1
|
Sarathkumara YD, Xian RR, Liu Z, Yu KJ, Chan JKC, Kwong YL, Lam TH, Liang R, Chiu B, Xu J, Hu W, Ji BT, Coghill AE, Kelly AM, Pfeiffer RM, Rothman N, Ambinder RF, Hildesheim A, Lan Q, Proietti C, Doolan DL. A proteome-wide analysis unveils a core Epstein-Barr virus antibody signature of classic Hodgkin lymphoma across ethnically diverse populations. Int J Cancer 2024; 155:1476-1486. [PMID: 38995124 PMCID: PMC11326961 DOI: 10.1002/ijc.35072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024]
Abstract
Epstein-Barr virus (EBV) is an oncogenic virus associated with various malignancies, including classical Hodgkin lymphoma (cHL). Despite its known association, the specific role of humoral immune response to EBV remains poorly characterized in cHL. To address this, we conducted a study using a custom protein microarray to measure the antibody responses in cHL patients and matched healthy controls recruited from an East-Asian hospital-based case-control study. We identified 16 IgG antibodies significantly elevated in EBV-positive cHL compared with controls, defining an "East-Asian antibody signature of EBV-positive cHL." We evaluated responses against these 16 antibodies in a distinct European population, leveraging data from our previous European cHL case-control study from the UK, Denmark, and Sweden. A subset of antibodies (14/16, 87.5%) from the "East-Asian antibody signature of EBV-positive cHL" exhibited significant associations with cHL in the European population. Conversely, we assessed the "European antibody signature of EBV-positive cHL" identified in our prior study which consisted of 18 EBV antibodies (2 IgA, 16 IgG), in the East-Asian population. A subset of these antibodies (15/18, 83.3%) maintained significant associations with cHL in the East-Asian population. This cross-comparison of antibody signatures underscores the robust generalizability of EBV antibodies across populations. Five anti-EBV IgG antibodies (LMP-1, TK, BALF2, BDLF3, and BBLF1), found in both population-specific antibody signatures, represent a "core signature of EBV-positive cHL." Our findings suggest that the antibody responses targeting these core EBV proteins reflect a specific EBV gene expression pattern, serving as potential biomarkers for EBV-positive cHL independent of population-specific factors.
Collapse
Affiliation(s)
- Yomani D Sarathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Rena R Xian
- Department of Pathology and Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Kelly J Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - Yok-Lam Kwong
- Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Tai Hing Lam
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Raymond Liang
- Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong
| | - Brian Chiu
- Department of Health Studies, University of Chicago, Chicago, Illinois, USA
| | - Jun Xu
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Anna E Coghill
- Cancer Epidemiology Program, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ashton M Kelly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Richard F Ambinder
- Department of Pathology and Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Carla Proietti
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Hsu WL, Tao J, Fu S, Yu KJ, Simon J, Chen TC, Chen CJ, Goldstein AM, Yu K, Hildesheim A, Waterboer T, Wang CP, Liu Z. Kinetics of EBV antibody-based NPC risk scores in Taiwan NPC multiplex families. Int J Cancer 2024; 155:1400-1408. [PMID: 38822730 PMCID: PMC11326971 DOI: 10.1002/ijc.35037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
Nasopharyngeal carcinoma (NPC) risk prediction models based on Epstein-Barr virus (EBV)-antibody testing have shown potential for screening of NPC; however, the long-term stability is unclear. Here, we investigated the kinetics of two EBV-antibody NPC risk scores within the Taiwan NPC Multiplex Family Study. Among 545 participants with multiple blood samples, we evaluated the stability of a 2-marker enzyme-linked immunosorbent assay score and 13-marker multiplex serology score using the intra-class correlation coefficient (ICC) by fitting a linear mixed model that accounted for the clustering effect of multiple measurements per subject and age. We also estimated the clustering of positive tests using Fleiss's kappa statistic. Over an average 20-year follow-up, the 2-marker score showed high stability over time, whereas the 13-marker score was more variable (p < .05). Case-control status is associated with the kinetics of the antibody response, with higher ICCs among cases. Positive tests were more likely to cluster within the same individual for the 2-marker score than the 13-marker score (p < .05). The 2-marker score had an increase in specificity from ~90% for single measurement to ~96% with repeat testing. The 13-marker score had a specificity of ~73% for a single measurement that increased to ~92% with repeat testing. Among individuals who developed NPC, none experienced score reversion. Our findings suggest that repeated testing could improve the specificity of NPC screening in high-risk NPC multiplex families. Further studies are required to determine the impact on sensitivity, establish optimal screening intervals, and generalize these findings to general population settings in high-risk regions.
Collapse
Affiliation(s)
- Wan-Lun Hsu
- Data Science Center, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
- College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Jun Tao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Sheng Fu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- School of Statistics and Data Science, Nankai University, Tianjin, China
| | - Kelly J Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Julia Simon
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Tseng-Cheng Chen
- Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Agencia Costarriciense de Investigaciones Biologicas, San Jose, Costa Rica
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Cheng-Ping Wang
- Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Chen WJ, Yu X, Lu YQ, Pfeiffer RM, Ling W, Xie SH, Wu ZC, Li XQ, Fan YY, Wu BH, Wei KR, Rao HL, Huang QH, Guo X, Sun Y, Ma J, Liu Q, Hildesheim A, Hong MH, Zeng YX, Ji MF, Liu Z, Cao SM. Impact of an Epstein-Barr Virus Serology-Based Screening Program on Nasopharyngeal Carcinoma Mortality: A Cluster-Randomized Controlled Trial. J Clin Oncol 2024:JCO2301296. [PMID: 39353160 DOI: 10.1200/jco.23.01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 05/05/2024] [Accepted: 07/19/2024] [Indexed: 10/04/2024] Open
Abstract
PURPOSE Screening for nasopharyngeal carcinoma (NPC) has shown an improvement in early detection and survival rates of NPC in endemic regions. It is critical to evaluate whether NPC screening can reduce NPC-specific mortality in the population. METHODS Sixteen towns in Sihui and Zhongshan cities, China, were selected; eight were randomly allocated to the screening group and eight to the control group. Residents age 30-69 years with no history of NPC were included from January 1, 2008, to December 31, 2015. Residents in the screening towns were invited to undergo serum Epstein-Barr virus (EBV) viral capsid antigen/nuclear antigen 1-immunoglobulin A antibody tests; others received no intervention. The population was followed until December 31, 2019. Nonparametric tests and Poisson regression models were used to estimate the screening effect on NPC mortality, accounting for the cluster-randomized design. The trial is registered with ClinicalTrials.gov (identifier: NCT00941538). RESULTS A total of 174,943 residents in the screening group and 186,263 residents in the control group were included. NPC incidence and overall mortality were similar between the two groups. A total of 52,498 (30.0% of 174,943) residents participated in the serum EBV antibody test. The overall compliance rate for endoscopic examination and/or biopsies among baseline and ever-classified high-risk participants was 65.9% (1,110 of 1,685) and 67.6% (1,703 of 2,518), respectively. A significant 30% reduction in NPC mortality was observed in the screening group compared with the control group (standardized NPC-specific mortality rate of 8.2 NPC deaths per 1,000 person-years versus 12.5; adjusted rate ratio [RR], 0.70 [95% CI, 0.49 to 0.997]; P = .048). This benefit was most evident among individuals age 50 years and older (RR, 0.56 [95% CI, 0.37 to 0.85]; P = .007) compared with those younger than 50 years (RR, 0.96 [95% CI, 0.64 to 1.46]; P = .856). CONCLUSION In this 12-year trial, EBV antibody testing resulted in a significant reduction in NPC mortality.
Collapse
Affiliation(s)
- Wen-Jie Chen
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia Yu
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, China
| | | | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Wei Ling
- Sihui Cancer Institute, Sihui, China
| | - Shang-Hang Xie
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Cong Wu
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xue-Qi Li
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yu-Ying Fan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Biao-Hua Wu
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, China
| | - Kuang-Rong Wei
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, China
| | - Hui-Lan Rao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Xiang Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qing Liu
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
- Agencia Costarriciense de Investigaciones Biologicas, San Jose, Costa Rica
| | - Ming-Huang Hong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ming-Fang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, China
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Su-Mei Cao
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
4
|
Ma L, Wang TM, He YQ, Liao Y, Yan X, Yang DW, Wang RH, Li FJ, Jia WH, Feng L. Multiplex assays reveal anti-EBV antibody profile and its implication in detection and diagnosis of nasopharyngeal carcinoma. Int J Cancer 2024. [PMID: 38894502 DOI: 10.1002/ijc.35061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Epstein-Barr virus (EBV) is detected in nearly 100% of nonkeratinizing nasopharyngeal carcinoma (NPC) and EBV-based biomarkers are used for NPC screening in endemic regions. Immunoglobulin A (IgA) against EBV nuclear antigen 1 (EBNA1) and viral capsid antigen (VCA), and recently identified anti-BNLF2b antibodies have been shown to be the most effective screening tool; however, the screening efficacy still needs to be improved. This study developed a multiplex serological assay by testing IgA and immunoglobulin G (IgG) antibodies against representative EBV antigens that are highly transcribed in NPC and/or function crucially in viral reactivation, including BALFs, BNLF2a/b, LF1, LF2, and Zta (BZLF1). Among them, BNLF2b-IgG had the best performance distinguishing NPC patients from controls (area under the curve: 0.951, 95% confidence interval [CI]: 0.913-0.990). Antibodies to lytic antigens BALF2 and VCA were significantly higher in advanced-stage than in early-stage tumors; in contrast, antibodies to latent protein EBNA1 and early lytic antigen BNLF2b were not correlated with tumor progression. Accordingly, a novel strategy combining EBNA1-IgA and BNLF2b-IgG was proposed and validated improving the integrated discrimination by 15.8% (95% CI: 9.8%-21.7%, p < .0001) compared with the two-antibody method. Furthermore, we found EBV antibody profile in patients was more complicated compared with that in healthy carriers, in which stronger correlations between antibodies against different phases of antigens were observed. Overall, our serological assay indicated that aberrant latent infection of EBV in nasopharyngeal epithelial cells was probably a key step in NPC initiation, while more lytic protein expression might be involved in NPC progression.
Collapse
Affiliation(s)
- Lin Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao Yan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Da-Wei Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Rui-Hua Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fa-Jun Li
- Guangdong Key Laboratory of Human Evolution and Archaeometry, Department of Anthropology, School of Sociology and Anthropology, Sun Yat-sen University, Guangzhou, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lin Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
5
|
Yang L, Kartsonaki C, Simon J, Yao P, Guo Y, Lv J, Walters RG, Chen Y, Fry H, Avery D, Yu C, Jin J, Mentzer AJ, Allen N, Butt J, Hill M, Li L, Millwood IY, Waterboer T, Chen Z. Prospective evaluation of the relevance of Epstein-Barr virus antibodies for early detection of nasopharyngeal carcinoma in Chinese adults. Int J Epidemiol 2024; 53:dyae098. [PMID: 39008896 PMCID: PMC11249388 DOI: 10.1093/ije/dyae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/10/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a major cause of nasopharyngeal carcinoma (NPC) and measurement of different EBV antibodies in blood may improve early detection of NPC. Prospective studies can help assess the roles of different EBV antibodies in predicting NPC risk over time. METHODS A case-cohort study within the prospective China Kadoorie Biobank of 512 715 adults from 10 (including two NPC endemic) areas included 295 incident NPC cases and 745 subcohort participants. A multiplex serology assay was used to quantify IgA and IgG antibodies against 16 EBV antigens in stored baseline plasma samples. Cox regression was used to estimate adjusted hazard ratios (HRs) for NPC and C-statistics to assess the discriminatory ability of EBV-markers, including two previously identified EBV-marker combinations, for predicting NPC. RESULTS Sero-positivity for 15 out of 16 EBV-markers was significantly associated with higher NPC risk. Both IgA and IgG antibodies against the same three EBV-markers showed the most extreme HRs, i.e. BGLF2 (IgA: 124.2 (95% CI: 63.3-243.9); IgG: 8.6 (5.5-13.5); LF2: [67.8 (30.0-153.1), 10.9 (7.2-16.4)]); and BFRF1: 26.1 (10.1-67.5), 6.1 (2.7-13.6). Use of a two-marker (i.e. LF2/BGLF2 IgG) and a four-marker (i.e. LF2/BGLF2 IgG and LF2/EA-D IgA) combinations yielded C-statistics of 0.85 and 0.84, respectively, which persisted for at least 5 years after sample collection in both endemic and non-endemic areas. CONCLUSIONS In Chinese adults, plasma EBV markers strongly predict NPC occurrence many years before clinical diagnosis. LF2 and BGLF2 IgG could identify NPC high-risk individuals to improve NPC early detection in community and clinical settings.
Collapse
Affiliation(s)
- Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Christiana Kartsonaki
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Julia Simon
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pang Yao
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yu Guo
- National Center for Cardiovascular Diseases, Fuwai Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing, China
| | - Robin G Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Hannah Fry
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Daniel Avery
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing, China
| | | | | | - Naomi Allen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Julia Butt
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hill
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing, China
| | - Iona Y Millwood
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Tim Waterboer
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Polz A, Morshed K, Drop B, Polz-Dacewicz M. Could MMP3 and MMP9 Serve as Biomarkers in EBV-Related Oropharyngeal Cancer. Int J Mol Sci 2024; 25:2561. [PMID: 38473807 DOI: 10.3390/ijms25052561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The high incidence of, and mortality from, head and neck cancers (HNCs), including those related to Epstein-Barr virus (EBV), constitute a major challenge for modern medicine, both in terms of diagnosis and treatment. Therefore, many researchers have made efforts to identify diagnostic and prognostic factors. The aim of this study was to evaluate the diagnostic usefulness of matrix metalloproteinase 3 (MMP 3) and matrix metalloproteinase 9 (MMP 9) in EBV positive oropharyngeal squamous cell carcinoma (OPSCC) patients. For this purpose, the level of these MMPs in the serum of patients with EBV-positive OPSCC was analyzed in relation to the degree of histological differentiation and TNM classification. Our research team's results indicate that the level of both MMPs is much higher in the EBV positive OPSCC patients compared to the EBV negative and control groups. Moreover, their levels were higher in more advanced clinical stages. Considering the possible correlation between the level of MMP 3, MMP 9 and anti-EBV antibodies, and also viral load, after statistical analysis using multiple linear regression, their high correlation was demonstrated. The obtained results confirm the diagnostic accuracy for MMP 3 and MMP 9. Both MMPs may be useful in the diagnosis of EBV positive OPSCC patients.
Collapse
Affiliation(s)
| | - Kamal Morshed
- Department of Otolaryngology Head and Neck Cancer, University of Technology and Humanities in Radom, 26-600 Radom, Poland
| | - Bartłomiej Drop
- Department of Computer Science and Medical Statistics with e-health Laboratory, Medical University of Lublin, 20-090 Lublin, Poland
| | - Małgorzata Polz-Dacewicz
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
7
|
Zheng XH, Hildesheim A, Jia WH. Advances of biomarkers in nasopharyngeal carcinoma's early detection. Sci Bull (Beijing) 2024; 69:141-145. [PMID: 38087738 DOI: 10.1016/j.scib.2023.11.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Affiliation(s)
- Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Allan Hildesheim
- Costa Rican Agency for Biomedical Investigation, INCIENSA Foundation, San Jose 10108, Costa Rica
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
8
|
Li T, Li F, Guo X, Hong C, Yu X, Wu B, Lian S, Song L, Tang J, Wen S, Gao K, Hao M, Cheng W, Su Y, Zhang S, Huang S, Fang M, Wang Y, Ng MH, Chen H, Luo W, Ge S, Zhang J, Xia N, Ji M. Anti-Epstein-Barr Virus BNLF2b for Mass Screening for Nasopharyngeal Cancer. N Engl J Med 2023; 389:808-819. [PMID: 37646678 DOI: 10.1056/nejmoa2301496] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
BACKGROUND Population screening of asymptomatic persons with Epstein-Barr virus (EBV) DNA or antibodies has improved the diagnosis of nasopharyngeal carcinoma and survival among affected persons. However, the positive predictive value of current screening strategies is unsatisfactory even in areas where nasopharyngeal carcinoma is endemic. METHODS We designed a peptide library representing highly ranked B-cell epitopes of EBV coding sequences to identify novel serologic biomarkers for nasopharyngeal carcinoma. After a retrospective case-control study, the performance of the novel biomarker anti-BNLF2b total antibody (P85-Ab) was validated through a large-scale prospective screening program and compared with that of the standard two-antibody-based screening method (EBV nuclear antigen 1 [EBNA1]-IgA and EBV-specific viral capsid antigen [VCA]-IgA). RESULTS P85-Ab was the most promising biomarker for nasopharyngeal carcinoma screening, with high sensitivity (94.4%; 95% confidence interval [CI], 86.4 to 97.8) and specificity (99.6%; 95% CI, 97.8 to 99.9) in the retrospective case-control study. Among the 24,852 eligible participants in the prospective cohort, 47 cases of nasopharyngeal carcinoma (38 at an early stage) were identified. P85-Ab showed higher sensitivity than the two-antibody method (97.9% vs. 72.3%; ratio, 1.4 [95% CI, 1.1 to 1.6]), higher specificity (98.3% vs. 97.0%; ratio, 1.01 [95% CI, 1.01 to 1.02]), and a higher positive predictive value (10.0% vs. 4.3%; ratio, 2.3 [95% CI, 1.8 to 2.8]). The combination of P85-Ab and the two-antibody method markedly increased the positive predictive value to 44.6% (95% CI, 33.8 to 55.9), with sensitivity of 70.2% (95% CI, 56.0 to 81.4). CONCLUSIONS Our results suggest that P85-Ab is a promising novel biomarker for nasopharyngeal carcinoma screening, with higher sensitivity, specificity, and positive predictive value than the standard two-antibody method. (Funded by the National Key Research and Development Program of China and others; ClinicalTrials.gov number, NCT04085900.).
Collapse
Affiliation(s)
- Tingdong Li
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Fugui Li
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Xiaoyi Guo
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Congming Hong
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Xia Yu
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Biaohua Wu
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Shifeng Lian
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Liuwei Song
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Jiabao Tang
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Shunhua Wen
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Kaimin Gao
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Mengling Hao
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Weimin Cheng
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Yingying Su
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Shiyin Zhang
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Shoujie Huang
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Mujin Fang
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Yingbin Wang
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Mun-Hon Ng
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Honglin Chen
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Wenxin Luo
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Shengxiang Ge
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Jun Zhang
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Ningshao Xia
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| | - Mingfang Ji
- From the State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, Department of Laboratory Medicine, School of Public Health, Xiamen University (T.L., X.G., C.H., J.T., M.H., Y.S., S.Z., S.H., M.F., Y.W., M.-H.N., W.L., S.G., J.Z., N.X.), and Xiamen Innodx Biotechnology (L.S., S.W., K.G.), Xiamen, the Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan (F.L., X.Y., B.W., W.C., M.J.), and the State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong (H.C.) - all in China; and the Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm (S.L.)
| |
Collapse
|
9
|
Schieber J, Pring M, Ness A, Liu Z, Hsu WL, Brenner N, Butt J, Waterboer T, Simon J. Development of a Duplex Serological Multiplex Assay for the Simultaneous Detection of Epstein-Barr Virus IgA and IgG Antibodies in Nasopharyngeal Carcinoma Patients. Cancers (Basel) 2023; 15:cancers15092578. [PMID: 37174042 PMCID: PMC10177259 DOI: 10.3390/cancers15092578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Epstein-Barr virus (EBV) IgA and IgG antibodies in serum from nasopharyngeal carcinoma (NPC) patients are well-established markers for EBV-positive NPC. Luminex-based multiplex serology can analyze antibodies to multiple antigens simultaneously; however, the detection of both IgA and IgG antibodies requires separate measurements. Here we describe the development and validation of a novel duplex multiplex serology assay, which can analyze IgA and IgG antibodies against several antigens simultaneously. Secondary antibody/dye combinations, as well as serum dilution factors, were optimized, and 98 NPC cases matched to 142 controls from the Head and Neck 5000 study (HN5000) were assessed and compared to data previously generated in separate IgA and IgG multiplex assays. EBER in situ hybridization (EBER-ISH) data available for 41 tumors was used to calibrate antigen-specific cut-offs using receiver operating characteristic (ROC) analysis with a prespecified specificity of ≥90%. A directly R-Phycoerythrin-labeled IgG antibody in combination with a biotinylated IgA antibody and streptavidin-BV421 reporter conjugate was able to quantify both IgA and IgG antibodies in a duplex reaction in a 1:1000 serum dilution. The combined assessment of IgA and IgG antibodies in NPC cases and controls from the HN5000 study yielded similar sensitivities as the separate IgA and IgG multiplex assays (all > 90%), and the duplex serological multiplex assay was able to unequivocally define the EBV-positive NPC cases (AUC = 1). In conclusion, the simultaneous detection of IgA and IgG antibodies provides an alternative for the separate IgA/IgG antibody quantification and may present a promising approach for larger NPC screening studies in NPC endemic areas.
Collapse
Affiliation(s)
- Jennifer Schieber
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Miranda Pring
- Bristol Dental School, University of Bristol, Bristol BS8 1QU, UK
| | - Andy Ness
- Bristol Dental School, University of Bristol, Bristol BS8 1QU, UK
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Wan-Lun Hsu
- Data Science Center, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Master Program of Big Data in Biomedicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Nicole Brenner
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Julia Butt
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Julia Simon
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Lupo J, Truffot A, Andreani J, Habib M, Epaulard O, Morand P, Germi R. Virological Markers in Epstein–Barr Virus-Associated Diseases. Viruses 2023; 15:v15030656. [PMID: 36992365 PMCID: PMC10051789 DOI: 10.3390/v15030656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Epstein–Barr virus (EBV) is an oncogenic virus infecting more than 95% of the world’s population. After primary infection—responsible for infectious mononucleosis in young adults—the virus persists lifelong in the infected host, especially in memory B cells. Viral persistence is usually without clinical consequences, although it can lead to EBV-associated cancers such as lymphoma or carcinoma. Recent reports also suggest a link between EBV infection and multiple sclerosis. In the absence of vaccines, research efforts have focused on virological markers applicable in clinical practice for the management of patients with EBV-associated diseases. Nasopharyngeal carcinoma is an EBV-associated malignancy for which serological and molecular markers are widely used in clinical practice. Measuring blood EBV DNA load is additionally, useful for preventing lymphoproliferative disorders in transplant patients, with this marker also being explored in various other EBV-associated lymphomas. New technologies based on next-generation sequencing offer the opportunity to explore other biomarkers such as the EBV DNA methylome, strain diversity, or viral miRNA. Here, we review the clinical utility of different virological markers in EBV-associated diseases. Indeed, evaluating existing or new markers in EBV-associated malignancies or immune-mediated inflammatory diseases triggered by EBV infection continues to be a challenge.
Collapse
Affiliation(s)
- Julien Lupo
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
- Correspondence:
| | - Aurélie Truffot
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| | - Julien Andreani
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| | - Mohammed Habib
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Olivier Epaulard
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Service de Maladies Infectieuses, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| | - Patrice Morand
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| | - Raphaële Germi
- Institut de Biologie Structurale, Université Grenoble Alpes, UMR 5075 CEA/CNRS/UGA, 71 Avenue des Martyrs, 38000 Grenoble, France
- Laboratoire de Virologie, CHU Grenoble Alpes, CS 10217, CEDEX 09, 38043 Grenoble, France
| |
Collapse
|
11
|
Paudel S, Warner BE, Wang R, Adams-Haduch J, Reznik AS, Dou J, Huang Y, Gao YT, Koh WP, Bäckerholm A, Yuan JM, Shair KHY. Serologic Profiling Using an Epstein-Barr Virus Mammalian Expression Library Identifies EBNA1 IgA as a Prediagnostic Marker for Nasopharyngeal Carcinoma. Clin Cancer Res 2022; 28:5221-5230. [PMID: 36165913 PMCID: PMC9722633 DOI: 10.1158/1078-0432.ccr-22-1600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE The favorable prognosis of stage I and II nasopharyngeal carcinoma (NPC) has motivated a search for biomarkers for the early detection and risk assessment of Epstein-Barr virus (EBV)-associated NPC. Although EBV seropositivity is ubiquitous among adults, a spike in antibodies against select EBV proteins is a harbinger of NPC. A serologic survey would likely reveal which EBV antibodies could discriminate those at risk of developing NPC. EXPERIMENTAL DESIGN Lysates from a new EBV mammalian expression library were used in a denaturing multiplex immunoblot assay to survey antibodies against EBV in sera collected from healthy individuals who later developed NPC (incident cases) in a prospective cohort from Singapore and validated in an independent cohort from Shanghai, P.R. China. RESULTS We show that IgA against EBV nuclear antigen 1 (EBNA1) discriminated incident NPC cases from matched controls with 100% sensitivity and 100% specificity up to 4 years before diagnosis in both Singapore and Shanghai cohorts. Incident NPC cases had a greater IgG repertoire against lytic-classified EBV proteins, and the assortment of IgA against EBV proteins detected by the immunoblot assay increased closer to diagnosis. CONCLUSIONS Although NPC tumors consistently harbor latent EBV, the observed heightened systemic and mucosal immunity against lytic-classified antigens years prior to clinical diagnosis is consistent with enhanced lytic transcription. We conclude that an expanding EBV mucosal reservoir (which can be latent and/or lytic) is a risk factor for NPC. This presents an opportunity to identify those at risk of developing NPC using IgA against EBNA1 as a biomarker.
Collapse
Affiliation(s)
- Sarita Paudel
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Benjamin E Warner
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Renwei Wang
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer Adams-Haduch
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alex S Reznik
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason Dou
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alan Bäckerholm
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kathy H Y Shair
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Corresponding author: Kathy H Y Shair, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.8, Pittsburgh, PA 15213,Tel: 412-623 7717,
| |
Collapse
|
12
|
Simon J, Brenner N, Reich S, Langseth H, Hansen BT, Ursin G, Ferreiro-Iglesias A, Brennan P, Kreimer AR, Johansson M, Pring M, Nygard M, Waterboer T. Nasopharyngeal carcinoma patients from Norway show elevated Epstein-Barr virus IgA and IgG antibodies prior to diagnosis. Cancer Epidemiol 2022; 77:102117. [PMID: 35121404 PMCID: PMC11287450 DOI: 10.1016/j.canep.2022.102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND IgA antibodies against few Epstein-Barr virus (EBV) proteins are established serological markers for nasopharyngeal carcinoma (NPC). We recently validated a novel, comprehensive EBV marker panel and showed that IgA, but also IgG antibodies against multiple EBV proteins are highly sensitive and specific for EBV-positive NPC at diagnosis. However, data about these novel biomarkers as prospective markers for NPC are sparse. METHODS This study included 30 incident NPC cases and 60 matched controls from the Norwegian Janus Serum Bank. For 21 NPCs, molecular EBV and human papillomavirus (HPV) status were assessed by EBER-ISH and HPV DNA/RNA testing by PCR, respectively. IgA and IgG serum antibodies against 17 EBV antigens were analyzed in prediagnostic sera of cases (median lead time 14 years) and controls using multiplex serology. Sensitivities were calculated using receiver operating characteristic analysis pre-specified to yield 90% specificity in the control group. From 10 cases, serial samples were available. RESULTS Quantitative EBV antibody levels were significantly elevated among all cases (p < 0.05) for three IgA and six IgG antibodies. The highest sensitivities for defining 12 EBER-ISH-positive NPCs were observed for BGLF2 IgA (67%) and BGLF2 IgG (83%). Increased IgA and IgG antibody levels between the first and last draw before diagnosis were observed for EBER-ISH positive, but not for EBER-ISH negative NPCs. Among 21 molecularly analyzed NPCs, 4 EBER-ISH negative NPCs showed concomitant positivity to HPV type-specific DNA and RNA; 3 NPCs were HPV16 and 1 NPC was HPV18 positive. CONCLUSION Both, EBV IgA and IgG antibody levels are significantly elevated many years before diagnosis of EBV-positive NPCs in Norway, an NPC low-incidence region. This study provides insights into one of the largest available prospective sample collections of NPCs in a non-endemic country.
Collapse
Affiliation(s)
- Julia Simon
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Nicole Brenner
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sibylle Reich
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hilde Langseth
- Department of Research, Cancer Registry of Norway, Oslo, Norway; Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Bo T Hansen
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Giske Ursin
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA; Cancer Registry of Norway, Oslo, Norway
| | - Aida Ferreiro-Iglesias
- Genetic Epidemiology Group (GEP), International Agency for Research on Cancer (IARC), Lyon, France
| | - Paul Brennan
- Genetic Epidemiology Group (GEP), International Agency for Research on Cancer (IARC), Lyon, France
| | - Aimée R Kreimer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mattias Johansson
- Genetic Epidemiology Group (GEP), International Agency for Research on Cancer (IARC), Lyon, France
| | - Miranda Pring
- University of Bristol Dental School and University Hospitals Bristol and Weston NHS Foundation Trust Bristol, UK
| | - Mari Nygard
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Tim Waterboer
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Liu Z, Li H, Yu KJ, Xie SH, King AD, Ai QYH, Chen WJ, Chen XX, Lu ZJ, Tang LQ, Wang L, Xie CM, Ling W, Lu YQ, Huang QH, Coghill AE, Fakhry C, Pfeiffer RM, Zeng YX, Cao SM, Hildesheim A. Comparison of new magnetic resonance imaging grading system with conventional endoscopy for the early detection of nasopharyngeal carcinoma. Cancer 2021; 127:3403-3412. [PMID: 34231883 DOI: 10.1002/cncr.33552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Although stratifying individuals with respect to nasopharyngeal carcinoma (NPC) risk with Epstein-Barr virus-based markers is possible, the performance of diagnostic methods for detecting lesions among screen-positive individuals is poorly understood. METHODS The authors prospectively evaluated 882 participants aged 30 to 70 years who were enrolled between October 2014 and November 2018 in an ongoing, population-based NPC screening program and had an elevated NPC risk. Participants were offered endoscopy and magnetic resonance imaging (MRI), and lesions were identified either by biopsy at a follow-up endoscopy or further contact and linkage to the local cancer registry through December 31, 2019. The diagnostic performance characteristics of endoscopy and MRI for NPC detection were investigated. RESULTS Eighteen of 28 identified NPC cases were detected by both methods, 1 was detected by endoscopy alone, and 9 were detected by MRI alone. MRI had significantly higher sensitivity than endoscopy for NPC detection overall (96.4% vs 67.9%; Pdifference = .021) and for early-stage NPC (95.2% vs 57.1%; P = .021). The sensitivity of endoscopy was suggestively lower among participants who had previously been screened in comparison with those undergoing an initial screening (50.0% vs 81.2%; P = .11). The authors observed a higher overall referral rate by MRI versus endoscopy (17.3% vs 9.1%; P < .001). Cases missed by endoscopy had early-stage disease and were more commonly observed for tumors originating from the pharyngeal recess. CONCLUSIONS MRI was more sensitive than endoscopy for NPC detection in the context of population screening but required the referral of a higher proportion of screen-positive individuals. The sensitivity of endoscopy was particularly low for individuals who had previously been screened.
Collapse
Affiliation(s)
- Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Hui Li
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Kelly J Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Shang-Hang Xie
- Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ann D King
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Qi-Yong H Ai
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wen-Jie Chen
- Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao-Xia Chen
- Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zi-Jian Lu
- Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lin-Quang Tang
- Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lin Wang
- Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chuan-Miao Xie
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China.,Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei Ling
- Sihui Cancer Institute, Sihui, China
| | | | | | - Anna E Coghill
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA.,Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Carole Fakhry
- Johns Hopkins Head and Neck Cancer Center, Baltimore, Maryland, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Yi-Xin Zeng
- Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Su-Mei Cao
- Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
14
|
Identification of anti-Epstein-Barr virus (EBV) antibody signature in EBV-associated gastric carcinoma. Gastric Cancer 2021; 24:858-867. [PMID: 33661412 PMCID: PMC8206016 DOI: 10.1007/s10120-021-01170-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Around 10% of gastric carcinomas (GC) contain Epstein-Barr virus (EBV) DNA. We characterized the GC-specific antibody response to this common infection, which may provide a noninvasive method to detect EBV-positive GC and elucidate its contribution to carcinogenesis. METHODS Plasma samples from EBV-positive (n = 28) and EBV-negative (n = 34) Latvian GC patients were immune-profiled against 85 EBV proteins on a multi-microbial Nucleic Acid Programmable Protein Array (EBV-NAPPA). Antibody responses were normalized for each sample as ratios to the median signal intensity (MNI) across all antigens, with seropositivity defined as MNI ≥ 2. Antibodies with ≥ 20% sensitivity at 95% specificity for tumor EBV status were verified by enzyme-linked immunosorbent assay (ELISA) and validated in independent samples from Korea and Poland (n = 24 EBV-positive, n = 65 EBV-negative). RESULTS Forty anti-EBV IgG and eight IgA antibodies were detected by EBV-NAPPA in ≥ 10% of EBV-positive or EBV-negative GC patients, of which nine IgG antibodies were discriminative for tumor EBV status. Eight of these nine were verified and seven were validated by ELISA: anti-LF2 (odds ratio = 110.0), anti-BORF2 (54.2), anti-BALF2 (44.1), anti-BaRF1 (26.7), anti-BXLF1 (12.8), anti-BRLF1 (8.3), and anti-BLLF3 (5.4). The top three had areas under receiver operating characteristics curves of 0.81-0.85 for distinguishing tumor EBV status. CONCLUSIONS The EBV-associated GC-specific humoral response was exclusively directed against lytic cycle immediate-early and early antigens, unlike other EBV-associated malignancies such as nasopharyngeal carcinoma and lymphoma where humoral response is primarily directed against late lytic antigens. Specific anti-EBV antibodies could have utility for clinical diagnosis, epidemiologic studies, and immune-based precision treatment of EBV-positive GC.
Collapse
|
15
|
Chen GH, Liu Z, Ji MF, Pfeiffer RM, Huang QH, Lu YQ, Xie SH, Lin CY, Chen WJ, Chen XX, Ling W, Fan YY, Yu X, Wu BH, Wei KR, Rao HL, Guo X, Hong MH, Ma J, Liu Q, Hildesheim A, Cao SM. Prospective assessment of a nasopharyngeal carcinoma risk score in a population undergoing screening. Int J Cancer 2021; 148:2398-2406. [PMID: 33285002 DOI: 10.1002/ijc.33424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 12/29/2022]
Abstract
Despite evidence suggesting the utility of Epstein-Barr virus (EBV) markers to stratify individuals with respect to nasopharyngeal carcinoma (NPC) risk in NPC high-risk regions, no validated NPC risk prediction model exists. We aimed to validate an EBV-based NPC risk score in an endemic population undergoing screening for NPC. This prospective study was embedded within an ongoing NPC screening trial in southern China initiated in 2008, with 51 235 adult participants. We assessed the score's discriminatory ability (area under the receiver-operator-characteristics curve, AUC). A new model incorporating the EBV score, sex and family history was developed using logistic regression and internally validated using cross-validation. AUCs were compared. We also calculated absolute NPC risk combining the risk score with population incidence and competing mortality data. A total of 151 NPC cases were detected in 2008 to 2016. The EBV-based score was highly discriminating, with AUC = 0.95 (95% CI = 0.93-0.97). For 90% specificity, the score had 87.4% sensitivity (95% CI = 81.0-92.3%). As specificity increased from 90% to 99%, the positive predictive value increased from 2.4% (95% CI = 1.9-3.0%) to 12.5% (9.9-15.5%). Correspondingly, the number of positive tests per detected NPC case decreased from 272 (95% CI = 255-290) to 50 (41-59). Combining the score with other risk factors (sex, first-degree family history of NPC) did not improve AUC. Men aged 55 to 59 years with the highest risk profile had the highest 5-year absolute NPC risk of 6.5%. We externally validated the discriminatory accuracy of a previously developed EBV score in a high-risk population. Adding nonviral risk factors did not improve NPC prediction.
Collapse
Affiliation(s)
- Geng-Hang Chen
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Ming-Fang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | | | | | - Shang-Hang Xie
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chu-Yang Lin
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jie Chen
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Xia Chen
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Ling
- Sihui Cancer Institute, Sihui, China
| | - Yu-Ying Fan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xia Yu
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Biao-Hua Wu
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Kuang-Rong Wei
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Hui-Lian Rao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiang Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ming-Huang Hong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qing Liu
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Su-Mei Cao
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
16
|
Cao T, Yi SJ, Wang LX, Zhao JX, Xiao J, Xie N, Zeng Z, Han Q, Tang HO, Li YK, Zou J, Wu Q. Identification of the DNA Replication Regulator MCM Complex Expression and Prognostic Significance in Hepatic Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3574261. [PMID: 32964028 PMCID: PMC7499325 DOI: 10.1155/2020/3574261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND The microliposome maintenance (MCM) complex, MCM2-7, is revealed to be involved in multiple cellular processes and plays a key role in the development and progression of human cancers. However, the MCM complex remains poorly elaborated in hepatic carcinoma (HCC). METHODS In the study, we found the mRNA and protein level by bioinformatics. We also explored the prognostic value, genetic alteration, interaction network, and functional enrichment of MCM2-7. The MCM expression and correlation among these MCMs in HCC cell lines were identified by western blot. RESULTS MCM2-7 was significantly increased in HCC tissues compared to normal liver tissues. The high level of MCM2-7 had a positive correlation with poor prognosis. However, MCM2-7 alterations were not correlated with poor OS. MCMs were both increased in HCC cell lines compared to the normal hepatocyte cell line. Furthermore, the positive correlation was found among MCMs in HCC cell lines. CONCLUSIONS The MCM complex was increased in HCC tissues and cell lines and negatively correlated with prognosis, which might be important biomarkers for HCC.
Collapse
Affiliation(s)
- Ting Cao
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Shi-jie Yi
- Department of Gastrointestinal Surgery, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Li-xin Wang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd., Shanghai 201203, China
| | - Juan-xia Zhao
- Department of Pathology, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Jiao Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Ni Xie
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Zhi Zeng
- Department of Pathology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437000, China
| | - Qi Han
- Department of Oncology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437000, China
| | - Hai-ou Tang
- Jishou University College of Medicine, Jishou 416000, China
| | - Yu-kun Li
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China
| | - Juan Zou
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China
| | - Qing Wu
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| |
Collapse
|