1
|
Gotti C, Roux-Dalvai F, Bérubé È, Lacombe-Rastoll A, Leclercq M, Jacob CC, Boissinot M, Martins C, Wijeratne NR, Bergeron MG, Droit A. LC-SRM Combined With Machine Learning Enables Fast Identification and Quantification of Bacterial Pathogens in Urinary Tract Infections. Mol Cell Proteomics 2024; 23:100832. [PMID: 39178943 PMCID: PMC11532907 DOI: 10.1016/j.mcpro.2024.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024] Open
Abstract
Urinary tract infections (UTIs) are a worldwide health problem. Fast and accurate detection of bacterial infection is essential to provide appropriate antibiotherapy to patients and to avoid the emergence of drug-resistant pathogens. While the gold standard requires 24 h to 48 h of bacteria culture prior to MALDI-TOF species identification, we propose a culture-free workflow, enabling bacterial identification and quantification in less than 4 h using 1 ml of urine. After rapid and automatable sample preparation, a signature of 82 bacterial peptides, defined by machine learning, was monitored in LC-MS, to distinguish the 15 species causing 84% of the UTIs. The combination of the sensitivity of the SRM mode on a triple quadrupole TSQ Altis instrument and the robustness of capillary flow enabled us to analyze up to 75 samples per day, with 99.2% accuracy on bacterial inoculations of healthy urines. We have also shown our method can be used to quantify the spread of the infection, from 8 × 104 to 3 × 107 CFU/ml. Finally, the workflow was validated on 45 inoculated urines and on 84 UTI-positive urine from patients, with respectively 93.3% and 87.1% of agreement with the culture-MALDI procedure at a level above 1 × 105 CFU/ml corresponding to an infection requiring antibiotherapy.
Collapse
Affiliation(s)
- Clarisse Gotti
- Computational Biology Laboratory, CHU de Québec - Université Laval Research Center, Québec City, Quebec, Canada; Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, Quebec, Canada
| | - Florence Roux-Dalvai
- Computational Biology Laboratory, CHU de Québec - Université Laval Research Center, Québec City, Quebec, Canada; Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, Quebec, Canada
| | - Ève Bérubé
- Centre de Recherche en Infectiologie de l'Université Laval, Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Antoine Lacombe-Rastoll
- Computational Biology Laboratory, CHU de Québec - Université Laval Research Center, Québec City, Quebec, Canada; Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, Quebec, Canada
| | - Mickaël Leclercq
- Computational Biology Laboratory, CHU de Québec - Université Laval Research Center, Québec City, Quebec, Canada
| | | | - Maurice Boissinot
- Centre de Recherche en Infectiologie de l'Université Laval, Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | | | | | - Michel G Bergeron
- Centre de Recherche en Infectiologie de l'Université Laval, Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Arnaud Droit
- Computational Biology Laboratory, CHU de Québec - Université Laval Research Center, Québec City, Quebec, Canada; Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, Quebec, Canada.
| |
Collapse
|
2
|
Ferrucci V, Miceli M, Pagliuca C, Bianco O, Castaldo L, Izzo L, Cozzolino M, Zannella C, Oglio F, Polcaro A, Randazzo A, Colicchio R, Galdiero M, Berni Canani R, Salvatore P, Zollo M. Modulation of innate immunity related genes resulting in prophylactic antimicrobial and antiviral properties. J Transl Med 2024; 22:574. [PMID: 38886736 PMCID: PMC11184722 DOI: 10.1186/s12967-024-05378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The innate immunity acts during the early phases of infection and its failure in response to a multilayer network of co-infections is cause of immune system dysregulation. Epidemiological SARS-CoV-2 infections data, show that Influenza Virus (FLU-A-B-C) and Respiratory Syncytial Virus (RSV) are co-habiting those respiratory traits. These viruses, especially in children (mostly affected by 'multi-system inflammatory syndrome in children' [MIS-C] and the winter pandemic FLU), in the aged population, and in 'fragile' patients are causing alteration in immune response. Then, bacterial and fungal pathogens are also co-habiting the upper respiratory traits (e.g., Staphylococcus aureus and Candida albicans), thus contributing to morbidity in those COVID-19 affected patients. METHODS Liquid chromatography coupled with high-resolution mass spectrometry using the quadrupole orbital ion trap analyser (i.e., UHPLC-Q-Orbitrap HRMS) was adopted to measure the polyphenols content of a new nutraceutical formula (Solution-3). Viral infections with SARS-CoV-2 (EG.5), FLU-A and RSV-A viruses (as performed in BLS3 authorised laboratory) and real time RT-PCR (qPCR) assay were used to test the antiviral action of the nutraceutical formula. Dilution susceptibility tests have been used to estimate the minimum inhibitory and bactericidal concentration (MIC and MBC, respectively) of Solution-3 on a variety of microorganisms belonging to Gram positive/ negative bacteria and fungi. Transcriptomic data analyses and functional genomics (i.e., RNAseq and data mining), coupled to qPCR and ELISA assays have been used to investigate the mechanisms of action of the nutraceutical formula on those processes involved in innate immune response. RESULTS Here, we have tested the combination of natural products containing higher amounts of polyphenols (i.e., propolis, Verbascum thapsus L., and Thymus vulgaris L.), together with the inorganic long chain polyphosphates 'polyPs' with antiviral, antibacterial, and antifungal behaviours, against SARS-CoV-2, FLU-A, RSV-A, Gram positive/ negative bacteria and fungi (i.e., Candida albicans). These components synergistically exert an immunomodulatory action by enhancing those processes involved in innate immune response (e.g., cytokines: IFNγ, TNFα, IL-10, IL-6/12; chemokines: CXCL1; antimicrobial peptides: HBD-2, LL-37; complement system: C3). CONCLUSION The prophylactic antimicrobial success of this nutraceutical formula against SARS-CoV-2, FLU-A and RSV-A viruses, together with the common bacteria and fungi co-infections as present in human oral cavity, is expected to be valuable.
Collapse
Affiliation(s)
- Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Elysium Cell Bio Ita, Via Gaetano Salvatore 486, 80145, Naples, Italy.
| | - Marco Miceli
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
| | - Orazio Bianco
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Luigi Castaldo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Marica Cozzolino
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Franca Oglio
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Antonio Polcaro
- Polcaro Fitopreparazioni S.R.L, Via Sant Agnello, 9 D; 80030, Roccarainola, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
- UOC of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Roberto Berni Canani
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Elysium Cell Bio Ita, Via Gaetano Salvatore 486, 80145, Naples, Italy.
- DAI Medicina di Laboratorio e Trasfusionale, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
3
|
Cruz S, Abreu D, Gomes R, Martins-Oliveira I, Silva-Dias A, Perez-Viso B, Cantón R, Pina-Vaz C. An improved protocol for bacteria identification by MALDI-TOF MS directly from positive blood cultures. Eur J Clin Microbiol Infect Dis 2024; 43:605-610. [PMID: 38112967 PMCID: PMC10917851 DOI: 10.1007/s10096-023-04725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
FASTinov® developed a rapid antimicrobial susceptibility test that includes the purification of a bacterial suspension directly from positive blood cultures (BC). In order to streamline laboratory workflow, the use of the bacterial suspension obtained through FASTinov® sample prep was tested for identification (ID) by matrix absorption laser deionization-time of flight mass spectrometry (MALDI-TOF MS) (Bruker) in 364 positive BC, and its accuracy assessed comparing with the MALDI-TOF MS ID of the next-day subcultured colonies. FASTinov sample prep was highly reliable for rapid ID directly from BC with proportion of agreement of 94.9% for Gram-positive and 96.3% for Gram-negative bacteria.
Collapse
Affiliation(s)
- Sara Cruz
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | | | | | - Ana Silva-Dias
- FASTinov SA, Porto, Porto, Portugal
- CINTESIS-Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Blanca Perez-Viso
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Cidália Pina-Vaz
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.
- FASTinov SA, Porto, Porto, Portugal.
| |
Collapse
|
4
|
Pham ML, Van Horn K, Zarate E, Pickering E, Murphy C, Bryant K. A multicenter evaluation of Copan's Colibrí™, an automated instrument for MALDI TOF MS target application for bacterial identification. Diagn Microbiol Infect Dis 2024; 108:116098. [PMID: 37890307 DOI: 10.1016/j.diagmicrobio.2023.116098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
The Colibrí™ is a new instrument that automates picking and placement of colonies on target plates for MALDI identification. This study compared the performance of the Colibrí™ to standard manual spotting using the VITEK® MS for bacterial identification. Colonies were selected from cultures of urine, wound, respiratory, and positive blood cultures. The Colibrí™ sampled the colonies, transferred them to a MALDI target slide, and overlayed each spot with matrix. Manual spotting was then performed using the same or similar colonies. A total of 444 bacteria were compared. Identification was achieved with both methods for 432 organisms with only 2 discrepant results, overall agreement of 99.54%. Twelve organisms (2.70%) gave no identification using Colibrí™. The Colibrí™ provides automation to a manual process with a high accuracy. Use of the Colibrí™ instrumentation provides an opportunity to reallocate technologist time to more complicated tasks and provides complete traceability from plating to organism identification.
Collapse
Affiliation(s)
- My Lien Pham
- Kaiser Permanente, Southern California Permanente Medical Group, Regional Reference Laboratories, Chino Hills, CA, USA
| | - Kenneth Van Horn
- Kaiser Permanente, Southern California Permanente Medical Group, Regional Reference Laboratories, Chino Hills, CA, USA.
| | | | | | | | - Kendall Bryant
- Kaiser Permanente, Airport Way Regional Laboratory, Portland, OR, USA
| |
Collapse
|
5
|
Smith RD, Johnson JK, Ernst RK. Comparison of 3 diagnostic platforms for identification of bacteria and yeast from positive blood culture bottles. Diagn Microbiol Infect Dis 2023; 107:116018. [PMID: 37478505 DOI: 10.1016/j.diagmicrobio.2023.116018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/26/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023]
Abstract
Managing bloodstream infections requires fast and accurate diagnostics. Culture-based diagnostic methods for identification from positive blood culture require 24-hour subculture, potentially delaying time to appropriate therapy. Positive blood cultures were collected (n = 301) from September 2021 to August 2022 at the University of Maryland Medical Center. Platforms compared were BioFire® BCID2, Sepsityper®, and short-term culture. For monomicrobial cultures, FilmArray® BCID2 identified 88.3% (241/273) of pathogens. Rapid Sepsityper® identified 76.9% (210/273) of pathogens. Sepsityper® extraction identified 82.4% (225/273) of pathogens. Short-term culture identified 83.5% (228/273) of pathogens. For polymicrobial cultures, Sepsityper®, short-term culture, and BioFire® BCID2 had complete identifications at 10.7% (3/28), 0%, and 92.9% (26/28), respectively. Time-to-results for Rapid Sepsityper®, Sepsityper® extraction, BioFire® BCID2, and Short-term culture were 35, 52, 65, and 306 minutes, respectively. Performance of these platforms can reduce time-to-results and may help effectively treat bloodstream infections faster. Accuracy, time-to-result, and hands-on time are important factors when evaluation diagnostic platforms.
Collapse
Affiliation(s)
- Richard D Smith
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD, USA; Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA.
| | - J Kristie Johnson
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
6
|
Li S, Han D, Chen X, Zheng D, Cai Y, Lin D, Zhang X, Ke P, Qu P, Chen C. Evaluation of the Zybio EXS3000 mass spectrometry in routine identification of Clinical isolates. Heliyon 2023; 9:e18990. [PMID: 37600400 PMCID: PMC10432711 DOI: 10.1016/j.heliyon.2023.e18990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
The matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been widely applied in routine clinical microbiology laboratories as an efficient and reliable technique for diagnostic purpose. In this work, we evaluated the performance of the newly developed Zybio EXS3000 (Zybio Inc., China) in microbial identification and compared it with VITEK MS (bioMérieux, France). For this study, a total of 1340 isolates from various clinical specimens were collected. These isolates were analyzed simultaneously on both EXS3000 and VITEK MS. The inconsistent or unidentifiable data were further identified using the help of either 16S rRNA gene or ITS region sequencing. During the study, we observed that EXS3000 and VITEK MS provided positive confirmatory diagnostics for 95.0% and 96.5% of the isolates, respectively, which were consistent with the sequencing results. However, it is worth noting that the EXS3000 system needs to improve the identification performance of Candida albicans in the follow-up. There are no significant differences between the two devices in terms of microbial identification performance. The advantage of EXS3000 over VITEK MS is in its ability to perform in significantly lesser time period. In conclusion, the results of this investigation showed that EXS3000 can be used to identify microorganisms in clinical microbiology laboratories.
Collapse
Affiliation(s)
- Song Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Dexing Han
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaowei Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dexiang Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yimei Cai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Dongling Lin
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xuan Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Peifeng Ke
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Pinghua Qu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Cha Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Póvoa P, Bos LDJ, Coelho L. The role of proteomics and metabolomics in severe infections. Curr Opin Crit Care 2022; 28:534-539. [PMID: 35942690 DOI: 10.1097/mcc.0000000000000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Severe infections are a common cause of ICU admission, with a high morbidity and mortality. Omics, namely proteomics and metabolomics, aim to identify, characterize, and quantify biological molecules to achieve a systems-level understanding of disease. The aim of this review is to provide a clear overview of the current evidence of the role of proteomics and metabolomics in severe infections. RECENT FINDINGS Proteomics and metabolomics are technologies that are being used to explore new markers of diagnosis and prognosis, clarify mechanisms of disease, and consequently discover potential targets of therapy and finally of a better disease phenotyping. These technologies are starting to be used but not yet in clinical use. SUMMARY Our traditional way of approaching the disease as sepsis is believing that a process can be broken into its parts and that the whole can be explained by the sum of each part. This approach is highly reductionist and does not take the system complexity nor the nonlinear dynamics of the processes. Proteomics and metabolomics allow the analysis of several proteins and metabolites simultaneously, thereby generating diagnostic and prognostic signatures. An exciting future prospect for proteomics and metabolomics is their employment towards precision medicine.
Collapse
Affiliation(s)
- Pedro Póvoa
- NOVA Medical School, CHRC, New University of Lisbon
- Polyvalent Intensive Care Unit, Hospital de São Francisco Xavier, CHLO, Lisbon, Portugal
- Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark
| | - Lieuwe D J Bos
- Intensive Care, Infection and Immunity
- Department of Respiratory Medicine, Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Luís Coelho
- NOVA Medical School, CHRC, New University of Lisbon
- Polyvalent Intensive Care Unit, Hospital de São Francisco Xavier, CHLO, Lisbon, Portugal
| |
Collapse
|
8
|
Hilt EE, Ferrieri P. Next Generation and Other Sequencing Technologies in Diagnostic Microbiology and Infectious Diseases. Genes (Basel) 2022; 13:genes13091566. [PMID: 36140733 PMCID: PMC9498426 DOI: 10.3390/genes13091566] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have become increasingly available for use in the clinical microbiology diagnostic environment. There are three main applications of these technologies in the clinical microbiology laboratory: whole genome sequencing (WGS), targeted metagenomics sequencing and shotgun metagenomics sequencing. These applications are being utilized for initial identification of pathogenic organisms, the detection of antimicrobial resistance mechanisms and for epidemiologic tracking of organisms within and outside hospital systems. In this review, we analyze these three applications and provide a comprehensive summary of how these applications are currently being used in public health, basic research, and clinical microbiology laboratory environments. In the public health arena, WGS is being used to identify and epidemiologically track food borne outbreaks and disease surveillance. In clinical hospital systems, WGS is used to identify multi-drug-resistant nosocomial infections and track the transmission of these organisms. In addition, we examine how metagenomics sequencing approaches (targeted and shotgun) are being used to circumvent the traditional and biased microbiology culture methods to identify potential pathogens directly from specimens. We also expand on the important factors to consider when implementing these technologies, and what is possible for these technologies in infectious disease diagnosis in the next 5 years.
Collapse
|
9
|
Molecular Typing, Antibiotic Resistance and Enterotoxin Gene Profiles of Staphylococcus aureus Isolated from Humans in South Korea. Microorganisms 2022; 10:microorganisms10030642. [PMID: 35336216 PMCID: PMC8952563 DOI: 10.3390/microorganisms10030642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence of antimicrobial-resistant Staphylococcus aureus has become a grave concern worldwide. In this study, 95 strains of S. aureus isolated from stool samples were collected from Busan, South Korea to characterize their antimicrobial susceptibility, enterotoxin genes, and molecular typing using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and random amplification of polymorphic DNA (RAPD) assay. Only two strains showed no drug resistance, whereas resistance to three or more antibiotics was observed in 87.4% of strains. Ampicillin resistance was the most common at 90% and all strains were susceptible to vancomycin. The distribution of enterotoxin genes encoded in isolates was sea (32.6%), sec (11.6%), seg (19%), sea & sec (2.1%), and sec & seg (34.7%). Molecular typing using both MALDI-TOF MS and RAPD indicated that S. aureus exhibited diverse clonal lineages and no correlations were observed among the profiling of enterotoxin, MALDI-TOF MS, and RAPD. This investigation provides useful information on foodborne pathogenic S. aureus that has a significant public health impact in South Korea.
Collapse
|
10
|
Microbial Reduction of Fumonisin B1 by the New Isolate Serratia marcescens 329-2. Toxins (Basel) 2021; 13:toxins13090638. [PMID: 34564642 PMCID: PMC8473028 DOI: 10.3390/toxins13090638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
The mycotoxin fumonisin (FB) has become a major problem in maize products in southeastern Asia. Fumonisin can affect the health of humans and many animals. Fumonisin contamination can be reduced by detoxifying microbial enzyme. Screening of 95 potent natural sources resulted in 5.3% of samples yielding a total of five bacterial isolates that were a promising solution, reducing approximately 10.0-30.0% of fumonisin B1 (FB1). Serratia marcescens, one of the dominant degrading bacteria, was identified with Gram staining, 16S rRNA gene, and MALDI-TOF/TOF MS. Cell-free extract showed the highest fumonisin reduction rates, 30.3% in solution and 37.0% in maize. Crude proteins from bacterial cells were analyzed with a label-free quantification technique. The results showed that hydrolase enzymes and transferase enzymes that can cooperate in the fumonisin degradation process were highly expressed in comparison to their levels in a control. These studies have shown that S. marcescens 329-2 is a new potential bacterium for FB1 reduction, and the production of FB1-reducing enzymes should be further explored.
Collapse
|
11
|
Lopes CE, De Carli S, Riboldi CI, De Lorenzo C, Panziera W, Driemeier D, Siqueira FM. Pet Pyometra: Correlating Bacteria Pathogenicity to Endometrial Histological Changes. Pathogens 2021; 10:pathogens10070833. [PMID: 34357983 PMCID: PMC8308915 DOI: 10.3390/pathogens10070833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Pyometra is a life-threatening infectious disease that frequently affects bitches and queens. Although histopathological patterns of pyometra have been extensively explored, the microbiological aspects, such as bacteria pathogenicity, have not been correlated to microscopy endometrial lesions so far. In this study, these two pathological aspects of pyometra were analysed and correlated. Uterus fragments and intrauterine content samples were collected from pets diagnosed with pyometra (30) and submitted to histopathology analysis and bacterial culture, respectively. The degree of endometrial histopathological lesions in pyometra cases were classified as mild, moderate and severe. Thirty different bacteria isolates were identified from intrauterine content culture. Escherichia coli (E. coli) was pure isolated in 57.7% and highly related to severe endometrial lesions. Immunohistochemistry assay revealed the adhesion and invasion of this bacteria agent to the injured endometrium. Virulence aspects of these E. coli strains were explored, demonstrating biofilm formation ability and a set of virulence genes in most isolates. These results support the adaptive genetic and phenotypic advantages of E. coli for uterus infection, and justify the high frequency of this agent involved in pyometra cases.
Collapse
Affiliation(s)
- Cassiane Elisabete Lopes
- Laboratory of Veterinary Bacteriology, Veterinary School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91540-000, Brazil; (C.E.L.); (S.D.C.); (C.I.R.)
| | - Silvia De Carli
- Laboratory of Veterinary Bacteriology, Veterinary School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91540-000, Brazil; (C.E.L.); (S.D.C.); (C.I.R.)
| | - Camila Imperico Riboldi
- Laboratory of Veterinary Bacteriology, Veterinary School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91540-000, Brazil; (C.E.L.); (S.D.C.); (C.I.R.)
| | - Cíntia De Lorenzo
- Laboratory of Veterinary Pathology, Veterinary School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91540-000, Brazil; (C.D.L.); (W.P.); (D.D.)
| | - Welden Panziera
- Laboratory of Veterinary Pathology, Veterinary School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91540-000, Brazil; (C.D.L.); (W.P.); (D.D.)
| | - David Driemeier
- Laboratory of Veterinary Pathology, Veterinary School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91540-000, Brazil; (C.D.L.); (W.P.); (D.D.)
| | - Franciele Maboni Siqueira
- Laboratory of Veterinary Bacteriology, Veterinary School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91540-000, Brazil; (C.E.L.); (S.D.C.); (C.I.R.)
- Correspondence: ; Tel.: +55-51-33086115
| |
Collapse
|
12
|
Molecular Characterization and Biofilm Formation Study of Contaminant Bacteria Isolated from Domiaty and Hungarian Cheeses in Jeddah City. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim was to study the microbiological quality of Domiaty and Hungarian cheeses, molecular identification and biofilm formation of some selected contaminant bacteria. Samples were collected from two M and P big markets in Jeddah City through the period from February to October 2018, nine visits for two types of natural cheese. Results showed that the total bacterial counts (CFU/ml) from Domiaty cheese from two markets (M and P) were 0.1 x 105, 8 x 105 and 1 x 10 5 CFU/ml respectively (3 visits of M market) and 4 x 106, 0.4 x 106, 6.5 x 103, 1 x 103, 0.1 x 103 and 0.1 x 103 CFU/ml respectively (six samples from 6 visits from P market). Results showed that the total bacterial counts (CFU/ml) from Hungarian cheese were 1.5 x 10 5, 1x 10 4, 11 x 10 4 and 4 x10 6 CFU/ml respectively from (4 visits of M market) and 0.18 x 104, 3 x 106, 22 x 106, 6 x 106 and 5 x 104 CFU/ml respectively (5 visits from P market).Different bacterial isolates from cheese were identified by morphology and biochemical test. Bacterial isolates from cheeses were identified by VITEK MS as follow: Serratia liquefaciens (D6-1, D6-2, D14-1, D13-1 and D13-2), and Pseudomonas fluorescens (D14-2) were isolated from Domiaty cheese while Enterococcus faecium (H11-2), Serratia liquefaciens (H15-1) and Streptococcus thermophilus (H14-1) were isolated from Hungarian cheese. Some selected bacterial isolates were identified by 16S rRNA. Isolates were belong to MK757978 (Raoultilla terrigena (D15-1)), MK757979 (Bacillus cereus (D16-1)), MK757980 (Enterococcus faecalis (H10-2)), MK757982 (Enterococcus fiscalism (H11-1)), MK757981 (Serratia liquefactions (H13-1)), MK757984 (Anoxybacillus flavithermus (H17-1). All bacterial isolates have been tested for the formation of biofilm using a Tissue Culture Plate (TCP). Results revealed 12.5% and 46.15% of high biofilm formation respectively for bacterial isolates of Domiaty and Hungarian cheeses.
Collapse
|
13
|
Kasas S, Malovichko A, Villalba MI, Vela ME, Yantorno O, Willaert RG. Nanomotion Detection-Based Rapid Antibiotic Susceptibility Testing. Antibiotics (Basel) 2021; 10:287. [PMID: 33801939 PMCID: PMC7999052 DOI: 10.3390/antibiotics10030287] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 01/04/2023] Open
Abstract
Rapid antibiotic susceptibility testing (AST) could play a major role in fighting multidrug-resistant bacteria. Recently, it was discovered that all living organisms oscillate in the range of nanometers and that these oscillations, referred to as nanomotion, stop as soon the organism dies. This finding led to the development of rapid AST techniques based on the monitoring of these oscillations upon exposure to antibiotics. In this review, we explain the working principle of this novel technique, compare the method with current ASTs, explore its application and give some advice about its implementation. As an illustrative example, we present the application of the technique to the slowly growing and pathogenic Bordetella pertussis bacteria.
Collapse
Affiliation(s)
- Sandor Kasas
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- Unité Facultaire d’Anatomie et de Morphologie (UFAM), CUMRL, University of Lausanne, 1005 Lausanne, Switzerland
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Anton Malovichko
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Maria Ines Villalba
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - María Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, and CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina;
| | - Osvaldo Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina;
| | - Ronnie G. Willaert
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
- Research Group Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
14
|
Siqueira FM, De Carli S, Lopes CE, Machado L, Vieira TR, Pöppl ÁG, Cardoso MRI, Zaha A. Non-lactose-fermenting uropathogenic Escherichia coli from dogs: virulence profile characterization. Lett Appl Microbiol 2021; 72:596-603. [PMID: 33524173 DOI: 10.1111/lam.13454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/30/2022]
Abstract
Non-lactose-fermenting Escherichia coli (NLFEC) has a few descriptive studies restricted to human infections. In the present study, isolates of NLFEC obtained from urine samples of dogs with hyperadrenocorticism were characterized regarding their virulence ability, biofilm formation capacity and antimicrobial susceptibility profile. Escherichia coli lactose-fermenting strains from urinary infection in dogs with the same conditions were analysed to provide comparisons. The non-lactose-fermenting E. coli strains were classified as belonging to clade I E. coli, whereas the lactose-fermenting strains were classified in phylogroup B2. All strains presented virulence markers to adhesion, iron acquisition, toxins, colicin and cytotoxin production, and biofilm regulation. Components of the extracellular matrix in addition to the in vitro biofilm formation ability were observed in the strains. Multidrug resistance (MDR) profiles were observed by in vitro susceptibility tests to all NLFEC strains. In summary, non-lactose-fermenting uropathogenic E. coli from dogs behaves similar to lactose-fermenting E. coli, exhibiting MDR profile, and pathogenic potential of promote animal infections.
Collapse
Affiliation(s)
- F M Siqueira
- Laboratory of Veterinary Bacteriology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - S De Carli
- Laboratory of Veterinary Bacteriology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - C E Lopes
- Laboratory of Veterinary Bacteriology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - L Machado
- Veterinary Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - T R Vieira
- Laboratory of Veterinary Preventive Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Á G Pöppl
- Veterinary Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - M R I Cardoso
- Laboratory of Veterinary Preventive Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - A Zaha
- Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Review on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the rapid screening of microbial species: A promising bioanalytical tool. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Sateriale D, Imperatore R, Colicchio R, Pagliuca C, Varricchio E, Volpe MG, Salvatore P, Paolucci M, Pagliarulo C. Phytocompounds vs. Dental Plaque Bacteria: In vitro Effects of Myrtle and Pomegranate Polyphenolic Extracts Against Single-Species and Multispecies Oral Biofilms. Front Microbiol 2020; 11:592265. [PMID: 33224129 PMCID: PMC7674652 DOI: 10.3389/fmicb.2020.592265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
In the last decades, resistant microbial infection rate has dramatically increased, especially infections due to biofilm-producing strains that require increasingly complex treatments and are responsible for the increased mortality percentages compared with other infectious diseases. Considering that biofilms represent a key factor for a wide range of chronic infections with high drug tolerance, the treatment of biofilm-causing bacterial infections represents a great challenge for the future. Among new alternative strategies to conventional antimicrobial agents, the scientific interest has shifted to the study of biologically active compounds from plant-related extracts with known antimicrobial properties, in order to also evaluate their antibiofilm activity. In this regard, the aim of this study has been to assess the antibiofilm activity of polyphenolic extracts from myrtle leaf and pomegranate peel against oral pathogens of dental plaque, an excellent polymicrobial biofilm model. In particular, the in vitro antibiofilm properties of myrtle and pomegranate extracts, also in binary combination, were highlighted. In addition to inhibiting the biofilm formation, the tested polyphenolic extracts have been proven to destroy both preformed single-species and multispecies biofilms formed by Streptococcus mutans, Streptococcus oralis, Streptococcus mitis, and Rothia dentocariosa oral isolates, suggesting that the new natural sources are rich in promising compounds able to counteract biofilm-related infections.
Collapse
Affiliation(s)
- Daniela Sateriale
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Roberta Imperatore
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Ettore Varricchio
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | | | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
- CEINGE, Advanced Biotechnologies s.c.ar.l., Naples, Italy
| | - Marina Paolucci
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Caterina Pagliarulo
- Department of Science and Technology, University of Sannio, Benevento, Italy
| |
Collapse
|
17
|
Brockmann M, Aupperle-Lellbach H, Gentil M, Heusinger A, Müller E, Marschang RE, Pees M. Challenges in microbiological identification of aerobic bacteria isolated from the skin of reptiles. PLoS One 2020; 15:e0240085. [PMID: 33075077 PMCID: PMC7571677 DOI: 10.1371/journal.pone.0240085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Bacterial pathogens are often involved in dermatitis in reptiles. Exact identification of reptile-specific but otherwise uncommon bacterial species may be challenging. However, identification is crucial to evaluate the importance of the detected bacterial species. OBJECTIVE The aim of this study was to assess the number of aerobic bacterial isolates cultured from skin-derived samples of reptiles which were not reliably identified by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS), and to determine their identity. MATERIAL AND METHODS Routine bacterial diagnostics were performed on 235 skin samples, and 417 bacterial isolates were analysed by MALDI-TOF MS. The isolates were grouped into categories based on their first score: category I (≥ 2.00), category II (≥ 1.70 and < 2.00), and category III (< 1.70). Isolates from category III were further investigated by 16S rRNA gene sequencing and the following criteria were applied: query cover 100%, e-value rounded to 0.0 and sequence identity (%) > 98.00% for genus identification, and > 99.00% for species identification. RESULTS The majority of bacterial isolates were in category I (85.1%) or category II (8.4%). In category III (6.5%) results achieved at first by MALDI-TOF MS corresponded to the results of the molecular analysis in 8.0% of isolates at the species level and in 24.0% at the genus level. Bacterial isolates classified as category III were heterogenic in genus (e.g. Chryseobacterium, Devriesea, Pseudomonas, Staphylococcus, Uruburuella), and some have only been described in reptiles so far. CONCLUSIONS Most of the aerobic bacterial isolates cultured from reptile skin achieved high scores by MALDI-TOF MS. However, in the majority of category III isolates MALDI-TOF MS results were different from those of the molecular analysis. This strengthens the need to carefully examine low-scored results for plausibility and to be familiar with the occurrence and morphology of relevant reptile-specific bacterial species (e.g. Devriesea agamarum) as well as with the limits of the database used.
Collapse
MESH Headings
- Animals
- Bacteria, Aerobic/chemistry
- Bacteria, Aerobic/genetics
- Bacteria, Aerobic/isolation & purification
- Gram-Negative Bacteria/genetics
- Gram-Negative Bacteria/isolation & purification
- Gram-Negative Bacteria/metabolism
- Gram-Positive Bacteria/genetics
- Gram-Positive Bacteria/isolation & purification
- Gram-Positive Bacteria/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Reptiles/microbiology
- Skin/microbiology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael Pees
- Clinic for Birds and Reptiles, University of Leipzig, Leipzig, Germany
| |
Collapse
|
18
|
İlki AA, Özsoy S, Gelmez G, Aksu B, Söyletir G. An alternative for urine cultures: Direct identification of uropathogens from urine by MALDI-TOF MS. Acta Microbiol Immunol Hung 2020; 67:193-197. [PMID: 32976114 DOI: 10.1556/030.2020.01184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 11/19/2022]
Abstract
Urinary tract infections are one of the most common bacterial infections and rapid diagnosis of the infection is essential for appropriate antibiotic therapy. The goal of our study was to identify urinary pathogens directly by MALDI-TOF MS and to perform antibiotic susceptibility tests in order to shorten the period spent for culturing.Urine samples submitted for culture to the Clinical Microbiology Laboratory were enrolled in this study. Urine samples were screened for leukocyte and bacteria amount by flow cytometry. Samples with bacterial load of 106-107/mL were tested directly by MALDI-TOF MS and antibiotic susceptibility tests (AST) were performed.In total, 538 positive urine samples were evaluated in our study. MALDI-TOF MS identified the microorganism directly from the urine sample in 91.8% of these samples and the concordance rate of conventional identification and direct detection was 95.8% for Gram-negatives at the genus and species level. Escherichia coli (n:401) was the most frequently isolated microorganism, followed by Klebsiella pneumoniae (n:57). AST results were generated for 111 of these urine samples and the concordance was 90% and 87% for E. coli and K. pneumoniae, respectively.Our results showed that screening of urine samples with flow cytometry to detect positive samples and identification of uropathogens directly by MALDI-TOF MS with an accuracy of over 90% can be a suitable method particularly for Gram-negative bacteria in clinical microbiology laboratories.
Collapse
Affiliation(s)
| | - Sevim Özsoy
- Department of Medical Microbiology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Gulşen Gelmez
- Department of Medical Microbiology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Burak Aksu
- Department of Medical Microbiology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Güner Söyletir
- Department of Medical Microbiology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
19
|
Nybakken EJ, Oppegaard O, Gilhuus M, Jensen CS, Mylvaganam H. Identification of Streptococcus dysgalactiae using matrix-assisted laser desorption/ionization-time of flight mass spectrometry; refining the database for improved identification. Diagn Microbiol Infect Dis 2020; 99:115207. [PMID: 33069003 DOI: 10.1016/j.diagmicrobio.2020.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 10/23/2022]
Abstract
Matrix-assisted laser desorption/ionization time of flight (MALDI-ToF) has revolutionized bacterial identification. However, the phylogenetic resolution is still insufficient for discerning several β-haemolytic streptococcal species. We aimed to improve the diagnostic performance of MALDI-ToF through manual curation of the reference spectra in Brukers Compass Library DB-7854. Before intervention, only 133 out of 217 (62%) Streptococcus dysgalactiae isolates were successfully identified to the species level, 83 isolates were identified to the genus level as either S. dysgalactiae, S. pyogenes or S. canis, and one S. dysgalactiae isolate was wrongly identified as S. canis. All 109 S. canis isolates were successfully identified to the species level. Removal of three reference spectra from the database significantly improved the identification of S. dysgalactiae to 94%, without compromising identification of S. canis. This illustrates the advantage of refinement of the reference database in order to improve the analytic precision of MALDI-ToF.
Collapse
Affiliation(s)
- Eirik Jovall Nybakken
- Department of Microbiology, P.b. 1400, Haukeland University Hospital, 5021, Bergen, Norway.
| | - Oddvar Oppegaard
- Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway
| | | | | | - Haima Mylvaganam
- Department of Microbiology, Haukeland University Hospital, 5021, Bergen, Norway
| |
Collapse
|
20
|
Characterization of Lactic Acid Bacteria in Raw Buffalo Milk: a Screening for Novel Probiotic Candidates and Their Transcriptional Response to Acid Stress. Probiotics Antimicrob Proteins 2020; 13:468-483. [PMID: 32829420 DOI: 10.1007/s12602-020-09700-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lactic acid bacteria (LAB) are important microorganisms for the food industry due to their functional activity, as starters and potential probiotic strains. With that in mind, we explored the LAB diversity in raw buffalo milk, screening for novel potential probiotic strains. A total of 11 strains were identified by combination of MALDI-TOF and partial 16S rDNA sequencing and selected as potential probiotic candidates. Bacteria innocuity assessment was performed by determining antimicrobial susceptibility and the presence of virulence factors. Antagonism activity against Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes and Staphylococcus aureus was assessed, as well as milk proteolytic activity and exopolysaccharides production. Seven strains were identified as innocuous and two of them, Lactobacillus rhamnosus LB1.5 and Lactobacillus paracasei LB6.4 were selected for further probiotic potential analyses. Both strains demonstrated adhesion ability to Caco-2 cells, coaggregated with S. aureus and E. coli and maintained cell viability after gastrointestinal simulation in vitro, suggesting their probiotic potential. Furthermore, the transcriptional response of Lact. rhamnosus LB1.5 and Lact. paracasei LB6.4 to in vitro acid stress was assessed by RT-qPCR targeting seven genes related to adhesion, aggregation, stress tolerance, DNA repair and central metabolism. The association between the transcriptional responses and the maintenance of cell viability after gastrointestinal simulation highlights the genetic ability as probiotic of the two selected strains. Finally, we have concluded that Lact. rhamnosus LB1.5 and Lact. paracasei LB6.4 are important probiotic candidates to further in vivo studies.
Collapse
|
21
|
Sun C, Zhang X, Wang J, Cheng C, Kang H, Gu B, Ma P. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with UF-5000i urine flow cytometry to directly identify pathogens in clinical urine specimens within 1 hour. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:602. [PMID: 32566628 PMCID: PMC7290531 DOI: 10.21037/atm.2019.10.73] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Urinary tract infection (UTI) is one of the most common hospital-associated infectious. The traditional laboratory diagnosis method for UTI requires at least 24 hours, and it cannot provide the etiology basis for the clinic in time. The aim of our study is to develop a new method for pathogenic diagnosis of UTI by combining matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and UF-5000i from urine samples directly within 1 hour. Methods A total of 1,503 urine samples were collected from patients suggesting symptoms of UTI from August 2018 to January 2019. Each of these samples was divided into three aliquots. The first aliquot was used for conventional cleaning mid-stream urine culture; the second one for UF-5000i analysis to screen out the bacterial counts, which were more than 1×105 bacteria/mL. The third one was processed to bacterial purification and directly identified by the MALDI-TOF MS. Results In our study, 296 of 1,503 urine specimens were screened out by UF-5000i (bacterial pellets counts ≥105/mL). Compared the conventional culture-dependent method, the results of our methods were consistent in 249 of 263 (94.7%) cases, and they were both single-microorganism. Among 249 credible results, species-level identification (score ≥2.0) was contained 233 (233/249. 93.6%), 16 (16/249, 6.4%) samples scored between 1.7 and 1.99, and 14 (14/249, 5.6%) samples scored <1.7 or no peaks found. When there were 2 different kinds of bacteria in the urine, the result of MALDI-TOF MS was unreliable. Conclusions MALDI-TOF MS combined with UF-5000i to identify the pathogenic bacteria in urine directly is a novel and reliable method and saves at least 23 hours relative to the current routine conventional method. Thus its rapid and accurate detection may provide the basis of etiology for clinical diagnosis of UTIs efficiently.
Collapse
Affiliation(s)
- Chuang Sun
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Xiao Zhang
- Department of Laboratory Medicine, Suzhou Ninth People's Hospital, Suzhou 215200, China
| | - Jingqiao Wang
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Chen Cheng
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China
| | - Haiquan Kang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Ping Ma
- Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
22
|
Carretero-Vicario O, Taravillo I, Corbella L, Catalan M, Garfia C, Martinez MT, Chaves F, Orellana MA. Shigella sonnei bacteraemia in a cystic fibrosis patient: case report and literature review. Access Microbiol 2020; 2:acmi000102. [PMID: 34568758 PMCID: PMC8459098 DOI: 10.1099/acmi.0.000102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/12/2019] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Irene Taravillo
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Laura Corbella
- Unit of Infectious Diseases, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Mercedes Catalan
- Intensive Medicine Service, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Cristina Garfia
- Unit of Cystic Fibrosis, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - M. Teresa Martinez
- Unit of Cystic Fibrosis, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fernando Chaves
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
- Department of Microbiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - M. Angeles Orellana
- Department of Microbiology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
23
|
Almuzara M, V. Cárdenas KC, Barberis C, Ramirez MS, Famiglietti A, Vay C. Performance of MALDI-TOF Mass Spectrometry for the Identification of the HACEK Group and Other Fastidious Gram-Negative Rods. Open Microbiol J 2019. [DOI: 10.2174/1874285801913010125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective:
The aim of this study was to determine the capacity of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) to identify 155 HACEK clinical isolates and other fastidious or infrequently isolated Gram-negative rods (e.g., Actinobacillus, Capnocytophaga, Pasteurella, Neisseria, Moraxella, Dysgonomonas, among others).
Methods:
All the isolates were identified by standard biochemical tests and MALDI-TOF MS. Two different extraction methods (direct transfer formic acid method on spot and ethanol formic acid extraction method) and different cut-offs for genus/specie level identification were used. MALDI-TOF MS identification was considered correct when the result obtained from the MS database agreed with the phenotypic identification result.
When both the methods gave discordant results, the 16S rDNA gene sequencing was considered as the gold standard identification method.
Results:
Employing the score cut-offs suggested by the manufacturer, 93.55% and 69.03% isolates were correctly identified at the genus and species level, respectively. On the contrary , employing lower cut-off scores for identification, 98.06% and 92.09% isolates were properly identified at the genus and species level respectively and no significant differences between the results obtained with two extraction methods were observed .
Conclusion:
The accurate identification of 14 genera showed the reliability of MALDI-TOF MS as an optional methodology to the routine identification methods currently used in laboratories.
Collapse
|
24
|
Rocca MF, Barrios R, Zintgraff J, Martínez C, Irazu L, Vay C, Prieto M. Utility of platforms Viteks MS and Microflex LT for the identification of complex clinical isolates that require molecular methods for their taxonomic classification. PLoS One 2019; 14:e0218077. [PMID: 31269022 PMCID: PMC6608940 DOI: 10.1371/journal.pone.0218077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/09/2019] [Indexed: 01/21/2023] Open
Abstract
Mass spectrometry has revolutionized the clinical microbiology field in America’s and Europe’s industrialized countries, for being a fast, reliable and inexpensive technique. Our study is based on the comparison of the performance of two commercial platforms, Microflex LT (Bruker Daltonics, Bremen, Germany) and Vitek MS (bioMérieux, Marcy l´Etoile, France) for the identification of unusual and hard-to-diagnose microorganisms in a Reference Laboratory in Argentina. During a four-month period (February–May 2018) the diagnostic efficiency and the concordance between both systems were assessed, and the results were compared with the polyphasic taxonomic identification of all isolates. The study included 265 isolates: 77 Gram-Negative Bacilli, 33 Gram-Positive Cocci, 40 Anaerobes, 35 Actinomycetales, 19 Fastidious Microorganisms and 61 Gram-Positive Bacilli. All procedures were practiced according to the manufacturer’s recommendations in each case by duplicate, and strictly in parallel. Other relevant factors, such as the utility of the recommended extraction protocols, reagent stability and connectivity were also evaluated. Both systems correctly identified the majority of the isolates to species and complex level (82%, 217/265). Vitex MS achieved a higher number of correct species-level identifications between the gram-positive microorganisms; however, it presented greater difficulty in the identification of non-fermenting bacilli and a higher number of incorrect identifications when the profile of the microorganism was not represented in the commercial database. Both platforms showed an excellent performance on the identification of anaerobic bacteria and fastidious species. Both systems enabled the fast and reliable identification of most of the tested isolates and were shown to be very practical for the user.
Collapse
Affiliation(s)
- María Florencia Rocca
- Laboratorio Bacteriología Especial, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas (INEI)–Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| | - Rubén Barrios
- Laboratorio de Bacteriología, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jonathan Zintgraff
- Laboratorio Bacteriología Clínica, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas (INEI)–Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Claudia Martínez
- Laboratorio Bacteriología Especial, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas (INEI)–Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía Irazu
- Instituto Nacional de Enfermedades Infecciosas (INEI)–Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlos Vay
- Instituto de Fisiopatología y Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mónica Prieto
- Laboratorio Bacteriología Especial, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas (INEI)–Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
25
|
Rotcheewaphan S, Lemon JK, Desai UU, Henderson CM, Zelazny AM. Rapid one-step protein extraction method for the identification of mycobacteria using MALDI-TOF MS. Diagn Microbiol Infect Dis 2019; 94:355-360. [PMID: 31053254 DOI: 10.1016/j.diagmicrobio.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 11/19/2022]
Abstract
Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry is a quick and accurate method for mycobacterial identification from protein extracts. Our new one-step extraction method successfully reduced routine multistep extraction procedure time from over 60 min to under 10 min and used only 1 μL loopful of mycobacteria while providing clinically acceptable identification scores (≥1.8). Overall, 86.8% and 4.4% of mycobacteria isolates (n = 68) were identified to the species/complex and genus levels, respectively, by one-step loop extraction method, comparable to the routine extraction method. Viability studies confirmed killing of mycobacterial isolates after 5 min in the extraction solution replacing lengthy heat killing step. Retrospective 7-month data analysis showed 100% of rapidly and slowly growing mycobacterial isolates were identified to the species/complex level by rapid extraction methods. Our rapid extraction methods substantially reduced processing time and microbial biomass required for testing without sacrificing quality and accuracy of mycobacterial identification.
Collapse
Affiliation(s)
- Suwatchareeporn Rotcheewaphan
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jamie K Lemon
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Uma U Desai
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Christina M Henderson
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Adrian M Zelazny
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Mass Spectrometry Technology and qPCR for Detection of Enterococcus faecalis in Diabetic Foot Patients. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Epperson LE, Timke M, Hasan NA, Godo P, Durbin D, Helstrom NK, Shi G, Kostrzewa M, Strong M, Salfinger M. Evaluation of a Novel MALDI Biotyper Algorithm to Distinguish Mycobacterium intracellulare From Mycobacterium chimaera. Front Microbiol 2018; 9:3140. [PMID: 30619208 PMCID: PMC6305299 DOI: 10.3389/fmicb.2018.03140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
Accurate and timely mycobacterial species identification is imperative for successful diagnosis, treatment, and management of disease caused by nontuberculous mycobacteria (NTM). The current most widely utilized method for NTM species identification is Sanger sequencing of one or more genomic loci, followed by BLAST sequence analysis. MALDI-TOF MS offers a less expensive and increasingly accurate alternative to sequencing, but the commercially available assays used in clinical mycobacteriology cannot differentiate between Mycobacterium intracellulare and Mycobacterium chimaera, two closely related potentially pathogenic species of NTM that are members of the Mycobacterium avium complex (MAC). Because this differentiation of MAC species is challenging in a diagnostic setting, Bruker has developed an improved spectral interpretation algorithm to differentiate M. chimaera and M. intracellulare based on differential spectral peak signatures. Here, we utilize a set of 185 MAC isolates that have been characterized using rpoB locus sequencing followed by whole genome sequencing in some cases, to test the accuracy of the Bruker subtyper software to identify M. chimaera (n = 49) and M. intracellulare (n = 55). 100% of the M. intracellulare and 82% of the M. chimaera isolates were accurately identified using the MALDI Biotyper algorithm. This subtyper module is available with the MALDI Biotyper Compass software and offers a promising mechanism for rapid and inexpensive species determination for M. chimaera and M. intracellulare.
Collapse
Affiliation(s)
- L. Elaine Epperson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| | | | - Nabeeh A. Hasan
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| | - Paul Godo
- Mycobacteriology Laboratory, National Jewish Health, Denver, CO, United States
| | - David Durbin
- Mycobacteriology Laboratory, National Jewish Health, Denver, CO, United States
| | - Niels K. Helstrom
- Mycobacteriology Laboratory, National Jewish Health, Denver, CO, United States
| | - Gongyi Shi
- Bruker Daltonics, Billerica, MA, United States
| | | | - Michael Strong
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| | - Max Salfinger
- Mycobacteriology Laboratory, National Jewish Health, Denver, CO, United States
- Department of Medicine, National Jewish Health, Denver, CO, United States
- College of Public Health, University of South Florida, Tampa, FL, United States
| |
Collapse
|
28
|
Balloux F, Brønstad Brynildsrud O, van Dorp L, Shaw LP, Chen H, Harris KA, Wang H, Eldholm V. From Theory to Practice: Translating Whole-Genome Sequencing (WGS) into the Clinic. Trends Microbiol 2018; 26:1035-1048. [PMID: 30193960 PMCID: PMC6249990 DOI: 10.1016/j.tim.2018.08.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
Abstract
Hospitals worldwide are facing an increasing incidence of hard-to-treat infections. Limiting infections and providing patients with optimal drug regimens require timely strain identification as well as virulence and drug-resistance profiling. Additionally, prophylactic interventions based on the identification of environmental sources of recurrent infections (e.g., contaminated sinks) and reconstruction of transmission chains (i.e., who infected whom) could help to reduce the incidence of nosocomial infections. WGS could hold the key to solving these issues. However, uptake in the clinic has been slow. Some major scientific and logistical challenges need to be solved before WGS fulfils its potential in clinical microbial diagnostics. In this review we identify major bottlenecks that need to be resolved for WGS to routinely inform clinical intervention and discuss possible solutions.
Collapse
Affiliation(s)
- Francois Balloux
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK; These authors made equal contributions.
| | - Ola Brønstad Brynildsrud
- Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Lovisenberggata 8, Oslo 0456, Norway; These authors made equal contributions
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK; These authors made equal contributions
| | - Liam P Shaw
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Hongbin Chen
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK; Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Kathryn A Harris
- Great Ormond Street Hospital NHS Foundation Trust, Department of Microbiology, Virology & Infection Prevention & Control, London WC1N 3JH, UK
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Vegard Eldholm
- Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Lovisenberggata 8, Oslo 0456, Norway
| |
Collapse
|
29
|
Hill D, Sugrue I, Tobin C, Hill C, Stanton C, Ross RP. The Lactobacillus casei Group: History and Health Related Applications. Front Microbiol 2018; 9:2107. [PMID: 30298055 PMCID: PMC6160870 DOI: 10.3389/fmicb.2018.02107] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 01/16/2023] Open
Abstract
The Lactobacillus casei group (LCG), composed of the closely related Lactobacillus casei, Lactobacillus paracasei, and Lactobacillus rhamnosus are some of the most widely researched and applied probiotic species of lactobacilli. The three species have been extensively studied, classified and reclassified due to their health promoting properties. Differentiation is often difficult by conventional phenotypic and genotypic methods and therefore new methods are being continually developed to distinguish the three closely related species. The group remain of interest as probiotics, and their use is widespread in industry. Much research has focused in recent years on their application for health promotion in treatment or prevention of a number of diseases and disorders. The LCG have the potential to be used prophylactically or therapeutically in diseases associated with a disturbance to the gut microbiota. The group have been extensively researched with regard to stress responses, which are crucial for their survival and therefore application as probiotics.
Collapse
Affiliation(s)
- Daragh Hill
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.,Teagasc, Moorepark, Food Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Ivan Sugrue
- Teagasc, Moorepark, Food Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Conor Tobin
- Teagasc, Moorepark, Food Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc, Moorepark, Food Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | | |
Collapse
|
30
|
Huang CH, Li SW, Huang L, Watanabe K. Identification and Classification for the Lactobacillus casei Group. Front Microbiol 2018; 9:1974. [PMID: 30186277 PMCID: PMC6113361 DOI: 10.3389/fmicb.2018.01974] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
Lactobacillus casei, Lactobacillus paracasei, and Lactobacillus rhamnosus are phenotypically and genotypically closely related, and together comprise the L. casei group. Although the strains of this group are commercially valuable as probiotics, the taxonomic status and nomenclature of the L. casei group have long been contentious because of the difficulties in identifying these three species by using the most frequently used genotypic methodology of 16S rRNA gene sequencing. Long used as the gold standard for species classification, DNA–DNA hybridization is laborious, requires expert skills, and is difficult to use routinely in laboratories. Currently, genome-based comparisons, including average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH), are commonly applied to bacterial taxonomy as alternatives to the gold standard method for the demarcating phylogenetic relationships. To establish quick and accurate methods for identifying strains in the L. casei group at the species and subspecies levels, we developed species- and subspecies-specific identification methods based on housekeeping gene sequences and whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) spectral pattern analysis. By phylogenetic analysis based on concatenated housekeeping gene sequences (dnaJ, dnaK, mutL, pheS, and yycH), 53 strains were separated into four clusters corresponding to the four species: L. casei, L. paracasei and L. rhamnosus, and Lactobacillus chiayiensis sp. nov. A multiplex minisequencing assay using single nucleotide polymorphism (SNP)-specific primers based on the dnaK gene sequences and species-specific primers based on the mutL gene sequences provided high resolution that enabled the strains at the species level to be identified as L. casei, L. paracasei, and L. rhamnosus. By MALDI-TOF MS analysis coupled with an internal database and ClinProTools software, species- and subspecies-level L. casei group strains were identified based on reliable scores and species- and subspecies-specific MS peaks. The L. paracasei strains were distinguished clearly at the subspecies level based on subspecies-specific MS peaks. This article describes the rapid and accurate methods used for identification and classification of strains in the L. casei group based on housekeeping gene sequences and MALDI-TOF MS analysis as well as the novel speciation of this group including L. chiayiensis sp. nov. and ‘Lactobacillus zeae’ by genome-based methods.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Shiao-Wen Li
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Lina Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Koichi Watanabe
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan.,Department of Animal Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Tsuchida S, Murata S, Miyabe A, Satoh M, Takiwaki M, Ashizawa K, Terada T, Ito D, Matsushita K, Nomura F. Application of the biocopolymer preparation system, rapid BACpro® II kit, for mass-spectrometry-based bacterial identification from positive blood culture bottles by the MALDI Biotyper system. J Microbiol Methods 2018; 152:86-91. [PMID: 30075236 DOI: 10.1016/j.mimet.2018.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/25/2018] [Accepted: 07/29/2018] [Indexed: 12/20/2022]
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used for identification of microorganisms from positive blood cultures. Pretreatments to effectively remove non-bacterial components and selectively collect microorganisms are a prerequisite for successful identification, and a variety of home-brew and commercial protocols have been reported. Although commercially available kits, mainly the Sepsityper Kit, are increasingly used, the identification rates reported often are not satisfactory, particularly for Gram-positive isolates. We recently developed a method to collect bacteria from positive blood culture bottles using a polyallylamine-polystyrene copolymer that has been used in wastewater processing. This pretreatment protocol is now commercially available as the rapid BACpro® II kit (Nittobo Medical Co., Tokyo, Japan). The operation time required for processing using this novel kit is approximately 10 min, and the entire procedure can be completed within a biosafety cabinet. Since the performance of the rapid BACpro® II kit has not been tested using the MALDI Biotyper system, we prospectively evaluated the performance of the rapid BACpro® II kit as compared with the Sepsityper® kit. Performance of the rapid BACpro® II kit was evaluated using a total of 193 monomicrobial cases of positive blood culture. Medium from blood culture bottles was pretreated by the rapid BACpro® II kit or the Sepsityper® Kit, and isolated cells were subjected to direct identification by MS fingerprinting in parallel with conventional subculturing for reference identification. The overall MALDI-TOF MS-based identification rates with >1.7 score and >2.0 score obtained using the rapid BACpro® II kit were 99.5% and 80.8%, respectively, whereas those obtained using the Sepsityper® Kit were 89.1% and 68.4%, respectively (P < 0.05 for >1.7 and P < 0.05 for >2.0 by Pearsons's chi-square). In Gram-positive cases, the rapid BACpro® II kit gave identification rate of 100% with >1.7 score and 69.4% with >2.0 score, whereas there were 84.7% and 56.8%, respectively by the Sepsityper® Kit (P < 0.05 for >1.7). These results are preliminary, but considering that this new kit is easy to perform and the identification rates are promising, the rapid BACpro® II kit deserves assessment in a larger-scale study with a variety of platforms for MS-based bacterial identification.
Collapse
Affiliation(s)
- Sachio Tsuchida
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Syota Murata
- Department of Clinical Laboratory, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Akiko Miyabe
- Department of Clinical Laboratory, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masaki Takiwaki
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | - Daisuke Ito
- R&D Department, Nittobo Medical Co., Ltd, Japan
| | - Kazuyuki Matsushita
- Department of Clinical Laboratory, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Division of Clinical Genetics, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Fumio Nomura
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Division of Clinical Genetics, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
32
|
Huang CH, Liou JS, Lee AY, Tseng M, Miyashita M, Huang L, Watanabe K. Polyphasic characterization of a novel species in the Lactobacillus casei group from cow manure of Taiwan: Description of L. chiayiensis sp. nov. Syst Appl Microbiol 2018; 41:270-278. [DOI: 10.1016/j.syapm.2018.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
|
33
|
Microbial Diversity: The Gap between the Estimated and the Known. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10020046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
van Belkum A, Welker M, Pincus D, Charrier JP, Girard V. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: What Are the Current Issues? Ann Lab Med 2018; 37:475-483. [PMID: 28840984 PMCID: PMC5587819 DOI: 10.3343/alm.2017.37.6.475] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/20/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the identification of microbial species in clinical microbiology laboratories. MALDI-TOF-MS has swiftly become the new gold-standard method owing to its key advantages of simplicity and robustness. However, as with all new methods, adoption of the MALDI-TOF MS approach is still not widespread. Optimal sample preparation has not yet been achieved for several applications, and there are continuing discussions on the need for improved database quality and the inclusion of additional microbial species. New applications such as in the field of antimicrobial susceptibility testing have been proposed but not yet translated to the level of ease and reproducibility that one should expect in routine diagnostic systems. Finally, during routine identification testing, unexpected results are regularly obtained, and the best methods for transmitting these results into clinical care are still evolving. We here discuss the success of MALDI-TOF MS in clinical microbiology and highlight fields of application that are still amenable to improvement.
Collapse
Affiliation(s)
- Alex van Belkum
- Scientific Office, bioMérieux, La Balme Les Grottes, France.
| | - Martin Welker
- Scientific Office, bioMérieux, La Balme Les Grottes, France
| | - David Pincus
- Scientific Office, bioMérieux, La Balme Les Grottes, France
| | | | | |
Collapse
|
35
|
Tsuchida S, Murata S, Miyabe A, Satoh M, Takiwaki M, Matsushita K, Nomura F. An improved in-house lysis-filtration protocol for bacterial identification from positive blood culture bottles with high identification rates by MALDI-TOF MS. J Microbiol Methods 2018; 148:40-45. [PMID: 29608928 DOI: 10.1016/j.mimet.2018.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/26/2018] [Indexed: 01/04/2023]
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is now a well-established method for identification of microorganisms from positive blood cultures. Pretreatments to effectively remove non-bacterial proteins are a prerequisite for successful identification, and a variety of protocols have been reported. Although commercially available kits, mainly the Sepsityper Kit, are increasingly used, the identification rates reported often are not satisfactory, particularly for Gram-positive isolates. We developed a new, in-house lysis-filtration protocol and prospectively evaluated its performance compared to the Sepsityper kit. The in-house protocol consists of three simple steps: lysis by ammonium chloride, aspiration with a syringe fitted with a 0.45-μm membrane, and centrifugation to collect microbes. The novel protocol requires only 20 min. Performance of the in-house protocol was evaluated using a total of 117 monomicrobial cases of positive blood culture. Medium from blood culture bottles was pretreated by the in-house protocol or the commercial kit, and isolated cells were subjected to direct identification by mass spectrometry fingerprinting in parallel with conventional subculturing for reference identification. The overall MALDI-TOF MS-based identification rates with score > 1.7 and > 2.0 obtained using the in-house protocol were 99.2% and 85.5%, respectively, whereas those obtained using the Sepsityper Kit were 85.4% and 61.5%, respectively. For Gram-positive cases, the in-house protocol yielded scores >1.7 and > 2.0 at 98.5% and 76.1%, respectively, whereas the commercial kit yielded these scores at 76.1% and 43.3%, respectively. Although these are preliminary results, these values suggest that this easy lysis-filtration protocol deserves assessment in a larger-scale test.
Collapse
Affiliation(s)
- Sachio Tsuchida
- Division of Clinical Mass Spectrometry, Chiba University Hospital, Chiba, Japan; Department of Clinical Laboratory, Chiba University Hospital, Chiba, Japan
| | - Syota Murata
- Department of Clinical Laboratory, Chiba University Hospital, Chiba, Japan
| | - Akiko Miyabe
- Department of Clinical Laboratory, Chiba University Hospital, Chiba, Japan
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, Chiba, Japan
| | - Masaki Takiwaki
- Division of Clinical Mass Spectrometry, Chiba University Hospital, Chiba, Japan
| | - Kazuyuki Matsushita
- Department of Clinical Laboratory, Chiba University Hospital, Chiba, Japan; Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Fumio Nomura
- Division of Clinical Mass Spectrometry, Chiba University Hospital, Chiba, Japan; Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
36
|
El-Bouri K, Johnston S, Rees E, Thomas I, Bome-Mannathoko N, Jones C, Reid M, Ben-Ismaeil B, Davies AP, Harris LG, Mack D. Comparison of bacterial identification by MALDI-TOF mass spectrometry and conventional diagnostic microbiology methods: agreement, speed and cost implications. Br J Biomed Sci 2018. [DOI: 10.1080/09674845.2012.12002436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- K. El-Bouri
- Public Health Wales Microbiology Laboratory ABM Swansea, Singleton Hospital, Abertawe-Bro Morgannwg University Health Board, Swansea, United Kingdom
| | - S. Johnston
- Public Health Wales Microbiology Laboratory ABM Swansea, Singleton Hospital, Abertawe-Bro Morgannwg University Health Board, Swansea, United Kingdom
| | - E. Rees
- Public Health Wales Microbiology Laboratory ABM Swansea, Singleton Hospital, Abertawe-Bro Morgannwg University Health Board, Swansea, United Kingdom
| | - I. Thomas
- Public Health Wales Microbiology Laboratory ABM Swansea, Singleton Hospital, Abertawe-Bro Morgannwg University Health Board, Swansea, United Kingdom
| | - N. Bome-Mannathoko
- Medical Microbiology and Infectious Diseases, Institute of Life Science, School of Medicine, Swansea University, Swansea, United Kingdom
| | - C. Jones
- Medical Microbiology and Infectious Diseases, Institute of Life Science, School of Medicine, Swansea University, Swansea, United Kingdom
| | - M. Reid
- Public Health Wales Microbiology Laboratory ABM Swansea, Singleton Hospital, Abertawe-Bro Morgannwg University Health Board, Swansea, United Kingdom
- Medical Microbiology and Infectious Diseases, Institute of Life Science, School of Medicine, Swansea University, Swansea, United Kingdom
| | - B. Ben-Ismaeil
- Public Health Wales Microbiology Laboratory ABM Swansea, Singleton Hospital, Abertawe-Bro Morgannwg University Health Board, Swansea, United Kingdom
| | - A. P. Davies
- Public Health Wales Microbiology Laboratory ABM Swansea, Singleton Hospital, Abertawe-Bro Morgannwg University Health Board, Swansea, United Kingdom
- Medical Microbiology and Infectious Diseases, Institute of Life Science, School of Medicine, Swansea University, Swansea, United Kingdom
| | - L. G. Harris
- Medical Microbiology and Infectious Diseases, Institute of Life Science, School of Medicine, Swansea University, Swansea, United Kingdom
| | - D. Mack
- Public Health Wales Microbiology Laboratory ABM Swansea, Singleton Hospital, Abertawe-Bro Morgannwg University Health Board, Swansea, United Kingdom
- Medical Microbiology and Infectious Diseases, Institute of Life Science, School of Medicine, Swansea University, Swansea, United Kingdom
| |
Collapse
|
37
|
Milman BL, Ilyasov YY, Lugovkina NV, Golovina AA, Dmitriev AV. A “Low-Molecular” Approach to the Identification of Microorganisms by MALDI Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934817130068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Huang CH, Huang L. Rapid species- and subspecies-specific level classification and identification of Lactobacillus casei group members using MALDI Biotyper combined with ClinProTools. J Dairy Sci 2018; 101:979-991. [DOI: 10.3168/jds.2017-13642] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/30/2017] [Indexed: 12/16/2022]
|
39
|
Crossay T, Antheaume C, Redecker D, Bon L, Chedri N, Richert C, Guentas L, Cavaloc Y, Amir H. New method for the identification of arbuscular mycorrhizal fungi by proteomic-based biotyping of spores using MALDI-TOF-MS. Sci Rep 2017; 7:14306. [PMID: 29084976 PMCID: PMC5662746 DOI: 10.1038/s41598-017-14487-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF, Glomeromycota) are mutualistic symbionts associated with majority of land plants. These fungi play an important role in plant growth, but their taxonomic identification remains a challenge for academic research, culture collections and inoculum producers who need to certify their products. Identification of these fungi was traditionally performed based on their spore morphology. DNA sequence data have successfully been used to study the evolutionary relationships of AMF, develop molecular identification tools and assess their diversity in the environment. However, these methods require considerable expertise and are not well-adapted for "routine" quality control of culture collections and inoculum production. Here, we show that Matrix-Assisted Laser Desorption Ionisation Time of Flight Mass Spectrometry proteomic-based biotyping is a highly efficient approach for AMF identification. Nineteen isolates belonging to fourteen species, seven genera and five families were clearly differentiated by MALDI biotyping at the species level, and intraspecific differentiation was achieved for the majority. AMF identification by MALDI biotyping could be highly useful, not only for research but also in agricultural and environmental applications. Fast, accurate and inexpensive molecular mass determination and the possibility of automation make MALDI-TOF-MS a real alternative to conventional morphological and molecular methods for AMF identification.
Collapse
Affiliation(s)
- Thomas Crossay
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851, Nouméa, Nouvelle-Calédonie, France
| | - Cyril Antheaume
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851, Nouméa, Nouvelle-Calédonie, France. .,Plate-forme d'Analyse Chimique Strasbourg-Illkirch. Université de Strasbourg, F-67400, Illkirch, France.
| | - Dirk Redecker
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Lucie Bon
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851, Nouméa, Nouvelle-Calédonie, France
| | - Nicolas Chedri
- Institut Pasteur, Bacteriology Research Unit, 98800, Nouméa, Nouvelle-Calédonie, France
| | | | - Linda Guentas
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851, Nouméa, Nouvelle-Calédonie, France
| | - Yvon Cavaloc
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851, Nouméa, Nouvelle-Calédonie, France
| | - Hamid Amir
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851, Nouméa, Nouvelle-Calédonie, France.
| |
Collapse
|
40
|
Ferrazzano GF, Scioscia E, Sateriale D, Pastore G, Colicchio R, Pagliuca C, Cantile T, Alcidi B, Coda M, Ingenito A, Scaglione E, Cicatiello AG, Volpe MG, Di Stasio M, Salvatore P, Pagliarulo C. In Vitro Antibacterial Activity of Pomegranate Juice and Peel Extracts on Cariogenic Bacteria. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2152749. [PMID: 29209624 PMCID: PMC5676346 DOI: 10.1155/2017/2152749] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/02/2017] [Indexed: 11/18/2022]
Abstract
AIM To evaluate the antimicrobial activity of hydroalcoholic extracts of pomegranate (Punica granatum L.) peel and juice, against the microorganisms considered the main etiologic agents of dental caries. METHODS The values of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined against Streptococcus mutans Clarke ATCC® 25175™ strain and Rothia dentocariosa clinical isolate. RESULTS Peel extracts inhibit effectively the growth and survival of S. mutans ATCC 25175 strain and R. dentocariosa clinical isolate with MIC and MBC values of 10 μg/μl and 15 μg/μl, respectively. Furthermore, the pomegranate juice extract showed high inhibitory activity against S. mutans ATCC 25175 strain with a MIC value of 25 μg/μl and a MBC value of 40 μg/μl, whereas, against R. dentocariosa, it has displayed a moderate inhibitory activity, with MIC and MBC values of 20 μg/μl and 140 μg/μl, respectively. CONCLUSIONS In vitro microbiological tests demonstrate that the hydroalcoholic extracts of pomegranate juice and peel are able to contrast the main cariogenic bacteria involved in tooth decay. Although being preliminary data, our results suggest that pomegranate polyphenolic compounds could represent a good adjuvant for the prevention and treatment of dental caries.
Collapse
Affiliation(s)
- Gianmaria Fabrizio Ferrazzano
- Department of Neuroscience, Reproductive and Oral Sciences, Section of Paediatric Dentistry, University of Naples Federico II, Via S. Pansini, No. 5, 80131 Naples, Italy
| | - Elisa Scioscia
- Department of Science and Technology, Sannio University, Via Port'arsa, No. 11, 82100 Benevento, Italy
| | - Daniela Sateriale
- Department of Science and Technology, Sannio University, Via Port'arsa, No. 11, 82100 Benevento, Italy
| | - Gabiria Pastore
- Department of Science and Technology, Sannio University, Via Port'arsa, No. 11, 82100 Benevento, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Via S. Pansini, No. 5, 80131 Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Via S. Pansini, No. 5, 80131 Naples, Italy
- CEINGE, Advanced Biotechnologies s.c.ar.l., Via Gaetano Salvatore, No. 486, 80145 Naples, Italy
| | - Tiziana Cantile
- Department of Neuroscience, Reproductive and Oral Sciences, Section of Paediatric Dentistry, University of Naples Federico II, Via S. Pansini, No. 5, 80131 Naples, Italy
| | - Brunella Alcidi
- Department of Neuroscience, Reproductive and Oral Sciences, Section of Paediatric Dentistry, University of Naples Federico II, Via S. Pansini, No. 5, 80131 Naples, Italy
| | - Marco Coda
- Department of Neuroscience, Reproductive and Oral Sciences, Section of Paediatric Dentistry, University of Naples Federico II, Via S. Pansini, No. 5, 80131 Naples, Italy
| | - Aniello Ingenito
- Department of Neuroscience, Reproductive and Oral Sciences, Section of Paediatric Dentistry, University of Naples Federico II, Via S. Pansini, No. 5, 80131 Naples, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Via S. Pansini, No. 5, 80131 Naples, Italy
| | - Annunziata Gaetana Cicatiello
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Via S. Pansini, No. 5, 80131 Naples, Italy
| | | | - Michele Di Stasio
- Institute of Food Science-CNR, Via Roma, No. 64, 83100 Avellino, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Via S. Pansini, No. 5, 80131 Naples, Italy
- CEINGE, Advanced Biotechnologies s.c.ar.l., Via Gaetano Salvatore, No. 486, 80145 Naples, Italy
| | - Caterina Pagliarulo
- Department of Science and Technology, Sannio University, Via Port'arsa, No. 11, 82100 Benevento, Italy
| |
Collapse
|
41
|
Zhou M, Yang Q, Kudinha T, Sun L, Zhang R, Liu C, Yu S, Xiao M, Kong F, Zhao Y, Xu YC. An Improved In-house MALDI-TOF MS Protocol for Direct Cost-Effective Identification of Pathogens from Blood Cultures. Front Microbiol 2017; 8:1824. [PMID: 29033904 PMCID: PMC5625089 DOI: 10.3389/fmicb.2017.01824] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/06/2017] [Indexed: 11/23/2022] Open
Abstract
Background: Bloodstream infection is a major cause of morbidity and mortality in hospitalized patients worldwide. Delays in the identification of microorganisms often leads to a poor prognosis. The application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) directly to blood culture (BC) broth can potentially identify bloodstream infections earlier, and facilitate timely management. Methods: We developed an “in-house” (IH) protocol for direct MALDI-TOF MS based identification of organisms in positive BCs. The IH protocol was initially evaluated and improved with spiked BC samples, and its performance was compared with the commercial Sepsityper™ kit using both traditional and modified cut-off values. We then studied in parallel the performance of the IH protocol and the colony MS identifications in positive clinical BC samples using only modified cut-off values. All discrepancies were investigated by “gold standard” of gene sequencing. Results: In 54 spiked BC samples, the IH method showed comparable results with Sepsityper™ after applying modified cut-off values. Specifically, accurate species and genus level identification was achieved in 88.7 and 3.9% of all the clinical monomicrobial BCs (284/301, 94.4%), respectively. The IH protocol exhibited superior performance for Gram negative bacteria than for Gram positive bacteria (92.8 vs. 82.4%). For anaerobes and yeasts, accurate species identification was achieved in 80.0 and 90.0% of the cases, respectively. For polymicrobial cultures (17/301, 5.6%), MALDI-TOF MS correctly identified a single species present in all the polymicrobial BCs under the Standard mode, while using the MIXED method, two species were correctly identified in 52.9% of the samples. Comparisons based on BC bottle type, showed that the BACTEC™ Lytic/10 Anaerobic/F culture vials performed the best. Conclusion: Our study provides a novel and effective sample preparation method for MALDI-TOF MS direct identification of pathogens from positive BC vials, with a lower cost ($1.5 vs. $ 7) albeit a slightly more laborious extracting process (an extra 15 min) compared with Sepsityper™ kit.
Collapse
Affiliation(s)
- Menglan Zhou
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Timothy Kudinha
- Charles Sturt University, Leeds Parade, Orange, NSW, Australia
| | - Liying Sun
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Rui Zhang
- Becton Dickinson Medical Devices Company, Shanghai, China
| | - Chang Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Shuying Yu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Fanrong Kong
- Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead Hospital, Westmead, NSW, Australia
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying-Chun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| |
Collapse
|
42
|
Pingili C, Sterns J, Jose P. First case of prosthetic knee infection with Granulicatella adiacens in the United States. IDCases 2017; 10:63-64. [PMID: 28966912 PMCID: PMC5608171 DOI: 10.1016/j.idcr.2017.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022] Open
Affiliation(s)
- Chandra Pingili
- Infectious Diseases Department, Eau Claire, WI, USA
- Prevea Health, Eau Claire, WI, USA
- Sacred Heart Hospital, Eau Claire, WI, USA
- Department of Microbiology, Eau Claire, WI, USA
| | | | | |
Collapse
|
43
|
Vergneau-Grosset C, Larrat S. Evidence-Based Advances in Aquatic Animal Medicine. Vet Clin North Am Exot Anim Pract 2017; 20:839-856. [PMID: 28781036 DOI: 10.1016/j.cvex.2017.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fish and aquatic invertebrates deserve evidence-based medicine. Pharmacologic information is available; most pharmacokinetic studies are derived from the aquaculture industry and extrapolated to ornamental fish. Conversely, advanced diagnostics and information regarding diseases affecting only ornamental fish and invertebrates require more peer-reviewed experimental studies; the examples of carp edema virus, sea star wasting disease, seahorse nutrition, and gas bubble disease of fish under human care are discussed. Antinociception is also a controversial topic of growing interest in aquatic animal medicine. This article summarizes information regarding new topics of interest in companion fish and invertebrates and highlights some future avenues for research.
Collapse
Affiliation(s)
- Claire Vergneau-Grosset
- Zoological Medicine Service, Aquarium du Québec, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Sylvain Larrat
- Clinique Vétérinaire Benjamin Franklin, 38 Rue Du Danemark Za Porte Océane 2, Brech/Auray 56400, France.
| |
Collapse
|
44
|
Timperio AM, Gorrasi S, Zolla L, Fenice M. Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water. PLoS One 2017; 12:e0181860. [PMID: 28738078 PMCID: PMC5524297 DOI: 10.1371/journal.pone.0181860] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
MALDI-TOF Mass Spectrometry in association with the MALDI BioTyper 3.1 software has been evaluated for the identification and classification of 45 Arctic bacteria isolated from Kandalaksha Bay (White Sea, Russia). The high reliability of this method has been already demonstrated, in clinical microbiology, by a number of studies showing high attribution concordance with other credited analyses. Recently, it has been employed also in other branches of microbiology with controversial performance. The phyloproteomic results reported in this study were validated with those obtained by the "gold standard" 16S rDNA analysis. Concordance between the two methods was 100% at the genus level, while at the species level it was 48%. These percentages appeared to be quite high compared with other studies regarding environmental bacteria. However, the performance of MALDI BioTyper changed in relation to the taxonomical group analyzed, reflecting known identification problems related to certain genera. In our case, attribution concordance for Pseudomonas species was rather low (29%), confirming the problematic taxonomy of this genus, whereas that of strains from other genera was quite high (> 60%). Among the isolates tested in this study, two strains (Exiguobacterium oxidotolerans and Pseudomonas costantinii) were misidentified by MALDI BioTyper due to absence of reference spectra in the database. Accordingly, missing spectra were acquired for the database implementation.
Collapse
Affiliation(s)
| | - Susanna Gorrasi
- Dipartimento di Ecologia e Biologia, University of Tuscia, Viterbo, Italy
| | - Lello Zolla
- Dipartimento di Scienze Agrarie e Forestali, University of Tuscia, Viterbo, Italy
| | - Massimiliano Fenice
- Dipartimento di Ecologia e Biologia, University of Tuscia, Viterbo, Italy
- Laboratorio di Microbiologia Marina Applicata, CONISMA, University of Tuscia, Viterbo, Italy
- * E-mail:
| |
Collapse
|
45
|
Huang TS, Lee SSJ, Lee CC, Chen CY, Chen FC, Chen BC, Sy CL, Wu KS. Evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry assisted, selective broth method to screen for vancomycin-resistant enterococci in patients at high risk. PLoS One 2017; 12:e0179455. [PMID: 28609453 PMCID: PMC5469485 DOI: 10.1371/journal.pone.0179455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/29/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bile esculin azide with vancomycin (BEAV) medium is a sensitive, but slightly less specific method for vancomycin-resistant enterococci (VRE) screening. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid method for identification of clinical pathogens. This study aimed to assess the performance of a novel combination screening test for VRE, using BEAV broth combined with MALDI-TOF MS. MATERIALS AND METHODS Clinical specimens were collected from patients at risk of VRE carriage, and tested by the novel combination method, using selective BEAV broth culture method followed by MALDI-TOF MS identification (SBEAVM). The reference method used for comparison was the ChromID VRE agar method. RESULTS A total of 135 specimens were collected from 78 patients, and 63 specimens tested positive for VRE positive using the ChromID VRE method (positive rate 46.7%). The sensitivity, specificity, positive predictive value, and negative predictive value of SBEAVM method after an incubation period of 28 hours were 93.7%, 90.3%, 89.4%, and 94.2%, respectively. The SBEAVM method when compared to the ChromID VRE method had a shorter turnaround time (29 vs. 48-72 hours) and lower laboratory cost ($2.11 vs. $3.23 per test). CONCLUSIONS This study demonstrates that SBEAVM is a rapid, inexpensive, and accurate method for use in VRE screening.
Collapse
Affiliation(s)
- Tsi-Shu Huang
- Division of Microbiology, Department of pathology and laboratory medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Susan Shin-Jung Lee
- Division of Microbiology, Department of pathology and laboratory medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Chien Lee
- Division of Microbiology, Department of pathology and laboratory medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chiu-Yen Chen
- Department of Nursing, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Fang-Chen Chen
- Department of Nursing, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Infection Control Unit, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Bao-Chen Chen
- Division of Microbiology, Department of pathology and laboratory medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng Len Sy
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuan-Sheng Wu
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
46
|
Chang CH, Chen SY, Lu JJ, Chang CJ, Chang Y, Hsieh PH. Nasal colonization and bacterial contamination of mobile phones carried by medical staff in the operating room. PLoS One 2017; 12:e0175811. [PMID: 28562676 PMCID: PMC5450997 DOI: 10.1371/journal.pone.0175811] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
Background Mobile phones (MPs) have been an essential part of the lives of healthcare professionals and have improved communication, collaboration, and sharing of information. Nonetheless, the widespread use of MPs in hospitals has raised concerns of nosocomial infections, especially in areas requiring the highest hygienic standards such as operating rooms (ORs). This study evaluated the incidence of bacterial contamination of the MPs carried by medical staff working in the OR and determined its association with bacterial colonization of this personnel. Methods This is an observational cohort study. Medical staffs working in the OR were asked to take bacterial cultures from their MPs, anterior nares, and dominant hands. To identify the relation between MP contamination and bacterial colonization of the medical staff, genotyping of Staphylococcus aureus (SA) was done via Staphylococcus protein A gene (spa) typing and pulsed-field gel electrophoresis (PFGE). Results A total of 216 swab samples taken from 72 medical-staff members were analyzed. The culture-positive rate was 98.1% (212/216). In 59 (27.3%) samples, the bacteria were possible clinical pathogens. The anterior nares were the most common site of colonization by clinical pathogens (58.3%, 42/72), followed by MPs (13.9%, 10/72) and the dominant hand (9.7%, 7/72). SA was the most commonly isolated clinical pathogen and was found in 43 (19.9%) samples. In 66 (94.3%) of the 70 staff members for whom bacteria were detected on their MPs, the same bacteria were detected in nares or hand. Among 31 medical staff who were carriers of SA in the anterior nares or dominant hand, 8 (25.8%) were found to have SA on their MPs, and genotyping confirmed the same SA strain in 7 (87.5%) of them. Conclusion A high rate of bacterial nasal colonization and MPs contamination were found among the OR medical staff. An MP may be a reservoir for pathogen contamination in the OR.
Collapse
Affiliation(s)
- Chih-Hsiang Chang
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Szu-Yuan Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Jang-Jih Lu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chee-Jen Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Services Center for Health Information, Chang Gung University, Taoyuan, Taiwan
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yuhan Chang
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Pang-Hsin Hsieh
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- * E-mail:
| |
Collapse
|
47
|
Comparison of biomarker based Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and conventional methods in the identification of clinically relevant bacteria and yeast. BMC Microbiol 2017; 17:128. [PMID: 28545528 PMCID: PMC5445374 DOI: 10.1186/s12866-017-1037-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Background MALDI-TOF MS is an analytical method that has recently become integral in the identification of microorganisms in clinical laboratories. It relies on databases that majorly employ pattern recognition or fingerprinting. Biomarker based databases have also been developed and there is optimism that these may be superior to pattern recognition based databases. This study compared the performance of ribosomal biomarker based MALDI-TOF MS and conventional methods in the identification of selected bacteria and yeast. Methods The study was a cross sectional study identifying clinically relevant bacteria and yeast isolated from varied clinical specimens submitted to a clinical laboratory. The identification of bacteria using conventional Vitek 2™ automated system, serotyping and MALDI-TOF MS was performed as per standard operating procedures. Comparison of sensitivities were then carried out using Pearson Chi-Square test and p-value of <0.05 was considered statistically significant. Secondary outcomes analyzed included the major and minor error rates. Results Of the 383 isolates MALDI-TOF MS and conventional methods identified 97.6 and 95.7% (p = 0.231) to the genus level and 97.4 and 88.0% (p = 0.000) to the species level respectively. Biomarker based MALDI-TOF MS was significantly superior to Vitek 2™ in the identification of Gram negative bacteria and Gram positive bacteria to the species level. For the Gram positive bacteria, significant difference was observed in the identification of Coagulase negative Staphylococci (p = 0.000) and Enterococcus (p = 0.008). Significant difference was also observed between serotyping and MALDI-TOF MS (p = 0.005) and this was attributed to the lack of identification of Shigella species by MALDI-TOF MS. There was no significant difference observed in the identification of yeast however some species of Candida were unidentified by MALDI-TOF MS. Conclusion Biomarker based MALDI-TOF MS had good performance in a clinical laboratory setting with high sensitivities in the identification of clinically relevant microorganisms.
Collapse
|
48
|
Murugaiyan J, Roesler U. MALDI-TOF MS Profiling-Advances in Species Identification of Pests, Parasites, and Vectors. Front Cell Infect Microbiol 2017; 7:184. [PMID: 28555175 PMCID: PMC5430024 DOI: 10.3389/fcimb.2017.00184] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022] Open
Abstract
Invertebrate pests and parasites of humans, animals, and plants continue to cause serious diseases and remain as a high treat to agricultural productivity and storage. The rapid and accurate species identification of the pests and parasites are needed for understanding epidemiology, monitoring outbreaks, and designing control measures. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as a rapid, cost effective, and high throughput technique of microbial species identification in modern diagnostic laboratories. The development of soft ionization techniques and the release of commercial pattern matching software platforms has resulted in the exponential growth of applications in higher organisms including parasitology. The present review discusses the proof-of-principle experiments and various methods of MALDI MS profiling in rapid species identification of both laboratory and field isolates of pests, parasites and vectors.
Collapse
Affiliation(s)
- Jayaseelan Murugaiyan
- Institute of Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Freie Universität BerlinBerlin, Germany
| | - Uwe Roesler
- Institute of Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
49
|
Shigella sonnei Bacteremia Presenting with Profound Hepatic Dysfunction. Case Rep Gastrointest Med 2017; 2017:7293281. [PMID: 28326205 PMCID: PMC5343247 DOI: 10.1155/2017/7293281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/02/2017] [Indexed: 11/18/2022] Open
Abstract
Worldwide, Shigellosis is a significant public health issue, associated with nearly one million deaths annually. About half a million cases of Shigella infection are reported annually in the United States. Shigella bacteremia is uncommon and generally seen in children and immunocompromised adults. We present a case of a Shigella sonnei bacteremia with marked hepatic derangement in a 27-year-old previously healthy homosexual male with history of Roux-en-Y gastric bypass, who presented to the emergency room with a 4-day history of loose watery stool, abdominal cramps, nausea and vomiting, and yellow skin of 2-day duration. He reports similar diarrhea illness in two close contacts in preceding days. On examination, he was fully oriented but dehydrated, icteric, and febrile. Laboratory data revealed WBC of 2200/μL, elevated AST and ALT (201 IU/L, 73 IU/L resp.), normal alkaline phosphatase, elevated total and direct bilirubin of 8.2 mg/dL and 4.4 mg/dL, albumin of 3.2 g/dL, INR of 2.9, prothrombin time of 31.7, and platelet of 96,000/μL. Workup for infectious, autoimmune and medication-induced hepatitis, Wilson's disease, and hemochromatosis was negative. Abdominal ultrasound and computed tomography of the abdomen showed hepatic steatosis and right-sided colitis. Stool and blood cultures were positive for Shigella sonnei. He was treated with ciprofloxacin with improvement in liver function. Follow-up blood test 4 months later was within normal limits.
Collapse
|
50
|
Performance of the matrix-assisted laser desorption ionization time-of-flight mass spectrometry system for rapid identification of streptococci: a review. Eur J Clin Microbiol Infect Dis 2017; 36:1005-1012. [DOI: 10.1007/s10096-016-2879-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/13/2016] [Indexed: 11/30/2022]
|