1
|
Jeong TH, Jun SW, Ahn YH. Metamaterial Sensing of Cyanobacteria Using THz Thermal Curve Analysis. BIOSENSORS 2024; 14:519. [PMID: 39589978 PMCID: PMC11591856 DOI: 10.3390/bios14110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/05/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
In this study, we perform thermal curve analyses based on terahertz (THz) metamaterials for the label-free sensing of cyanobacteria. In the presence of bacterial films, significant frequency shifts occur at the metamaterial resonance, but these shifts become saturated at a certain thickness owing to the limited sensing volume of the metamaterial. The saturation value was used to determine the dielectric constants of various cyanobacteria, which are crucial for dielectric sensing. For label-free identification, we performed thermal curve analysis of THz metamaterials coated with cyanobacteria. The resonant frequency of the cyanobacteria-coated metasensor changed with temperature. The differential thermal curves (DTC) obtained from temperature-dependent resonance exhibited peaks unique to individual cyanobacteria, which helped identify individual species. Interestingly, despite being classified as Gram negative, cyanobacteria exhibit DTC profiles similar to those of Gram-positive bacteria, likely due to their unique extracellular structures. DTC analysis can reveal unique characteristics of various cyanobacteria that are not easily accessible by conventional approaches.
Collapse
Affiliation(s)
| | | | - Yeong Hwan Ahn
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea; (T.H.J.); (S.W.J.)
| |
Collapse
|
2
|
Pagli C, Chamizo S, Migliore G, Rugnini L, De Giudici G, Braglia R, Canini A, Cantón Y. Isolation of biocrust cyanobacteria and evaluation of Cu, Pb, and Zn immobilisation potential for soil restoration and sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174020. [PMID: 38897475 DOI: 10.1016/j.scitotenv.2024.174020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/30/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Soil contamination by heavy metals represents an important environmental and public health problem of global concern. Biocrust-forming cyanobacteria offer promise for heavy metal immobilisation in contaminated soils due to their unique characteristics, including their ability to grow in contaminated soils and produce exopolysaccharides (EPS). However, limited research has analysed the representativeness of cyanobacteria in metal-contaminated soils. Additionally, there is a lack of studies examining how cyanobacteria adaptation to specific environments can impact their metal-binding capacity. To address this research gap, we conducted a study analysing the bacterial communities of cyanobacteria-dominated biocrusts in a contaminated area from South Sardinia (Italy). Additionally, by using two distinct approaches, we isolated three Nostoc commune strains from cyanobacteria-dominated biocrust and we also evaluated their potential to immobilise heavy metals. The first isolation method involved acclimatizing biocrust samples in liquid medium while, in the second method, biocrust samples were directly seeded onto agar plates. The microbial community analysis revealed Cyanobacteria, Bacteroidota, Proteobacteria, and Actinobacteria as the predominant groups, with cyanobacteria representing between 13.3 % and 26.0 % of the total community. Despite belonging to the same species, these strains exhibited different growth rates (1.1-2.2 g L-1 of biomass) and capacities for EPS production (400-1786 mg L-1). The three strains demonstrated a notable ability for metal immobilisation, removing up to 88.9 % of Cu, 86.2 % of Pb, and 45.3 % of Zn from liquid medium. Cyanobacteria EPS production showed a strong correlation with the removal of Cu, indicating its role in facilitating metal immobilisation. Furthermore, differences in Pb immobilisation (40-86.2 %) suggest possible environmental adaptation mechanisms of the strains. This study highlights the promising application of N. commune strains for metal immobilisation in soils, offering a potential bioremediation tool to combat the adverse effects of soil contamination and promote environmental sustainability.
Collapse
Affiliation(s)
- Carlotta Pagli
- Department of Biology, University of Rome Tor Vergata, Italy; Department of Agronomy, University of Almería, Spain; PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, Italy.
| | - Sonia Chamizo
- Department of Agronomy, University of Almería, Spain; Department of Desertification and Geo-Ecology, Experimental Station of Arid Zones (EEZA-CSIC), Almería, Spain
| | - Giada Migliore
- ENEA, Territorial and Production Systems Sustainability Department, Italy
| | - Lorenza Rugnini
- Department of Biology, University of Rome Tor Vergata, Italy
| | - Giovanni De Giudici
- Department of Chemical and Geological Sciences, University of Cagliari, Italy
| | - Roberto Braglia
- Department of Biology, University of Rome Tor Vergata, Italy
| | | | - Yolanda Cantón
- Department of Agronomy, University of Almería, Spain; Center for Research on Scientific Collections of the University of Almeria (CECOUAL), Spain
| |
Collapse
|
3
|
Duersch BG, Soini SA, Luo Y, Liu X, Chen S, Merk VM. Nanoscale elemental and morphological imaging of nitrogen-fixing cyanobacteria. Metallomics 2024; 16:mfae040. [PMID: 39271453 PMCID: PMC11450467 DOI: 10.1093/mtomcs/mfae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
Nitrogen-fixing cyanobacteria bind atmospheric nitrogen and carbon dioxide using sunlight. This experimental study focused on a laboratory-based model system, Anabaena sp., in nitrogen-depleted culture. When combined nitrogen is scarce, the filamentous prokaryotes reconcile photosynthesis and nitrogen fixation by cellular differentiation into heterocysts. To better understand the influence of micronutrients on cellular function, 2D and 3D synchrotron X-ray fluorescence mappings were acquired from whole biological cells in their frozen-hydrated state at the Bionanoprobe, Advanced Photon Source. To study elemental homeostasis within these chain-like organisms, biologically relevant elements were mapped using X-ray fluorescence spectroscopy and energy-dispersive X-ray microanalysis. Higher levels of cytosolic K+, Ca2+, and Fe2+ were measured in the heterocyst than in adjacent vegetative cells, supporting the notion of elevated micronutrient demand. P-rich clusters, identified as polyphosphate bodies involved in nutrient storage, metal detoxification, and osmotic regulation, were consistently co-localized with K+ and occasionally sequestered Mg2+, Ca2+, Fe2+, and Mn2+ ions. Machine-learning-based k-mean clustering revealed that P/K clusters were associated with either Fe or Ca, with Fe and Ca clusters also occurring individually. In accordance with XRF nanotomography, distinct P/K-containing clusters close to the cellular envelope were surrounded by larger Ca-rich clusters. The transition metal Fe, which is a part of nitrogenase enzyme, was detected as irregularly shaped clusters. The elemental composition and cellular morphology of diazotrophic Anabaena sp. was visualized by multimodal imaging using atomic force microscopy, scanning electron microscopy, and fluorescence microscopy. This paper discusses the first experimental results obtained with a combined in-line optical and X-ray fluorescence microscope at the Bionanoprobe.
Collapse
Affiliation(s)
- Bobby G Duersch
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| | - Steven A Soini
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| | - Yanqi Luo
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Xiaoyang Liu
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Vivian M Merk
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
4
|
Zhang J, Zhang F, Dong Z, Zhang W, Sun T, Chen L. Response and acclimation of cyanobacteria to acidification: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173978. [PMID: 38897479 DOI: 10.1016/j.scitotenv.2024.173978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Cyanobacteria, as vital components of aquatic ecosystems, face increasing challenges due to acidification driven by various anthropogenic and natural factors. Understanding how cyanobacteria adapt and respond to acidification is crucial for predicting their ecological dynamics and potential impacts on ecosystem health. This comprehensive review synthesizes current knowledge on the acclimation mechanisms and responses of cyanobacteria to acidification stress. Detailly, ecological roles of cyanobacteria were firstly briefly concluded, followed by the effects of acidification on aquatic ecosystems and cyanobacteria. Then the review focuses on the physiological, biochemical, and molecular strategies employed by cyanobacteria to cope with acidification stress, highlighting key adaptive mechanisms and their ecological implications. Finally, a summary of strategies to enhance acid resistance in cyanobacteria and future directions was discussed. Utilizing omics data and machine learning technology to build a cyanobacterial acid regulatory network allows for predicting the impact of acidification on cyanobacteria and inferring its broader effects on ecosystems. Additionally, acquiring acid-tolerant chassis cells of cyanobacteria through innovative techniques facilitates the advancement of environmentally friendly production of acidic chemicals. By synthesizing empirical evidence and theoretical frameworks, this review aims to elucidate the complex interplay between cyanobacteria and acidification stressors, providing insights for future research directions and ecosystem management strategies.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Fenfang Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Zhengxin Dong
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China..
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China.
| |
Collapse
|
5
|
Hashimi A, Tocheva EI. Cell envelope diversity and evolution across the bacterial tree of life. Nat Microbiol 2024; 9:2475-2487. [PMID: 39294462 DOI: 10.1038/s41564-024-01812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
The bacterial cell envelope is a complex multilayered structure conserved across all bacterial phyla. It is categorized into two main types based on the number of membranes surrounding the cell. Monoderm bacteria are enclosed by a single membrane, whereas diderm cells are distinguished by the presence of a second, outer membrane (OM). An ancient divide in the bacterial domain has resulted in two major clades: the Gracilicutes, consisting strictly of diderm phyla; and the Terrabacteria, encompassing monoderm and diderm species with diverse cell envelope architectures. Recent structural and phylogenetic advancements have improved our understanding of the diversity and evolution of the OM across the bacterial tree of life. Here we discuss cell envelope variability within major bacterial phyla and focus on conserved features found in diderm lineages. Characterizing the mechanisms of OM biogenesis and the evolutionary gains and losses of the OM provides insights into the primordial cell and the last universal common ancestor from which all living organisms subsequently evolved.
Collapse
Affiliation(s)
- Ameena Hashimi
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
6
|
Russo DA, Oliinyk D, Pohnert G, Meier F, Zedler JAZ. EXCRETE workflow enables deep proteomics of the microbial extracellular environment. Commun Biol 2024; 7:1189. [PMID: 39322645 PMCID: PMC11424642 DOI: 10.1038/s42003-024-06910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
Extracellular proteins play a significant role in shaping microbial communities which, in turn, can impact ecosystem function, human health, and biotechnological processes. Yet, for many ubiquitous microbes, there is limited knowledge regarding the identity and function of secreted proteins. Here, we introduce EXCRETE (enhanced exoproteome characterization by mass spectrometry), a workflow that enables comprehensive description of microbial exoproteomes from minimal starting material. Using cyanobacteria as a case study, we benchmark EXCRETE and show a significant increase over current methods in the identification of extracellular proteins. Subsequently, we show that EXCRETE can be miniaturized and adapted to a 96-well high-throughput format. Application of EXCRETE to cyanobacteria from different habitats (Synechocystis sp. PCC 6803, Synechococcus sp. PCC 11901, and Nostoc punctiforme PCC 73102), and in different cultivation conditions, identified up to 85% of all potentially secreted proteins. Finally, functional analysis reveals that cell envelope maintenance and nutrient acquisition are central functions of the predicted cyanobacterial secretome. Collectively, these findings challenge the general belief that cyanobacteria lack secretory proteins and suggest that multiple functions of the secretome are conserved across freshwater, marine, and terrestrial species.
Collapse
Affiliation(s)
- David A Russo
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany.
| | - Denys Oliinyk
- Functional Proteomics, Jena University Hospital, Jena, Germany
| | - Georg Pohnert
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Florian Meier
- Functional Proteomics, Jena University Hospital, Jena, Germany
| | - Julie A Z Zedler
- Synthetic Biology of Photosynthetic Organisms, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
7
|
Irankhahi P, Riahi H, Hassani SB, Eskafi M, Azimzadeh Irani M, Shariatmadari Z. The role of the protective shield against UV-C radiation and its molecular interactions in Nostoc species (Cyanobacteria). Sci Rep 2024; 14:19258. [PMID: 39164328 PMCID: PMC11336245 DOI: 10.1038/s41598-024-70002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Cyanobacteria possess special defense mechanisms to protect themselves against ultraviolet (UV) radiation. This study combines experimental and computational methods to identify the role of protective strategies in Nostoc species against UV-C radiation. To achieve this goal, various species of the genus Nostoc from diverse natural habitats in Iran were exposed to artificial UV-C radiation. The results indicated that UV-C treatment significantly reduced the photosynthetic pigments while simultaneously increasing the activity of antioxidant enzymes. Notably, N. sphaericum ISB97 and Nostoc sp. ISB99, the brown Nostoc species isolated from habitats with high solar radiations, exhibited greater resistance compared to the green-colored species. Additionally, an increase in scytonemin content occurred with a high expression of key genes associated with its synthesis (scyF and scyD) during the later stages of UV-C exposure in these species. The molecular docking of scytonemin with lipopolysaccharides of the cyanobacteria that mainly cover the extracellular matrix revealed the top/side positioning of scytonemin on the glycans of these lipopolysaccharides to form a UV-protective shield. These findings pave the way for exploring the molecular effects of scytonemin in forming the UV protection shield in cyanobacteria, an aspect that has been ambiguous until now.
Collapse
Affiliation(s)
- Pardis Irankhahi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Hossein Riahi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Seyedeh Batool Hassani
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Maryam Eskafi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Maryam Azimzadeh Irani
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Zeinab Shariatmadari
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran.
| |
Collapse
|
8
|
Cai X, He Y, Yu I, Imani A, Scholl D, Miller JF, Zhou ZH. Atomic structures of a bacteriocin targeting Gram-positive bacteria. Nat Commun 2024; 15:7057. [PMID: 39152109 PMCID: PMC11329794 DOI: 10.1038/s41467-024-51038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
Due to envelope differences between Gram-positive and Gram-negative bacteria, engineering precision bactericidal contractile nanomachines requires atomic-level understanding of their structures; however, only those killing Gram-negative bacteria are currently known. Here, we report the atomic structures of an engineered diffocin, a contractile syringe-like molecular machine that kills the Gram-positive bacterium Clostridioides difficile. Captured in one pre-contraction and two post-contraction states, each structure fashions six proteins in the bacteria-targeting baseplate, two proteins in the energy-storing trunk, and a collar linking the sheath with the membrane-penetrating tube. Compared to contractile machines targeting Gram-negative bacteria, major differences reside in the baseplate and contraction magnitude, consistent with target envelope differences. The multifunctional hub-hydrolase protein connects the tube and baseplate and is positioned to degrade peptidoglycan during penetration. The full-length tape measure protein forms a coiled-coil helix bundle homotrimer spanning the entire diffocin. Our study offers mechanical insights and principles for designing potent protein-based precision antibiotics.
Collapse
Affiliation(s)
- Xiaoying Cai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Yao He
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Iris Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anthony Imani
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Dean Scholl
- Pylum Biosciences, San Francisco, CA, 94080, USA
| | - Jeff F Miller
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
9
|
Kandić I, Kragović M, Živković S, Knežević J, Vuletić S, Cvetković S, Stojmenović M. Kinetics and Mechanism of Cyanobacteria Cell Removal Using Biowaste-Derived Activated Carbons with Assessment of Potential Human Health Impacts. Toxins (Basel) 2024; 16:310. [PMID: 39057950 PMCID: PMC11281101 DOI: 10.3390/toxins16070310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Harmful cyanobacteria blooms and the escalating impact of cyanotoxins necessitates the effective removal of cyanobacteria from water ecosystems before they release cyanotoxins. In this study, cyanobacteria removal from water samples taken from the eutrophic Aleksandrovac Lake (southern Serbia) was investigated. For that purpose, novel activated carbons derived from waste biomass-date palm leaf stalk (P_AC), black alder cone-like flowers (A_AC), and commercial activated carbon from coconut shell (C_AC) as a reference were used. To define the best adsorption conditions and explain the adsorption mechanism, the influence of contact time, reaction volume, and adsorbent mass, as well as FTIR analysis of the adsorbents before and after cyanobacteria removal, were studied. The removal efficiency of P_AC and A_AC achieved for the applied concentration of 10 mg/mL after 15 min was ~99%, while for C_AC after 24 h was only ~92% for the same concentration. To check the safety of the applied materials for human health and the environment, the concentrations of potentially toxic elements (PTEs), the health impact (HI) after water purification, and the toxicity (MTT and Comet assay) of the materials were evaluated. Although the P_AC and A_AC achieved much better removal properties in comparison with the C_AC, considering the demonstrated genotoxicity and cytotoxicity of the P_AC and the higher HI value for the C_AC, only the A_AC was further investigated. Results of the kinetics, FTIR analysis, and examination of the A_AC mass influence on removal efficiency indicated dominance of the physisorption mechanism. Initially, the findings highlighted the superior performance of A_AC, with great potential to be globally commercialized as an effective cyanobacteria cell adsorbent.
Collapse
Affiliation(s)
- Irina Kandić
- “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (I.K.); (M.K.); (S.Ž.)
| | - Milan Kragović
- “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (I.K.); (M.K.); (S.Ž.)
| | - Sanja Živković
- “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (I.K.); (M.K.); (S.Ž.)
| | - Jelena Knežević
- Institute of Public Health of Serbia “Dr. Milan Jovanović Batut”, dr Subotića Starijeg 5, 11000 Belgrade, Serbia;
| | - Stefana Vuletić
- Department of Microbiology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (S.V.); (S.C.)
| | - Stefana Cvetković
- Department of Microbiology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (S.V.); (S.C.)
| | - Marija Stojmenović
- “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (I.K.); (M.K.); (S.Ž.)
| |
Collapse
|
10
|
Kwidzińska K, Zalewska M, Aksmann A, Kobos J, Mazur-Marzec H, Caban M. Multi-biomarker response of cyanobacteria Synechocystis salina and Microcystis aeruginosa to diclofenac. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134373. [PMID: 38678710 DOI: 10.1016/j.jhazmat.2024.134373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/14/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
The cyanobacterial response to pharmaceuticals is less frequently investigated compared to green algae. Pharmaceuticals can influence not only the growth rate of cyanobacteria culture, but can also cause changes at the cellular level. The effect of diclofenac (DCF) as one of the for cyanobacteria has been rarely tested, and DCF has never been applied with cellular biomarkers. The aim of this work was to test the response of two unicellular cyanobacteria (Synechocystis salina and Microcystis aeruginosa) toward DCF (100 mg L-1) under photoautotrophic growth conditions. Such endpoints were analyzed as cells number, DCF uptake, the change in concentrations of photosynthetic pigments, the production of toxins, and chlorophyll a in vivo fluorescence. It was noted that during a 96 h exposure, cell proliferation was not impacted. Nevertheless, a biochemical response was observed. The increased production of microcystin was noted for M. aeruginosa. Due to the negligible absorption of DCF into cells, it is possible that the biochemical changes are induced by an external signal. The application of non-standard biomarkers demonstrates the effect of DCF on microorganism metabolism without a corresponding effect on biomass. The high resistance of cyanobacteria to DCF and the stimulating effect of DCF on the secretion of toxins raise concerns for environment biodiversity.
Collapse
Affiliation(s)
- Klaudia Kwidzińska
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Martyna Zalewska
- University of Gdansk, Faculty of Biology, Department of Plant Experimental Biology and Biotechnology, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Anna Aksmann
- University of Gdansk, Faculty of Biology, Department of Plant Experimental Biology and Biotechnology, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Justyna Kobos
- University of Gdansk, Faculty of Oceanography and Geography, Department of Marine Biology and Biotechnology, al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Hanna Mazur-Marzec
- University of Gdansk, Faculty of Oceanography and Geography, Department of Marine Biology and Biotechnology, al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
11
|
Tang J, Zhang C, Xu W, Li X, Jia Y, Fang J, Mai BX. Indirect Impact of Eutrophication on Occurrence, Air-Water Exchange, and Vertical Sinking Fluxes of Antibiotics in a Subtropical River. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8932-8945. [PMID: 38710016 DOI: 10.1021/acs.est.4c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A significant challenge that warrants attention is the influence of eutrophication on the biogeochemical cycle of emerging contaminants (ECs) in aquatic environments. Antibiotics pollution in the eutrophic Pearl River in South China was examined to offer new insights into the effects of eutrophication on the occurrence, air-water exchange fluxes (Fair-water), and vertical sinking fluxes (Fsinking) of antibiotics. Antibiotics transferred to the atmosphere primarily through aerosolization controlled by phytoplankton biomass and significant spatiotemporal variations were observed in the Fair-water of individual antibiotics throughout all sites and seasons. The Fsinking of ∑AB14 (defined as a summary of 14 antibiotics) was 750.46 ± 283.19, 242.71 ± 122.87, and 346.74 ± 249.52 ng of m-2 d-1 in spring, summer, and winter seasons. Eutrophication indirectly led to an elevated pH, which reduced seasonal Fair-water of antibiotics, sediment aromaticity, and phytoplankton hydrophobicity, thereby decreasing antibiotic accumulation in sediments and phytoplankton. Negative correlations were further found between Fsinking and the water column daily loss of antibiotics with phytoplankton biomass. The novelty of this study is to provide new complementary knowledge for the regulation mechanisms of antibiotics by phytoplankton biological pump, offering novel perspectives and approaches to understanding the coupling between eutrophication and migration and fate of antibiotics in a subtropical eutrophic river.
Collapse
Affiliation(s)
- Jinpeng Tang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107 Guangdong, PR China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Chencheng Zhang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107 Guangdong, PR China
| | - Wang Xu
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, PR China
| | - Xuxia Li
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, PR China
| | - Yanyan Jia
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107 Guangdong, PR China
| | - Ji Fang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, PR China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou 510640, PR China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China
| |
Collapse
|
12
|
Cai X, He Y, Yu I, Imani A, Scholl D, Miller JF, Zhou ZH. Atomic structures of a bacteriocin targeting Gram-positive bacteria. RESEARCH SQUARE 2024:rs.3.rs-4007122. [PMID: 38586031 PMCID: PMC10996793 DOI: 10.21203/rs.3.rs-4007122/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Due to envelope differences between Gram-positive and Gram-negative bacteria1, engineering precision bactericidal contractile nanomachines2 requires atomic-level understanding of their structures; however, only those killing a Gram-negative bacterium are currently known3,4. Here, we report the atomic structures of an engineered diffocin, a contractile syringe-like molecular machine that kills the Gram-positive bacterium Clostridioides difficile. Captured in one pre-contraction and two post-contraction states, each structure fashions six proteins in the bacteria-targeting baseplate, two proteins in the energy-storing trunk, and a collar protein linking the sheath with the membrane-penetrating tube. Compared to contractile machines targeting Gram-negative bacteria, major differences reside in the baseplate and contraction magnitude, consistent with differences between their targeted envelopes. The multifunctional hub-hydrolase protein connects the tube and baseplate and is positioned to degrade peptidoglycan during penetration. The full-length tape measure protein forms a coiled-coil helix bundle homotrimer spanning the entire length of the diffocin. Our study offers mechanical insights and principles for designing potent protein-based precision antibiotics.
Collapse
Affiliation(s)
- Xiaoying Cai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Yao He
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Iris Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anthony Imani
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Dean Scholl
- Pylum Biosciences, 100 Kimball Way S. San Francisco, CA 94080, USA
| | - Jeff F. Miller
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
13
|
Demoulin CF, Sforna MC, Lara YJ, Cornet Y, Somogyi A, Medjoubi K, Grolimund D, Sanchez DF, Tachoueres RT, Addad A, Fadel A, Compère P, Javaux EJ. Polysphaeroides filiformis, a proterozoic cyanobacterial microfossil and implications for cyanobacteria evolution. iScience 2024; 27:108865. [PMID: 38313056 PMCID: PMC10837632 DOI: 10.1016/j.isci.2024.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/29/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Deciphering the fossil record of cyanobacteria is crucial to understand their role in the chemical and biological evolution of the early Earth. They profoundly modified the redox conditions of early ecosystems more than 2.4 Ga ago, the age of the Great Oxidation Event (GOE), and provided the ancestor of the chloroplast by endosymbiosis, leading the diversification of photosynthetic eukaryotes. Here, we analyze the morphology, ultrastructure, chemical composition, and metals distribution of Polysphaeroides filiformis from the 1040-1006 Ma Mbuji-Mayi Supergroup (DR Congo). We evidence trilaminar and bilayered ultrastructures for the sheath and the cell wall, respectively, and the preservation of Ni-tetrapyrrole moieties derived from chlorophyll in intracellular inclusions. This approach allows an unambiguous interpretation of P. filiformis as a branched and multiseriate photosynthetic cyanobacterium belonging to the family of Stigonemataceae. It also provides a possible minimum age for the emergence of multiseriate true branching nitrogen-fixing and probably heterocytous cyanobacteria.
Collapse
Affiliation(s)
- Catherine F Demoulin
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, 4000 Liège, Belgium
| | - Marie Catherine Sforna
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, 4000 Liège, Belgium
- Centre de Biophysique Moléculaire, (UPR CNRS 4301), 45071 Orléans, France
| | - Yannick J Lara
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, 4000 Liège, Belgium
| | - Yohan Cornet
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, 4000 Liège, Belgium
| | | | | | - Daniel Grolimund
- Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI, Switzerland
| | | | | | - Ahmed Addad
- Unité Matériaux et Transformations (UMR CNRS 8207), Université Lille 1 - Sciences et Technologies, 59650 Villeneuve d'Ascq, France
| | - Alexandre Fadel
- Unité Matériaux et Transformations (UMR CNRS 8207), Université Lille 1 - Sciences et Technologies, 59650 Villeneuve d'Ascq, France
| | - Philippe Compère
- Functional and Evolutive Morphology, UR FOCUS, and Center for Applied Research and Education in Microscopy (CAREM-ULiege), University of Liège, 4000 Liège, Belgium
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
14
|
Mobarak H, Javid F, Narmi MT, Mardi N, Sadeghsoltani F, Khanicheragh P, Narimani S, Mahdipour M, Sokullu E, Valioglu F, Rahbarghazi R. Prokaryotic microvesicles Ortholog of eukaryotic extracellular vesicles in biomedical fields. Cell Commun Signal 2024; 22:80. [PMID: 38291458 PMCID: PMC10826215 DOI: 10.1186/s12964-023-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024] Open
Abstract
Every single cell can communicate with other cells in a paracrine manner via the production of nano-sized extracellular vesicles. This phenomenon is conserved between prokaryotic and eukaryotic cells. In eukaryotic cells, exosomes (Exos) are the main inter-cellular bioshuttles with the potential to carry different signaling molecules. Likewise, bacteria can produce and release Exo-like particles, namely microvesicles (MVs) into the extracellular matrix. Bacterial MVs function with diverse biological properties and are at the center of attention due to their inherent therapeutic properties. Here, in this review article, the comparable biological properties between the eukaryotic Exos and bacterial MVs were highlighted in terms of biomedical application. Video Abstract.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzin Javid
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi Narmi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Khanicheragh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Narimani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Ferzane Valioglu
- Technology Development Zones Management CO, Sakarya University, Sakarya, Turkey
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Ai Y, Bertani P, Yang H, Lee S, Lu W, Lee J. A rapid and efficient method using electroporation for releasing intracellular microcystin toxins from cultured and naturally occurring cyanobacterial cells in lake water. MARINE POLLUTION BULLETIN 2024; 198:115890. [PMID: 38101057 DOI: 10.1016/j.marpolbul.2023.115890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
In cyanotoxin measurements, effective release of intracellular cyanotoxins through cell lysis is pivotal. The conventional method for cell lysis is repeated freeze-thaw (F-T), which has several disadvantages, including poor reproducibility since it is operator and equipment dependency and time-consuming. In this study, a rapid and sensitive method was developed using irreversible electroporation, reducing quantification time by over 6 h compared to F-T. Focusing on microcystins (MCs), we developed the most optimal electroporation medium (50 mM Tris (pH 7.0) with 0.5 % SDS) and determined the optimal intensity of electroporation using Microcystis culture. Microcystis cell rupture was validated by scanning electron microscopy. COMSOL simulations mirrored experimental conditions. Compared to F-T, this new method generated an average 13.7 % (6.7 ppb) more MCs from lake water samples (p ≥ 0.05). This innovation, surpassing the time-consuming F-T process, emerges as a valuable tool for timely decision-making in water safety advisory and cyanotoxin management in various settings.
Collapse
Affiliation(s)
- Yuehan Ai
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Paul Bertani
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Hao Yang
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Seungjun Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Wu Lu
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jiyoung Lee
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Kobayashi K, Yoshihara A, Kubota-Kawai H. Evolutionary implications from lipids in membrane bilayers and photosynthetic complexes in cyanobacteria and chloroplasts. J Biochem 2023; 174:399-408. [PMID: 37500078 DOI: 10.1093/jb/mvad058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
In biomembranes, lipids form bilayer structures that serve as the fluid matrix for membrane proteins and other hydrophobic compounds. Additionally, lipid molecules associate with membrane proteins and impact their structures and functions. In both cyanobacteria and the chloroplasts of plants and algae, the lipid bilayer of the thylakoid membrane consists of four distinct glycerolipid classes: monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulfoquinovosyldiacylglycerol, and phosphatidylglycerol. These lipids are also integral components of photosynthetic complexes such as photosystem II and photosystem I. The lipid-binding sites within the photosystems, as well as the lipid composition in the thylakoid membrane, are highly conserved between cyanobacteria and photosynthetic eukaryotes, and each lipid class has specific roles in oxygenic photosynthesis. This review aims to shed light on the potential evolutionary implications of lipid utilization in membrane lipid bilayers and photosynthetic complexes in oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Faculty of Liberal Arts, Science and Global Education, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Akiko Yoshihara
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hisako Kubota-Kawai
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata-shi 990-8560, Japan
| |
Collapse
|
17
|
Velázquez-Suárez C, Springstein BL, Nieves-Morión M, Helbig AO, Kieninger AK, Maldener I, Nürnberg DJ, Stucken K, Luque I, Dagan T, Herrero A. SepT, a novel protein specific to multicellular cyanobacteria, influences peptidoglycan growth and septal nanopore formation in Anabaena sp. PCC 7120. mBio 2023; 14:e0098323. [PMID: 37650636 PMCID: PMC10653889 DOI: 10.1128/mbio.00983-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Multicellular organization is a requirement for the development of complex organisms, and filamentous cyanobacteria such as Anabaena represent a paradigmatic case of bacterial multicellularity. The Anabaena filament can include hundreds of communicated cells that exchange nutrients and regulators and, depending on environmental conditions, can include different cell types specialized in distinct biological functions. Hence, the specific features of the Anabaena filament and how they are propagated during cell division represent outstanding biological issues. Here, we studied SepT, a novel coiled-coil-rich protein of Anabaena that is located in the intercellular septa and influences the formation of the septal specialized structures that allow communication between neighboring cells along the filament, a fundamental trait for the performance of Anabaena as a multicellular organism.
Collapse
Affiliation(s)
| | | | - Mercedes Nieves-Morión
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Andreas O. Helbig
- AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ann-Katrin Kieninger
- Department of Microbiology/Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Iris Maldener
- Department of Microbiology/Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics and Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Karina Stucken
- Department of Food Engineering, Universidad de La Serena, La Serena, Chile
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
18
|
Łukaszewicz P, Siudak P, Kropidłowska K, Caban M, Haliński ŁP. Unicellular cyanobacteria degrade sulfoxaflor to its amide metabolite of potentially higher aquatic toxicity. CHEMOSPHERE 2023; 337:139440. [PMID: 37422216 DOI: 10.1016/j.chemosphere.2023.139440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Sulfoxaflor (SFX) is a fourth-generation neonicotinoid used widely in modern agriculture. Due to its high water solubility and mobility in environment, it is expected to occur in water environment. Degradation of SFX leads to formation of corresponding amide (M474), which in the light of recent studies may be much more toxic to aquatic organisms than the parent molecule. Therefore, the aim of the study was to assess the potential of two common species of unicellular bloom-forming cyanobacteria (Synechocystis salina and Microcystis aeruginosa) to metabolize SFX in a 14-day-long experiment, using elevated (10 mg L-1) and predicted highest environmental (10 μg L-1) concentrations. The results obtained support the occurrence of SFX metabolism in cyanobacterial monocultures, leading to release of M474 into the water. Differential SFX decline in culture media, followed by the presence of M474, was observed for both species at different concentration levels. For S. salina, SFX concentration decreased by 7.6% at lower concentration and by 21.3% at higher concentration; the M474 concentrations were 436 ng L-1 and 514 μg L-1, respectively. Corresponding values for M. aeruginosa were 14.3% and 3.0% for SFX decline; 282 ng L-1 and 317 μg L-1 for M474 concentration. In the same time, abiotic degradation was almost non-existent. Metabolic fate of SFX was then studied for its elevated starting concentration. Uptake of SFX to cells and amounts of M474 released to water fully addressed the decrease in SFX concentration in M. aeruginosa culture, while in S. salina 15.5% of initial SFX was transformed to yet unknown metabolites. The degradation rate of SFX observed in the present study is sufficient to produce a concentration of M474 that is potentially toxic for aquatic invertebrates during cyanobacterial blooms. Therefore, there is a need for more reliable risk assessment for the presence of SFX in natural waters.
Collapse
Affiliation(s)
- Paulina Łukaszewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Przemysław Siudak
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Klaudia Kropidłowska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Łukasz P Haliński
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
19
|
Cruz JD, Delattre C, Felpeto AB, Pereira H, Pierre G, Morais J, Petit E, Silva J, Azevedo J, Elboutachfaiti R, Maia IB, Dubessay P, Michaud P, Vasconcelos V. Bioprospecting for industrially relevant exopolysaccharide-producing cyanobacteria under Portuguese simulated climate. Sci Rep 2023; 13:13561. [PMID: 37604835 PMCID: PMC10442320 DOI: 10.1038/s41598-023-40542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
Cyanobacterial exopolysaccharides (EPS) are potential candidates for the production of sustainable biopolymers. Although the bioactive and physicochemical properties of cyanobacterial-based EPS are attractive, their commercial exploitation is limited by the high production costs. Bioprospecting and characterizing novel EPS-producing strains for industrially relevant conditions is key to facilitate their implementation in various biotechnological applications and fields. In the present work, we selected twenty-five Portuguese cyanobacterial strains from a diverse taxonomic range (including some genera studied for the first time) to be grown in diel light and temperature, simulating the Portuguese climate conditions, and evaluated their growth performance and proximal composition of macronutrients. Synechocystis and Cyanobium genera, from marine and freshwater origin, were highlighted as fast-growing (0.1-0.2 g L-1 day-1) with distinct biomass composition. Synechocystis sp. LEGE 07367 and Chroococcales cyanobacterium LEGE 19970, showed a production of 0.3 and 0.4 g L-1 of released polysaccharides (RPS). These were found to be glucan-based polymers with high molecular weight and a low number of monosaccharides than usually reported for cyanobacterial EPS. In addition, the absence of known cyanotoxins in these two RPS producers was also confirmed. This work provides the initial steps for the development of cyanobacterial EPS bioprocesses under the Portuguese climate.
Collapse
Affiliation(s)
- José Diogo Cruz
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - Aldo Barreiro Felpeto
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Hugo Pereira
- GreenCoLab - Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Guillaume Pierre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - João Morais
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Emmanuel Petit
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, IUT d'Amiens, Avenue des Facultés, Le Bailly, 80025, Amiens, France
| | - Joana Silva
- R&D Department, Allmicroalgae Natural Products S.A, Rua 25 de Abril 19, 2445-287, Pataias, Portugal
| | - Joana Azevedo
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Redouan Elboutachfaiti
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, IUT d'Amiens, Avenue des Facultés, Le Bailly, 80025, Amiens, France
| | - Inês B Maia
- CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139, Gambelas, Faro, Portugal
| | - Pascal Dubessay
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - Vitor Vasconcelos
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
20
|
Ishihara JI, Takahashi H. Raman spectral analysis of microbial pigment compositions in vegetative cells and heterocysts of multicellular cyanobacterium. Biochem Biophys Rep 2023; 34:101469. [PMID: 37125074 PMCID: PMC10133670 DOI: 10.1016/j.bbrep.2023.101469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
The one-dimensional multicellular cyanobacterium, Anabaena sp. PCC 7120, exhibits a simple topology consisting of two types of cells under the nitrogen-depleted conditions. Although the differentiated (heterocyst) and undifferentiated cells (vegetative cells) were distinguished by their cellular shapes, we found that their internal states, that is, microbial pigment compositions, were distinguished by using a Raman microscope. Almost of Raman bands of the cellular components were assigned to vibrations of the pigments; chlorophyll a, β-carotene, phycocyanin, and allophycocyanin. We found that the Raman spectral measurement can detect the decomposition of both phycocyanin and allophycocyanin, which are components of the light-harvesting phycobilisome complex in the photosystem II. We observed that the Raman bands of phycocyanin and allophycocyanin exhibited more remarkable decrease in the heterocysts when compared to those of chlorophyll a and β-carotene. This result indicated the prior decomposition of phycobilisome in the heterocysts. We show that the Raman measurement is useful to detect the change of pigment composition in the cell differentiation.
Collapse
Affiliation(s)
- Jun-ichi Ishihara
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8673, Chiba, Japan
- Corresponding author.
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8673, Chiba, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoicho, Inage-ku, 263-852, Chiba, Japan
- Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8675, Chiba, Japan
| |
Collapse
|
21
|
Francis DV, Jayakumar MN, Ahmad H, Gokhale T. Antimicrobial Activity of Biogenic Metal Oxide Nanoparticles and Their Synergistic Effect on Clinical Pathogens. Int J Mol Sci 2023; 24:9998. [PMID: 37373146 PMCID: PMC10298676 DOI: 10.3390/ijms24129998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The rising prevalence of antibiotic-resistance is currently a grave issue; hence, novel antimicrobial agents are being explored and developed to address infections resulting from multiple drug-resistant pathogens. Biogenic CuO, ZnO, and WO3 nanoparticles can be considered as such agents. Clinical isolates of E. coli, S. aureus, methicillin-resistant S. aureus (MRSA), and Candida albicans from oral and vaginal samples were treated with single and combination metal nanoparticles incubated under dark and light conditions to understand the synergistic effect of the nanoparticles and their photocatalytic antimicrobial activity. Biogenic CuO and ZnO nanoparticles exhibited significant antimicrobial effects under dark incubation which did not alter on photoactivation. However, photoactivated WO3 nanoparticles significantly reduced the number of viable cells by 75% for all the test organisms, thus proving to be a promising antimicrobial agent. Combinations of CuO, ZnO, and WO3 nanoparticles demonstrated synergistic action as a significant increase in their antimicrobial property (>90%) was observed compared to the action of single elemental nanoparticles. The mechanism of the antimicrobial action of metal nanoparticles both in combination and in isolation was assessed with respect to lipid peroxidation due to ROS (reactive oxygen species) generation by measuring malondialdehyde (MDA) production, and the damage to cell integrity using live/dead staining and quantitating with the use of flow cytometry and fluorescence microscopy.
Collapse
Affiliation(s)
- Dali Vilma Francis
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani, Dubai Campus, Dubai International Academic City, Dubai P.O. Box 345055, United Arab Emirates; (D.V.F.); (M.N.J.)
| | - Manju Nidagodu Jayakumar
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani, Dubai Campus, Dubai International Academic City, Dubai P.O. Box 345055, United Arab Emirates; (D.V.F.); (M.N.J.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Hafiz Ahmad
- Department of Medical Microbiology & Immunology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates;
- Adjunct Clinical Microbiologist and Head of Molecular Division, RAK Hospital, Ras Al Khaimah P.O. Box 12973, United Arab Emirates
| | - Trupti Gokhale
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani, Dubai Campus, Dubai International Academic City, Dubai P.O. Box 345055, United Arab Emirates; (D.V.F.); (M.N.J.)
| |
Collapse
|
22
|
Sexton D, Hashimi A, Beskrovnaya P, Sibanda L, Huan T, Tocheva E. The cell envelope of Thermotogae suggests a mechanism for outer membrane biogenesis. Proc Natl Acad Sci U S A 2023; 120:e2303275120. [PMID: 37094164 PMCID: PMC10160955 DOI: 10.1073/pnas.2303275120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/29/2023] [Indexed: 04/26/2023] Open
Abstract
The presence of a cell membrane is one of the major structural components defining life. Recent phylogenomic analyses have supported the hypothesis that the last universal common ancestor (LUCA) was likely a diderm. Yet, the mechanisms that guided outer membrane (OM) biogenesis remain unknown. Thermotogae is an early-branching phylum with a unique OM, the toga. Here, we use cryo-electron tomography to characterize the in situ cell envelope architecture of Thermotoga maritima and show that the toga is made of extended sheaths of β-barrel trimers supporting small (~200 nm) membrane patches. Lipidomic analyses identified the same major lipid species in the inner membrane (IM) and toga, including the rare to bacteria membrane-spanning ether-bound diabolic acids (DAs). Proteomic analyses revealed that the toga was composed of multiple SLH-domain containing Ompα and novel β-barrel proteins, and homology searches detected variable conservations of these proteins across the phylum. These results highlight that, in contrast to the SlpA/OmpM superfamily of proteins, Thermotoga possess a highly diverse bipartite OM-tethering system. We discuss the implications of our findings with respect to other early-branching phyla and propose that a toga-like intermediate may have facilitated monoderm-to-diderm cell envelope transitions.
Collapse
Affiliation(s)
- Danielle L. Sexton
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver,V6T1Z3 BC, Canada
| | - Ameena Hashimi
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver,V6T1Z3 BC, Canada
| | - Polina Beskrovnaya
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver,V6T1Z3 BC, Canada
| | - Lloyd Sibanda
- Department of Chemistry, University of British Columbia, Vancouver,V6T1Z1 BC, Canada
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver,V6T1Z1 BC, Canada
| | - Elitza I. Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver,V6T1Z3 BC, Canada
| |
Collapse
|
23
|
Mehdizadeh Allaf M, Erratt KJ, Peerhossaini H. Comparative assessment of algaecide performance on freshwater phytoplankton: Understanding differential sensitivities to frame cyanobacteria management. WATER RESEARCH 2023; 234:119811. [PMID: 36889096 DOI: 10.1016/j.watres.2023.119811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Cyanobacterial bloom represent a growing threat to global water security. With fast proliferation, they raise great concern due to potential health and socioeconomic concerns. Algaecides are commonly employed as a mitigative measure to suppress and manage cyanobacteria. However, recent research on algaecides has a limited phycological focus, concentrated predominately on cyanobacteria and chlorophytes. Without considering phycological diversity, generalizations crafted from these algaecide comparisons present a biased perpective. To limit the collateral impacts of algaecide interventions on phytoplankton communities it is critical to understand differential phycological sensitivities for establishing optimal dosage and tolerance thresholds. This research attempts to fill this knowledge gap and provide effective guidelines to frame cyanobacterial management. We investigate the effect of two common algaecides, copper sulfate (CuSO4) and hydrogen peroxide (H2O2), on four major phycological divisions (chlorophytes, cyanobacteria, diatoms, and mixotrophs). All phycological divisions exhibited greater sensitivity to copper sulfate, except chlorophytes. Mixotrophs and cyanobacteria displayed the highest sensitivity to both algaecides with the highest to lowest sensitivity being observed as follows: mixotrophs, cyanobacteria, diatoms, and chlorophytes. Our results suggest that H2O2 represents a comparable alternative to CuSO4 for cyanobacterial control. However, some eukaryotic divisions such as mixotrophs and diatoms mirrored cyanobacteria sensitivity, challenging the assumption that H2O2 is a selective cyanocide. Our findings suggest that optimizing algaecide treatments to suppress cyanobacteria while minimizing potential adverse effects on other phycological members is unattainable. An apparent trade-off between effective cyanobacterial management and conserving non-targeted phycological divisions is expected and should be a prime consideration of lake management.
Collapse
Affiliation(s)
- Malihe Mehdizadeh Allaf
- Department of Civil and Environmental Engineering, Western University, Spencer Engineering Building, 1151 Richmond Street N., London, ON, Canada, N6A5B9.
| | - Kevin J Erratt
- School of Environment & Sustainability, University of Saskatchewan, Collaborative Science Research Building, 112 Science Place, Saskatoon, SK, Canada, S7N5E2
| | - Hassan Peerhossaini
- Department of Civil and Environmental Engineering, Western University, Spencer Engineering Building, 1151 Richmond Street N., London, ON, Canada, N6A5B9; Department of Mechanical & Materials Engineering, Western University, Spencer Engineering Building, 1151 Richmond Street N., London, ON, Canada, N6A5B9; Energy Physics Research Group - AstroParticule and Cosmologie Lab. (APC) - CNRS - UMR 7164, Univ. Paris Cité, Paris, 75013 Paris, France
| |
Collapse
|
24
|
Kim W, Kim M, Park W. Unlocking the mystery of lysine toxicity on Microcystis aeruginosa. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130932. [PMID: 36860069 DOI: 10.1016/j.jhazmat.2023.130932] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Lysine toxicity on certain groups of bacterial cells has been recognized for many years, but the detailed molecular mechanisms that drive this phenomenon have not been elucidated. Many cyanobacteria including Microcystis aeruginosa cannot efficiently export and degrade lysine, although they have evolved to maintain a single copy of the lysine uptake system through which arginine or ornithine can also be transported into the cytoplasm. Autoradiographic analysis using 14C-l-lysine confirmed that lysine was competitively uptaken into cells with arginine or ornithine, which explained the arginine or ornithine-mediated alleviation of lysine toxicity in M. aeruginosa. A relatively non-specific MurE amino acid ligase could incorporate l-lysine into the 3rd position of UDP-N-acetylmuramyl-tripeptide by replacing meso-diaminopimelic acid during the stepwise addition of amino acids on peptidoglycan (PG) biosynthesis. However, further transpeptidation was blocked because lysine substitution at the pentapeptide of the cell wall inhibited the activity of transpeptidases. The leaky PG structure caused irreversible damage to the photosynthetic system and membrane integrity. Collectively, our results suggest that a lysine-mediated coarse-grained PG network and the absence of concrete septal PG lead to the death of slow-growing cyanobacteria.
Collapse
Affiliation(s)
- Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
25
|
Shimakawa G. Electron transport in cyanobacterial thylakoid membranes: Are cyanobacteria simple models for photosynthetic organisms? JOURNAL OF EXPERIMENTAL BOTANY 2023:erad118. [PMID: 37025010 DOI: 10.1093/jxb/erad118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Cyanobacteria are structurally the simplest oxygenic phototrophs, which makes it difficult to understand the regulation of photosynthesis because the photosynthetic and respiratory processes share the same thylakoid membranes and cytosolic space. This review aimed to summarise the molecular mechanisms and in vivo activities of electron transport in cyanobacterial thylakoid membranes based on the latest progress in photosynthesis research in cyanobacteria. Photosynthetic linear electron transport for CO2 assimilation has the dominant electron flux in the thylakoid membranes. The capacity of O2 photoreduction in cyanobacteria is comparable to the photosynthetic CO2 assimilation, which is mediated by flavodiiron proteins. Additionally, cyanobacterial thylakoid membranes harbour the significant electron flux of respiratory electron transport through a homologue of respiratory complex I, which is also recognized as the part of cyclic electron transport chain if it is coupled with photosystem I in the light. Further, O2-independent alternative electron transports through hydrogenase and nitrate reductase function with reduced ferredoxin as the electron donor. Whereas all these electron transports are recently being understood one by one, the complexity as the whole regulatory system remains to be uncovered in near future.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
26
|
Saleem F, Jiang JL, Atrache R, Paschos A, Edge TA, Schellhorn HE. Cyanobacterial Algal Bloom Monitoring: Molecular Methods and Technologies for Freshwater Ecosystems. Microorganisms 2023; 11:851. [PMID: 37110273 PMCID: PMC10144707 DOI: 10.3390/microorganisms11040851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Cyanobacteria (blue-green algae) can accumulate to form harmful algal blooms (HABs) on the surface of freshwater ecosystems under eutrophic conditions. Extensive HAB events can threaten local wildlife, public health, and the utilization of recreational waters. For the detection/quantification of cyanobacteria and cyanotoxins, both the United States Environmental Protection Agency (USEPA) and Health Canada increasingly indicate that molecular methods can be useful. However, each molecular detection method has specific advantages and limitations for monitoring HABs in recreational water ecosystems. Rapidly developing modern technologies, including satellite imaging, biosensors, and machine learning/artificial intelligence, can be integrated with standard/conventional methods to overcome the limitations associated with traditional cyanobacterial detection methodology. We examine advances in cyanobacterial cell lysis methodology and conventional/modern molecular detection methods, including imaging techniques, polymerase chain reaction (PCR)/DNA sequencing, enzyme-linked immunosorbent assays (ELISA), mass spectrometry, remote sensing, and machine learning/AI-based prediction models. This review focuses specifically on methodologies likely to be employed for recreational water ecosystems, especially in the Great Lakes region of North America.
Collapse
Affiliation(s)
| | | | | | | | | | - Herb E. Schellhorn
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
27
|
Almer J, Resl P, Gudmundsson H, Warshan D, Andrésson ÓS, Werth S. Symbiont-specific responses to environmental cues in a threesome lichen symbiosis. Mol Ecol 2023; 32:1045-1061. [PMID: 36478478 DOI: 10.1111/mec.16814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Photosymbiodemes are a special case of lichen symbiosis where one lichenized fungus engages in symbiosis with two different photosynthetic partners, a cyanobacterium and a green alga, to develop two distinctly looking photomorphs. We compared gene expression of thallus sectors of the photosymbiodeme-forming lichen Peltigera britannica containing cyanobacterial photobionts with thallus sectors with both green algal and cyanobacterial photobionts and investigated differential gene expression at different temperatures representing mild and putatively stressful conditions. First, we quantified photobiont-mediated differences in fungal gene expression. Second, because of known ecological differences between photomorphs, we investigated symbiont-specific responses in gene expression to temperature increases. Photobiont-mediated differences in fungal gene expression could be identified, with upregulation of distinct biological processes in the different morphs, showing that interaction with specific symbiosis partners profoundly impacts fungal gene expression. Furthermore, high temperatures expectedly led to an upregulation of genes involved in heat shock responses in all organisms in whole transcriptome data and to an increased expression of genes involved in photosynthesis in both photobiont types at 15 and 25°C. The fungus and the cyanobacteria exhibited thermal stress responses already at 15°C, the green algae mainly at 25°C, demonstrating symbiont-specific responses to environmental cues and symbiont-specific ecological optima.
Collapse
Affiliation(s)
- Jasmin Almer
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, Munich, Germany.,Institute of Biology, University of Graz, Graz, Austria
| | - Philipp Resl
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, Munich, Germany.,Institute of Biology, University of Graz, Graz, Austria
| | - Hörður Gudmundsson
- Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Denis Warshan
- Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Ólafur S Andrésson
- Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Silke Werth
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, Munich, Germany
| |
Collapse
|
28
|
Le VV, Tran QG, Ko SR, Lee SA, Oh HM, Kim HS, Ahn CY. How do freshwater microalgae and cyanobacteria respond to antibiotics? Crit Rev Biotechnol 2023; 43:191-211. [PMID: 35189751 DOI: 10.1080/07388551.2022.2026870] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Antibiotic pollution is an emerging environmental challenge. Residual antibiotics from various sources, including municipal and industrial wastewater, sewage discharges, and agricultural runoff, are continuously released into freshwater environments, turning them into reservoirs that contribute to the development and spread of antibiotic resistance. Thus, it is essential to understand the impacts of antibiotic residues on aquatic organisms, especially microalgae and cyanobacteria, due to their crucial roles as primary producers in the ecosystem. This review summarizes the effects of antibiotics on major biological processes in freshwater microalgae and cyanobacteria, including photosynthesis, oxidative stress, and the metabolism of macromolecules. Their adaptive mechanisms to antibiotics exposure, such as biodegradation, bioadsorption, and bioaccumulation, are also discussed. Moreover, this review highlights the important factors affecting the antibiotic removal pathways by these organisms, which will promote the use of microalgae-based technology for the removal of antibiotics. Finally, we offer some perspectives on the opportunities for further studies and applications.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Quynh-Giao Tran
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Sang-Ah Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
29
|
The Chloroplast Envelope of Angiosperms Contains a Peptidoglycan Layer. Cells 2023; 12:cells12040563. [PMID: 36831230 PMCID: PMC9954125 DOI: 10.3390/cells12040563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Plastids in plants are assumed to have evolved from cyanobacteria as they have maintained several bacterial features. Recently, peptidoglycans, as bacterial cell wall components, have been shown to exist in the envelopes of moss chloroplasts. Phylogenomic comparisons of bacterial and plant genomes have raised the question of whether such structures are also part of chloroplasts in angiosperms. To address this question, we visualized canonical amino acids of peptidoglycan around chloroplasts of Arabidopsis and Nicotiana via click chemistry and fluorescence microscopy. Additional detection by different peptidoglycan-binding proteins from bacteria and animals supported this observation. Further Arabidopsis experiments with D-cycloserine and AtMurE knock-out lines, both affecting putative peptidoglycan biosynthesis, revealed a central role of this pathway in plastid genesis and division. Taken together, these results indicate that peptidoglycans are integral parts of plastids in the whole plant lineage. Elucidating their biosynthesis and further roles in the function of these organelles is yet to be achieved.
Collapse
|
30
|
Liu Y, Yang F, Liu S, Zhang X, Li M. Molecular characteristics of microalgal extracellular polymeric substances were different among phyla and correlated with the extracellular persistent free radicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159704. [PMID: 36302439 DOI: 10.1016/j.scitotenv.2022.159704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Extracellular polymeric substance (EPS) plays essential roles in microalgal adaptation to the external environment and aggregate formation. The molecular characteristics of EPS and extracellular persistent free radicals (PFRs) of 15 microalgal species belonging to three phyla were analyzed using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), three-dimensional fluorescence excitation-emission matrices combined with parallel factor analysis (EEM-PARAFAC), and Electron Paramagnetic Resonance Spectrometer (EPR). Lignin accounted for the highest proportion of EPS for Cyanophyta and the proportion of lipids was higher for Bacillariophyta. The presence of PFRs was detected on the cell surfaces of all microalgae species (excluding Cyclotella sp.). The intensity of carbon-centered PFRs was positively correlated with the proportions of humic-like component and lignin, but was negatively correlated with the proportion of lipids in microalgal EPS. Following EPS extraction, carbon- and oxygen-centered free radicals were still detectable on the surface of microalgae. Given the high intensity of PFRs produced by Cyanophyta, the level of PFRs in eutrophic lakes and reservoirs predominated by Cyanophyta may be considerably high. Other organisms in the water column, such as bacteria and zooplankton are bound to be stressed by elevated level of PFRs. The ecological functions and environmental risks of PFRs carried by microalgae still need to be explored in follow-up research.
Collapse
Affiliation(s)
- Yang Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, PR China
| | - Fang Yang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, PR China
| | - Siwan Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, PR China
| | - Xinpeng Zhang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, PR China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, PR China.
| |
Collapse
|
31
|
Ancient origin and constrained evolution of the division and cell wall gene cluster in Bacteria. Nat Microbiol 2022; 7:2114-2127. [PMID: 36411352 DOI: 10.1038/s41564-022-01257-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
The division and cell wall (dcw) gene cluster in Bacteria comprises 17 genes encoding key steps in peptidoglycan synthesis and cytokinesis. To understand the origin and evolution of this cluster, we analysed its presence in over 1,000 bacterial genomes. We show that the dcw gene cluster is strikingly conserved in both gene content and gene order across all Bacteria and has undergone only a few rearrangements in some phyla, potentially linked to cell envelope specificities, but not directly to cell shape. A large concatenation of the 12 most conserved dcw cluster genes produced a robust tree of Bacteria that is largely consistent with recent phylogenies based on frequently used markers. Moreover, evolutionary divergence analyses show that the dcw gene cluster offers advantages in defining high-rank taxonomic boundaries and indicate at least two main phyla in the Candidate Phyla Radiation (CPR) matching a sharp dichotomy in dcw gene cluster arrangement. Our results place the origin of the dcw gene cluster in the Last Bacterial Common Ancestor and show that it has evolved vertically for billions of years, similar to major cellular machineries such as the ribosome. The strong phylogenetic signal, combined with conserved genomic synteny at large evolutionary distances, makes the dcw gene cluster a robust alternative set of markers to resolve the ever-growing tree of Bacteria.
Collapse
|
32
|
Takahashi H, Sovadinova I, Yasuhara K, Vemparala S, Caputo GA, Kuroda K. Biomimetic antimicrobial polymers—Design, characterization, antimicrobial, and novel applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1866. [PMID: 36300561 DOI: 10.1002/wnan.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Haruko Takahashi
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Hiroshima Japan
| | - Iva Sovadinova
- RECETOX, Faculty of Science Masaryk University Brno Czech Republic
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Nara Japan
- Center for Digital Green‐Innovation Nara Institute of Science and Technology Nara Japan
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences CIT Campus Chennai India
- Homi Bhabha National Institute Training School Complex Mumbai India
| | - Gregory A. Caputo
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
33
|
A highly effective therapeutic ointment for treating corals with black band disease. PLoS One 2022; 17:e0276902. [PMID: 36288339 PMCID: PMC9605335 DOI: 10.1371/journal.pone.0276902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Infectious disease outbreaks are a primary contributor to coral reef decline worldwide. A particularly lethal disease, black band disease (BBD), was one of the first coral diseases reported and has since been documented on reefs worldwide. BBD is described as a microbial consortium of photosynthetic cyanobacteria, sulfate-reducing and sulfide-oxidizing bacteria, and heterotrophic bacteria and archaea. The disease is visually identified by a characteristic dark band that moves across apparently healthy coral tissue leaving behind bare skeleton. Despite its virulence, attempts to effectively treat corals with BBD in the field have been limited. Here, we developed and tested several different therapeutic agents on Pseudodiploria spp. corals with signs of active BBD at Buck Island Reef National Monument in St. Croix, USVI. A variety of therapies were tested, including hydrogen peroxide-based treatments, ointment containing antibiotics, and antiviral/antimicrobial-based ointments (referred to as CoralCure). The CoralCure ointments, created by Ocean Alchemists LLC, focused on the dosing regimen and delivery mechanisms of the different active ingredients. Active ingredients included carbamide peroxide, Lugol's iodine solution, along with several proprietary essential oil and natural product blends. Additionally, the active ingredients had different release times based on treatment: CoralCure A-C had a release time of 24 hours, CoralCure D-F had a release time of 72 hours. The ointments were applied directly to the BBD lesion. Also, jute rope was saturated with a subset of these CoralCure ointment formulations to assist with adhesion. These ropes were then applied to the leading edge of the BBD lesion for one week to ensure sufficient exposure. Corals were revisited approximately three to five months after treatment application to assess disease progression rates and the presence/absence of lesions-the metrics used to quantify the efficacy of each treatment. Although most of the treatments were unsuccessful, two CoralCure rope formulations-CoralCure D rope and CoralCure E rope, eliminated the appearance of BBD in 100% of the corals treated. As such, these treatments significantly reduced the likelihood of BBD occurrence compared to the untreated controls. Additionally, lesions treated with these formulations lost significantly less tissue compared with controls. These results provide the mechanisms for an easily employable method to effectively treat a worldwide coral disease.
Collapse
|
34
|
López-Pacheco IY, Rodas-Zuluaga LI, Cuellar-Bermudez SP, Hidalgo-Vázquez E, Molina-Vazquez A, Araújo RG, Martínez-Ruiz M, Varjani S, Barceló D, Iqbal HMN, Parra-Saldívar R. Revalorization of Microalgae Biomass for Synergistic Interaction and Sustainable Applications: Bioplastic Generation. Mar Drugs 2022; 20:md20100601. [PMID: 36286425 PMCID: PMC9605595 DOI: 10.3390/md20100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Microalgae and cyanobacteria are photosynthetic microorganisms’ sources of renewable biomass that can be used for bioplastic production. These microorganisms have high growth rates, and contrary to other feedstocks, such as land crops, they do not require arable land. In addition, they can be used as feedstock for bioplastic production while not competing with food sources (e.g., corn, wheat, and soy protein). In this study, we review the macromolecules from microalgae and cyanobacteria that can serve for the production of bioplastics, including starch and glycogen, polyhydroxyalkanoates (PHAs), cellulose, polylactic acid (PLA), and triacylglycerols (TAGs). In addition, we focus on the cultivation of microalgae and cyanobacteria for wastewater treatment. This approach would allow reducing nutrient supply for biomass production while treating wastewater. Thus, the combination of wastewater treatment and the production of biomass that can serve as feedstock for bioplastic production is discussed. The comprehensive information provided in this communication would expand the scope of interdisciplinary and translational research.
Collapse
Affiliation(s)
- Itzel Y. López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | | | | | | | | | - Rafael G. Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
- Correspondence: (D.B.); (H.M.N.I.); (R.P.-S.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (D.B.); (H.M.N.I.); (R.P.-S.)
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (D.B.); (H.M.N.I.); (R.P.-S.)
| |
Collapse
|
35
|
Dowson AJ, Lloyd AJ, Cuming AC, Roper DI, Frigerio L, Dowson CG. Plant peptidoglycan precursor biosynthesis: Conservation between moss chloroplasts and Gram-negative bacteria. PLANT PHYSIOLOGY 2022; 190:165-179. [PMID: 35471580 PMCID: PMC9434261 DOI: 10.1093/plphys/kiac176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Accumulating evidence suggests that peptidoglycan, consistent with a bacterial cell wall, is synthesized around the chloroplasts of many photosynthetic eukaryotes, from glaucophyte algae to early-diverging land plants including pteridophyte ferns, but the biosynthetic pathway has not been demonstrated. Here, we employed mass spectrometry and enzymology in a two-fold approach to characterize the synthesis of peptidoglycan in chloroplasts of the moss Physcomitrium (Physcomitrella) patens. To drive the accumulation of peptidoglycan pathway intermediates, P. patens was cultured with the antibiotics fosfomycin, D-cycloserine, and carbenicillin, which inhibit key peptidoglycan pathway proteins in bacteria. Mass spectrometry of the trichloroacetic acid-extracted moss metabolome revealed elevated levels of five of the predicted intermediates from uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) through the uridine diphosphate N-acetylmuramic acid (UDP-MurNAc)-D,L-diaminopimelate (DAP)-pentapeptide. Most Gram-negative bacteria, including cyanobacteria, incorporate meso-diaminopimelic acid (D,L-DAP) into the third residue of the stem peptide of peptidoglycan, as opposed to L-lysine, typical of most Gram-positive bacteria. To establish the specificity of D,L-DAP incorporation into the P. patens precursors, we analyzed the recombinant protein UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-diaminopimelate ligase (MurE) from both P. patens and the cyanobacterium Anabaena sp. (Nostoc sp. strain PCC 7120). Both ligases incorporated D,L-DAP in almost complete preference to L-Lys, consistent with the mass spectrophotometric data, with catalytic efficiencies similar to previously documented Gram-negative bacterial MurE ligases. We discuss how these data accord with the conservation of active site residues common to DL-DAP-incorporating bacterial MurE ligases and of the probability of a horizontal gene transfer event within the plant peptidoglycan pathway.
Collapse
Affiliation(s)
- Amanda J Dowson
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Adrian J Lloyd
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew C Cuming
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David I Roper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Lorenzo Frigerio
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
36
|
Faluweki MK, Goehring L. Structural mechanics of filamentous cyanobacteria. J R Soc Interface 2022; 19:20220268. [PMID: 35892203 PMCID: PMC9326267 DOI: 10.1098/rsif.2022.0268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023] Open
Abstract
Filamentous cyanobacteria, forming long strands of connected cells, are one of the earliest and most successful forms of life on Earth. They exhibit self-organized behaviour, forming large-scale patterns in structures like biomats and stromatolites. The mechanical properties of these rigid structures have contributed to their biological success and are important to applications like algae-based biofuel production. For active polymers like these cyanobacteria, one of the most important mechanical properties is the bending modulus, or flexural rigidity. Here, we quantify the bending stiffness of three species of filamentous cyanobacteria, of order Oscillatoriales, using a microfluidic flow device where single filaments are deflected by fluid flow. This is complemented by measurements of Young's modulus of the cell wall, via nanoindentation, and the cell wall thickness. We find that the stiffness of the cyanobacteria is well-captured by a simple model of a flexible rod, with most stress carried by a rigid outer wall. Finally, we connect these results to the curved shapes that these cyanobacteria naturally take while gliding, and quantify the forces generated internally to maintain this shape. The measurements can be used to model interactions between cyanobacteria, or with their environment, and how their collective behaviour emerges from such interactions.
Collapse
Affiliation(s)
- Mixon K. Faluweki
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Malawi Institute of Technology, Malawi University of Science and Technology, Limbe, Malawi
| | - Lucas Goehring
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
37
|
Elucidation of the coping strategy in an OMP homozygous knockout mutant of Synechocystis 6803 defective in iron uptake. Arch Microbiol 2022; 204:358. [DOI: 10.1007/s00203-022-02968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
|
38
|
Order-of-magnitude enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer membrane deprivation. Nat Commun 2022; 13:3067. [PMID: 35654796 PMCID: PMC9163127 DOI: 10.1038/s41467-022-30764-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
Biophotovoltaics (BPV) generates electricity from reducing equivalent(s) produced by photosynthetic organisms by exploiting a phenomenon called extracellular electron transfer (EET), where reducing equivalent(s) is transferred to external electron acceptors. Although cyanobacteria have been extensively studied for BPV because of their high photosynthetic activity and ease of handling, their low EET activity poses a limitation. Here, we show an order-of-magnitude enhancement in photocurrent generation of the cyanobacterium Synechocystis sp. PCC 6803 by deprivation of the outer membrane, where electrons are suggested to stem from pathway(s) downstream of photosystem I. A marked enhancement of EET activity itself is verified by rapid reduction of exogenous electron acceptor, ferricyanide. The extracellular organic substances, including reducing equivalent(s), produced by this cyanobacterium serve as respiratory substrates for other heterotrophic bacteria. These findings demonstrate that the outer membrane is a barrier that limits EET. Therefore, depriving this membrane is an effective approach to exploit the cyanobacterial reducing equivalent(s). The low extracellular electron transfer activity hampers the application of cyanobacteria in biophotovoltaics. Here, the authors report an order-of-magnitude enhancement in photocurrent generation of the cyanobacterium by deprivation of the outer cell membrane.
Collapse
|
39
|
Effect of Culture pH on Properties of Exopolymeric Substances from Synechococcus PCC7942: Implications for Carbonate Precipitation. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The role of culture conditions on the production of exopolymeric substances (EPS) by Synechococcus strain PCC7942 was investigated. Carbonate mineral precipitation in these EPS was assessed in forced precipitation experiments. Cultures were grown in HEPES-buffered medium and non-buffered medium. The pH of buffered medium remained constant at 7.5, but in non-buffered medium it increased to 9.5 within a day and leveled off at 10.5. The cell yield at harvest was twice as high in non-buffered medium than in buffered medium. High molecular weight (>10 kDa) and low molecular weight (3–10 kDa) fractions of EPS were obtained from both cultures. The cell-specific EPS production in buffered medium was twice as high as in non-buffered medium. EPS from non-buffered cultures contained more negatively charged macromolecules and more proteins than EPS from buffered cultures. The higher protein content at elevated pH may be due to the induction of carbon-concentrating mechanisms, necessary to perform photosynthetic carbon fixation in these conditions. Forced precipitation showed smaller calcite carbonate crystals in EPS from non-buffered medium and larger minerals in polymers from buffered medium. Vaterite formed only at low EPS concentrations. Experimental results are used to conceptually model the impact of pH on the potential of cyanobacterial blooms to produce minerals. We hypothesize that in freshwater systems, small crystal production may benefit the picoplankton by minimizing the mineral ballast, and thus prolonging the residence time in the photic zone, which might result in slow sinking rates.
Collapse
|
40
|
Monitoring Bacterial Community Dynamics in a Drinking Water Treatment Plant: An Integrative Approach Using Metabarcoding and Microbial Indicators in Large Water Volumes. WATER 2022. [DOI: 10.3390/w14091435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Monitoring bacterial communities in a drinking water treatment plant (DWTP) may help to understand their regular operations. Bacterial community dynamics in an advanced full-scale DWTP were analyzed by 16S rRNA metabarcoding, and microbial water quality indicators were determined at nine different stages of potabilization: river water and groundwater intake, decantation, sand filtration, ozonization, carbon filtration, reverse osmosis, mixing chamber and post-chlorination drinking water. The microbial content of large water volumes (up to 1100 L) was concentrated by hollow fiber ultrafiltration. Around 10 million reads were obtained and grouped into 10,039 amplicon sequence variants. Metabarcoding analysis showed high bacterial diversity at all treatment stages and above all in groundwater intake, followed by carbon filtration and mixing chamber samples. Shifts in bacterial communities occurred downstream of ozonization, carbon filtration, and, more drastically, chlorination. Proteobacteria and Bacteroidota predominated in river water and throughout the process, but in the final drinking water, the strong selective pressure of chlorination reduced diversity and was clearly dominated by Cyanobacteria. Significant seasonal variation in species distribution was observed in decantation and carbon filtration samples. Some amplicon sequence variants related to potentially pathogenic genera were found in the DWTP. However, they were either not detected in the final water or in very low abundance (<2%), and all EU Directive quality standards were fully met. A combination of culture and high-throughput sequencing techniques may help DWTP managers to detect shifts in microbiome, allowing for a more in-depth assessment of operational performance.
Collapse
|
41
|
Cyanobacteria: Model Microorganisms and Beyond. Microorganisms 2022; 10:microorganisms10040696. [PMID: 35456747 PMCID: PMC9025173 DOI: 10.3390/microorganisms10040696] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
In this review, the general background is provided on cyanobacteria, including morphology, cell membrane structure, and their photosynthesis pathway. The presence of cyanobacteria in nature, and their industrial applications are discussed, and their production of secondary metabolites are explained. Biofilm formation, as a common feature of microorganisms, is detailed and the role of cell diffusion in bacterial colonization is described. Then, the discussion is narrowed down to cyanobacterium Synechocystis, as a lab model microorganism. In this relation, the morphology of Synechocystis is discussed and its different elements are detailed. Type IV pili, the complex multi-protein apparatus for motility and cell-cell adhesion in Synechocystis is described and the underlying function of its different elements is detailed. The phototaxis behavior of the cells, in response to homogenous or directional illumination, is reported and its relation to the run and tumble statistics of the cells is emphasized. In Synechocystis suspensions, there may exist a reciprocal interaction between the cell and the carrying fluid. The effects of shear flow on the growth, doubling per day, biomass production, pigments, and lipid production of Synechocystis are reported. Reciprocally, the effects of Synechocystis presence and its motility on the rheological properties of cell suspensions are addressed. This review only takes up the general grounds of cyanobacteria and does not get into the detailed biological aspects per se. Thus, it is substantially more comprehensive in that sense than other reviews that have been published in the last two decades. It is also written not only for the researchers in the field, but for those in physics and engineering, who may find it interesting, useful, and related to their own research.
Collapse
|
42
|
Callieri C, Cabello-Yeves PJ, Bertoni F. The "Dark Side" of Picocyanobacteria: Life as We Do Not Know It (Yet). Microorganisms 2022; 10:546. [PMID: 35336120 PMCID: PMC8955281 DOI: 10.3390/microorganisms10030546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Picocyanobacteria of the genus Synechococcus (together with Cyanobium and Prochlorococcus) have captured the attention of microbial ecologists since their description in the 1970s. These pico-sized microorganisms are ubiquitous in aquatic environments and are known to be some of the most ancient and adaptable primary producers. Yet, it was only recently, and thanks to developments in molecular biology and in the understanding of gene sequences and genomes, that we could shed light on the depth of the connection between their evolution and the history of life on the planet. Here, we briefly review the current understanding of these small prokaryotic cells, from their physiological features to their role and dynamics in different aquatic environments, focussing particularly on the still poorly understood ability of picocyanobacteria to adapt to dark conditions. While the recent discovery of Synechococcus strains able to survive in the deep Black Sea highlights how adaptable picocyanobacteria can be, it also raises more questions-showing how much we still do not know about microbial life. Using available information from brackish Black Sea strains able to perform and survive in dark (anoxic) conditions, we illustrate how adaptation to narrow ecological niches interacts with gene evolution and metabolic capacity.
Collapse
Affiliation(s)
- Cristiana Callieri
- National Research Council (CNR), Water Research Institute (IRSA), 28922 Verbania, Italy
| | - Pedro J. Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain;
| | | |
Collapse
|
43
|
Kollmen J, Strieth D. The Beneficial Effects of Cyanobacterial Co-Culture on Plant Growth. Life (Basel) 2022; 12:life12020223. [PMID: 35207509 PMCID: PMC8879750 DOI: 10.3390/life12020223] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are ubiquitous phototrophic prokaryotes that find a wide range of applications in industry due to their broad product spectrum. In this context, the application of cyanobacteria as biofertilizers and thus as an alternative to artificial fertilizers has emerged in recent decades. The benefit is mostly based on the ability of cyanobacteria to fix elemental nitrogen and make it available to the plants in a usable form. However, the positive effects of co-cultivating plants with cyanobacteria are not limited to the provision of nitrogen. Cyanobacteria produce numerous secondary metabolites that can be useful for plants, for example, they can have growth-promoting effects or increase resistance to plant diseases. The effects of biotic and abiotic stress can as well be reduced by many secondary metabolites. Furthermore, the biofilms formed by the cyanobacteria can lead to improved soil conditions, such as increased water retention capacity. To exchange the substances mentioned, cyanobacteria form symbioses with plants, whereby the strength of the symbiosis depends on both partners, and not every plant can form symbiosis with every cyanobacterium. Not only the plants in symbiosis benefit from the cyanobacteria, but also vice versa. This review summarizes the beneficial effects of cyanobacterial co-cultivation on plants, highlighting the substances exchanged and the strength of cyanobacterial symbioses with plants. A detailed explanation of the mechanism of nitrogen fixation in cyanobacterial heterocysts is given. Finally, a summary of possible applications of co-cultivation in the (agrar-)industry is given.
Collapse
|
44
|
Teikari J, Baunach M, Dittmann E. Cyanobacterial Genome Sequencing, Annotation, and Bioinformatics. Methods Mol Biol 2022; 2489:269-287. [PMID: 35524055 DOI: 10.1007/978-1-0716-2273-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are collectively a globally important monophyletic phylum of bacteria. They have attracted a lot of attention, not only because they are rich sources of natural bioactive products, including toxic substances, but also because they play an important role in global nitrogen and carbon cycles, and are capable of maintaining versatile environmental niche adaptations. A vast number of cyanobacterial genomes have become available due to fast development of sequencing technologies, but effort is still needed to comprehensively understand the molecular basis of their diversity. Here, we introduce a basic pipeline for the cyanobacterial genome sequencing project that can be employed to complete the whole cyanobacterial genome. The pipeline includes DNA extraction from the cyanobacterial culture of interest, hybrid genome sequencing, and genome assembly and annotation. At the end of the chapter, we briefly introduce genome mining tools and one successful genome mining example from our laboratory. This chapter provides general guidance regarding the sequencing project and thus includes several references for alternative methods and tools so that the reader can easily modify the pipeline according to the needs of the laboratory.
Collapse
Affiliation(s)
- Jonna Teikari
- Environmental Soil Science, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland.
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland.
- University of Potsdam, Potsdam, Germany.
| | - Martin Baunach
- University of Potsdam, Karl-Liebknecht-Straße 24-25, Potsdam, Germany
| | - Elke Dittmann
- University of Potsdam, Karl-Liebknecht-Straße 24-25, Potsdam, Germany
| |
Collapse
|
45
|
Brilli F, Dani KGS, Pasqualini S, Costarelli A, Cannavò S, Paolocci F, Zittelli GC, Mugnai G, Baraldi R, Loreto F. Exposure to different light intensities affects emission of volatiles and accumulations of both pigments and phenolics in Azolla filiculoides. PHYSIOLOGIA PLANTARUM 2022; 174:e13619. [PMID: 34988977 PMCID: PMC9305523 DOI: 10.1111/ppl.13619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/03/2021] [Indexed: 06/01/2023]
Abstract
Many agronomic trials demonstrated the nitrogen-fixing ability of the ferns Azolla spp. and its obligate cyanobiont Trichormus azollae. In this study, we have screened the emission of volatile organic compounds (VOCs) and analyzed pigments (chlorophylls, carotenoids) as well as phenolic compounds in Azolla filiculoides-T. azollae symbionts exposed to different light intensities. Our results revealed VOC emission mainly comprising isoprene and methanol (~82% and ~13% of the overall blend, respectively). In particular, by dissecting VOC emission from A. filiculoides and T. azollae, we found that the cyanobacterium does not emit isoprene, whereas it relevantly contributes to the methanol flux. Enhanced isoprene emission capacity (15.95 ± 2.95 nmol m-2 s-1 ), along with increased content of both phenolic compounds and carotenoids, was measured in A. filiculoides grown for long-term under high (700 μmol m-2 s-1 ) rather than medium (400 μmol m-2 s-1 ) and low (100 μmol m-2 s-1 ) light intensity. Moreover, light-responses of chlorophyll fluorescence demonstrated that A. filiculoides was able to acclimate to high growth light. However, exposure of A. filiculoides from low (100 μmol m-2 s-1 ) to very high light (1000 μmol m-2 s-1 ) did not affect, in the short term, photosynthesis, but slightly decreased isoprene emission and leaf pigment content whereas, at the same time, dramatically raised the accumulation of phenolic compounds (i.e. deoxyanthocyanidins and phlobaphenes). Our results highlight a coordinated photoprotection mechanism consisting of isoprene emission and phenolic compounds accumulation employed by A. filiculoides to cope with increasing light intensities.
Collapse
Affiliation(s)
- Federico Brilli
- Institute for Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| | - K. G. Srikanta Dani
- Institute for Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| | - Stefania Pasqualini
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | - Alma Costarelli
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | - Sara Cannavò
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | - Francesco Paolocci
- Institute of Biosciences and BioResources (IBBR)National Research Council of Italy (CNR)PerugiaItaly
| | | | - Gianmarco Mugnai
- Institute of BioEconomy (IBE)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| | - Rita Baraldi
- Institute of BioEconomy (IBE)National Research Council of Italy (CNR)BolognaItaly
| | - Francesco Loreto
- Institute for Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
- Department of BiologyThe University of Naples Federico IINaplesItaly
| |
Collapse
|
46
|
Ashida H, Murakami K, Inagaki K, Sawa Y, Hemmi H, Iwasaki Y, Yoshimura T. Evolution and properties of alanine racemase from Synechocystis sp. PCC6803. J Biochem 2021; 171:421-428. [PMID: 34967408 DOI: 10.1093/jb/mvab155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Abstract
Alanine racemase (EC 5.1.1.1) depends on pyridoxal 5'-phosphate and catalyzes the interconversion between L- and D-Ala. The enzyme is responsible for the biosynthesis of D-Ala, which is an essential component of the peptidoglycan layer of bacterial cell walls. Phylogenetic analysis of alanine racemases demonstrated that the cyanobacterial enzyme diverged before the separation of gram-positive and gram-negative enzymes. This result is interesting considering that the peptidoglycans observed in cyanobacteria seem to combine the properties of those in both gram-negative and gram-positive bacteria. We cloned the putative alanine racemase gene (slr0823) of Synechocystis sp. PCC6803 in E. coli cells, expressed and purified the enzyme protein, and studied its enzymological properties. The enzymatic properties of the Synechocystis enzyme were similar to those of other gram-positive and gram-negative bacterial enzymes. Alignment of the amino acid sequences of alanine racemase enzymes revealed that the conserved tyrosine residue in the active center of most of the gram-positive and gram-negative bacterial enzymes has been replaced with tryptophan in most of the cyanobacterial enzymes. We carried out the site-directed mutagenesis involving the corresponding residue of Synechocystis enzyme (W385), and revealed that the residue is involved in the substrate recognition by the enzyme.
Collapse
Affiliation(s)
- Hiroyuki Ashida
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University
| | - Kaho Murakami
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University
| | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University
| | - Yoshihiro Sawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University
| | - Hisashi Hemmi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Yugo Iwasaki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Tohru Yoshimura
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University
| |
Collapse
|
47
|
Cardoso D, Lima S, Matinha-Cardoso J, Tamagnini P, Oliveira P. The Role of Outer Membrane Protein(s) Harboring SLH/OprB-Domains in Extracellular Vesicles’ Production in Synechocystis sp. PCC 6803. PLANTS 2021; 10:plants10122757. [PMID: 34961227 PMCID: PMC8707739 DOI: 10.3390/plants10122757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 01/07/2023]
Abstract
Cyanobacteria are a group of photosynthetic prokaryotes that contribute to primary production on a global scale. These microorganisms release vesicles to the extracellular environment, spherical nanosized structures, derived essentially from the outer membrane. Even though earlier works in model Gram-negative bacteria have hypothesized that outer membrane stability is crucial in vesicle formation, the mechanisms determining vesicle biogenesis in cyanobacteria remain unknown. Here, we report on the identification of six candidate genes encoding outer membrane proteins harboring SLH/OprB-domains in the genome of the model cyanobacterium Synechocystis sp. PCC 6803. Using a genetics-based approach, one gene was found to encode an essential protein (Slr1841), while the remaining five are not essential for growth under standard conditions. Vesicle production was monitored, and it was found that a mutant in the gene encoding the second most abundant SLH/OprB protein in Synechocystis sp. PCC 6803 outer membrane (Slr1908) produces more vesicles than any of the other tested strains. Moreover, the Slr1908-protein was also found to be important for iron uptake. Altogether, our results suggest that proteins containing the SLH/OprB-domains may have dual biological role, related to micronutrient uptake and to outer membrane stability, which, together or alone, seem to be involved in cyanobacterial vesicle biogenesis.
Collapse
Affiliation(s)
- Delfim Cardoso
- MABBS—Mestrado em Aplicações em Biotecnologia e Biologia Sintética, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Steeve Lima
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- MCbiology Doctoral Program, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Jorge Matinha-Cardoso
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Paula Tamagnini
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Paulo Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
- Correspondence: ; Tel.: +351-22-607-4900
| |
Collapse
|
48
|
A biophotoelectrochemical approach to unravelling the role of cyanobacterial cell structures in exoelectrogenesis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Zhou C, Huang JC, Gan X, He S, Zhou W. Selenium uptake, volatilization, and transformation by the cyanobacterium Microcystis aeruginosa and post-treatment of Se-laden biomass. CHEMOSPHERE 2021; 280:130593. [PMID: 33932907 DOI: 10.1016/j.chemosphere.2021.130593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
With a narrow margin between beneficial and toxic effects, selenium (Se) is of great concern due to its increasing level in aquatic environments. The accumulation and transformation of Se by the cyanobacterium Microcystis aeruginosa and effects of nutrients, particularly sulfate, were investigated. The nutrient-deprived cyanobacterium removed water-borne selenate (82.2 ± 0.93%) faster than selenite (58.9 ± 1.77%), with 86.0 ± 1.41% and 77.2 ± 1.00%, respectively, of the Se accumulated in the biomass and the rest volatilized. When supplied with excess nutrients, the Se accumulation and volatilization rates were significantly inhibited, with the removal efficiency dropping to 50.2 ± 2.59% and 7.37 ± 0.93% for selenite and selenate, respectively. When M. aeruginosa was tested with inadequate, appropriate, and adequate levels of sulfate, Se uptake decreased with increasing sulfate concentrations, particularly for selenate (from 34.1 to 4.81%). Using X-ray absorption near-edge structure to speciate biomass Se, selenite and selenate were transformed to organo-Se (87.3-100%), with or without nutrients present, suggesting M. aeruginosa could efficiently reduce Se oxyanions to more bioavailable forms. With increasing sulfate levels (5.0 and 10.0 mg S/L), percentages of SeMet converted from selenite decreased by 28.2-33.0%, with 19.1-33.2% as elemental Se, while organo-Se remained dominant (93.6-95.1%) in selenate-treated M. aeruginosa. Transmission electron microscopy shows structural damage in the cell wall at exposure to selenite (1600 μg Se/L), with the intracellular structure intact. To prevent Se biomagnification along aquatic food chains, the Se-laden biomass was combusted as a post-treatment, leading to a significant reduction in Se content (∼99.2%) and Se bioavailability, with inorganic Se (45.0-70.5%) predominant in the residue.
Collapse
Affiliation(s)
- Chuanqi Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jung-Chen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Environmental Engineering, National Cheng Kung University, Tainan City, 701, Taiwan.
| | - Xinyu Gan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
50
|
Sengupta S, Sahasrabuddhe D, Wangikar PP. Transporter engineering for the development of cyanobacteria as cell factories: A text analytics guided survey. Biotechnol Adv 2021; 54:107816. [PMID: 34411662 DOI: 10.1016/j.biotechadv.2021.107816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are attractive candidates for photoautotrophic production of platform chemicals due to their inherent ability to utilize carbon dioxide as the sole carbon source. Metabolic pathways can be engineered more readily in cyanobacteria compared to higher photosynthetic organisms. Although significant progress has been made in pathway engineering, intracellular accumulation of the product is a potential bottleneck in large-scale production. Likewise, substrate uptake is known to limit growth and product formation. These limitations can potentially be addressed by targeted and controlled expression of transporter proteins in the metabolically engineered strains. This review focuses on the transporters that have been explored in cyanobacteria. To highlight the progress on characterization and application of cyanobacterial transporters, we applied text analytics to extract relevant information from over 1000 publications. We have categorized the transporters based on their source, their function and the solute they transport. Further, the review provides insights into the potential of transporters in the metabolic engineering of cyanobacteria for improved product titer.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Deepti Sahasrabuddhe
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|