysis-lysogeny decision and lytic cassettes. Results We show that most STEC isolates belong to non-O157 serotypes (73 %), regardless the sources and geographical regions. While the majority of STEC genomes contain a single stx gene (61 %), strains containing two (35 %), three (3 %) and four (1 %) stx genes were also found, being stx2 the most prevalent gene variant. Their location is exclusively found in intact prophage regions, indicating that they are phage-borne. We further demonstrate that Stx phages can be grouped into four clusters (A, B, C and D), three subclusters (A1, A2 and A3) and one singleton, based on their shared gene content. This cluster distribution is in good agreement with their predicted virion morphologies. Stx phage genomes are highly diverse with a vast number of 1,838 gene phamilies (phams) of related sequences (of which 677 are orphams i.e. unique genes) and, although having high mosaicism, they are generally organized into three major transcripts. While the mechanisms that guide lysis–lysogeny decision are complex, there is a strong selective pressure to maintain the stx genes location close to the lytic cassette composed of predicted SAR-endolysin and pin-holin lytic proteins. The evolution of STEC Stx phages seems to be strongly related to acquiring genetic material, probably from horizontal gene transfer events. Conclusions This work provides novel insights on the genetic structure of Stx phages, showing a high genetic diversity throughout the genomes, where the various lysis-lysogeny regulatory systems are in contrast with an uncommon, but conserved, lytic system always adjacent to stx genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07685-0.
Collapse
Affiliation(s)
- Graça Pinto
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Marta Sampaio
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Oscar Dias
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
26
|
Heinisch L, Krause M, Roth A, Barth H, Schmidt H. Cytotoxic Effects of Recombinant StxA2-His in the Absence of Its Corresponding B-Subunit. Toxins (Basel) 2021; 13:toxins13050307. [PMID: 33925951 PMCID: PMC8145687 DOI: 10.3390/toxins13050307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
AB5 protein toxins are produced by certain bacterial pathogens and are composed of an enzymatically active A-subunit and a B-subunit pentamer, the latter being responsible for cell receptor recognition, cellular uptake, and transport of the A-subunit into the cytosol of eukaryotic target cells. Two members of the AB5 toxin family were described in Shiga toxin-producing Escherichia coli (STEC), namely Shiga toxin (Stx) and subtilase cytotoxin (SubAB). The functional paradigm of AB toxins includes the B-subunit being mandatory for the uptake of the toxin into its target cells. Recent studies have shown that this paradigm cannot be maintained for SubAB, since SubA alone was demonstrated to intoxicate human epithelial cells in vitro. In the current study, we raised the hypothesis that this may also be true for the A-subunit of the most clinically relevant Stx-variant, Stx2a. After separate expression and purification, the recombinant Stx2a subunits StxA2a-His and StxB2a-His were applied either alone or in combination in a 1:5 molar ratio to Vero B4, HeLa, and HCT-116 cells. For all cell lines, a cytotoxic effect of StxA2a-His alone was detected. Competition experiments with Stx and SubAB subunits in combination revealed that the intoxication of StxA2a-His was reduced by addition of SubB1-His. This study showed that the enzymatic subunit StxA2a alone was active on different cells and might therefore play a yet unknown role in STEC disease development.
Collapse
Affiliation(s)
- Laura Heinisch
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany; (L.H.); (M.K.); (A.R.)
| | - Maike Krause
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany; (L.H.); (M.K.); (A.R.)
| | - Astrid Roth
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany; (L.H.); (M.K.); (A.R.)
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany; (L.H.); (M.K.); (A.R.)
- Correspondence: ; Tel.: +49-711-459-22305
| |
Collapse
|
27
|
Rodríguez-Rubio L, Haarmann N, Schwidder M, Muniesa M, Schmidt H. Bacteriophages of Shiga Toxin-Producing Escherichia coli and Their Contribution to Pathogenicity. Pathogens 2021; 10:404. [PMID: 33805526 PMCID: PMC8065619 DOI: 10.3390/pathogens10040404] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Shiga toxins (Stx) of Shiga toxin-producing Escherichia coli (STEC) are generally encoded in the genome of lambdoid bacteriophages, which spend the most time of their life cycle integrated as prophages in specific sites of the bacterial chromosome. Upon spontaneous induction or induction by chemical or physical stimuli, the stx genes are co-transcribed together with the late phase genes of the prophages. After being assembled in the cytoplasm, and after host cell lysis, mature bacteriophage particles are released into the environment, together with Stx. As members of the group of lambdoid phages, Stx phages share many genetic features with the archetypical temperate phage Lambda, but are heterogeneous in their DNA sequences due to frequent recombination events. In addition to Stx phages, the genome of pathogenic STEC bacteria may contain numerous prophages, which are either cryptic or functional. These prophages may carry foreign genes, some of them related to virulence, besides those necessary for the phage life cycle. Since the production of one or more Stx is considered the major pathogenicity factor of STEC, we aim to highlight the new insights on the contribution of Stx phages and other STEC phages to pathogenicity.
Collapse
Affiliation(s)
- Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Nadja Haarmann
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maike Schwidder
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| |
Collapse
|
28
|
Llarena AK, Aspholm M, O'Sullivan K, Wêgrzyn G, Lindbäck T. Replication Region Analysis Reveals Non-lambdoid Shiga Toxin Converting Bacteriophages. Front Microbiol 2021; 12:640945. [PMID: 33868197 PMCID: PMC8044961 DOI: 10.3389/fmicb.2021.640945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/16/2021] [Indexed: 11/22/2022] Open
Abstract
Shiga toxin is the major virulence factor of enterohemorrhagic Escherichia coli (EHEC), and the gene encoding it is carried within the genome of Shiga toxin-converting phages (Stx phages). Numerous Stx phages have been sequenced to gain a better understanding of their contribution to the virulence potential of EHEC. The Stx phages are classified into the lambdoid phage family based on similarities in lifestyle, gene arrangement, and nucleotide sequence to the lambda phages. This study explores the replication regions of non-lambdoid Stx phages that completely lack the O and P genes encoding the proteins involved in initiating replication in the lambdoid phage genome. Instead, they carry sequences encoding replication proteins that have not been described earlier, here referred to as eru genes (after EHEC phage replication unit genes). This study identified three different types of Eru-phages, where the Eru1-type is carried by the highly pathogenic EHEC strains that caused the Norwegian O103:H25 outbreak in 2006 and the O104:H4 strain that caused the large outbreak in Europe in 2011. We show that Eru1-phages exhibit a less stable lysogenic state than the classical lambdoid Stx phages. As production of phage particles is accompanied by production of Stx toxin, the Eru1-phage could be associated with a high-virulence phenotype of the host EHEC strain. This finding emphasizes the importance of classifying Stx phages according to their replication regions in addition to their Stx-type and could be used to develop a novel strategy to identify highly virulent EHEC strains for improved risk assessment and management.
Collapse
Affiliation(s)
- Ann-Katrin Llarena
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristin O'Sullivan
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Grzegorz Wêgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdañsk, Gdañsk, Poland
| | - Toril Lindbäck
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
29
|
Isolation and Characterization of Shiga Toxin Bacteriophages. Methods Mol Biol 2021. [PMID: 33704751 DOI: 10.1007/978-1-0716-1339-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Shiga toxin (Stx) phages can be induced from Stx-producing Escherichia coli strains (STEC) or can be isolated as free virions from different samples. Here we describe methods used for the detection, enumeration, and isolation of Stx bacteriophages. Stx phages are temperate phages located in the genome of STEC. Their induction from the host strain cultures is achieved by different inducing agents, mitomycin C being one of the most commonly used. Detection of infectious Stx phages requires the production of visible plaques in a confluent lawn of the host strain using a double agar layer method. However, as the plaques produced by Stx phages are often barely visible and there is a possibility that non-Stx phages can also be induced from the strain, a hybridization step should be added to recognize and properly enumerate the lysis plaques generated after induction. Molecular methods can also be used to identify and enumerate Stx phages. Real-time quantitative PCR (qPCR) is the most accurate method for absolute quantification, although it cannot determine the infectivity of Stx phages. qPCR can also be useful for the detection of free Stx phage virions in different sample types.Stx phages induced from lysogenic bacterial strains can be purified by cesium chloride density gradients; this protocol also helps to specifically discriminate Stx phages from other prophages present in the genome of the host strain by selecting the phages expressing the Stx gene. High titer suspensions of Stx phages obtained after induction of large volumes of bacterial cultures and lysate concentration permits phage characterization by electron microscopy studies and genomic analysis.
Collapse
|
30
|
Zhang Y, Liao YT, Salvador A, Wu VCH. Genomic Characterization of Two Shiga Toxin-Converting Bacteriophages Induced From Environmental Shiga Toxin-Producing Escherichia coli. Front Microbiol 2021; 12:587696. [PMID: 33716997 PMCID: PMC7946995 DOI: 10.3389/fmicb.2021.587696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin (Stx), encoded by stx genes located in prophage sequences, is the major agent responsible for the pathogenicity of Shiga toxin-producing Escherichia coli (STEC) and is closely associated with the development of hemolytic uremic syndrome (HUS). Although numerous Stx prophage sequences have been reported as part of STEC bacterial genomes, the information about the genomic characterization of Stx-converting bacteriophages induced from STEC strains is relatively scarce. The objectives of this study were to genomically characterize two Stx-converting phages induced from environmental STEC strains and to evaluate their correlations with published Stx-converting phages and STEC strains of different origins. The Stx1-converting phage Lys8385Vzw and the Stx2-converting phage Lys19259Vzw were induced from E. coli O103:H11 (RM8385) and E. coli O157:H7 (RM19259), respectively. Whole-genome sequencing of these phages was conducted on a MiSeq sequencer for genomic characterization. Phylogenetic analysis and comparative genomics were performed to determine the correlations between these two Stx-converting phages, 13 reference Stx-converting phages, and 10 reference STEC genomes carrying closely related Stx prophages. Both Stx-converting phages Lys8385Vzw and Lys19259Vzw had double-stranded DNA, with genome sizes of 50,953 and 61,072 bp, respectively. Approximately 40% of the annotated coding DNA sequences with the predicted functions were likely associated with the fitness for both phages and their bacterial hosts. The whole-genome–based phylogenetic analysis of these two Stx-converting phages and 13 reference Stx-converting phages revealed that the 15 Stx-converting phages were divided into three distinct clusters, and those from E. coli O157:H7, in particular, were distributed in each cluster, demonstrating the high genomic diversity of these Stx-converting phages. The genomes of Stx-converting phage Lys8385Vzw and Lys19259Vzw shared a high-nucleotide similarity with the prophage sequences of the selected STEC isolates from the clinical and environmental origin. The findings demonstrate the genomic diversity of Stx-converting phages induced from different STEC strains and provide valuable insights into the dissemination of stx genes among E. coli population via the lysogenization of Stx-converting phages.
Collapse
Affiliation(s)
- Yujie Zhang
- Produce Safety and Microbiology Research Unit, US Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Yen-Te Liao
- Produce Safety and Microbiology Research Unit, US Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, US Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, US Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|
31
|
Carter MQ, Pham A, Huynh S, Parker CT, Miller A, He X, Hu B, Chain PSG. DNA adenine methylase, not the PstI restriction-modification system, regulates virulence gene expression in Shiga toxin-producing Escherichia coli. Food Microbiol 2020; 96:103722. [PMID: 33494894 DOI: 10.1016/j.fm.2020.103722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 01/20/2023]
Abstract
We previously reported a distinct methylome between the two Shiga toxin-producing Escherichia coli (STEC) O145:H28 strains linked to the 2010 U.S. lettuce-associated outbreak (RM13514) and the 2007 Belgium ice cream-associated outbreak (RM13516), respectively. This difference was thought to be attributed to a prophage encoded type II restriction-modification system (PstI R-M) in RM13514. Here, we characterized this PstI R-M system in comparison to DNA adenine methylase (Dam), a highly conserved enzyme in γ proteobacteria, by functional genomics. Deficiency in Dam led to a differential expression of over 1000 genes in RM13514, whereas deficiency in PstI R-M only impacted a few genes transcriptionally. Dam regulated genes involved in diverse functions, whereas PstI R-M regulated genes mostly encoding transporters and adhesins. Dam regulated a large number of genes located on prophages, pathogenicity islands, and plasmids, including Shiga toxin genes, type III secretion system (TTSS) genes, and enterohemolysin genes. Production of Stx2 in dam mutant was significantly higher than in RM13514, supporting a role of Dam in maintaining lysogeny of Stx2-prophage. However, following mitomycin C treatment, Stx2 in RM13514 was significantly higher than that of dam or PstI R-M deletion mutant, implying that both Dam and PstI R-M contributed to maximum Stx2 production.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA.
| | - Antares Pham
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Steven Huynh
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Craig T Parker
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Avalon Miller
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Xiaohua He
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Foodborne Toxin and Detection Research Unit, Albany, CA, USA
| | - Bin Hu
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Patrick S G Chain
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
32
|
Differential induction of Shiga toxin in environmental Escherichia coli O145:H28 strains carrying the same genotype as the outbreak strains. Int J Food Microbiol 2020; 339:109029. [PMID: 33360585 DOI: 10.1016/j.ijfoodmicro.2020.109029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) O145 is a major serotype associated with severe human disease. Production of Shiga toxins (Stxs), especially Stx2a, is thought to be correlated with STEC virulence. Since stx genes are located in prophages genomes, induction of prophages is required for effective Stxs production. Here, we investigated the production of Stxs in 12 environmental STEC O145:H28 strains under stresses STEC encounter in natural habitats and performed comparative analysis with two O145:H28 clinical strains, one linked to a 2010 U.S. lettuce-associated outbreak (RM13514) and the other linked to a 2007 Belgium ice cream-associated outbreak (RM13516). Similar to the outbreak strains, all environmental strains belong to Sequence Type (ST)-78 using the EcMLST typing scheme. Although all Stx1a-prophages were grouped together, variations in Stx1a production were observed prior to or following the inductions. Among all stx2a positive environmental strains, only the Stx2a-prophage in cattle isolate RM9154-C1 was clustered with the Stx2a-prophages in RM13514, the Stx2a-phage induced from a STEC O104:H4 strain linked to the 2011 outbreak of enterohemorrhagic infection in Germany, and the Stx2a-prophage in STEC O157:H7 strain EDL933, a prototype of enterohemorrhagic E. coli. Furthermore, the Stx2a-prophage in RM9154-C1 shared the same chromosomal insertion site and carried the same antiterminator Q gene and the late promoter PR' as the Stx2a-prophage in RM13514. Following mitomycin C or enrofloxacin treatment, the production of Stx2a in RM9154-C1 was the highest among all environmental strains tested. In contrast, following acid challenge and recovery, the production of Stx2a in RM9154-C1 was the lowest among all the environmental strains tested, at a level comparable to the clinical strains. A significant increase in Stx2a production was detected in all strains when exposed to H2O2, although the induction fold was much lower than those by other inducers. This low-efficiency induction of Stx-prophages by H2O2, a natural inducer of Stx-prophages, supports the hypothesis of bacterial altruism in controlling Stxs production, a strategy that assures the survival of the STEC population as a whole by sacrificing a small fraction of cells for Stxs production and release. Differential induction of Stxs among strains carrying nearly identical Stx-prophages suggests a role of host bacteria in regulating Stxs production. Our study revealed diverse Stx-prophages in STEC O145:H28 strains that were genotypically indistinguishable. Identification of a cattle isolate harboring a Stx2a-prophage associated with high virulence supports the premise that cattle, a natural reservoir of STEC, serve as a source of hypervirulent STEC strains.
Collapse
|
33
|
Garriss G, Henriques-Normark B. Lysogeny in Streptococcus pneumoniae. Microorganisms 2020; 8:E1546. [PMID: 33036379 PMCID: PMC7600539 DOI: 10.3390/microorganisms8101546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Bacterial viruses, or bacteriophages, are major contributors to the evolution, pathogenesis and overall biology of their host bacteria. During their life cycle, temperate bacteriophages form stable associations with their host by integrating into the chromosome, a process called lysogeny. Isolates of the human pathogen Streptococcus pneumoniae are frequently lysogenic, and genomic studies have allowed the classification of these phages into distinct phylogenetic groups. Here, we review the recent advances in the characterization of temperate pneumococcal phages, with a focus on their genetic features and chromosomal integration loci. We also discuss the contribution of phages, and specific phage-encoded features, to colonization and virulence. Finally, we discuss interesting research perspectives in this field.
Collapse
Affiliation(s)
- Geneviève Garriss
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital, Bioclinicum, 171 76 Stockholm, Sweden
- Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
34
|
Luong T, Salabarria AC, Edwards RA, Roach DR. Standardized bacteriophage purification for personalized phage therapy. Nat Protoc 2020; 15:2867-2890. [PMID: 32709990 DOI: 10.1038/s41596-020-0346-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
Abstract
The world is on the cusp of a post-antibiotic era, but researchers and medical doctors have found a way forward-by looking back at how infections were treated before the advent of antibiotics, namely using phage therapy. Although bacteriophages (phages) continue to lack drug approval in Western medicine, an increasing number of patients are being treated on an expanded-access emergency investigational new drug basis. To streamline the production of high-quality and clinically safe phage preparations, we developed a systematic procedure for medicinal phage isolation, liter-scale cultivation, concentration and purification. The 16- to 21-day procedure described in this protocol uses a combination of modified classic techniques, modern membrane filtration processes and no organic solvents to yield on average 23 mL of 1011 plaque-forming units (PFUs) per milliliter for Pseudomonas, Klebsiella, and Serratia phages tested. Thus, a single production run can produce up to 64,000 treatment doses at 109 PFUs, which would be sufficient for most expanded-access phage therapy cases and potentially for clinical phase I/II applications. The protocol focuses on removing endotoxins early by conducting multiple low-speed centrifugations, microfiltration, and cross-flow ultrafiltration, which reduced endotoxins by up to 106-fold in phage preparations. Implementation of a standardized phage cultivation and purification across research laboratories participating in phage production for expanded-access phage therapy might be pivotal to reintroduce phage therapy to Western medicine.
Collapse
Affiliation(s)
- Tiffany Luong
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | | - Robert A Edwards
- Department of Biology, San Diego State University, San Diego, CA, USA.,Viral Information Institute, San Diego State University, San Diego, CA, USA
| | - Dwayne R Roach
- Department of Biology, San Diego State University, San Diego, CA, USA. .,Viral Information Institute, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
35
|
Carter MQ, Pham A, He X, Hnasko R. Genomic Insight into Natural Inactivation of Shiga Toxin 2 Production in an EnvironmentalEscherichia coliStrain Producing Shiga Toxin 1. Foodborne Pathog Dis 2020; 17:555-567. [DOI: 10.1089/fpd.2019.2767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Michelle Qiu Carter
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California
| | - Antares Pham
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California
| | - Xiaohua He
- Foodborne Toxin Prevention and Detection Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California
| | - Robert Hnasko
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California
| |
Collapse
|
36
|
Stanton E, Wahlig TA, Park D, Kaspar CW. Chronological set of E. coli O157:H7 bovine strains establishes a role for repeat sequences and mobile genetic elements in genome diversification. BMC Genomics 2020; 21:562. [PMID: 32807088 PMCID: PMC7430833 DOI: 10.1186/s12864-020-06943-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/23/2020] [Indexed: 11/21/2022] Open
Abstract
Background Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is a significant foodborne pathogen that resides asymptomatically within cattle and other ruminants. The EHEC genome harbors an extensive collection of mobile genetic elements (MGE), including multiple prophage, prophage-like elements, plasmids, and insertion sequence (IS) elements. Results A chronological collection of EHEC strains (FRIK804, FRIK1275, and FRIK1625) isolated from a Wisconsin dairy farm (farm X) comprised a closely related clade genetically differentiated by structural alterations to the chromosome. Comparison of the FRIK804 genome with a reference EHEC strain Sakai found a unique prophage like element (PLE, indel 1) and an inversion (1.15 Mb) situated symmetrically with respect to the terminus region. Detailed analysis determined the inversion was due to homologous recombination between repeat sequences in prophage. The three farm X strains were distinguished by the presence or absence of indel 3 (61 kbp) and indel 4 (48 kbp); FRIK804 contained both of these regions, FRIK1275 lacked indel 4, and indels 3 and 4 were both absent in FRIK1625. Indel 3 was the stx2 prophage and indel 4 involved a deletion between two adjacent prophage with shared repeat sequences. Both FRIK804 and FRIK1275 produced functional phage while FRIK1625 did not, which is consistent with indel 3. Due to their involvement in recombination events, direct and inverted repeat sequences were identified, and their locations mapped to the chromosome. FRIK804 had a greater number and overall length of repeat sequences than E. coli K12 strain MG1655. Repeat sequences were most commonly associated with MGE. Conclusions This research demonstrated that three EHEC strains from a Wisconsin dairy farm were closely related and distinguished by variability within prophage regions and other MGE. Chromosome alterations were associated with recombination events between repeat sequences. An inventory of direct and inverted repeat sequences found a greater abundance and total length of repeat sequences in the EHEC strains compared to E. coli strain MG1655. The locations of the repeat sequences were biased towards MGE. The findings from this study expand our understanding of the precise molecular events and elements that contributed to genetic diversification of wild-type EHEC in the bovine and farm environments.
Collapse
Affiliation(s)
- Eliot Stanton
- Department of Bacteriology, University of Wisconsin-Madison, Microbial Sciences Building, 1550 Linden Drive, Madison, WI, 53706, USA
| | - Taylor A Wahlig
- Department of Bacteriology, University of Wisconsin-Madison, Microbial Sciences Building, 1550 Linden Drive, Madison, WI, 53706, USA.,University of Utah, School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132, USA
| | - Dongjin Park
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Charles W Kaspar
- Department of Bacteriology, University of Wisconsin-Madison, Microbial Sciences Building, 1550 Linden Drive, Madison, WI, 53706, USA. .,Food Research Institute, University of Wisconsin-Madison, Microbial Sciences Building, 1550 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
37
|
Cho SH, Lee KM, Kim CH, Kim SS. Construction of a Lectin-Glycan Interaction Network from Enterohemorrhagic Escherichia coli Strains by Multi-omics Analysis. Int J Mol Sci 2020; 21:ijms21082681. [PMID: 32290560 PMCID: PMC7215717 DOI: 10.3390/ijms21082681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 11/17/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) causes hemorrhagic colitis and hemolytic uremic syndrome. EHEC infection begins with bacterial adherence to the host intestine via lectin-like adhesins that bind to the intestinal wall. However, EHEC-related lectin–glycan interactions (LGIs) remain unknown. Here, we conducted a genome-wide investigation of putative adhesins to construct an LGI network. We performed microarray-based transcriptomic and proteomic analyses with E. coli EDL933. Using PSORTb-based analysis, potential outer-membrane-embedded adhesins were predicted from the annotated genes of 318 strains. Predicted proteins were classified using TMHMM v2.0, SignalP v5.0, and LipoP v1.0. Functional and protein–protein interaction analyses were performed using InterProScan and String databases, respectively. Structural information of lectin candidate proteins was predicted using Iterative Threading ASSEmbly Refinement (I-TASSER) and Spatial Epitope Prediction of Protein Antigens (SEPPA) tools based on 3D structure and B-cell epitopes. Pathway analysis returned 42,227 Gene Ontology terms; we then selected 2585 lectin candidate proteins by multi-omics analysis and performed homology modeling and B-cell epitope analysis. We predicted a total of 24,400 outer-membrane-embedded proteins from the genome of 318 strains and integrated multi-omics information into the genomic information of the proteins. Our integrated multi-omics data will provide a useful resource for the construction of LGI networks of E. coli.
Collapse
Affiliation(s)
- Seung-Hak Cho
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Chungchungbuk-do 28160, Korea; (S.-H.C.); (K.M.L.)
| | - Kang Mo Lee
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Chungchungbuk-do 28160, Korea; (S.-H.C.); (K.M.L.)
| | - Cheorl-Ho Kim
- Glycobiology Unit, Department of Biological Science, Sungkyunkwan University and Samsung Advanced Institute for Health Science and Technology (SAIHST), Suwon, Gyeonggi-do 16419, Korea
- Correspondence: (C.-H.K.); (S.S.K.); Tel.: +82-031-290-7002 (C.-H.K.); +82-043-719-8400 (S.S.K.); Fax: +82-043-719-8402 (S.S.K.)
| | - Sung Soon Kim
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Chungchungbuk-do 28160, Korea; (S.-H.C.); (K.M.L.)
- Correspondence: (C.-H.K.); (S.S.K.); Tel.: +82-031-290-7002 (C.-H.K.); +82-043-719-8400 (S.S.K.); Fax: +82-043-719-8402 (S.S.K.)
| |
Collapse
|
38
|
Dydecka A, Bloch S, Necel A, Topka G, Węgrzyn A, Tong J, Donaldson LW, Węgrzyn G, Nejman-Faleńczyk B. The ea22 gene of lambdoid phages: preserved prolysogenic function despite of high sequence diversity. Virus Genes 2020; 56:266-277. [PMID: 31970620 PMCID: PMC7093339 DOI: 10.1007/s11262-020-01734-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
Abstract
The exo-xis region of lambdoid phages contains open reading frames and genes that appear to be evolutionarily important. However, this region has received little attention up to now. In this study, we provided evidence that ea22, the largest gene of this region, favors the lysogenic pathway over the lytic pathway in contrast to other characterized exo-xis region genes including ea8.5, orf61, orf60a, and orf63. Our assays also suggest some functional analogies between Ea22 and the phage integrase protein (Int). While it is unsurprising that Ea22 operates similarly in both λ and Stx phages, we have observed some distinctions that may arise from considerable sequence dissimilarity at the carboxy termini of each protein.
Collapse
Affiliation(s)
- Aleksandra Dydecka
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Sylwia Bloch
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdańsk, Poland
| | - Agnieszka Necel
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Gracja Topka
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdańsk, Poland
| | - Jinge Tong
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Logan W Donaldson
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
39
|
Zhang Y, Liao YT, Salvador A, Sun X, Wu VCH. Prediction, Diversity, and Genomic Analysis of Temperate Phages Induced From Shiga Toxin-Producing Escherichia coli Strains. Front Microbiol 2020; 10:3093. [PMID: 32038541 PMCID: PMC6986202 DOI: 10.3389/fmicb.2019.03093] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a notorious foodborne pathogen containing stx genes located in the sequence region of Shiga toxin (Stx) prophages. Stx prophages, as one of the mobile elements, are involved in the transfer of virulence genes to other strains. However, little is known about the diversity of prophages among STEC strains. The objectives of this study were to predict various prophages from different STEC genomes and to evaluate the effect of different stress factors on Stx prophage induction. Forty bacterial whole-genome sequences of STEC strains obtained from National Center for Biotechnology Information (NCBI) were used for the prophage prediction using PHASTER webserver. Eight of the STEC strains from different serotypes were subsequently selected to quantify the induction of Stx prophages by various treatments, including antibiotics, temperature, irradiation, and antimicrobial agents. After induction, Stx1-converting phage Lys8385Vzw and Stx2-converting phage Lys12581Vzw were isolated and further confirmed for the presence of stx genes using conventional PCR. Phage morphology was observed by transmission electron microscopy. The prediction results showed an average of 8–22 prophages, with one or more encoding stx, were predicted from each STEC genome obtained in this study. Additionally, the phylogenetic analysis revealed high genetic diversity of Stx prophages among the 40 STEC genomes. However, the sequences of Stx prophages in the genomes of STEC O45, O111, and O121 strains, in general, shared higher genetic homology than those in other serotypes. Interestingly, most STEC strains with two or more stx genes carried at least one each of Stx1 and Stx2 prophages. The induction results indicated EDTA and UV were the most effective inducers of Stx1 and Stx2 prophages of the 8 selected STECs, respectively. Additionally, both Stx-converting phages could infect non-pathogenic E. coli (WG5, DH5α, and MG1655) and form new lysogens. The findings of this study confirm that Stx prophages can be induced by environmental stress, such as exposure to solar radiation, and lysogenize other commensal E. coli strains.
Collapse
Affiliation(s)
- Yujie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Yen-Te Liao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Xiaohong Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|
40
|
Filipiak M, Łoś JM, Łoś M. Efficiency of induction of Shiga-toxin lambdoid prophages in Escherichia coli due to oxidative and antibiotic stress depends on the combination of prophage and the bacterial strain. J Appl Genet 2019; 61:131-140. [PMID: 31808108 PMCID: PMC6968986 DOI: 10.1007/s13353-019-00525-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 11/30/2022]
Abstract
In the study presented here, we tested, how large a fraction of lysogenic culture was undergoing filamentation, which could indicate triggering of the SOS response or SOS-independent prophage induction that is also known to cause cell filamentation. Here, antibiotic stress was triggered by adding mitomycin C and oxidative stress was induced by hydrogen peroxide. Observation of bacterial cells under an optical microscope revealed more filamenting cells for lysogenic Escherichia coli than for strains not carrying a prophage. Moreover, the amount of filamenting cells depended not only on the stress agents used and the type of the prophage, but also on the host. During induction of the 933W prophage, the resulting phage titer and the amount of elongating cells were different when using E. coli O157:H7 EDL933 clinical isolate and the E. coli MG1655 laboratory strain. The amount of filamenting cells correlates well with the observed phage titers.
Collapse
Affiliation(s)
- Michalina Filipiak
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza Street 59, 80-308, Gdansk, Poland
| | - Joanna M Łoś
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza Street 59, 80-308, Gdansk, Poland.
- Phage Consultants, Partyzantow Street 10/18, 80-254, Gdansk, Poland.
| | - Marcin Łoś
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza Street 59, 80-308, Gdansk, Poland
- Phage Consultants, Partyzantow Street 10/18, 80-254, Gdansk, Poland
| |
Collapse
|
41
|
Garin-Fernandez A, Wichels A. Looking for the hidden: Characterization of lysogenic phages in potential pathogenic Vibrio species from the North Sea. Mar Genomics 2019; 51:100725. [PMID: 31757758 DOI: 10.1016/j.margen.2019.100725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 11/30/2022]
Abstract
The incidence of potentially pathogenic Vibrio species in the marine environment around Europe, is correlated with the increase of surface seawater temperature. Despite their importance, little is known about the trigger factors of potential outbreak-causing strains in this region. As prophages may compose a major reservoir of virulence traits in marine ecosystems, this study aims to identify and characterize the genomes of lysogenic Vibrio phages exemplarily from the North Sea. Therefore, 31 isolates from potentially pathogenic Vibrio species from the North Sea were screened for inducible prophages with mitomycin C. From them, one V. cholerae isolate and 40% V. parahaemolyticus isolates carried inducible prophages. Three lysogenic phages were selected for genomic characterization. The phage vB_VpaM_VP-3212 (unclassified Myoviridae) has a genome with a length of 36.81 Kbp and 55 CDS were identified. This lysogenic phage of V. parahaemolyticus contains genes related to replicative transposition mechanism, such as transposase and mobile elements similar to Mu-like viruses. The phage vB_VpaP_VP-3220 (Podoviridae, unclassified Nona33virus) has a genome length of 58,14 Kbp and contains 63 CDS. This V. parahaemolyticus phage probably uses a headful (pac) packaging replication mechanism. The phage vB_VchM_VP-3213 (unclassified Myoviridae) has a genome with a length of 41 Kbp and 63 CDS were identified, including integrase and Xer system for lysogenic recombination. This lysogenic phage of V. cholerae has similar genomic features as lambdoid phages. Although no pathogenicity genes were identified, their similarity among other phage genomes indicates that these phages can affect the development of pathogenic Vibrio strains in marine environments.
Collapse
Affiliation(s)
- Alexa Garin-Fernandez
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research, Helgoland, Germany; Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Antje Wichels
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research, Helgoland, Germany
| |
Collapse
|
42
|
Leigh BA. Cooperation among Conflict: Prophages Protect Bacteria from Phagocytosis. Cell Host Microbe 2019; 26:450-452. [PMID: 31600498 DOI: 10.1016/j.chom.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Bacteriophages, viruses that infect bacteria, are the most abundant biological entities within the holobiont. In this issue of Cell Host & Microbe, Jahn et al. (2019) describe a group of phages that can suppress immune cell function in marine sponges using secreted ankyrin proteins. They call these phages Ankyphages.
Collapse
Affiliation(s)
- Brittany A Leigh
- Biological Sciences, Vanderbilt University, Nashville, TN, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
43
|
Hietala V, Horsma-Heikkinen J, Carron A, Skurnik M, Kiljunen S. The Removal of Endo- and Enterotoxins From Bacteriophage Preparations. Front Microbiol 2019; 10:1674. [PMID: 31396188 PMCID: PMC6664067 DOI: 10.3389/fmicb.2019.01674] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
The production of phages for therapeutic purposes demands fast, efficient and scalable purification procedures. Phage lysates have a wide range of impurities, of which endotoxins of gram-negative bacteria and protein toxins produced by many pathogenic bacterial species are harmful to humans. The highest allowed endotoxin concentration for parenterally applied medicines is 5 EU/kg/h. The aim of this study was to evaluate the feasibility of different purification methods in endotoxin and protein toxin removal in the production of phage preparations for clinical use. In the purification assays, we utilized three phages: Escherichia phage vB_EcoM_fHoEco02, Acinetobacter phage vB_ApiM_fHyAci03, and Staphylococcus phage vB_SauM_fRuSau02. The purification methods tested in the study were precipitation with polyethylene glycol, ultracentrifugation, ultrafiltration, anion exchange chromatography, octanol extraction, two different endotoxin removal columns, and different combinations thereof. The efficiency of the applied purification protocols was evaluated by measuring phage titer and either endotoxins or staphylococcal enterotoxins A and C (SEA and SEC, respectively) from samples taken from different purification steps. The most efficient procedure in endotoxin removal was the combination of ultrafiltration and EndoTrap HD affinity column, which was able to reduce the endotoxin-to-phage ratio of vB_EcoM_fHoEco02 lysate from 3.5 × 104 Endotoxin Units (EU)/109 plaque forming units (PFU) to 0.09 EU/109 PFU. The combination of ultrafiltration and anion exchange chromatography resulted in ratio 96 EU/109 PFU, and the addition of octanol extraction step into this procedure still reduced this ratio threefold. The other methods tested either resulted to less efficient endotoxin removal or required the use of harmful chemicals that should be avoided when producing phage preparations for medical use. Ultrafiltration with 100,000 MWCO efficiently removed enterotoxins from vB_SauM_fRuSau02 lysate (from 1.3 to 0.06 ng SEA/109 PFU), and anion exchange chromatography reduced the enterotoxin concentration below 0.25 ng/ml, the detection limit of the assay.
Collapse
Affiliation(s)
- Ville Hietala
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jenni Horsma-Heikkinen
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Clinical Microbiology, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Annelie Carron
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Clinical Microbiology, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Saija Kiljunen
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Chen YY, Wang JT, Lin TL, Gong YN, Li TH, Huang YY, Hsieh YC. Prophage Excision in Streptococcus pneumoniae Serotype 19A ST320 Promote Colonization: Insight Into Its Evolution From the Ancestral Clone Taiwan 19F-14 (ST236). Front Microbiol 2019; 10:205. [PMID: 30800118 PMCID: PMC6375853 DOI: 10.3389/fmicb.2019.00205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae 19A ST320, a multidrug-resistant strain with high disease severity that notoriously spread before the use of expanded pneumococcal conjugate vaccines, was derived from a capsular switching event between an international strain Taiwan 19F-14 (ST236) and a serotype 19A strain. However, the molecular mechanisms underlying the adaptive evolution of 19F ST236 to 19A ST320 are unknown. In this study, we compared 19A ST320 to its ancestral clone, 19F ST236, in terms of adherence to respiratory epithelial cells, whole transcriptome, and ability to colonize a young mouse model. Serotype 19A ST320 showed five-fold higher adherence to A549 cells than serotype 19F ST236. High-throughput mRNA sequencing identified a prophage region located between dnaN and ychF in both strains; however, the genes in this region were expressed at significantly higher levels in 19A ST320 than in 19F ST236. Analysis by polymerase chain reaction (PCR) showed that the prophage is able to spontaneously excise from the chromosome and form a circular episome in 19A ST320, but not in 19F ST236. Deletion of the integrase in the prophage of 19A ST320 decreased spontaneous excision and cell adherence, which were restored by complementation. Competition experiments in mice showed that the integrase mutant was six-fold less competitive than the 19A ST320 parent (competitive index [CI]: 0.16; p = 0.02). The 19A ST320 prophage-deleted strain did not change cell adherence capacity, whereas prophage integration strains (integrase mutant and 19F) had decreased expression of the down-stream ychF gene compared to that of 19A ST320. Further deletion of ychF significantly reduced cell adherence. In conclusions, these findings suggest that spontaneous prophage induction confers a competitive advantage to virulent pneumococci.
Collapse
Affiliation(s)
- Yi-Yin Chen
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Hsuan Li
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Yu Huang
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chia Hsieh
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
45
|
Del Cogliano ME, Pinto A, Goldstein J, Zotta E, Ochoa F, Fernández-Brando RJ, Muniesa M, Ghiringhelli PD, Palermo MS, Bentancor LV. Relevance of Bacteriophage 933W in the Development of Hemolytic Uremic Syndrome (HUS). Front Microbiol 2018; 9:3104. [PMID: 30619183 PMCID: PMC6300567 DOI: 10.3389/fmicb.2018.03104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
Hemolytic uremic syndrome (HUS), principally caused by shiga toxins (Stxs), is associated with Shiga toxin-producing Escherichia coli (STEC) infections. We previously reported Stx2 expression by host cells in vitro and in vivo. As the genes encoding the two Stx subunits are located in bacteriophage genomes, the aim of the current study was to evaluate the role of bacteriophage induction in HUS development in absence of an E. coli O157:H7 genomic background. Mice were inoculated with a non-pathogenic E. coli strain carrying the lysogenic bacteriophage 933W (C600Φ933W), and bacteriophage excision was induced by an antibiotic. The mice died 72 h after inoculation, having developed pathogenic damage typical of STEC infection. As well as renal and intestinal damage, markers of central nervous system (CNS) injury were observed, including aberrant immunolocalization of neuronal nuclei (NeuN) and increased expression of glial fibrillary acidic protein (GFAP). These results show that bacteriophage 933W without an E. coli O157:H7 background is capable of inducing the pathogenic damage associated with STEC infection. In addition, a novel mouse model was developed to evaluate therapeutic approaches focused on the bacteriophage as a new target.
Collapse
Affiliation(s)
- Manuel E Del Cogliano
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Alipio Pinto
- Laboratorio de Neurofisiopatología, Departamento de Fisiología, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Goldstein
- Laboratorio de Neurofisiopatología, Departamento de Fisiología, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Elsa Zotta
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Ochoa
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Romina Jimena Fernández-Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciones, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Maite Muniesa
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Pablo D Ghiringhelli
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Marina S Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciones, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Leticia V Bentancor
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
46
|
Howard-Varona C, Vik DR, Solonenko NE, Li YF, Gazitua MC, Chittick L, Samiec JK, Jensen AE, Anderson P, Howard-Varona A, Kinkhabwala AA, Abedon ST, Sullivan MB. Fighting Fire with Fire: Phage Potential for the Treatment of E. coli O157 Infection. Antibiotics (Basel) 2018; 7:E101. [PMID: 30453470 PMCID: PMC6315980 DOI: 10.3390/antibiotics7040101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
Hemolytic⁻uremic syndrome is a life-threating disease most often associated with Shiga toxin-producing microorganisms like Escherichia coli (STEC), including E. coli O157:H7. Shiga toxin is encoded by resident prophages present within this bacterium, and both its production and release depend on the induction of Shiga toxin-encoding prophages. Consequently, treatment of STEC infections tend to be largely supportive rather than antibacterial, in part due to concerns about exacerbating such prophage induction. Here we explore STEC O157:H7 prophage induction in vitro as it pertains to phage therapy-the application of bacteriophages as antibacterial agents to treat bacterial infections-to curtail prophage induction events, while also reducing STEC O157:H7 presence. We observed that cultures treated with strictly lytic phages, despite being lysed, produce substantially fewer Shiga toxin-encoding temperate-phage virions than untreated STEC controls. We therefore suggest that phage therapy could have utility as a prophylactic treatment of individuals suspected of having been recently exposed to STEC, especially if prophage induction and by extension Shiga toxin production is not exacerbated.
Collapse
Affiliation(s)
| | - Dean R Vik
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Natalie E Solonenko
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Yueh-Fen Li
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - M Consuelo Gazitua
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Lauren Chittick
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Jennifer K Samiec
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Aubrey E Jensen
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Paige Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | - Stephen T Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
47
|
Zhang LX, Simpson DJ, McMullen LM, Gänzle MG. Comparative Genomics and Characterization of the Late Promoter pR' from Shiga Toxin Prophages in Escherichia coli. Viruses 2018; 10:v10110595. [PMID: 30384416 PMCID: PMC6266700 DOI: 10.3390/v10110595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 02/02/2023] Open
Abstract
Shiga-toxin producing Escherichia coli (STEC) causes human illness ranging from mild diarrhea to death. The bacteriophage encoded stx genes are located in the late transcription region, downstream of the antiterminator Q. The transcription of the stx genes is directly under the control of the late promoter pR’, thus the sequence diversity of the region between Q and stx, here termed the pR’ region, may affect Stx toxin production. Here, we compared the gene structure of the pR’ region and the stx subtypes of nineteen STECs. The sequence alignment and phylogenetic analysis suggested that the pR’ region tends to be more heterogeneous than the promoter itself, even if the prophages harbor the same stx subtype. Furthermore, we established and validated transcriptional fusions of the pR’ region to the DsRed reporter gene using mitomycin C (MMC) induction. Finally, these constructs were transformed into native and non-native strains and examined with flow cytometry. The results showed that induction levels changed when pR’ regions were placed under different regulatory systems. Moreover, not every stx gene could be induced in its native host bacteria. In addition to the functional genes, the diversity of the pR’ region plays an important role in determining the level of toxin induction.
Collapse
Affiliation(s)
- Ling Xiao Zhang
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - David J Simpson
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Lynn M McMullen
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Michael G Gänzle
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
48
|
Eichhorn I, Heidemanns K, Ulrich RG, Schmidt H, Semmler T, Fruth A, Bethe A, Goulding D, Pickard D, Karch H, Wieler LH. Lysogenic conversion of atypical enteropathogenic Escherichia coli (aEPEC) from human, murine, and bovine origin with bacteriophage Φ3538 Δstx 2::cat proves their enterohemorrhagic E. coli (EHEC) progeny. Int J Med Microbiol 2018; 308:890-898. [PMID: 29937391 DOI: 10.1016/j.ijmm.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/04/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022] Open
Abstract
Bacteriophages play an important role in the evolution of bacterial pathogens. A phage-mediated transfer of stx-genes to atypical enteropathogenic E. coli (aEPEC) which are prevalent in different hosts, would convert them to enterohemorrhagic E. coli (EHEC). We decided to confirm this hypothesis experimentally to provide conclusive evidence that aEPEC isolated from different mammalian hosts are indeed progenitors of typical EHEC which gain the ability to produce Shiga-Toxin by lysogeny with stx-converting bacteriophages, utilizing the model phage Φ3538 Δstx2::cat. We applied a modified in vitro plaque-assay, using a high titer of a bacteriophage carrying a deletion in the stx2 gene (Φ3538 Δstx2::cat) to increase the detection of lysogenic conversion events. Three wild-type aEPEC strains were chosen as acceptor strains: the murine aEPEC-strain IMT14505 (sequence type (ST)28, serotype Ont:H6), isolated from a striped field mouse (Apodemus agrarius) in the surrounding of a cattle shed, and the human aEPEC-strain 910#00 (ST28, Ont:H6). The close genomic relationship of both strains implies a high zoonotic potential. A third strain, the bovine aEPEC IMT19981, was of serotype O26:H11 and ST21 (STC29). All three aEPEC were successfully lysogenized with phage Φ3538 Δstx2::cat. Integration of the bacteriophage DNA into the aEPEC host genomes was confirmed by amplification of chloramphenicol transferase (cat) marker gene and by Southern-Blot hybridization. Analysis of the whole genome sequence of each of the three lysogens showed that the bacteriophage was integrated into the known tRNA integration site argW, which is highly variable among E. coli. In conclusion, the successful lysogenic conversion of aEPEC with a stx-phage in vitro underlines the important role of aEPEC as progenitors of EHEC. Given the high prevalence and the wide host range of aEPEC acceptors, their high risk of zoonotic transmission should be recognized in infection control measures.
Collapse
Affiliation(s)
- Inga Eichhorn
- Institute for Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Katrin Heidemanns
- Institute for Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Herbert Schmidt
- Institute of Food Science and Biotechnology, University of Hohenheim, Hohenheim, Germany
| | | | | | - Astrid Bethe
- Institute for Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - David Goulding
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Derek Pickard
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Helge Karch
- Institute for Hygiene, University Münster, Münster, Germany
| | - Lothar H Wieler
- Institute for Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany; Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany.
| |
Collapse
|
49
|
Thuraisamy T, Lodato PB. Influence of RNase E deficiency on the production of stx2-bearing phages and Shiga toxin in an RNase E-inducible strain of enterohaemorrhagic Escherichia coli (EHEC) O157:H7. J Med Microbiol 2018; 67:724-732. [PMID: 29620505 PMCID: PMC7001489 DOI: 10.1099/jmm.0.000728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
PURPOSE In enterohaemorrhagic Escherichia coli (EHEC), stx1 or stx2 genes encode Shiga toxin (Stx1 or Stx2, respectively) and are carried by prophages. The production and release of both stx phages and toxin occur upon initiation of the phage lytic cycle. Phages can further disseminate stx genes by infecting naïve bacteria in the intestine. Here, the effect of RNase E deficiency on these two virulence traits was investigated. METHODOLOGY Cultures of the EHEC strains TEA028-rne containing low versus normal RNase E levels or the parental strain (TEA028) were treated with mitomycin C (MMC) to induce the phage lytic cycle. Phages and Stx2 titres were quantified by the double-agar assay and the receptor ELISA technique, respectively. RESULTS RNase E deficiency in MMC-treated cells significantly reduced the yield of infectious stx2 phages. Delayed cell lysis and the appearance of encapsidated phage DNA copies suggest a slow onset of the lytic cycle. However, these observations do not entirely explain the decrease of phage yields. stx1 phages were not detected under normal or deficient RNase E levels. After an initial delay, high levels of toxin were finally produced in MMC-treated cultures. CONCLUSION RNase E scarcity reduces stx2 phage production but not toxin. Normal concentrations of RNase E are likely required for correct phage morphogenesis. Our future work will address the mechanism of RNase E action on phage morphogenesis.
Collapse
|
50
|
Sharma VK, Schaut RG, Loving CL. Vaccination with killed whole-cells of Escherichia coli O157:H7 hha mutant emulsified with an adjuvant induced vaccine strain-specific serum antibodies and reduced E. coli O157:H7 fecal shedding in cattle. Vet Microbiol 2018; 219:190-199. [PMID: 29778196 DOI: 10.1016/j.vetmic.2018.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 01/15/2023]
Abstract
Escherichia coli O157:H7 (O157) can cause from a mild diarrheal illness to hemorrhagic colitis and hemolytic uremic syndrome in humans. Cattle are the primary reservoir for O157 and fecal shedding of O157 by these animals is a major risk factor in contamination of cattle hides and carcasses at slaughter. Vaccination is an important strategy to reduce fecal shedding of O157 in cattle. In this study, we evaluated the immunogenicity and efficacy of an inactivated vaccine strain of O157 formulated with an adjuvant. This vaccine strain was deleted of the hha gene enabling high level expression of the locus of enterocyte effacement (LEE) encoded proteins required for O157 colonization in cattle. The inactivated vaccine strain emulsified with the adjuvant or suspended in the phosphate-buffered saline (PBS) was injected in the neck muscles of two groups of weaned calves followed by a booster three weeks later with the corresponding formulation. Animals in groups 3 and 4 were injected similarly with the adjuvant and PBS, respectively. All animals were orally inoculated three weeks post-booster vaccination with a live culture of O157. The animals vaccinated with the adjuvanted vaccine showed higher serum antibody titers to the vaccine strain and shed O157 for a shorter duration and at lower numbers compared to the animals vaccinated with the non-adjuvanted vaccine, adjuvant-only, or PBS. Western blotting of the vaccine strain lysates showed higher immunoreactivity of serum IgG in vaccinated animals to several O157-specific proteins and lipopolysaccharides (LPS). The vaccination induced IgG showed specificity to LEE-encoded proteins and outer membrane LPS as LEE and waaL deletion mutants, unable to produce LEE proteins and synthesize high molecular weight LPS, respectively, yielded significantly lower antibody titers compared to the parent vaccine strain. The positive reactivity of the immune serum was also observed for purified LEE-encoded proteins EspA and EspB. In conclusion, the results of this animal study showed that a two-dose regimen of an adjuvanted vaccine is capable of inducing O157-specific immune response that directly or indirectly reduced fecal shedding of O157 in cattle.
Collapse
Affiliation(s)
- Vijay K Sharma
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens Research Unit, Ames, IA, 50010, USA.
| | - Robert G Schaut
- Oak Ridge Institute for Science and Education (ORISE)/ARS Research Participation Program, Oak Ridge, TN 37831
| | - Crystal L Loving
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens Research Unit, Ames, IA, 50010, USA
| |
Collapse
|