1
|
Song WS, Ki DU, Cho HY, Kwon OH, Cho H, Yoon SI. Structural basis of transcriptional regulation by UrtR in response to uric acid. Nucleic Acids Res 2024:gkae922. [PMID: 39484741 DOI: 10.1093/nar/gkae922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Uric acid (UA)-responsive transcriptional regulators (UrtRs), which belong to the multiple antibiotic resistance regulator (MarR) superfamily, transcriptionally coordinate virulence and metabolism in bacteria by modulating interactions with operator DNA in response to UA. To elucidate the transcriptional regulatory mechanism of UrtR, we structurally analyzed UrtR proteins, including PecS, MftR, and HucR, alone and in complex with UA or DNA. UrtR contains a dimerization domain (DD) and a winged helix-turn-helix domain (wHTHD) and forms a homodimer primarily via the DD, as observed for other MarR superfamily proteins. However, UrtRs are characterized by a unique N-terminal α-helix, which contributes to dimerization and UA recognition. In the absence of UA, the UrtR dimer symmetrically binds to the operator double-stranded DNA (dsDNA) by inserting its α4 recognition helix and β-stranded wing within the wHTHD into the major and minor grooves of dsDNA, respectively. Upon exposure to UA, UrtR accommodates UA in the intersubunit pocket between the DD and wHTHD. UA binding induces a conformational change in the major groove-binding core element of the UrtR wHTHD, generating a DNA binding-incompatible structure. This local allosteric mechanism of UrtR completely differs from that generally observed in other MarR superfamily members, in which the entire wHTHD undergoes effector-responsive global shifts.
Collapse
Affiliation(s)
- Wan Seok Song
- Institute of Bioscience and Biotechnology, Kangwon National University, 1 Kangwondaehakgil, Chuncheon 24341, Republic of Korea
| | - Dong Uk Ki
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehakgil, Chuncheon 24341, Republic of Korea
| | - Hye Yeon Cho
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehakgil, Chuncheon 24341, Republic of Korea
| | - Oh Hyun Kwon
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Hongbaek Cho
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Sung-Il Yoon
- Institute of Bioscience and Biotechnology, Kangwon National University, 1 Kangwondaehakgil, Chuncheon 24341, Republic of Korea
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehakgil, Chuncheon 24341, Republic of Korea
| |
Collapse
|
2
|
Nwokocha GC, Ghosh A, Grove A. Regulation of bacterial virulence genes by PecS family transcription factors. J Bacteriol 2024; 206:e0030224. [PMID: 39287432 PMCID: PMC11500572 DOI: 10.1128/jb.00302-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Bacterial plant pathogens adjust their gene expression programs in response to environmental signals and host-derived compounds. This ensures that virulence genes or genes encoding proteins, which promote bacterial fitness in a host environment, are expressed only when needed. Such regulation is in the purview of transcription factors, many of which belong to the ubiquitous multiple antibiotic resistance regulator (MarR) protein family. PecS proteins constitute a subset of this large protein family. PecS has likely been distributed by horizontal gene transfer, along with the divergently encoded efflux pump PecM, suggesting its integration into existing gene regulatory networks. Here, we discuss the roles of PecS in the regulation of genes associated with virulence and fitness of bacterial plant pathogens. A comparison of phenotypes and differential gene expression associated with the disruption of pecS shows that functional consequences of PecS integration into existing transcriptional networks are highly variable, resulting in distinct PecS regulons. Although PecS universally binds to the pecS-pecM intergenic region to repress the expression of both genes, binding modes differ. A particularly relaxed sequence preference appears to apply for Dickeya dadantii PecS, perhaps to optimize its integration as a global regulator and regulate genes ancestral to the acquisition of pecS-pecM. Even inducing ligands for PecS are not universally conserved. It appears that PecS function has been optimized to match the unique regulatory needs of individual bacterial species and that its roles must be appreciated in the context of the regulatory networks into which it was recruited.
Collapse
Affiliation(s)
| | - Arpita Ghosh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
3
|
Acharya K, Shaw S, Bhattacharya SP, Biswas S, Bhandary S, Bhattacharya A. Pigments from pathogenic bacteria: a comprehensive update on recent advances. World J Microbiol Biotechnol 2024; 40:270. [PMID: 39030429 DOI: 10.1007/s11274-024-04076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Bacterial pigments stand out as exceptional natural bioactive compounds with versatile functionalities. The pigments represent molecules from distinct chemical categories including terpenes, terpenoids, carotenoids, pyridine, pyrrole, indole, and phenazines, which are synthesized by diverse groups of bacteria. Their spectrum of physiological activities encompasses bioactive potentials that often confer fitness advantages to facilitate the survival of bacteria amid challenging environmental conditions. A large proportion of such pigments are produced by bacterial pathogens mostly as secondary metabolites. Their multifaceted properties augment potential applications in biomedical, food, pharmaceutical, textile, paint industries, bioremediation, and in biosensor development. Apart from possessing a less detrimental impact on health with environmentally beneficial attributes, tractable and scalable production strategies render bacterial pigments a sustainable option for novel biotechnological exploration for untapped discoveries. The review offers a comprehensive account of physiological role of pigments from bacterial pathogens, production strategies, and potential applications in various biomedical and biotechnological fields. Alongside, the prospect of combining bacterial pigment research with cutting-edge approaches like nanotechnology has been discussed to highlight future endeavours.
Collapse
Affiliation(s)
- Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Swarna Shaw
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | | | - Shatarupa Biswas
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Suman Bhandary
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| |
Collapse
|
4
|
Sharma N, Shekhar P, Kumar V, Kaur H, Jayasena V. Microbial pigments: Sources, current status, future challenges in cosmetics and therapeutic applications. J Basic Microbiol 2024; 64:4-21. [PMID: 37861279 DOI: 10.1002/jobm.202300214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Color serves as the initial attraction and offers a pleasing aspect. While synthetic colorants have been popular for many years, their adverse environmental and health effects cannot be overlooked. This necessitates the search for natural colorants, especially microbial colorants, which have proven and more effective. Pigment-producing microorganisms offer substantial benefits. Natural colors improve product marketability and bestow additional benefits, including antioxidant, antiaging, anticancer, antiviral, antimicrobial, and antitumor properties. This review covers the various types of microbial pigments, the methods to enhance their production, and their cosmetic and therapeutic applications. We also address the challenges faced during the commercial production of microbial pigments and propose potential solutions.
Collapse
Affiliation(s)
- Nitin Sharma
- Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | | | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Harpreet Kaur
- Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | - Vijay Jayasena
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
5
|
Jia L, Lu W, Hu D, Feng M, Wang A, Wang R, Sun H, Wang P, Xia Q, Ma S. Genetically engineered Blue silkworm capable of synthesizing natural blue pigment. Int J Biol Macromol 2023; 235:123863. [PMID: 36870637 DOI: 10.1016/j.ijbiomac.2023.123863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Synthetic biology is an eco-friendly and sustainable approach for the production of compounds, particularly used when the production processes involve toxic reagents. In this study, we used the silk gland of silkworm to produce indigoidine, a valuable natural blue pigment that cannot be synthesized naturally in animals. We genetically engineered these silkworms by integrating the indigoidine synthetase (idgS) gene from S. lavendulae and the PPTase (Sfp) gene from B. subtilis into the silkworm genome. In the resulting Blue silkworm, indigoidine was detected at a high level in the posterior silk gland (PSG), spanning all developmental stages from larvae to adults, without affecting silkworm growth or development. This synthesized indigoidine was secreted from the silk gland and subsequently stored in the fat body, with only a small fraction being excreted by the Malpighian tubule. Metabolomic analysis revealed that Blue silkworm efficiently synthesized indigoidine by upregulating l-glutamine, the precursor of indigoidine, and succinate, which is related to energy metabolism in the PSG. This study represents the first synthesis of indigoidine in an animal and therefore opens a new avenue for the biosynthesis of natural blue pigments and other valuable small molecules.
Collapse
Affiliation(s)
- Ling Jia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Wei Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Dan Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Min Feng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Aoming Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Ruolin Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Hao Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Pan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China.
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Yu X, Zhang W, Zhang G, Wu Y, Wu S, Tian M, Ding W, Bahadur A, Chen T, Liu G. Arthrobacter antioxidans sp. nov., a blue pigment-producing species isolated from Mount Everest. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748457 DOI: 10.1099/ijsem.0.005624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria in the genus Arthrobacter have been found in extreme environments, e.g. glaciers, brine and mural paintings. Here, we report the discovery of a novel pink-coloured bacterium, strain QL17T, capable of producing an extracellular water-soluble blue pigment. The bacterium was isolated from the soil of the East Rongbuk Glacier of Mt. Everest, China. 16S rRNA gene sequence analysis showed that strain QL17T was most closely related to the species Arthrobacter bussei KR32 T. However, compared to A.bussei KR32T and the next closest relatives, the new species demonstrates considerable phylogenetic distance at the whole-genome level, with an average nucleotide identity of <85 % and inferred DNA-DNA hybridization of <30 %. Polyphasic taxonomy results support our conclusion that strain QL17T represents a novel species of the genus Arthrobacter. Strain QL17T had the highest tolerance to hydrogen peroxide at 400 mM. Whole-genome sequencing of strain QL17T revealed the presence of numerous cold-adaptation, antioxidation and UV resistance-associated genes, which are related to adaptation to the extreme environment of Mt. Everest. Results of this study characterized a novel psychrotolerant Arthrobacter species, for which the name Arthrobacter antioxidans sp. nov. is proposed. The type strain is QL17T (GDMCC 1.2948T=JCM 35246T).
Collapse
Affiliation(s)
- Xue Yu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu province, PR China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, Gansu Province, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu province, PR China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, Gansu Province, PR China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, Gansu Province, PR China.,State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu province, PR China
| | - Yujie Wu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, Gansu Province, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China.,State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu province, PR China
| | - Shiyu Wu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, Gansu Province, PR China
| | - Mao Tian
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, Gansu Province, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China.,State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu province, PR China
| | - Wei Ding
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ali Bahadur
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, Gansu Province, PR China.,State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu province, PR China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, Gansu Province, PR China.,State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu province, PR China
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu province, PR China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, Gansu Province, PR China
| |
Collapse
|
7
|
Chen S, Hu M, Hu A, Xue Y, Wang S, Liu F, Li C, Zhou X, Zhou J. The integration host factor regulates multiple virulence pathways in bacterial pathogen Dickeya zeae MS2. MOLECULAR PLANT PATHOLOGY 2022; 23:1487-1507. [PMID: 35819797 PMCID: PMC9452768 DOI: 10.1111/mpp.13244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Dickeya zeae is an aggressive bacterial phytopathogen that infects a wide range of host plants. It has been reported that integration host factor (IHF), a nucleoid-associated protein consisting of IHFα and IHFβ subunits, regulates gene expression by influencing nucleoid structure and DNA bending. To define the role of IHF in the pathogenesis of D. zeae MS2, we deleted either and both of the IHF subunit encoding genes ihfA and ihfB, which significantly reduced the production of cell wall-degrading enzymes (CWDEs), an unknown novel phytotoxin and the virulence factor-modulating (VFM) quorum-sensing (QS) signal, cell motility, biofilm formation, and thereafter the infection ability towards both potato slices and banana seedlings. To characterize the regulatory pathways of IHF protein associated with virulence, IHF binding sites (consensus sequence 5'-WATCAANNNNTTR-3') were predicted and 272 binding sites were found throughout the genome. The expression of 110 tested genes was affected by IHF. Electrophoretic mobility shift assay (EMSA) showed direct interaction of IhfA protein with the promoters of vfmE, speA, pipR, fis, slyA, prtD, hrpL, hecB, hcp, indA, hdaA, flhD, pilT, gcpJ, arcA, arcB, and lysR. This study clarified the contribution of IHF in the pathogenic process of D. zeae by controlling the production of VFM and putrescine QS signals, phytotoxin, and indigoidine, the luxR-solo system, Fis, SlyA, and FlhD transcriptional regulators, and secretion systems from type I to type VI. Characterization of the regulatory networks of IHF in D. zeae provides a target for prevention and control of plant soft rot disease.
Collapse
Affiliation(s)
- Shanshan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| | - Ming Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| | - Anqun Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| | - Yang Xue
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| | - Si Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| | - Fan Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| | - Chuhao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| |
Collapse
|
8
|
Panchanawaporn S, Chutrakul C, Jeennor S, Anantayanon J, Rattanaphan N, Laoteng K. Potential of Aspergillus oryzae as a biosynthetic platform for indigoidine, a non-ribosomal peptide pigment with antioxidant activity. PLoS One 2022; 17:e0270359. [PMID: 35737654 PMCID: PMC9223385 DOI: 10.1371/journal.pone.0270359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
The growing demand for natural pigments in the industrial sector is a significant driving force in the development of production processes. The production of natural blue pigments, which have wide industrial applications, using microbial systems has been gaining significant attention. In this study, we used Aspergillus oryzae as a platform cell factory to produce the blue pigment indigoidine (InK), by genetic manipulation of its non-ribosomal peptide synthetase system to overexpress the indigoidine synthetase gene (AoinK). Phenotypic analysis showed that InK production from the engineered strain was growth associated, owing to the constitutive control of gene expression. Furthermore, the initial pH, temperature, and glutamine and MgSO4 concentrations were key factors affecting InK production by the engineered strain. The pigment secretion was enhanced by addition of 1% Tween 80 solution to the culture medium. The maximum titer of total InK was 1409.22 ± 95.33 mg/L, and the maximum productivity was 265.09 ± 14.74 mg/L·d. Moreover, the recombinant InK produced by the engineered strain exhibited antioxidant activity. These results indicate that A. oryzae has the potential to be used as a fungal platform for overproduction of extracellular non-ribosomal peptide pigments.
Collapse
Affiliation(s)
- Sarocha Panchanawaporn
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Chanikul Chutrakul
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
- * E-mail:
| | - Sukanya Jeennor
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Jutamas Anantayanon
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Nakul Rattanaphan
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Kobkul Laoteng
- Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
9
|
Zhang Z, Li P, Wang M, Zhang Y, Wu B, Tao Y, Pan G, Chen Y. ( S)-3-aminopiperidine-2,6-dione is a biosynthetic intermediate of microbial blue pigment indigoidine. MLIFE 2022; 1:146-155. [PMID: 38817675 PMCID: PMC10989907 DOI: 10.1002/mlf2.12023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 06/01/2024]
Abstract
The biosynthetic investigations of microbial natural products continuously provide powerful biocatalysts for the preparation of valuable chemicals. Practical methods for preparing (S)-3-aminopiperidine-2,6-dione (2), the pharmacophore of thalidomide (1) and its analog drugs, are highly desired. To develop a biocatalyst for producing (S)-2, we dissected the domain functions of IdgS, which is responsible for the biosynthesis of indigoidine (3), a microbial blue pigment that consists of two 2-like moieties. Our data supported that the L-glutamine tethered to the indigoidine assembly line is first offloaded and cyclized by the thioesterase domain to form (S)-2, which is then dehydrogenated by the oxidation (Ox) domain and finally dimerized to yield 3. Based on this, we developed an IdgS-derived enzyme biocatalyst, IdgS-Ox* R539A, for preparing enantiomerically pure (S)-2. As a proof of concept, one-pot chemoenzymatic synthesis of 1 was achieved by combining the biocatalytic and chemical approaches.
Collapse
Affiliation(s)
- Zhilong Zhang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pengwei Li
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Min Wang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High‐Efficiency, School of Pharmaceutical Science and TechnologyTianjin UniversityTianjinChina
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong Tao
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
10
|
Chen Y, Li Y, Zhu M, Lv M, Liu Z, Chen Z, Huang Y, Gu W, Liang Z, Chang C, Zhou J, Zhang LH, Liu Q. The GacA-GacS Type Two-Component System Modulates the Pathogenicity of Dickeya oryzae EC1 Mainly by Regulating the Production of Zeamines. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:369-379. [PMID: 35100009 DOI: 10.1094/mpmi-11-21-0292-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The GacS-GacA type two-component system (TCS) positively regulates pathogenicity-related phenotypes in many plant pathogens. In addition, Dickeya oryzae EC1, the causative agent of soft rot disease, produces antibiotic-like toxins called zeamines as one of the major virulence factors that inhibit the germination of rice seeds. The present study identified a GacS-GacA type TCS, named TzpS-TzpA, that positively controls the virulence of EC1, mainly by regulating production of the toxin zeamines. RNA-seq analysis of strain EC1 and its tzpA mutant showed that the TCS regulated a wide range of virulence genes, especially those encoding zeamines. Protein-protein interaction was detected between TzpS and TzpA through the bacterial two-hybrid system and pull-down assay. In trans expression of tzpA failed to rescue the defective phenotypes in both the ΔtzpS and ΔtzpSΔtzpA mutants. Furthermore, TzpA controls target gene expression by direct binding to DNA promoters that contain a Gac-box motif, including a regulatory RNA rsmB and the vfm quorum-sensing system regulator vfmE. These findings therefore suggested that the EC1 TzpS-TzpA TCS system mediates the pathogenicity of Dickeya oryzae EC1 mainly by regulating the production of zeamines.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yufan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yanchang Li
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Minya Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Mingfa Lv
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqing Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhongqiao Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Ying Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Weihan Gu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Changqing Chang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lian-Hui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Qiongguang Liu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Wu Z, Li Y, Zhang L, Ding Z, Shi G. Microbial production of small peptide: pathway engineering and synthetic biology. Microb Biotechnol 2021; 14:2257-2278. [PMID: 33459516 PMCID: PMC8601181 DOI: 10.1111/1751-7915.13743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 01/14/2023] Open
Abstract
Small peptides are a group of natural products with low molecular weights and complex structures. The diverse structures of small peptides endow them with broad bioactivities and suggest their potential therapeutic use in the medical field. The remaining challenge is methods to address the main limitations, namely (i) the low amount of available small peptides from natural sources, and (ii) complex processes required for traditional chemical synthesis. Therefore, harnessing microbial cells as workhorse appears to be a promising approach to synthesize these bioactive peptides. As an emerging engineering technology, synthetic biology aims to create standard, well-characterized and controllable synthetic systems for the biosynthesis of natural products. In this review, we describe the recent developments in the microbial production of small peptides. More importantly, synthetic biology approaches are considered for the production of small peptides, with an emphasis on chassis cells, the evolution of biosynthetic pathways, strain improvements and fermentation.
Collapse
Affiliation(s)
- Zhiyong Wu
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Youran Li
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Liang Zhang
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Zhongyang Ding
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Guiyang Shi
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| |
Collapse
|
12
|
Adaptive remodelling of blue pigmenting Pseudomonas fluorescens pf59 proteome in response to different environmental conditions. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Zhang W, Fan X, Li J, Ye T, Mishra S, Zhang L, Chen S. Exploration of the Quorum-Quenching Mechanism in Pseudomonas nitroreducens W-7 and Its Potential to Attenuate the Virulence of Dickeya zeae EC1. Front Microbiol 2021; 12:694161. [PMID: 34413838 PMCID: PMC8369503 DOI: 10.3389/fmicb.2021.694161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Quorum quenching (QQ) is a novel, promising strategy that opens up a new perspective for controlling quorum-sensing (QS)-mediated bacterial pathogens. QQ is performed by interfering with population-sensing systems, such as by the inhibition of signal synthesis, catalysis of degrading enzymes, and modification of signals. In many Gram-negative pathogenic bacteria, a class of chemically conserved signaling molecules named N-acyl homoserine lactones (AHLs) have been widely studied. AHLs are involved in the modulation of virulence factors in various bacterial pathogens including Dickeya zeae. Dickeya zeae is the causal agent of plant-rot disease of bananas, rice, maize, potatoes, etc., causing enormous economic losses of crops. In this study, a highly efficient AHL-degrading bacterial strain W-7 was isolated from activated-sludge samples and identified as Pseudomonas nitroreducens. Strain W-7 revealed a superior ability to degrade N-(3-oxododecanoyl)-l-homoserine lactone (OdDHL) and completely degraded 0.2 mmol/L of OdDHL within 48 h. Gas chromatography-mass spectrometry (GC-MS) identified N-cyclohexyl-propanamide as the main intermediate metabolite during AHL biodegradation. A metabolic pathway for AHL in strain W-7 was proposed based on the chemical structure of AHL and intermediate products. In addition to the degradation of OdDHL, this strain was also found to be capable of degrading a wide range of AHLs including N-(3-oxohexanoyl)-l-homoserine lactone (OHHL), N-(3-oxooctanoyl)-l-homoserine lactone (OOHL), and N-hexanoyl-l-homoserine lactone (HHL). Moreover, the application of strain W-7 as a biocontrol agent could substantially attenuate the soft rot caused by D. zeae EC1 to suppress tissue maceration in various host plants. Similarly, the application of crude enzymes of strain W-7 significantly reduced the disease incidence and severity in host plants. These original findings unveil the biochemical aspects of a highly efficient AHL-degrading bacterial isolate and provide useful agents that exhibit great potential for the control of infectious diseases caused by AHL-dependent bacterial pathogens.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xinghui Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Tian Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lianhui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
14
|
Hui CY, Guo Y, Li LM, Liu L, Chen YT, Yi J, Zhang NX. Indigoidine biosynthesis triggered by the heavy metal-responsive transcription regulator: a visual whole-cell biosensor. Appl Microbiol Biotechnol 2021; 105:6087-6102. [PMID: 34291315 DOI: 10.1007/s00253-021-11441-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
During the last few decades, whole-cell biosensors have attracted increasing attention for their enormous potential in monitoring bioavailable heavy metal contaminations in the ecosystem. Visual and measurable output signals by employing natural pigments have been demonstrated to offer another potential choice to indicate the existence of bioavailable heavy metals in recent years. The biosynthesis of the blue pigment indigoidine has been achieved in E. coli following heterologous expression of both BpsA (a single-module non-ribosomal peptide synthetase) and PcpS (a PPTase to activate apo-BpsA). Moreover, we demonstrated herein the development of the indigoidine-based whole-cell biosensors to detect bioavailable Hg(II) and Pb(II) in water samples by employing metal-responsive transcriptional regulator MerR and PbrR as the sensory elements, and the indigoidine biosynthesis gene cluster as a reporter element. The resulting indigoidine-based biosensors presented a good selectivity and high sensitivity to target metal ions. High concentration of target metal exposure could be clearly recognized by the naked eye due to the color change by the secretion of indigoidine, and quantified by measuring the absorbance of the culture supernatants at 600 nm. Dose-response relationships existed between the exposure concentrations of target heavy metals and the production of indigoidine. Although fairly good linear relationships were obtained in a relatively limited concentration range of the concentrations of heavy metal ions, these findings suggest that genetically controlled indigoidine biosynthesis triggered by the MerR family transcriptional regulator can enable a sensitive, visual, and qualitative whole-cell biosensor for bioindicating the presence of bioaccessible heavy metal in environmental water samples. KEY POINTS: • Biosynthesis pathway of indigoidine reconstructed in a high copy number plasmid in E. coli. • Visual and colorimetric detection of Hg(II) and Pb(II) by manipulation of indigoidine biosynthesis through MerR family metalloregulator. •Enhanced detection sensitivity toward Hg(II) and Pb(II) achieved using novel pigment-based whole-cell biosensors.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Li-Mei Li
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Lisa Liu
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yu-Ting Chen
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Juan Yi
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Nai-Xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| |
Collapse
|
15
|
Wang X, Wang Y, Ling N, Shen Y, Zhang D, Liu D, Ou D, Wu Q, Ye Y. Effects of tolC on tolerance to bile salts and biofilm formation in Cronobacter malonaticus. J Dairy Sci 2021; 104:9521-9531. [PMID: 34099300 DOI: 10.3168/jds.2021-20128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022]
Abstract
Bile salts is one of essential components of bile secreted into the intestine to confer antibacterial protection. Cronobacter species are associated with necrotizing enterocolitis in newborns and show a strong tolerance to bile salts. However, little attempt has been made to focus on the molecular basis of the tolerance to bile salts. In this study, we investigated the roles of tolC on growth, cell morphology, motility, and biofilm formation ability in Cronobacter malonaticus under bile salt stress. The results indicated that the absence of tolC significantly affected the colony morphology and outer membrane structure in a normal situation, compared with those of the wild type strain. The deletion of tolC caused the decline in resistance to bile salt stress, inhibition of growth, and observable reduction in relative growth rate and motility. Moreover, the bacterial stress response promoted the biofilm formation ability of the mutant strain. The expression of the AcrAB-TolC system (acrA, acrB, and tolC) was effectively upregulated compared with the control sample when exposed to different bile salt concentrations. The findings provide valuable information for deeply understanding molecular mechanisms about the roles of tolC under bile salt stress and the prevention and control of C. malonaticus.
Collapse
Affiliation(s)
- Xin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yaping Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Na Ling
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yizhong Shen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Danfeng Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dengyu Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dexin Ou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Yingwang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
16
|
Celedón RS, Díaz LB. Natural Pigments of Bacterial Origin and Their Possible Biomedical Applications. Microorganisms 2021; 9:739. [PMID: 33916299 PMCID: PMC8066239 DOI: 10.3390/microorganisms9040739] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
Microorganisms are considered one of the most promising niches for prospecting, production, and application of bioactive compounds of biotechnological interest. Among them, bacteria offer certain distinctive advantages due to their short life cycle, their low sensitivity to seasonal and climatic changes, their easy scaling as well as their ability to produce pigments of various colors and shades. Natural pigments have attracted the attention of industry due to an increasing interest in the generation of new products harmless to humans and nature. This is because pigments of artificial origin used in industry can have various deleterious effects. On this basis, bacterial pigments promise to be an attractive niche of new biotechnological applications, from functional food production to the generation of new drugs and biomedical therapies. This review endeavors to establish the beneficial properties of several relevant pigments of bacterial origin and their relation to applications in the biomedical area.
Collapse
Affiliation(s)
- Rodrigo Salazar Celedón
- Laboratory of Molecular Applied Biology, Center of Excellence in Translational Medicine, Universidad de La Frontera, Temuco 4810296, Chile;
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Leticia Barrientos Díaz
- Laboratory of Molecular Applied Biology, Center of Excellence in Translational Medicine, Universidad de La Frontera, Temuco 4810296, Chile;
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
17
|
Reverchon S, Meyer S, Forquet R, Hommais F, Muskhelishvili G, Nasser W. The nucleoid-associated protein IHF acts as a 'transcriptional domainin' protein coordinating the bacterial virulence traits with global transcription. Nucleic Acids Res 2021; 49:776-790. [PMID: 33337488 PMCID: PMC7826290 DOI: 10.1093/nar/gkaa1227] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 02/04/2023] Open
Abstract
Bacterial pathogenic growth requires a swift coordination of pathogenicity function with various kinds of environmental stress encountered in the course of host infection. Among the factors critical for bacterial adaptation are changes of DNA topology and binding effects of nucleoid-associated proteins transducing the environmental signals to the chromosome and coordinating the global transcriptional response to stress. In this study, we use the model phytopathogen Dickeya dadantii to analyse the organisation of transcription by the nucleoid-associated heterodimeric protein IHF. We inactivated the IHFα subunit of IHF thus precluding the IHFαβ heterodimer formation and determined both phenotypic effects of ihfA mutation on D. dadantii virulence and the transcriptional response under various conditions of growth. We show that ihfA mutation reorganises the genomic expression by modulating the distribution of chromosomal DNA supercoils at different length scales, thus affecting many virulence genes involved in both symptomatic and asymptomatic phases of infection, including those required for pectin catabolism. Altogether, we propose that IHF heterodimer is a 'transcriptional domainin' protein, the lack of which impairs the spatiotemporal organisation of transcriptional stress-response domains harbouring various virulence traits, thus abrogating the pathogenicity of D. dadantii.
Collapse
Affiliation(s)
- Sylvie Reverchon
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Sam Meyer
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Raphaël Forquet
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Florence Hommais
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - William Nasser
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| |
Collapse
|
18
|
Liu J, Liu A, Hu Y. Enzymatic dimerization in the biosynthetic pathway of microbial natural products. Nat Prod Rep 2021; 38:1469-1505. [PMID: 33404031 DOI: 10.1039/d0np00063a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covering: up to August 2020The dramatic increase in the identification of dimeric natural products generated by microorganisms and plants has played a significant role in drug discovery. The biosynthetic pathways of these products feature inherent dimerization reactions, which are valuable for biosynthetic applications and chemical transformations. The extraordinary mechanisms of the dimerization of secondary metabolites should advance our understanding of the uncommon chemical rules for natural product biosynthesis, which will, in turn, accelerate the discovery of dimeric reactions and molecules in nature and provide promising strategies for the total synthesis of natural products through dimerization. This review focuses on the enzymes involved in the dimerization in the biosynthetic pathway of microbial natural products, with an emphasis on cytochrome P450s, laccases, and intermolecular [4 + 2] cyclases, along with other atypical enzymes. The identification, characterization, and catalytic landscapes of these enzymes are also introduced.
Collapse
Affiliation(s)
- Jiawang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | | | | |
Collapse
|
19
|
Yuan X, Yu M, Yang CH. Innovation and Application of the Type III Secretion System Inhibitors in Plant Pathogenic Bacteria. Microorganisms 2020; 8:microorganisms8121956. [PMID: 33317075 PMCID: PMC7764658 DOI: 10.3390/microorganisms8121956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Many Gram-negative pathogenic bacteria rely on a functional type III secretion system (T3SS), which injects multiple effector proteins into eukaryotic host cells, for their pathogenicity. Genetic studies conducted in different host-microbe pathosystems often revealed a sophisticated regulatory mechanism of their T3SSs, suggesting that the expression of T3SS is tightly controlled and constantly monitored by bacteria in response to the ever-changing host environment. Therefore, it is critical to understand the regulation of T3SS in pathogenic bacteria for successful disease management. This review focuses on a model plant pathogen, Dickeyadadantii, and summarizes the current knowledge of its T3SS regulation. We highlight the roles of several T3SS regulators that were recently discovered, including the transcriptional regulators: FlhDC, RpoS, and SlyA; the post-transcriptional regulators: PNPase, Hfq with its dependent sRNA ArcZ, and the RsmA/B system; and the bacterial second messenger cyclic-di-GMP (c-di-GMP). Homologs of these regulatory components have also been characterized in almost all major bacterial plant pathogens like Erwiniaamylovora, Pseudomonassyringae, Pectobacterium spp., Xanthomonas spp., and Ralstonia spp. The second half of this review shifts focus to an in-depth discussion of the innovation and development of T3SS inhibitors, small molecules that inhibit T3SSs, in the field of plant pathology. This includes T3SS inhibitors that are derived from plant phenolic compounds, plant coumarins, and salicylidene acylhydrazides. We also discuss their modes of action in bacteria and application for controlling plant diseases.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Manda Yu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| |
Collapse
|
20
|
Separation and quantification of 2-keto-3-deoxy-gluconate (KDG) a major metabolite in pectin and alginate degradation pathways. Anal Biochem 2020; 619:114061. [PMID: 33285123 DOI: 10.1016/j.ab.2020.114061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 11/21/2022]
Abstract
A rapid and sensitive High Performance Liquid Chromatography (HPLC) method with photometric and fluorescence detection is developed for routine analysis of 2-Keto-3-deoxy-gluconate (KDG), a catabolite product of pectin and alginate. These polysaccharides are primary-based compounds for biofuel production and for generation of high-value-added products. HPLC is performed, after derivatization of the 2-oxo-acid groups of the metabolite with o-phenylenediamine (oPD), using a linear gradient of trifluoroacetic acid and acetonitrile. Quantification is accomplished with an internal standard method. The gradient is optimized to distinguish KDG from its close structural analogues such as 5-keto-4-deoxyuronate (DKI) and 2,5-diketo-3-deoxygluconate (DKII). The proposed method is simple, highly sensitive and accurate for time course analysis of pectin or alginate degradation.
Collapse
|
21
|
Abstract
Dickeya zeae is the etiological agent of bacterial foot rot disease, which can cause massive economic losses in banana and rice plantations. Genome sequence analysis showed that D. zeae strain EC1 contains multiple c-di-GMP turnover genes, but their roles and regulatory mechanisms in bacterial physiology and virulence remain vague. By generating consecutive in-frame deletion mutants of the genes encoding c-di-GMP biosynthesis and degradation, respectively, we analyzed the individual and collective impacts of these c-di-GMP metabolic genes on the c-di-GMP global pool, bacterial physiology, and virulence. The significance of our study is in identifying the mechanism of c-di-GMP signaling in strain EC1 more clearly, which expands the c-di-GMP regulating patterns in Gram-negative species. The methods and experimental designs in this research will provide a valuable reference for the exploration of the complex c-di-GMP regulation mechanisms in other bacteria. Dickeya zeae is an important and aggressive bacterial phytopathogen that can cause substantial economic losses in banana and rice plantations. We previously showed that c-di-GMP signaling proteins (cyclases/phosphodiesterases) in D. zeae strain EC1 play a significant role in the bacterial sessile-to-motile transition. To determine whether there is any synergistic effect among these c-di-GMP signaling proteins, we prepared a series of mutant strains by generating consecutive in-frame deletions of the genes encoding diguanylate cyclases (which make c-di-GMP) and phosphodiesterases (which break down c-di-GMP), respectively, using EC1 as a parental strain. The results showed that the complete deletion of all the putative diguanylate cyclases resulted in significantly increased bacterial motility and abrogated biofilm formation but did not appear to affect pathogenicity and virulence factor production. In contrast, the deletion of all the c-di-GMP phosphodiesterase genes disabled motility and prevented the invasion of EC1 into rice seeds. By measuring the c-di-GMP concentrations and swimming motility of all the mutants, we propose that c-di-GMP controlled swimming behavior through a multitiered program in a c-di-GMP concentration-dependent manner, which could be described as an L-shaped regression curve. These features are quite different from those that have been shown for other bacterial species such as Salmonella and Caulobacter crescentus. Further analysis identified three c-di-GMP signaling proteins, i.e., PDE10355, DGC14945, and PDE14950, that play dominant roles in influencing the global c-di-GMP pool of strain EC1. The findings from this study highlight the complexity and plasticity of c-di-GMP regulatory circuits in different bacterial species.
Collapse
|
22
|
Santos MCD, Bicas JL. Natural blue pigments and bikaverin. Microbiol Res 2020; 244:126653. [PMID: 33302226 DOI: 10.1016/j.micres.2020.126653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/26/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
In last years, the main studied microbial sources of natural blue pigments have been the eukaryotic algae, Rhodophytes and Cryptophytes, and the cyanobacterium Arthrospira (Spirulina) platensis, responsible for the production of phycocyanin, one of the most important blue compounds approved for food and cosmetic use. Recent research also includes the indigoidine pigment from the bacteria Erwinia, Streptomyces and Photorhabdus. Despite these advances, there are still few options of microbial blue pigments reported so far, but the interest in these products is high due to the lack of stable natural blue pigments in nature. Filamentous fungi are particularly attractive for their ability to produce pigments with a wide range of colors. Bikaverin is a red metabolite present mainly in species of the genus Fusarium. Although originally red, the biomass containing bikaverin changes its color to blue after heat treatment, through a mechanism still unknown. In addition to the special behavior of color change by thermal treatment, bikaverin has beneficial biological properties, such as antimicrobial and antiproliferative activities, which can expand its use for the pharmaceutical and medical sectors. The present review addresses the production natural blue pigments and focuses on the properties of bikaverin, which can be an important source of blue pigment with potential applications in the food industry and in other industrial sectors.
Collapse
|
23
|
Marques F, Luzhetskyy A, Mendes MV. Engineering Corynebacterium glutamicum with a comprehensive genomic library and phage-based vectors. Metab Eng 2020; 62:221-234. [DOI: 10.1016/j.ymben.2020.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
|
24
|
Siebels I, Nowak S, Heil CS, Tufar P, Cortina NS, Bode HB, Grininger M. Cell-Free Synthesis of Natural Compounds from Genomic DNA of Biosynthetic Gene Clusters. ACS Synth Biol 2020; 9:2418-2426. [PMID: 32818377 DOI: 10.1021/acssynbio.0c00186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A variety of chemicals can be produced in a living host cell via optimized and engineered biosynthetic pathways. Despite the successes, pathway engineering remains demanding because of the lack of specific functions or substrates in the host cell, the cell's sensitivity in vital physiological processes to the heterologous components, or constrained mass transfer across the membrane. In this study, we show that complex multidomain proteins involved in natural compound biosynthesis can be produced from encoding DNA in vitro in a minimal complex PURE system to directly run multistep reactions. Specifically, we synthesize indigoidine and rhabdopeptides with the in vitro produced multidomain nonribosomal peptide synthetases BpsA and KJ12ABC from the organisms Streptomyces lavendulae and Xenorhabdus KJ12.1, respectively. These in vitro produced proteins are analyzed in yield, post-translational modification and in their ability to synthesize the natural compounds, and compared to recombinantly produced proteins. Our study highlights cell-free PURE system as suitable setting for the characterization of biosynthetic gene clusters that can potentially be harnessed for the rapid engineering of biosynthetic pathways.
Collapse
Affiliation(s)
- Ilka Siebels
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
| | - Sarah Nowak
- Fachbereich Biowissenschaften, Molecular Biotechnology, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
| | - Christina S. Heil
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
| | - Peter Tufar
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
| | - Niña S. Cortina
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
| | - Helge B. Bode
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
- Fachbereich Biowissenschaften, Molecular Biotechnology, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
- Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, 60325, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
| |
Collapse
|
25
|
Venil CK, Dufossé L, Renuka Devi P. Bacterial Pigments: Sustainable Compounds With Market Potential for Pharma and Food Industry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00100] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
26
|
Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, Ali B, Kang S. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 2020; 24:447-473. [PMID: 32488508 PMCID: PMC7266124 DOI: 10.1007/s00792-020-01180-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Pigments are an essential part of everyday life on Earth with rapidly growing industrial and biomedical applications. Synthetic pigments account for a major portion of these pigments that in turn have deleterious effects on public health and environment. Such drawbacks of synthetic pigments have shifted the trend to use natural pigments that are considered as the best alternative to synthetic pigments due to their significant properties. Natural pigments from microorganisms are of great interest due to their broader applications in the pharmaceutical, food, and textile industry with increasing demand among the consumers opting for natural pigments. To fulfill the market demand of natural pigments new sources should be explored. Cold-adapted bacteria and fungi in the cryosphere produce a variety of pigments as a protective strategy against ecological stresses such as low temperature, oxidative stresses, and ultraviolet radiation making them a potential source for natural pigment production. This review highlights the protective strategies and pigment production by cold-adapted bacteria and fungi, their industrial and biomedical applications, condition optimization for maximum pigment extraction as well as the challenges facing in the exploitation of cryospheric microorganisms for pigment extraction that hopefully will provide valuable information, direction, and progress in forthcoming studies.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ghufranud Din
- Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, Pakistan
| | - Awais Iqbal
- School of Life Sciences, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, People's Republic of China
| | - Suliman Khan
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sahib Zada
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.
| |
Collapse
|
27
|
Pang B, Chen Y, Gan F, Yan C, Jin L, Gin JW, Petzold CJ, Keasling JD. Investigation of Indigoidine Synthetase Reveals a Conserved Active-Site Base Residue of Nonribosomal Peptide Synthetase Oxidases. J Am Chem Soc 2020; 142:10931-10935. [PMID: 32510939 DOI: 10.1021/jacs.0c04328] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonribosomal peptide synthetase (NRPS) oxidase (Ox) domains oxidize protein-bound intermediates to install crucial structural motifs in bioactive natural products. The mechanism of this domain remains elusive. Here, by studying indigoidine synthetase, a single-module NRPS involved in the biosynthesis of indigoidine and several other bacterial secondary metabolites, we demonstrate that its Ox domain utilizes an active-site base residue, tyrosine 665, to deprotonate a protein-bound l-glutaminyl residue. We further validate the generality of this active-site residue among NRPS Ox domains. These findings not only resolve the biosynthetic pathway mediated by indigoidine synthetase but enable mechanistic insight into NRPS Ox domains.
Collapse
Affiliation(s)
- Bo Pang
- QB3 Institute, University of California, Berkeley, Berkeley, California 94720, United States.,Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Fei Gan
- QB3 Institute, University of California, Berkeley, Berkeley, California 94720, United States.,Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chunsheng Yan
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Liyuan Jin
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Jennifer W Gin
- Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jay D Keasling
- QB3 Institute, University of California, Berkeley, Berkeley, California 94720, United States.,Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical & Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, DK 2970 Horsholm, Denmark.,Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen 518055, P. R. China
| |
Collapse
|
28
|
Quintieri L, Fanelli F, Zühlke D, Caputo L, Logrieco AF, Albrecht D, Riedel K. Biofilm and Pathogenesis-Related Proteins in the Foodborne P. fluorescens ITEM 17298 With Distinctive Phenotypes During Cold Storage. Front Microbiol 2020; 11:991. [PMID: 32670211 PMCID: PMC7326052 DOI: 10.3389/fmicb.2020.00991] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
In food chain, Pseudomonas spp. cause spoilage by reducing shelf life of fresh products, especially during cold storage, with a high economic burden for industries. However, recent studies have shed new light on health risks occurring when they colonize immunocompromised patient tissues. Likewise to P. aeruginosa, they exhibit antibiotic resistance and biofilm formation, responsible for their spread and persistence in the environment. Biofilm formation might be induced by environmental stresses, such as temperature fluctuations causing physiological and metabolic changes exacerbating food spoilage (by protease and pigment synthesis), and the production of adhesion molecules, chemotactic or underestimated virulence factors. In order to provide a new insight into phenotypic biodiversity of Pseudomonas spoilers isolated from cold stored cheese, in this work 19 Pseudomonas spp. were investigated for biofilm, pigments, exopolysaccharide production and motility at low temperature. Only nine strains showed these phenotypic traits and the blue pigmenting cheese strain P. fluorescens ITEM 17298 was the most distinctive. In addition, this strain decreased the survival probability of infected Galleria mellonella larvae, showing, for the first time, a pathogenic potential. Genomic and proteomic analyses performed on the ITEM 17298 planktonic cells treated or not with lactoferrin derived antibiofilm peptides allowed to reveal specific biofilm related-pathways as well as proteins involved in pathogenesis. Indeed, several genes were found related to signaling system by cGMP-dependent protein kinases, cellulose, rhamnolipid and alginate synthesis, antibiotic resistance, adhesion and virulence factors. The proteome of the untreated ITEM 17298, growing at low temperature, showed that most of the proteins associated with biofilm regulation, pigmentation motility, antibiotic resistance and pathogenecity were repressed, or decreased their levels in comparison to that of the untreated cultures. Thus, the results of this work shed light on the complex pathways network allowing psychrotrophic pseudomonads to adapt themselves to food-refrigerated conditions and enhance their spoilage. In addition, the discovery of virulence factors and antibiotic resistance determinants raises some questions about the need to deeper investigate these underestimated bacteria in order to increase awareness and provide input to update legislation on their detection limits in foods.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| | - Daniela Zühlke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Leonardo Caputo
- Institute of Sciences of Food Production, Italian National Research Council, Bari, Italy
| | | | - Dirk Albrecht
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
29
|
Vickery CR, McCulloch IP, Sonnenschein EC, Beld J, Noel JP, Burkart MD. Dissecting modular synthases through inhibition: A complementary chemical and genetic approach. Bioorg Med Chem Lett 2020; 30:126820. [PMID: 31812466 DOI: 10.1016/j.bmcl.2019.126820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 01/23/2023]
Abstract
Modular synthases, such as fatty acid, polyketide, and non-ribosomal peptide synthases (NRPSs), are sophisticated machineries essential in both primary and secondary metabolism. Various techniques have been developed to understand their genetic background and enzymatic abilities. However, uncovering the actual biosynthetic pathways remains challenging. Herein, we demonstrate a pipeline to study an assembly line synthase by interrogating the enzymatic function of each individual enzymatic domain of BpsA, a NRPS that produces the blue 3,3'-bipyridyl pigment indigoidine. Specific inhibitors for each biosynthetic domain of BpsA were obtained or synthesized, and the enzymatic performance of BpsA upon addition of each inhibitor was monitored by pigment development in vitro and in living bacteria. The results were verified using genetic mutants to inactivate each domain. Finally, the results complemented the currently proposed biosynthetic pathway of BpsA.
Collapse
Affiliation(s)
- Christopher R Vickery
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA; Howard Hughes Medical Institute, The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ian P McCulloch
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Eva C Sonnenschein
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Joseph P Noel
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| |
Collapse
|
30
|
Fish borne Edwardsiella tarda eha involved in the bacterial biofilm formation, hemolytic activity, adhesion capability and pathogenicity. Arch Microbiol 2019; 202:835-842. [PMID: 31865430 DOI: 10.1007/s00203-019-01794-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
Abstract
Edwardsiella tarda (E. tarda) is distributed widely in a variety of hosts including humans, other mammals and fish, and it is worthwhile to notice that E. tarda -caused fish infections lead to the most important bacterial disease in fish. Considering Eha acting as a transcriptional regulator in E. tarda strain ET13 have been reported previously, to better understand its pathogenesis due to this, a type of cell of epithelial cell line (Caco-2) infection model for the pathogen was established in the laboratory. We focused on studying various parameters such as lactate dehydrogenase release (to measure cytotoxicity) and cell adhesions, both of which are related to the bacterial pathogenesis. Furthermore biofilm formation, hemolytic activity, and adhesion to Caco-2 cells were decreased in an E.tarda mutant strain with deletion in-frame isogenic gene eha (∆eha) compared to the wild-type and the complementary strain eha+ (an engineered construct of ∆eha expressing eha); Meanwhile, we found that hemolytic activity and biofilm formation were significantly enhanced in the strain eha+. Moreover, the ∆eha strain had attenuated pathogenicity in the zebrafish infection model. The data also demonstrated that the series of genes fimA, esrB, gadB, mukF, katB, and katG are regulated by eha based on a quantitative reverse transcription polymerase chain reaction tests and analysis. Thus our research data indicated that eha has an impact on hemolytic activity, biofilm formation, adhesion, and pathogenicity of pathogenic strain ET13 and plays an essential role in manifesting the virulence factors.
Collapse
|
31
|
Dual-function chromogenic screening-based CRISPR/Cas9 genome editing system for actinomycetes. Appl Microbiol Biotechnol 2019; 104:225-239. [DOI: 10.1007/s00253-019-10223-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/19/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022]
|
32
|
Feng L, Schaefer AL, Hu M, Chen R, Greenberg EP, Zhou J. Virulence Factor Identification in the Banana Pathogen Dickeya zeae MS2. Appl Environ Microbiol 2019; 85:e01611-19. [PMID: 31540986 PMCID: PMC6856320 DOI: 10.1128/aem.01611-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/16/2019] [Indexed: 11/20/2022] Open
Abstract
The phytopathogen Dickeya zeae MS2 is a particularly virulent agent of banana soft rot disease. To begin to understand this banana disease and to understand the role of quorum sensing and quorum-sensing-related regulatory elements in D. zeae MS2, we sequenced its genome and queried the sequence for genes encoding LuxR homologs. We identified a canonical LuxR-LuxI homolog pair similar to those in other members of the genus Dickeya The quorum-sensing signal for this pair was N-3-oxo-hexanoyl-homoserine lactone, and the circuit affected motility, cell clumping, and production of the pigment indigoidine, but it did not affect infections of banana seedlings in our experiments. We also identified a luxR homolog linked to a gene annotated as encoding a proline iminopeptidase. Similar linked pairs have been associated with virulence in other plant pathogens. We show that mutants with deletions in the proline iminopeptidase gene are attenuated for virulence. Surprisingly, a mutant with a deletion in the gene encoding the LuxR homolog shows normal virulence.IMPORTANCEDickeya zeae is an emerging banana soft rot pathogen in China. We used genome sequencing and annotation to create an inventory of potential virulence factors and virulence gene regulators encoded in Dickeya zeae MS2, a particularly virulent strain. We created mutations in several genes and tested these mutants in a banana seedling infection model. A strain with a mutated proline iminopeptidase gene, homologs of which are important for disease in the Xanthomonas species phytopathogens, was attenuated for soft rot symptoms in our model. Understanding how the proline iminopeptidase functions as a virulence factor may lead to insights about how to control the disease, and it is of general importance as homologs of the proline iminopeptidase occur in dozens of plant-associated bacteria.
Collapse
Affiliation(s)
- Luwen Feng
- Guangdong Province Sociomicrobiology Basic Science and Frontier Technology Research Team & Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, People's Republic of China
| | - Amy L Schaefer
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Ming Hu
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, People's Republic of China
| | - Ruiyi Chen
- Guangdong Province Sociomicrobiology Basic Science and Frontier Technology Research Team & Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, People's Republic of China
| | - E Peter Greenberg
- Guangdong Province Sociomicrobiology Basic Science and Frontier Technology Research Team & Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, People's Republic of China
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jianuan Zhou
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
33
|
Kong L, Xu G, Liu X, Wang J, Tang Z, Cai YS, Shen K, Tao W, Zheng Y, Deng Z, Price NPJ, Chen W. Divergent Biosynthesis of C-Nucleoside Minimycin and Indigoidine in Bacteria. iScience 2019; 22:430-440. [PMID: 31816530 PMCID: PMC6908994 DOI: 10.1016/j.isci.2019.11.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 11/12/2022] Open
Abstract
Minimycin (MIN) is a C-nucleoside antibiotic structurally related to pseudouridine, and indigoidine is a naturally occurring blue pigment produced by diverse bacteria. Although MIN and indigoidine have been known for decades, the logic underlying the divergent biosynthesis of these interesting molecules has been obscure. Here, we report the identification of a minimal 5-gene cluster (min) essential for MIN biosynthesis. We demonstrated that a non-ribosomal peptide synthetase (MinA) governs “the switch” for the divergent biosynthesis of MIN and the cryptic indigoidine. We also demonstrated that MinCN (the N-terminal phosphatase domain of MinC), MinD (uracil phosphoribosyltransferase), and MinT (transporter) function together as the safeguard enzymes, which collaboratively constitute an unusual self-resistance system. Finally, we provided evidence that MinD, utilizing an unprecedented substrate-competition strategy for self-resistance of the producer cell, maintains competition advantage over the active molecule MIN-5′-monophosphate by increasing the UMP pool in vivo. These findings greatly expand our knowledge regarding natural product biosynthesis. A minimal 5-gene cluster (min) is essential for minimycin biosynthesis Divergent biosynthesis of minimycin and indigoidine is mediated by an NRPS enzyme A cascade of three safeguard enzymes constitutes the unusual self-resistance system MinD functions as the key safeguard enzyme by increasing the UMP pool in vivo
Collapse
Affiliation(s)
- Liyuan Kong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Gudan Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoqin Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jingwen Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zenglin Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - You-Sheng Cai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Kun Shen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Weixin Tao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, and College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Neil P J Price
- Agricultural Research Service, US Department of Agriculture, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Wenqing Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
34
|
Split intein-mediated selection of cells containing two plasmids using a single antibiotic. Nat Commun 2019; 10:4967. [PMID: 31672972 PMCID: PMC6823396 DOI: 10.1038/s41467-019-12911-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/07/2019] [Indexed: 11/08/2022] Open
Abstract
To build or dissect complex pathways in bacteria and mammalian cells, it is often necessary to recur to at least two plasmids, for instance harboring orthogonal inducible promoters. Here we present SiMPl, a method based on rationally designed split enzymes and intein-mediated protein trans-splicing, allowing the selection of cells carrying two plasmids with a single antibiotic. We show that, compared to the traditional method based on two antibiotics, SiMPl increases the production of the antimicrobial non-ribosomal peptide indigoidine and the non-proteinogenic aromatic amino acid para-amino-L-phenylalanine from bacteria. Using a human T cell line, we employ SiMPl to obtain a highly pure population of cells double positive for the two chains of the T cell receptor, TCRα and TCRβ, using a single antibiotic. SiMPl has profound implications for metabolic engineering and for constructing complex synthetic circuits in bacteria and mammalian cells.
Collapse
|
35
|
Magro M, Baratella D, Jakubec P, Corraducci V, Fasolato L, Cardazzo B, Novelli E, Zoppellaro G, Zboril R, Vianello F. H 2O 2Tolerance in Pseudomonas Fluorescens: Synergy between Pyoverdine‐Iron(III) Complex and a Blue Extracellular Product Revealed by a Nanotechnology‐Based Electrochemical Approach. ChemElectroChem 2019. [DOI: 10.1002/celc.201900902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Massimiliano Magro
- Department of Comparative Biomedicine and Food ScienceUniversity of Padua Legnaro 35026 Italy
- Regional Centre of Advanced Technologies and MaterialsPalacký University Olomouc Olomouc 77146 Czech Republic
| | - Davide Baratella
- Department of Comparative Biomedicine and Food ScienceUniversity of Padua Legnaro 35026 Italy
| | - Petr Jakubec
- Regional Centre of Advanced Technologies and MaterialsPalacký University Olomouc Olomouc 77146 Czech Republic
| | - Vittorino Corraducci
- Department of Comparative Biomedicine and Food ScienceUniversity of Padua Legnaro 35026 Italy
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food ScienceUniversity of Padua Legnaro 35026 Italy
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food ScienceUniversity of Padua Legnaro 35026 Italy
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food ScienceUniversity of Padua Legnaro 35026 Italy
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and MaterialsPalacký University Olomouc Olomouc 77146 Czech Republic
| | - Radek Zboril
- Regional Centre of Advanced Technologies and MaterialsPalacký University Olomouc Olomouc 77146 Czech Republic
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food ScienceUniversity of Padua Legnaro 35026 Italy
| |
Collapse
|
36
|
Quintieri L, Zühlke D, Fanelli F, Caputo L, Liuzzi VC, Logrieco AF, Hirschfeld C, Becher D, Riedel K. Proteomic analysis of the food spoiler Pseudomonas fluorescens ITEM 17298 reveals the antibiofilm activity of the pepsin-digested bovine lactoferrin. Food Microbiol 2019; 82:177-193. [DOI: 10.1016/j.fm.2019.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 11/29/2022]
|
37
|
Breider S, Sehar S, Berger M, Thomas T, Brinkhoff T, Egan S. Genome sequence of Epibacterium ulvae strain DSM 24752 T, an indigoidine-producing, macroalga-associated member of the marine Roseobacter group. ENVIRONMENTAL MICROBIOME 2019; 14:4. [PMID: 33902719 PMCID: PMC7989816 DOI: 10.1186/s40793-019-0343-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/08/2019] [Indexed: 06/12/2023]
Abstract
Strain U95T (= DSM 24752T = LMG 26464T) is the type strain of Epibacterium ulvae, which is the type species of the genus Epibacterium. This genus belongs to the marine Roseobacter group. E. ulvae Strain U95T was isolated from the macroalga Ulva australis, is Gram-negative, rod-shaped and motile. Here we describe the permanent draft genome sequence and annotation of E. ulvae U95T with a focus on secondary metabolite production and interaction with its host. The genome contains 4,092,893 bp, 3977 protein-coding genes and 60 RNA genes. The genome encodes a gene cluster for synthesis of the blue-pigmented secondary metabolite indigoidine and contains several genes for adhesion mechanisms, putative bacteriocin, siderophores, a type VI secretion system, and enzymes that confer oxidative stress resistance. Combined, these features may aid in the successful colonization and persistence of E. ulvae on host surfaces and in competition with the surrounding microbial consortium.
Collapse
Affiliation(s)
- Sven Breider
- Department of Biology of Geological Processes - Aquatic Microbial Ecology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Shama Sehar
- Centre for Marine Science and Innovation (CMSI), School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Martine Berger
- Department of Biology of Geological Processes - Aquatic Microbial Ecology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Torsten Thomas
- Centre for Marine Science and Innovation (CMSI), School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Thorsten Brinkhoff
- Department of Biology of Geological Processes - Aquatic Microbial Ecology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Suhelen Egan
- Centre for Marine Science and Innovation (CMSI), School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
38
|
Duprey A, Taib N, Leonard S, Garin T, Flandrois JP, Nasser W, Brochier-Armanet C, Reverchon S. The phytopathogenic nature of Dickeya aquatica 174/2 and the dynamic early evolution of Dickeya pathogenicity. Environ Microbiol 2019; 21:2809-2835. [PMID: 30969462 DOI: 10.1111/1462-2920.14627] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022]
Abstract
Dickeya is a genus of phytopathogenic enterobacterales causing soft rot in a variety of plants (e.g. potato, chicory, maize). Among the species affiliated to this genus, Dickeya aquatica, described in 2014, remained particularly mysterious because it had no known host. Furthermore, while D. aquatica was proposed to represent a deep-branching species among Dickeya genus, its precise phylogenetic position remained elusive. Here, we report the complete genome sequence of the D. aquatica type strain 174/2. We demonstrate the affinity of D. aquatica strain 174/2 for acidic fruits such as tomato and cucumber and show that exposure of this bacterium to acidic pH induces twitching motility. An in-depth phylogenomic analysis of all available Dickeya proteomes pinpoints D. aquatica as the second deepest branching lineage within this genus and reclassifies two lineages that likely correspond to new genomospecies (gs.): Dickeya gs. poaceaephila (Dickeya sp NCPPB 569) and Dickeya gs. undicola (Dickeya sp 2B12), together with a new putative genus, tentatively named Prodigiosinella. Finally, from comparative analyses of Dickeya proteomes, we infer the complex evolutionary history of this genus, paving the way to study the adaptive patterns and processes of Dickeya to different environmental niches and hosts. In particular, we hypothesize that the lack of xylanases and xylose degradation pathways in D. aquatica could reflect adaptation to aquatic charophyte hosts which, in contrast to land plants, do not contain xyloglucans.
Collapse
Affiliation(s)
- Alexandre Duprey
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Najwa Taib
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Simon Leonard
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Tiffany Garin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Jean-Pierre Flandrois
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - William Nasser
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Céline Brochier-Armanet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Sylvie Reverchon
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| |
Collapse
|
39
|
Hugouvieux-Cotte-Pattat N, Jacot-des-Combes C, Briolay J. Dickeya lacustris sp. nov., a water-living pectinolytic bacterium isolated from lakes in France. Int J Syst Evol Microbiol 2019; 69:721-726. [PMID: 30724725 DOI: 10.1099/ijsem.0.003208] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Dickeya is an important group of plant pathogens that currently comprises eight recognized species. Although most Dickeya isolates originated from infected cultivated plants, they have also been repeatedly isolated from water. To better understand the natural diversity of Dickeya, a survey was performed in small lakes surrounded by wetlands in the French region of La Dombes. Several Dickeya isolates were obtained from water or plants from lakes protected from direct agricultural inputs. Sequencing of the gapA gene revealed that five isolates, S12, S15, S24, S29T and S39, belong to a phylogenetic group separated from other Dickeya species. The genomic sequence of strain S29T clearly established its separation from the other known Dickeya species. The in silico DNA-DNA hybridization (isDDH) and average nucleotide identity (ANI) values (<33 and <88 %, respectively) obtained by comparing strain S29T with strains of characterized Dickeya species supported the delineation of a novel species. The closest species to strain S29T is Dickeya aquatica, previously isolated from rivers, suggesting that these strains have a common ancestor adapted to a water environment. Genomic and phenotypic comparisons enabled the identification of traits distinguishing isolates S12, S15, S24, S29T and S39 from D. aquatica and from other Dickeya species. The name Dickeya lacustris sp. nov. is proposed for this taxon with S29T (=CFBP 8647T=LMG 30899T) as the type strain.
Collapse
Affiliation(s)
- Nicole Hugouvieux-Cotte-Pattat
- 1Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, UMR5240 Microbiologie Adaptation et Pathogénie, F-69621 Villeurbanne, France
| | - Cécile Jacot-des-Combes
- 2Univ Lyon, Université Claude Bernard Lyon 1, CNRS, plateforme DTAMB, FR3728 BioEnviS, F-69621 Villeurbanne, France
| | - Jérôme Briolay
- 2Univ Lyon, Université Claude Bernard Lyon 1, CNRS, plateforme DTAMB, FR3728 BioEnviS, F-69621 Villeurbanne, France
| |
Collapse
|
40
|
Royet K, Parisot N, Rodrigue A, Gueguen E, Condemine G. Identification by Tn-seq of Dickeya dadantii genes required for survival in chicory plants. MOLECULAR PLANT PATHOLOGY 2019; 20:287-306. [PMID: 30267562 PMCID: PMC6637903 DOI: 10.1111/mpp.12754] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The identification of the virulence factors of plant-pathogenic bacteria has relied on the testing of individual mutants on plants, a time-consuming process. Transposon sequencing (Tn-seq) is a very powerful method for the identification of the genes required for bacterial growth in their host. We used this method in a soft-rot pathogenic bacterium to identify the genes required for the multiplication of Dickeya dadantii in chicory. About 100 genes were identified showing decreased or increased fitness in the plant. Most had no previously attributed role in plant-bacterium interactions. Following our screening, in planta competition assays confirmed that the uridine monophosphate biosynthesis pathway and the purine biosynthesis pathway were essential to the survival of D. dadantii in the plant, as the mutants ∆carA, ∆purF, ∆purL, ∆guaB and ∆pyrE were unable to survive in the plant in contrast with the wild-type (WT) bacterium. This study also demonstrated that the biosynthetic pathways of leucine, cysteine and lysine were essential for bacterial survival in the plant and that RsmC and GcpA were important in the regulation of the infection process, as the mutants ∆rsmC and ∆gcpA were hypervirulent. Finally, our study showed that D. dadantii flagellin was glycosylated and that this modification conferred fitness to the bacterium during plant infection. Assay by this method of the large collections of environmental pathogenic strains now available will allow an easy and rapid identification of new virulence factors.
Collapse
Affiliation(s)
- Kévin Royet
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Nicolas Parisot
- University of LyonINSA‐Lyon, INRA, BF2I, UMR0203F‐69621VilleurbanneFrance
| | - Agnès Rodrigue
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Erwan Gueguen
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Guy Condemine
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| |
Collapse
|
41
|
Marizcurrena JJ, Cerdá MF, Alem D, Castro-Sowinski S. Living with Pigments: The Colour Palette of Antarctic Life. SPRINGER POLAR SCIENCES 2019. [DOI: 10.1007/978-3-030-02786-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Baldeweg F, Hoffmeister D, Nett M. A genomics perspective on natural product biosynthesis in plant pathogenic bacteria. Nat Prod Rep 2019; 36:307-325. [DOI: 10.1039/c8np00025e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarizes findings from genomics-inspired natural product research in plant pathogenic bacteria and discusses emerging trends in this field.
Collapse
Affiliation(s)
- Florian Baldeweg
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering
- TU Dortmund University
- 44227 Dortmund
- Germany
| |
Collapse
|
43
|
Gutiérrez-García K, Bustos-Díaz ED, Corona-Gómez JA, Ramos-Aboites HE, Sélem-Mojica N, Cruz-Morales P, Pérez-Farrera MA, Barona-Gómez F, Cibrián-Jaramillo A. Cycad Coralloid Roots Contain Bacterial Communities Including Cyanobacteria and Caulobacter spp. That Encode Niche-Specific Biosynthetic Gene Clusters. Genome Biol Evol 2019; 11:319-334. [PMID: 30534962 PMCID: PMC6350856 DOI: 10.1093/gbe/evy266] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 12/29/2022] Open
Abstract
Cycads are the only early seed plants that have evolved a specialized root to host endophytic bacteria that fix nitrogen. To provide evolutionary and functional insights into this million-year old symbiosis, we investigate endophytic bacterial sub-communities isolated from coralloid roots of species from Dioon (Zamiaceae) sampled from their natural habitats. We employed a sub-community co-culture experimental strategy to reveal both predominant and rare bacteria, which were characterized using phylogenomics and detailed metabolic annotation. Diazotrophic plant endophytes, including Bradyrhizobium, Burkholderia, Mesorhizobium, Rhizobium, and Nostoc species, dominated the epiphyte-free sub-communities. Draft genomes of six cyanobacteria species were obtained after shotgun metagenomics of selected sub-communities. These data were used for whole-genome inferences that suggest two Dioon-specific monophyletic groups, and a level of specialization characteristic of co-evolved symbiotic relationships. Furthermore, the genomes of these cyanobacteria were found to encode unique biosynthetic gene clusters, predicted to direct the synthesis of specialized metabolites, mainly involving peptides. After combining genome mining with detection of pigment emissions using multiphoton excitation fluorescence microscopy, we also show that Caulobacter species co-exist with cyanobacteria, and may interact with them by means of a novel indigoidine-like specialized metabolite. We provide an unprecedented view of the composition of the cycad coralloid root, including phylogenetic and functional patterns mediated by specialized metabolites that may be important for the evolution of ancient symbiotic adaptations.
Collapse
Affiliation(s)
- Karina Gutiérrez-García
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Acanzada (Langebio), Irapuato, Guanajuato, México
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Irapuato, Guanajuato, México
| | - Edder D Bustos-Díaz
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Acanzada (Langebio), Irapuato, Guanajuato, México
| | - José Antonio Corona-Gómez
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Irapuato, Guanajuato, México
| | - Hilda E Ramos-Aboites
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Acanzada (Langebio), Irapuato, Guanajuato, México
| | - Nelly Sélem-Mojica
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Acanzada (Langebio), Irapuato, Guanajuato, México
| | - Pablo Cruz-Morales
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Acanzada (Langebio), Irapuato, Guanajuato, México
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Irapuato, Guanajuato, México
| | - Miguel A Pérez-Farrera
- Herbario Eizi Matuda, Laboratorio de Ecología Evolutiva, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes del Estado de Chiapas, Tuxtla Gutiérrez, Chiapas, México
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Acanzada (Langebio), Irapuato, Guanajuato, México
| | - Angélica Cibrián-Jaramillo
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Irapuato, Guanajuato, México
| |
Collapse
|
44
|
Liao L, Liu C, Zeng Y, Zhao B, Zhang J, Chen B. Multipartite genomes and the sRNome in response to temperature stress of an Arctic Pseudoalteromonas fuliginea BSW20308. Environ Microbiol 2018; 21:272-285. [PMID: 30362272 DOI: 10.1111/1462-2920.14455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022]
Abstract
Little is known about the survival and effect of rapid climate warming on Pseudoalteromonas in the Arctic, although it is abundant and important in this ecosystem. Here, we investigated a cold-adapted Pseudoalteromonas fuliginea BSW20308 from the Arctic Ocean, from the genome to its transcriptomic responses towards temperature changes. It contained two circular chromosomes, with the second chromosome probably evolved from an ancestral plasmid. The evolution of multipartite genomes may be advantageous for its survival under changing environments. RNA-seq analysis revealed the extensive involvement of sRNome in response to temperature stress for the first time, especially tmRNA and a novel Pf1 sRNA strongly induced under heat stress. The present study makes significant contributions towards the understanding of Pseudoalteromonas in two aspects: the genome structure and evolution of its two chromosomes, and the important discovery of the sRNome in response to temperature stress.
Collapse
Affiliation(s)
- Li Liao
- SOA Key Laboratory for Polar Science, Division of Polar Biological Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China
| | - Chun Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yinxin Zeng
- SOA Key Laboratory for Polar Science, Division of Polar Biological Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China
| | - Bin Zhao
- SOA Key Laboratory for Polar Science, Division of Polar Biological Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China.,School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jin Zhang
- SOA Key Laboratory for Polar Science, Division of Polar Biological Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China
| | - Bo Chen
- SOA Key Laboratory for Polar Science, Division of Polar Biological Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China
| |
Collapse
|
45
|
Wehrs M, Prahl JP, Moon J, Li Y, Tanjore D, Keasling JD, Pray T, Mukhopadhyay A. Production efficiency of the bacterial non-ribosomal peptide indigoidine relies on the respiratory metabolic state in S. cerevisiae. Microb Cell Fact 2018; 17:193. [PMID: 30545355 PMCID: PMC6293659 DOI: 10.1186/s12934-018-1045-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Beyond pathway engineering, the metabolic state of the production host is critical in maintaining the efficiency of cellular production. The biotechnologically important yeast Saccharomyces cerevisiae adjusts its energy metabolism based on the availability of oxygen and carbon sources. This transition between respiratory and non-respiratory metabolic state is accompanied by substantial modifications of central carbon metabolism, which impact the efficiency of metabolic pathways and the corresponding final product titers. Non-ribosomal peptide synthetases (NRPS) are an important class of biocatalysts that provide access to a wide array of secondary metabolites. Indigoidine, a blue pigment, is a representative NRP that is valuable by itself as a renewably produced pigment. RESULTS Saccharomyces cerevisiae was engineered to express a bacterial NRPS that converts glutamine to indigoidine. We characterize carbon source use and production dynamics, and demonstrate that indigoidine is solely produced during respiratory cell growth. Production of indigoidine is abolished during non-respiratory growth even under aerobic conditions. By promoting respiratory conditions via controlled feeding, we scaled the production to a 2 L bioreactor scale, reaching a maximum titer of 980 mg/L. CONCLUSIONS This study represents the first use of the Streptomyces lavendulae NRPS (BpsA) in a fungal host and its scale-up. The final product indigoidine is linked to the activity of the TCA cycle and serves as a reporter for the respiratory state of S. cerevisiae. Our approach can be broadly applied to investigate diversion of flux from central carbon metabolism for NRPS and other heterologous pathway engineering, or to follow a population switch between respiratory and non-respiratory modes.
Collapse
Affiliation(s)
- Maren Wehrs
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Institut für Genetik, Technische Universität Braunschweig, Brunswick, Germany
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jan-Philip Prahl
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jadie Moon
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Yuchen Li
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Todd Pray
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
46
|
Ji CH, Kim JP, Kang HS. Library of Synthetic Streptomyces Regulatory Sequences for Use in Promoter Engineering of Natural Product Biosynthetic Gene Clusters. ACS Synth Biol 2018; 7:1946-1955. [PMID: 29966097 DOI: 10.1021/acssynbio.8b00175] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Promoter engineering has emerged as a powerful tool to activate transcriptionally silent natural product biosynthetic gene clusters found in bacterial genomes. Since biosynthetic gene clusters are composed of multiple operons, their promoter engineering requires the use of a set of regulatory sequences with a similar level of activities. Although several successful examples of promoter engineering have been reported, its widespread use has been limited due to the lack of a library of regulatory sequences suitable for use in promoter engineering of large, multiple operon-containing biosynthetic gene clusters. Here, we present the construction of a library of constitutively active, synthetic Streptomyces regulatory sequences. The promoter assay system has been developed using a single-module nonribosomal peptide synthetase that produces the peptide blue pigment indigoidine, allowing for the rapid screening of a large pool of regulatory sequences. The highly randomized regulatory sequences in both promoter and ribosome binding site regions were screened for their ability to produce the blue pigment, and they are classified into the strong, medium, and weak regulatory sequences based on the strength of a blue color. We demonstrated the utility of our synthetic regulatory sequences for promoter engineering of natural product biosynthetic gene clusters using the actinorhodin gene cluster as a model cluster. We believe that the set of Streptomyces regulatory sequences we report here will facilitate the discovery of new natural products from silent, cryptic biosynthetic gene clusters found in sequenced Streptomyces genomes.
Collapse
Affiliation(s)
- Chang-Hun Ji
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Jong-Pyung Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk 28116, Korea
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
47
|
Biofilm formation, pigment production and motility in Pseudomonas spp. isolated from the dairy industry. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.11.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
48
|
Pédron J, Chapelle E, Alunni B, Van Gijsegem F. Transcriptome analysis of the Dickeya dadantii PecS regulon during the early stages of interaction with Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2018; 19:647-663. [PMID: 28295994 PMCID: PMC6638149 DOI: 10.1111/mpp.12549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 02/21/2017] [Accepted: 03/13/2017] [Indexed: 05/10/2023]
Abstract
PecS is one of the major global regulators controlling the virulence of Dickeya dadantii, a broad-host-range phytopathogenic bacterium causing soft rot on several plant families. To define the PecS regulon during plant colonization, we analysed the global transcriptome profiles in wild-type and pecS mutant strains during the early colonization of the leaf surfaces and in leaf tissue just before the onset of symptoms, and found that the PecS regulon consists of more than 600 genes. About one-half of these genes are down-regulated in the pecS mutant; therefore, PecS has both positive and negative regulatory roles that may be direct or indirect. Indeed, PecS also controls the regulation of a few dozen regulatory genes, demonstrating that this global regulator is at or near the top of a major regulatory cascade governing adaptation to growth in planta. Notably, PecS acts mainly at the very beginning of infection, not only to prevent virulence gene induction, but also playing an active role in the adaptation of the bacterium to the epiphytic habitat. Comparison of the patterns of gene expression inside leaf tissues and during early colonization of leaf surfaces in the wild-type bacterium revealed 637 genes modulated between these two environments. More than 40% of these modulated genes are part of the PecS regulon, emphasizing the prominent role of PecS during plant colonization.
Collapse
Affiliation(s)
- Jacques Pédron
- Interactions Plantes Pathogènes, AgroParisTech, INRA, UPMC Université Paris 06, Paris, 75005, France
- iEES (Institut d'Ecologie et des Sciences de l'Environnement de Paris), Sorbonne Universités, UPMC Université Paris 06, Diderot Université Paris 07, UPEC Université Paris 12, CNRS, INRA, IRD, Paris, 75005, France
| | - Emilie Chapelle
- Interactions Plantes Pathogènes, AgroParisTech, INRA, UPMC Université Paris 06, Paris, 75005, France
| | - Benoît Alunni
- Interactions Plantes Pathogènes, AgroParisTech, INRA, UPMC Université Paris 06, Paris, 75005, France
- Institute for Integrative Biology of the Cell, UMR 9198, CNRS/Universite Paris-Sud/CEA, Gif-sur-Yvette, 91198, France
| | - Frédérique Van Gijsegem
- Interactions Plantes Pathogènes, AgroParisTech, INRA, UPMC Université Paris 06, Paris, 75005, France
- iEES (Institut d'Ecologie et des Sciences de l'Environnement de Paris), Sorbonne Universités, UPMC Université Paris 06, Diderot Université Paris 07, UPEC Université Paris 12, CNRS, INRA, IRD, Paris, 75005, France
| |
Collapse
|
49
|
Lu Y, Ishimaru CA, Glazebrook J, Samac DA. Comparative Genomic Analyses of Clavibacter michiganensis subsp. insidiosus and Pathogenicity on Medicago truncatula. PHYTOPATHOLOGY 2018; 108:172-185. [PMID: 28952422 DOI: 10.1094/phyto-05-17-0171-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Clavibacter michiganensis is the most economically important gram-positive bacterial plant pathogen, with subspecies that cause serious diseases of maize, wheat, tomato, potato, and alfalfa. Much less is known about pathogenesis involving gram-positive plant pathogens than is known for gram-negative bacteria. Comparative genome analyses of C. michiganensis subspecies affecting tomato, potato, and maize have provided insights on pathogenicity. In this study, we identified strains of C. michiganensis subsp. insidiosus with contrasting pathogenicity on three accessions of the model legume Medicago truncatula. We generated complete genome sequences for two strains and compared these to a previously sequenced strain and genome sequences of four other subspecies. The three C. michiganensis subsp. insidiosus strains varied in gene content due to genome rearrangements, most likely facilitated by insertion elements, and plasmid number, which varied from one to three depending on strain. The core C. michiganensis genome consisted of 1,917 genes, with 379 genes unique to C. michiganensis subsp. insidiosus. An operon for synthesis of the extracellular blue pigment indigoidine, enzymes for pectin degradation, and an operon for inositol metabolism are among the unique features. Secreted serine proteases belonging to both the pat-1 and ppa families were present but highly diverged from those in other subspecies.
Collapse
Affiliation(s)
- You Lu
- First and third authors: Department of Plant and Microbial Biology, second and fourth authors: Department of Plant Pathology, and first, second, third, and fourth authors: the Microbial and Plant Genomics Institute, University of Minnesota, St. Paul 55108; and fourth author: United States Department of Agriculture-Agricultural Research Service, Plant Science Research, St. Paul, MN 55108
| | - Carol A Ishimaru
- First and third authors: Department of Plant and Microbial Biology, second and fourth authors: Department of Plant Pathology, and first, second, third, and fourth authors: the Microbial and Plant Genomics Institute, University of Minnesota, St. Paul 55108; and fourth author: United States Department of Agriculture-Agricultural Research Service, Plant Science Research, St. Paul, MN 55108
| | - Jane Glazebrook
- First and third authors: Department of Plant and Microbial Biology, second and fourth authors: Department of Plant Pathology, and first, second, third, and fourth authors: the Microbial and Plant Genomics Institute, University of Minnesota, St. Paul 55108; and fourth author: United States Department of Agriculture-Agricultural Research Service, Plant Science Research, St. Paul, MN 55108
| | - Deborah A Samac
- First and third authors: Department of Plant and Microbial Biology, second and fourth authors: Department of Plant Pathology, and first, second, third, and fourth authors: the Microbial and Plant Genomics Institute, University of Minnesota, St. Paul 55108; and fourth author: United States Department of Agriculture-Agricultural Research Service, Plant Science Research, St. Paul, MN 55108
| |
Collapse
|
50
|
Neri-Numa IA, Pessoa MG, Paulino BN, Pastore GM. Genipin: A natural blue pigment for food and health purposes. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.06.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|