1
|
Gutierrez LS, Zandim-Barcelos DL, Eick S, Lopes MES, Cirelli JA, Nogueira AVB, Deschner J. Possible immunomodulatory role of Filifactor alocis through beta-defensin 2 in gingival keratinocytes. Clin Oral Investig 2024; 28:658. [PMID: 39592494 DOI: 10.1007/s00784-024-06043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVES The present study aimed to investigate a possible immunomodulatory role of the periodontopathogen Filifactor alocis through the antimicrobial peptide hBD-2 on the expression of chemokines in human gingival keratinocytes. MATERIALS AND METHODS Cells were cultured in the presence or absence of periodontopathogenic bacteria, such as F. alocis, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola, to evaluate the regulation of hBD-2, CXCL8 and CCL20. Furthermore, the cells were exposed or not to hBD-2 and the expression of CXCL8 and CCL20 and their receptors was evaluated. RESULTS All bacteria induced a significant upregulation of hBD-2, CXCL8, and CCL20 gene expressions. In addition, F. alocis significantly increased their protein levels, as detected by ELISA. Pre-incubation of the cells with the TLR2 inhibitor resulted in a significant downregulation of hBD-2 expression in F. alocis-treated cells. Gingival keratinocytes exposed to hBD-2 resulted in a significant and dose-dependent increase of all chemokines and their receptors. CONCLUSIONS F. alocis increased the production of chemotactic cytokines, suggesting an increase in the recruitment of immunoinflammatory cells in periodontal diseases. The chemotaxis-promoting effect is partly direct, but is also mediated via hBD-2. F. alocis stimulates the synthesis of hBD-2, which in turn could promote the expression and synthesis of these chemokines and their receptors. In addition, hBD-2 has an autostimulatory effect and stimulates the synthesis of these chemokines, so that the chemotaxis triggered by F. alocis is further fueled. CLINICAL RELEVANCE F. alocis and hBD-2 have a significant role in periodontitis, showing their importance for diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Lorena S Gutierrez
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, 14801-903, Brazil
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - Daniela L Zandim-Barcelos
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, 14801-903, Brazil.
| | - Sigrun Eick
- Laboratory of Oral Microbiology, Department of Periodontology, University of Bern, Bern, 3010, Switzerland
| | - Maria Eduarda S Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, 14801-903, Brazil
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, 14801-903, Brazil
| | - Andressa V B Nogueira
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| |
Collapse
|
2
|
Bonilla M, Martín-Morales N, Gálvez-Rueda R, Raya-Álvarez E, Mesa F. Impact of Protein Citrullination by Periodontal Pathobionts on Oral and Systemic Health: A Systematic Review of Preclinical and Clinical Studies. J Clin Med 2024; 13:6831. [PMID: 39597974 PMCID: PMC11594594 DOI: 10.3390/jcm13226831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Background: This review synthesizes the role of Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) in modulating immune responses through citrullination and assesses its impact on periodontitis and systemic conditions. Methods: A systematic review was conducted on preclinical and clinical studies focusing on P. gingivalis- and A. actinomycetemcomitans-induced citrullination and its effects on immune responses, particularly inflammatory pathways, and systemic diseases. The search included PubMed, Scopus, Google Scholar, Web of Science, and gray literature. Quality and risk of bias were assessed using OHAT Rob Toll and QUIN-Tool. The review is registered in PROSPERO (ID: CRD42024579352). Results: 18 articles published up to August 2024 were included. Findings show that P. gingivalis and A. actinomycetemcomitans citrullination modulates immune responses, leading to neutrophil dysfunction and chronic inflammation. Key mechanisms include citrullination of antimicrobial peptides, CXCL10, histone H3, α-enolase, and C5a, impairing neutrophil activation and promoting NET formation. Conclusions: This review suggests that P. gingivalis and A. actinomycetemcomitans citrullination modulates immune responses and may influence periodontitis and systemic conditions like RA. Beyond ACPA production, these pathogens affect key proteins such as H3, C5a, and CXCL10, as well as antimicrobial peptides, NET formation, and phagocytosis. These interactions lead to neutrophil dysfunction and potentially affect other cells, subsequently disrupting local and systemic inflammatory responses.
Collapse
Affiliation(s)
- Marco Bonilla
- Higher Technician in Clinical and Biomedical Laboratory, Centro de Investigación Biomédica (CIBM), 18016 Granada, Spain
| | - Natividad Martín-Morales
- Department of Pathology, School of Medicine, University of Granada, 18016 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS Institute), 18012 Granada, Spain
| | | | - Enrique Raya-Álvarez
- Department of Medicine, School of Medicine, University of Granada, 18016 Granada, Spain;
- Department of Rheumatology, San Cecilio University Clinical Hospital, 18006 Granada, Spain
| | - Francisco Mesa
- Department of Periodontics, School of Dentistry, University of Granada, 18071 Granada, Spain;
| |
Collapse
|
3
|
Fine DH, Schreiner H, Diehl SR. A Rose by Any Other Name: The Long Intricate History of Localized Aggressive Periodontitis. Pathogens 2024; 13:849. [PMID: 39452721 PMCID: PMC11510386 DOI: 10.3390/pathogens13100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
This review addresses the recent World Workshop Consensus Conference (WWCC) decision to eliminate Localized Aggressive Periodontitis (LAgP) in young adults as a distinct form of periodontitis. A "Consensus" implies widespread, if not unanimous, agreement among participants. However, a significant number of attendees were opposed to the elimination of the LAgP classification. The substantial evidence supporting a unique diagnosis for LAgP includes the (1) incisor/molar pattern of disease, (2) young age of onset, (3) rapid progression of attachment and bone loss, (4) familial aggregation across multiple generations, and (5) defined consortium of microbiological risk factors including Aggregatibacter actinomycetemcomitans. Distinctive clinical signs and symptoms of LAgP are presented, and the microbial subgingival consortia that precede the onset of signs and symptoms are described. Using Bradford-Hill guidelines to assess causation, well-defined longitudinal studies support the unique microbial consortia, including A. actinomycetemcomitans as causative for LAgP. To determine the effects of the WWCC elimination of LAgP on research, we searched three publication databases and discovered a clear decrease in the number of new publications addressing LAgP since the new WWCC classification. The negative effects of the WWCC guidelines on both diagnosis and treatment success are presented. For example, due to the localized nature of LAgP, the practice of averaging mean pocket depth reduction or attachment gain across all teeth masks major changes in disease recovery at high-risk tooth sites. Reinstating LAgP as a distinct disease entity is proposed, and an alternative or additional way of measuring treatment success is recommended based on an assessment of the extension of the time to relapse of subgingival re-infection. The consequences of the translocation of oral microbes to distant anatomical sites due to ignoring relapse frequency are also discussed. Additional questions and future directions are also presented.
Collapse
Affiliation(s)
- Daniel H. Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ 07101, USA; (H.S.); (S.R.D.)
| | | | | |
Collapse
|
4
|
Ryder MI, Fine DH, Barron AE. From Global to Nano: A Geographical Perspective of Aggregatibacter actinomycetemcomitans. Pathogens 2024; 13:837. [PMID: 39452709 PMCID: PMC11510556 DOI: 10.3390/pathogens13100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The periodontal disease pathobiont Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) may exert a range of detrimental effects on periodontal diseases in general and, more specifically, with the initiation and progression of Localized Stage III Grade C periodontitis (molar-incisor pattern). In this review of the biogeography of this pathobiont, the full range of geographical scales for A. actinomycetemcomitans, from global origins and transmission to local geographical regions, to more locally exposed probands and families, to the individual host, down to the oral cavity, and finally, to spatial interactions with other commensals and pathobionts within the plaque biofilms at the micron/nanoscale, are reviewed. Using the newest technologies in genetics, imaging, in vitro cultures, and other research disciplines, investigators may be able to gain new insights to the role of this pathobiont in the unique initial destructive patterns of Localized Stage III Grade C periodontitis. These findings may incorporate the unique features of the microbiome that are influenced by variations in the geographic environment within the entire mouth. Additional insights into the geographic distribution of molar-incisor periodontal breakdown for Localized Stage III Grade C periodontitis may derive from the spatial interactions between A. actinomycetemcomitans and other pathobionts such as Porphyromonas gingivalis, Filifactor aclocis, and commensals such as Streptococcus gordonii. In addition, while the association of A. actinomycetemcomitans in systemic diseases is limited at the present time, future studies into possible periodontal disease-systemic disease links may also find A. actinomycetemcomitans and its geographical interactions with other microbiome members to provide important clues as to implications of pathobiological communications.
Collapse
Affiliation(s)
- Mark I. Ryder
- Department of Bioengineering, School of Medicine and School of Engineering, Stanford University, Stanford, CA 94143, USA;
- Division of Periodontology, Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daniel H. Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, 443 Via Ortega, Stanford, CA 94305, USA
| | - Annelise E. Barron
- Department of Bioengineering, School of Medicine and School of Engineering, Stanford University, Stanford, CA 94143, USA;
| |
Collapse
|
5
|
Rocha CM, Kawamoto D, Martins FH, Bueno MR, Ishikawa KH, Ando-Suguimoto ES, Carlucci AR, Arroteia LS, Casarin RV, Saraiva L, Simionato MRL, Mayer MPA. Experimental Inoculation of Aggregatibacter actinomycetemcomitans and Streptococcus gordonii and Its Impact on Alveolar Bone Loss and Oral and Gut Microbiomes. Int J Mol Sci 2024; 25:8090. [PMID: 39125663 PMCID: PMC11312116 DOI: 10.3390/ijms25158090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 08/12/2024] Open
Abstract
Oral bacteria are implicated not only in oral diseases but also in gut dysbiosis and inflammatory conditions throughout the body. The periodontal pathogen Aggregatibacter actinomycetemcomitans (Aa) often occurs in complex oral biofilms with Streptococcus gordonii (Sg), and this interaction might influence the pathogenic potential of this pathogen. This study aims to assess the impact of oral inoculation with Aa, Sg, and their association (Aa+Sg) on alveolar bone loss, oral microbiome, and their potential effects on intestinal health in a murine model. Sg and/or Aa were orally administered to C57Bl/6 mice, three times per week, for 4 weeks. Aa was also injected into the gingiva three times during the initial experimental week. After 30 days, alveolar bone loss, expression of genes related to inflammation and mucosal permeability in the intestine, serum LPS levels, and the composition of oral and intestinal microbiomes were determined. Alveolar bone resorption was detected in Aa, Sg, and Aa+Sg groups, although Aa bone levels did not differ from that of the SHAM-inoculated group. Il-1β expression was upregulated in the Aa group relative to the other infected groups, while Il-6 expression was downregulated in infected groups. Aa or Sg downregulated the expression of tight junction genes Cldn 1, Cldn 2, Ocdn, and Zo-1 whereas infection with Aa+Sg led to their upregulation, except for Cldn 1. Aa was detected in the oral biofilm of the Aa+Sg group but not in the gut. Infections altered oral and gut microbiomes. The oral biofilm of the Aa group showed increased abundance of Gammaproteobacteria, Enterobacterales, and Alloprevotella, while Sg administration enhanced the abundance of Alloprevotella and Rothia. The gut microbiome of infected groups showed reduced abundance of Erysipelotrichaceae. Infection with Aa or Sg disrupts both oral and gut microbiomes, impacting oral and gut homeostasis. While the combination of Aa with Sg promotes Aa survival in the oral cavity, it mitigates the adverse effects of Aa in the gut, suggesting a beneficial role of Sg associations in gut health.
Collapse
Affiliation(s)
- Catarina Medeiros Rocha
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Fernando Henrique Martins
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Manuela Rocha Bueno
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Division of Periodontics, Faculdade São Leopoldo Mandic, São Leopoldo Mandic Research Institute, Campinas 13045-755, SP, Brazil
| | - Karin H. Ishikawa
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Ellen Sayuri Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Aline Ramos Carlucci
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Leticia Sandoli Arroteia
- Department of Prosthesis and Periodontology, School of Dentistry, University of Campinas, Campinas 13083-875, SP, Brazil; (L.S.A.); (R.V.C.)
| | - Renato V. Casarin
- Department of Prosthesis and Periodontology, School of Dentistry, University of Campinas, Campinas 13083-875, SP, Brazil; (L.S.A.); (R.V.C.)
| | - Luciana Saraiva
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Maria Regina Lorenzetti Simionato
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
6
|
Miguel MMV, Shaddox LM. Grade C Molar-Incisor Pattern Periodontitis in Young Adults: What Have We Learned So Far? Pathogens 2024; 13:580. [PMID: 39057807 PMCID: PMC11279578 DOI: 10.3390/pathogens13070580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Grade C molar-incisor pattern periodontitis (C-MIP) is a disease that affects specific teeth with an early onset and aggressive progression. It occurs in systemically healthy patients, mostly African descendants, at an early age, with familial involvement, minimal biofilm accumulation, and minor inflammation. Severe and rapidly progressive bone loss is observed around the first molars and incisors. This clinical condition has been usually diagnosed in children and young adults with permanent dentition under 30 years of age. However, this disease can also affect the primary dentition, which is not as frequently discussed in the literature. Radiographic records have shown that most patients diagnosed in the permanent dentition already presented disease signs in the primary dentition. A hyperresponsive immunological profile is observed in local (gingival crevicular fluid-GCF) and systemic environments. Siblings have also displayed a heightened inflammatory profile even without clinical signs of disease. A. actinomycetemcomitans has been classified as a key pathogen in C-MIP in both dentitions. Scaling and root planning associated with systemic antibiotics is the current gold standard to treat C-MIP, leading to GCF biomarker reduction, some systemic inflammatory response modulation and microbiome profile changes to a healthy-site profile. Further studies should focus on other possible disease-contributing risk factors.
Collapse
Affiliation(s)
- Manuela Maria Viana Miguel
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40508, USA;
| | - Luciana Macchion Shaddox
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40508, USA;
- Department of Oral Health Practice, Periodontology Division, College of Dentistry, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
7
|
Sabbagh S, Adatorwovor R, Kirakodu S, Rojas-Ramirez MV, Al-Sabbagh M, Dawson D, Fernandes JG, Miguel MMV, Villasante-Tezanos A, Shaddox L. Periodontal inflammatory and microbial profiles in healthy young African Americans and Caucasians. J Clin Periodontol 2024; 51:895-904. [PMID: 38763508 PMCID: PMC11182714 DOI: 10.1111/jcpe.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
AIM This study aimed to compare microbial and inflammatory profiles in periodontally/systemically healthy African American (AA) and Caucasian (C) individuals. MATERIALS AND METHODS Thirty-seven C and 46 AA aged from 5 to 25 years were evaluated regarding periodontal disease, caries, microbial subgingival profile via 16-s sequencing, as well as salivary and gingival crevicular fluid (GCF) inflammatory profile via multiplex assay. RESULTS Greater probing depth percentage was detected in AA (p = .0075), while a higher percentage of caries index (p = .0069) and decayed, missing, filled teeth (DMFT) index (p = .0089) was observed in C, after adjusting for number of teeth, sex and age. Salivary levels of IL-6, IL-8 and TNFα were higher for C, whereas GCF levels of eotaxin, IL-12p40, IL-12p70, IL-2 and MIP-1α were higher in AA (p < .05). Different microbial profiles were observed between the races (p = .02). AA presented higher abundance of periodontopathogens (such as Tanerella forsythia, Treponema denticola, Filifactor alocis, among others), and C presented more caries-associated bacteria (such as Streptococcus mutans and Prevotella species). Bacillaceae and Lactobacillus species were associated with higher DMFT index, whereas Fusobacterium and Tanerella species with periodontal disease parameters. CONCLUSIONS A different inflammatory and bacterial profile was observed between healthy AA and C, which may predispose these races to higher susceptibility to specific oral diseases.
Collapse
Affiliation(s)
- Samer Sabbagh
- Department of Oral Health Practice, Periodontology Division, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Reuben Adatorwovor
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Marcia V Rojas-Ramirez
- Department of Oral Health Practice, Division of Oral Medicine, Oral Diagnosis, and Oral Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Mohanad Al-Sabbagh
- Department of Oral Health Practice, Periodontology Division, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Dolphus Dawson
- Department of Oral Health Practice, Periodontology Division, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | | | - Manuela Maria Viana Miguel
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Division of Periodontics, Institute of Science and Technology - São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Alejandro Villasante-Tezanos
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Luciana Shaddox
- Department of Oral Health Practice, Periodontology Division, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
8
|
Koo SS, Fernandes JG, Li L, Huang H, Aukhil I, Harrison P, Diaz PI, Shaddox LM. Evaluation of microbiome in primary and permanent dentition in grade C periodontitis in young individuals. J Periodontol 2024; 95:650-661. [PMID: 38476115 PMCID: PMC11265979 DOI: 10.1002/jper.23-0504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND The aim of the present study was to evaluate the subgingival microbiome in patients with grade C molar-incisor pattern periodontitis (C-MIP) affecting the primary or permanent dentitions. METHODS DNA was isolated from subgingival biofilm samples from diseased and healthy sites from 45 C-MIP patients and subjected to phylogenetic microarray analysis. C-MIP sites were compared between children affected in the primary to those affected in the permanent dentitions. Within-subject differences between C-MIP-affected sites and dentition-matched healthy sites were also evaluated. RESULTS C-MIP sites of subjects affected in the primary dentition showed partially overlapping but distinct microbial communities from C-MIP permanent dentition sites (p < 0.05). Differences were due to increased levels in primary C-MIP sites of certain species of the genera Capnocytophaga and Leptotrichia, while C-MIP permanent dentition sites showed higher prevalence of Filifactor alocis. Aggregatibacter actinomycetemcomitans (Aa) was among species seen in high prevalence and levels in both primary and permanent C-MIP sites. Moreover, both permanent and primary C-MIP sites showed distinct microbial communities when compared to dentition-matched healthy sites in the same subject (p < 0.01). CONCLUSIONS Primary and permanent teeth with C-MIP showed a dysbiotic microbiome, with children affected in the primary dentition showing a distinct profile from those affected in the permanent dentition. However, Aa was enriched in both primary and permanent diseased sites, confirming that this microorganism is implicated in C-MIP in both dentitions.
Collapse
Affiliation(s)
- Sungeun Stephanie Koo
- Department of Periodontology, School of Dental Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Jussara G Fernandes
- Department of Oral Health Practice, Periodontology Division and Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Lu Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA
- UB Microbiome Center, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Hong Huang
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Ikramuddin Aukhil
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Peter Harrison
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, USA
- Department of Periodontology, School of Dental Science, Trinity College Dublin, Dublin, Ireland
| | - Patricia I Diaz
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA
- UB Microbiome Center, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Luciana M Shaddox
- Department of Oral Health Practice, Periodontology Division and Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Manoil D, Parga A, Bostanci N, Belibasakis GN. Microbial diagnostics in periodontal diseases. Periodontol 2000 2024; 95:176-193. [PMID: 38797888 DOI: 10.1111/prd.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
Microbial analytical methods have been instrumental in elucidating the complex microbial etiology of periodontal diseases, by shaping our understanding of subgingival community dynamics. Certain pathobionts can orchestrate the establishment of dysbiotic communities that can subvert the host immune system, triggering inflammation and tissue destruction. Yet, diagnosis and management of periodontal conditions still rely on clinical and radiographic examinations, overlooking the well-established microbial etiology. This review summarizes the chronological emergence of periodontal etiological models and the co-evolution with technological advances in microbial detection. We additionally review the microbial analytical approaches currently accessible to clinicians, highlighting their value in broadening the periodontal assessment. The epidemiological importance of obtaining culture-based antimicrobial susceptibility profiles of periodontal taxa for antibiotic resistance surveillance is also underscored, together with clinically relevant analytical approaches to guide antibiotherapy choices, when necessary. Furthermore, the importance of 16S-based community and shotgun metagenomic profiling is discussed in outlining dysbiotic microbial signatures. Because dysbiosis precedes periodontal damage, biomarker identification offers early diagnostic possibilities to forestall disease relapses during maintenance. Altogether, this review highlights the underutilized potential of clinical microbiology in periodontology, spotlighting the clinical areas most conductive to its diagnostic implementation for enhancing prevention, treatment predictability, and addressing global antibiotic resistance.
Collapse
Affiliation(s)
- Daniel Manoil
- Division of Cariology and Endodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Ana Parga
- Division of Cariology and Endodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| |
Collapse
|
10
|
Lee MK, Chen IH, Hsu IL, Tsai WH, Lee TY, Jhong JH, Liu BC, Huang TY, Lin FK, Chang WW, Wu JH. The impact of Lacticaseibacillus paracasei GMNL-143 toothpaste on gingivitis and oral microbiota in adults: a randomized, double-blind, crossover, placebo-controlled trial. BMC Oral Health 2024; 24:477. [PMID: 38643116 PMCID: PMC11031891 DOI: 10.1186/s12903-024-04251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND This study examines the oral health benefits of heat-killed Lacticaseibacillus paracasei GMNL-143, particularly its potential in oral microbiota alterations and gingivitis improvement. METHODS We assessed GMNL-143's in vitro interactions with oral pathogens and its ability to prevent pathogen adherence to gingival cells. A randomized, double-blind, crossover clinical trial was performed on gingivitis patients using GMNL-143 toothpaste or placebo for four weeks, followed by a crossover after a washout. RESULTS GMNL-143 showed coaggregation with oral pathogens in vitro, linked to its surface layer protein. In patients, GMNL-143 toothpaste lowered the gingival index and reduced Streptococcus mutans in crevicular fluid. A positive relationship was found between Aggregatibacter actinomycetemcomitans and gingival index changes, and a negative one between Campylobacter and gingival index changes in plaque. CONCLUSION GMNL-143 toothpaste may shift oral bacterial composition towards a healthier state, suggesting its potential in managing mild to moderate gingivitis. TRIAL REGISTRATION ID NCT04190485 ( https://clinicaltrials.gov/ ); 09/12/2019, retrospective registration.
Collapse
Affiliation(s)
- Min-Kang Lee
- Department of Dentistry, Kaohsiung Medical University Hospital, No.100, Shih-Chuan 1st Road, Sanmin Dist, Kaohsiung City, 807378, Taiwan
| | - I-Hui Chen
- Department of Dentistry, Kaohsiung Medical University Hospital, No.100, Shih-Chuan 1st Road, Sanmin Dist, Kaohsiung City, 807378, Taiwan
| | - I-Ling Hsu
- Research and Development Department, GenMont Biotech Incorporation, Tainan City, 741014, Taiwan
| | - Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan City, 741014, Taiwan
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
| | - Jhih-Hua Jhong
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan City, 320315, Taiwan
| | - Bai-Chia Liu
- Research and Development Department, GenMont Biotech Incorporation, Tainan City, 741014, Taiwan
| | - Tsui-Yin Huang
- Research and Development Department, GenMont Biotech Incorporation, Tainan City, 741014, Taiwan
| | - Fang-Kuei Lin
- Research and Development Department, GenMont Biotech Incorporation, Tainan City, 741014, Taiwan
| | - Wen-Wei Chang
- Departement of Biomedical Sciences, Chung Shan Medical University, No. 110, Section 1, Chien-Kuo N. Rd, Taichung City, 402306, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, 402306, Taiwan.
| | - Ju-Hui Wu
- Department of Dentistry, Kaohsiung Medical University Hospital, No.100, Shih-Chuan 1st Road, Sanmin Dist, Kaohsiung City, 807378, Taiwan.
- Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City, 807378, Taiwan.
| |
Collapse
|
11
|
Razooqi Z, Tjellström I, Höglund Åberg C, Kwamin F, Claesson R, Haubek D, Johansson A, Oscarsson J. Association of Filifactor alocis and its RTX toxin gene ftxA with periodontal attachment loss, and in synergy with Aggregatibacter actinomycetemcomitans. Front Cell Infect Microbiol 2024; 14:1376358. [PMID: 38596650 PMCID: PMC11002136 DOI: 10.3389/fcimb.2024.1376358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
The Gram-positive bacterium, Filifactor alocis is an oral pathogen, and approximately 50% of known strains encode a recently identified repeat-in-toxin (RTX) protein, FtxA. By assessing a longitudinal Ghanaian study population of adolescents (10-19 years of age; mean age 13.2 years), we recently discovered a possible correlation between deep periodontal pockets measured at the two-year follow-up, presence of the ftxA gene, and a high quantity of F. alocis. To further understand the contribution of F. alocis and FtxA in periodontal disease, we used qPCR in the present study to assess the carriage loads of F. alocis and the prevalence of its ftxA gene in subgingival plaque specimens, sampled at baseline from the Ghanaian cohort (n=500). Comparing these results with the recorded clinical attachment loss (CAL) longitudinal progression data from the two-year follow up, we concluded that carriers of ftxA-positive F. alocis typically exhibited higher loads of the bacterium. Moreover, high carriage loads of F. alocis and concomitant presence of the ftxA gene were two factors that were both associated with an enhanced prevalence of CAL progression. Interestingly, CAL progression appeared to be further promoted upon the simultaneous presence of F. alocis and the non-JP2 genotype of Aggregatibacter actinomycetemcomitans. Taken together, our present findings are consistent with the notion that F. alocis and its ftxA gene promotes CAL during periodontal disease.
Collapse
Affiliation(s)
| | | | | | - Francis Kwamin
- Dental School University of Ghana, Korle-Bu, Accra, Ghana
| | - Rolf Claesson
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Dorte Haubek
- Jammerbugt Municipal Dental Service, Brovst, Denmark
| | | | - Jan Oscarsson
- Department of Odontology, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Slots J, Rams TE. Herpesvirus-Bacteria pathogenic interaction in juvenile (aggressive) periodontitis. A novel etiologic concept of the disease. Periodontol 2000 2024; 94:532-538. [PMID: 37345343 DOI: 10.1111/prd.12501] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Localized juvenile (aggressive) periodontitis starts at puberty in otherwise healthy individuals and involves the proximal surfaces of permanent incisors and first molars. The disease destroys a sizeable amount of periodontal bone within a few months despite minimal dental plaque and gingival tissue inflammation. Cytomegalovirus and Epstein-Barr virus, as well as the two main periodontopathic bacteria Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis, are linked to juvenile periodontitis. Juvenile periodontitis-affected teeth show cementum hypoplasia. We hypothesize that an active herpesvirus infection, at the time of root formation, hampers cementum formation and, at puberty, herpesvirus reactivation triggers an upgrowth of bacterial pathogens which produce rapid periodontal destruction on teeth with a defective periodontium. A pathogenic interaction between active herpesviruses and bacterial pathogens can potentially explain the etiology and incisor-first molar destructive pattern of juvenile periodontitis. Effective treatment of juvenile periodontitis may target the herpesvirus-bacteria co-infection.
Collapse
Affiliation(s)
- Jørgen Slots
- Division of Periodontology and Diagnostic Sciences, University of Southern California School of Dentistry, Los Angeles, California, USA
| | - Thomas E Rams
- Department of Periodontology and Oral Implantology, and Oral Microbiology Testing Service Laboratory, Temple University School of Dentistry, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Huang Y, Ni S. Aggregatibacter Actinomycetemcomitans With Periodontitis and Rheumatoid Arthritis. Int Dent J 2024; 74:58-65. [PMID: 37517936 PMCID: PMC10829364 DOI: 10.1016/j.identj.2023.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
OBJECTIVE The aim of this work was to explore the association between Aggregatibacter actinomycetemcomitans (A actinomycetemcomitans) infection and disease activity amongst those with rheumatoid arthritis (RA) with or without periodontitis (PD) in a Chinese population. METHODS A case-control study was conducted from November 2017 to March 2019. The correlation coefficients between A actinomycetemcomitans positivity and RA-related examination indicators as well as periodontal examination parameters were calculated by using the Spearman correlation analysis. RESULTS A total of 115 patients with RA were recruited: 67 patients with RA only and 48 with RA + PD. The percentage of A actinomycetemcomitans positivity was significantly higher in the RA + PD group compared with the RA-only group (P = .007 for positive percentage; P = .020 for percentage of A actinomycetemcomitans positivity in the total oral microbiome). Furthermore, RA-related measures such as Disease Activity Score 28, rheumatoid factor, anticyclic citrullinated peptide, and anticitrullinated protein antibodies were all positively correlated with the percentage of A actinomycetemcomitans positivity (P range: .002∼.041). In addition, significant correlations were observed amongst A actinomycetemcomitans positivity and probing pocket depth (P = .027) and gingival index (P = .043), whereas null correlations were found amongst the percentage of A actinomycetemcomitans positivity and plaque index (P = .344), clinical attachment loss (P = .217), and bleeding on probing (P = .710). CONCLUSIONS A actinomycetemcomitans infection may be related to the development of PD amongst patients with RA.
Collapse
Affiliation(s)
- Yizhi Huang
- Department of Stomatology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou 213003, PR China
| | - Su Ni
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou 213003, PR China.
| |
Collapse
|
14
|
Moraschini V, Miron RJ, Mourão CFDAB, Louro RS, Sculean A, da Fonseca LAM, Calasans Maia MD, Shibli JA. Antimicrobial effect of platelet-rich fibrin: A systematic review of in vitro evidence-based studies. Periodontol 2000 2024; 94:131-142. [PMID: 37740425 DOI: 10.1111/prd.12529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023]
Abstract
This systematic review (SR) aimed to evaluate the antimicrobial potential of different types of platelet-rich fibrin (PRF) often used in regenerative treatments. An electronic search was performed in four databases and in Gray literature for articles published until January, 2023. The eligibility criteria comprised in vitro studies that evaluated the antimicrobial effect of different types of PRF. For the analysis of the risk of bias within studies, the modified OHAT (Office of Health Assessment and Translation) tool was used. For the evaluation of the results, a qualitative critical analysis was carried out in the synthesis of the results of the primary studies. Sixteen studies published between 2013 and 2021 were included in this SR. The antimicrobial effects of PRF variations (PRF, injectable PRF [I-PRF], PRF with silver nanoparticles [agNP-PRF], and horizontal PRF [H-PRF]), were analyzed against 16 types of bacteria from the oral, periodontal, and endodontic environments. All types of PRF showed significant antimicrobial action, with the antibacterial efficacy being more expressive than the fungal one. The I-PRF, H-PRF, and agNP-PRF subtypes improve antimicrobial activity. According to the OHAT analysis, no study was classified as having a high risk of bias. Evidence suggests that PRF variations have significant antimicrobial activity, with bacterial action being greater than fungal. Evolutions such as I-PRF, H-PRF, and agNP-PRF improve antimicrobial activity. Future studies analyzing the clinical effect of these platelets are fundamental. This SR was registered in INPLASY under number INPLASY202340016.
Collapse
Affiliation(s)
- Vittorio Moraschini
- Dental Research Division, Department of Periodontology, School of Dentistry, Veiga de Almeida University, Rio de Janeiro, Brazil
- Department of Oral Surgery, Dentistry School, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Richard J Miron
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Carlos Fernando de Almeida Barros Mourão
- Department of Periodontology, School of Dentistry, Tufts University, Boston, USA
- Dental Research Division, Department of Periodontology and Oral Implantology, University of Guarulhos, São Paulo, Brazil
| | - Rafael Seabra Louro
- Department of Oral Surgery, Dentistry School, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | | | - Monica Diuana Calasans Maia
- Department of Oral Surgery, Dentistry School, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Jamil Awad Shibli
- Dental Research Division, Department of Periodontology and Oral Implantology, University of Guarulhos, São Paulo, Brazil
| |
Collapse
|
15
|
Cao X, Scoffield J, Xie B, Morton DB, Wu H. Drosophila melanogaster as a model to study polymicrobial synergy and dysbiosis. Front Cell Infect Microbiol 2023; 13:1279380. [PMID: 38192401 PMCID: PMC10773677 DOI: 10.3389/fcimb.2023.1279380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
The fruit fly Drosophila melanogaster has emerged as a valuable model for investigating human biology, including the role of the microbiome in health and disease. Historically, studies involving the infection of D. melanogaster with single microbial species have yielded critical insights into bacterial colonization and host innate immunity. However, recent evidence has underscored that multiple microbial species can interact in complex ways through physical connections, metabolic cross-feeding, or signaling exchanges, with significant implications for healthy homeostasis and the initiation, progression, and outcomes of disease. As a result, researchers have shifted their focus toward developing more robust and representative in vivo models of co-infection to probe the intricacies of polymicrobial synergy and dysbiosis. This review provides a comprehensive overview of the pioneering work and recent advances in the field, highlighting the utility of Drosophila as an alternative model for studying the multifaceted microbial interactions that occur within the oral cavity and other body sites. We will discuss the factors and mechanisms that drive microbial community dynamics, as well as their impacts on host physiology and immune responses. Furthermore, this review will delve into the emerging evidence that connects oral microbes to systemic conditions in both health and disease. As our understanding of the microbiome continues to evolve, Drosophila offers a powerful and tractable model for unraveling the complex interplay between host and microbes including oral microbes, which has far-reaching implications for human health and the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Xixi Cao
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - Jessica Scoffield
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Baotong Xie
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - David B. Morton
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
| | - Hui Wu
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, United States
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
16
|
Zhu L, Tang Z, Hu R, Gu M, Yang Y. Ageing and Inflammation: What Happens in Periodontium? Bioengineering (Basel) 2023; 10:1274. [PMID: 38002398 PMCID: PMC10669535 DOI: 10.3390/bioengineering10111274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease with a high incidence and severity in the elderly population, making it a significant public health concern. Ageing is a primary risk factor for the development of periodontitis, exacerbating alveolar bone loss and leading to tooth loss in the geriatric population. Despite extensive research, the precise molecular mechanisms underlying the relationship between ageing and periodontitis remain elusive. Understanding the intricate mechanisms that connect ageing and inflammation may help reveal new therapeutic targets and provide valuable options to tackle the challenges encountered by the rapidly expanding global ageing population. In this review, we highlight the latest scientific breakthroughs in the pathways by which inflammaging mediates the decline in periodontal function and triggers the onset of periodontitis. We also provide a comprehensive overview of the latest findings and discuss potential avenues for future research in this critical area of investigation.
Collapse
Affiliation(s)
| | | | | | | | - Yanqi Yang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR 999077, China; (L.Z.); (Z.T.); (R.H.); (M.G.)
| |
Collapse
|
17
|
Fine DH, Schreiner H. Oral microbial interactions from an ecological perspective: a narrative review. FRONTIERS IN ORAL HEALTH 2023; 4:1229118. [PMID: 37771470 PMCID: PMC10527376 DOI: 10.3389/froh.2023.1229118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023] Open
Abstract
Landscape ecology is a relatively new field of study within the sub-specialty of ecology that considers time and space in addition to structure and function. Landscape ecology contends that both the configuration (spatial pattern) and the composition (organisms both at the macro and or micro level) of an ecology can change over time. The oral cavity is an ideal place to study landscape ecology because of the variety of landscapes, the dynamic nature of plaque biofilm development, and the easy access to biofilm material. This review is intended to provide some specific clinical examples of how landscape ecology can influence the understanding of oral diseases and act as a supplement to diagnosis and treatment. The purpose of this review is two-fold; (1) to illustrate how landscape ecology can be used to clarify the two most prominent microbiologically induced infections in the oral cavity, and (2) how studies of oral microbiology can be used to enhance the understanding of landscape ecology. The review will distinguish between "habitat" and "niche" in a landscape and extend the concept that a "patch", is the demarcating unit of a habitat within a landscape. The review will describe how; (1) an individual patch, defined by its shape, edges and internal components can have an influence on species within the patch, (2) spatial dynamics over time within a patch can lead to variations or diversities of species within that patch space, and (3) an unwelcoming environment can promote species extinction or departure/dispersion into a more favorable habitat. Understanding this dynamic in relationship to caries and periodontal disease is the focus of this review.
Collapse
Affiliation(s)
- Daniel H. Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | | |
Collapse
|
18
|
Reis AA, Monteiro MF, Bonilha GM, Saraiva L, Araújo C, Santamaria MP, Casati MZ, Kumar P, Casarin RCV. Parents with periodontitis drive the early acquisition of dysbiotic microbiomes in their offspring. J Clin Periodontol 2023; 50:890-904. [PMID: 37086047 DOI: 10.1111/jcpe.13815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/23/2023]
Abstract
AIM To evaluate the microbial colonization in different dentition phases on individuals from 0 to 18 years of age belonging to families with a history of periodontitis compared to descendants of periodontally healthy parents. MATERIALS AND METHODS The offspring of subjects with periodontitis ('Perio' group) and the offspring of periodontally healthy subjects ('Healthy' group), matched for gender and age, were included in this cross-sectional study and divided according to the dentition phase: pre-dentate, primary, mixed and permanent. The patients were clinically assessed, and their saliva was collected. DNA was extracted, and V1-V3 and V4-V5 regions of the 16S rRNA gene were sequenced. RESULTS Fifty children of parents with periodontitis and 50 from healthy parents were included in the study and divided according to the dentition phase: pre-dentate (n = 5/group), primary dentition (n = 15/group), mixed dentition (n = 15/group) and permanent dentition (n = 15/group) in each group. The microbiome composition was different between dentitions for both groups. Children of the Perio group presented a microbial diversity different from that of the Healthy group in mixed and permanent dentitions. The more intense shift in the community occurred between primary and mixed dentition in the Perio group, while the transition between mixed and permanent dentition was the period with greater changes in the microbiome for the Healthy group. Furthermore, a pathogen-rich environment-higher prevalence and abundance of periodontitis-associated species such as Prevotella spp., Selenomonas spp., Leptotrichia spp., Filifactor alocis, Prevotella intermedia, Treponema denticola and Tannerella forsythia- was observed in the Perio group. CONCLUSIONS The parents' periodontal status significantly affects the microbiome composition of their offspring from an early age. The mixed dentition was the phase associated with establishing a dysbiotic and pathogen-rich microbiome in descendants of parents with periodontitis.
Collapse
Affiliation(s)
| | | | | | - Luciana Saraiva
- School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Cassia Araújo
- Institute of Health Science, São Paulo State University, São Paulo, Brazil
| | | | | | - Purnima Kumar
- School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
19
|
Veras EL, Castro dos Santos N, Souza JGS, Figueiredo LC, Retamal-Valdes B, Barão VAR, Shibli J, Bertolini M, Faveri M, Teles F, Duarte P, Feres M. Newly identified pathogens in periodontitis: evidence from an association and an elimination study. J Oral Microbiol 2023; 15:2213111. [PMID: 37261036 PMCID: PMC10228317 DOI: 10.1080/20002297.2023.2213111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
We assessed the level of evidence for the presence of new periodontal pathogens by (i) comparing the occurrence of non-classical periodontal taxa between healthy vs. periodontitis patients (Association study); (ii) assessing the modifications in the prevalence and levels of these species after treatments (Elimination study). In the Association study, we compared the prevalence and levels of 39 novel bacterial species between periodontally healthy and periodontitis patients. In the Elimination study, we analyzed samples from periodontitis patients assigned to receive scaling and root planing alone or with metronidazole+ amoxicillin TID/ 14 days. Levels of 79 bacterial species (39 novel and 40 classic) were assessed at baseline, 3 and 12 months post-therapy. All samples were analyzed using Checkerboard DNA-DNA hybridization. Out of the 39 novel species evaluated, eight were categorized as having strong and four as having moderate association with periodontitis. Our findings suggest strong evidence supporting Lancefieldella rimae, Cronobacter sakazakii, Pluralibacter gergoviae, Enterococcus faecalis, Eubacterium limosum, Filifactor alocis, Haemophilus influenzae, and Staphylococcus warneri, and moderate evidence supporting Escherichia coli, Fusobacterium necrophorum, Spiroplasma ixodetis, and Staphylococcus aureus as periodontal pathogens. These findings contribute to a better understanding of the etiology of periodontitis and may guide future diagnostic and interventional studies.
Collapse
Affiliation(s)
- Eduardo Lobão Veras
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Nídia Castro dos Santos
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
- The Forsyth Institute, Cambridge, MA, USA
| | - João Gabriel S. Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
- Department of Dental Research, Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Brazil
| | - Luciene C. Figueiredo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Belen Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Valentim A. R. Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Jamil Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marcelo Faveri
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Flavia Teles
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Poliana Duarte
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
20
|
Wang L, Wang H, Zhang H, Wu H. Formation of a biofilm matrix network shapes polymicrobial interactions. THE ISME JOURNAL 2023; 17:467-477. [PMID: 36639539 PMCID: PMC9938193 DOI: 10.1038/s41396-023-01362-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Staphylococcus aureus colonizes the same ecological niche as many commensals. However, little is known about how such commensals modulate staphylococcal fitness and persistence. Here we report a new mechanism that mediates dynamic interactions between a commensal streptococcus and S. aureus. Commensal Streptococcus parasanguinis significantly increased the staphylococcal biofilm formation in vitro and enhanced its colonization in vivo. A streptococcal biofilm-associated protein BapA1, not fimbriae-associated protein Fap1, is essential for dual-species biofilm formation. On the other side, three staphylococcal virulence determinants responsible for the BapA1-dependent dual-species biofilm formation were identified by screening a staphylococcal transposon mutant library. The corresponding staphylococcal mutants lacked binding to recombinant BapA1 (rBapA1) due to lower amounts of eDNA in their culture supernatants and were defective in biofilm formation with streptococcus. The rBapA1 selectively colocalized with eDNA within the dual-species biofilm and bound to eDNA in vitro, highlighting the contributions of the biofilm matrix formed between streptococcal BapA1 and staphylococcal eDNA to dual-species biofilm formation. These findings have revealed an additional new mechanism through which an interspecies biofilm matrix network mediates polymicrobial interactions.
Collapse
Affiliation(s)
- Lijun Wang
- Departments of Pediatric Dentistry and Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, 35294, USA
- Department of Laboratory Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218, Beijing, China
| | - Hongxia Wang
- Departments of Pediatric Dentistry and Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, 35294, USA
| | - Hua Zhang
- Departments of Pediatric Dentistry and Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, 35294, USA
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, 97239, USA
| | - Hui Wu
- Departments of Pediatric Dentistry and Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, 35294, USA.
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, 97239, USA.
| |
Collapse
|
21
|
Belibasakis GN, Belstrøm D, Eick S, Gursoy UK, Johansson A, Könönen E. Periodontal microbiology and microbial etiology of periodontal diseases: Historical concepts and contemporary perspectives. Periodontol 2000 2023. [PMID: 36661184 DOI: 10.1111/prd.12473] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 01/21/2023]
Abstract
This narrative review summarizes the collective knowledge on periodontal microbiology, through a historical timeline that highlights the European contribution in the global field. The etiological concepts on periodontal disease culminate to the ecological plaque hypothesis and its dysbiosis-centered interpretation. Reference is made to anerobic microbiology and to the discovery of select periodontal pathogens and their virulence factors, as well as to biofilms. The evolution of contemporary molecular methods and high-throughput platforms is highlighted in appreciating the breadth and depth of the periodontal microbiome. Finally clinical microbiology is brought into perspective with the contribution of different microbial species in periodontal diagnosis, the combination of microbial and host biomarkers for this purpose, and the use of antimicrobials in the treatment of the disease.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Belstrøm
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Ulvi K Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | | | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
22
|
ARAÚJO LL, LOURENÇO TGB, COLOMBO APV. Periodontal disease severity is associated to pathogenic consortia comprising putative and candidate periodontal pathogens. J Appl Oral Sci 2023; 31:e20220359. [PMID: 36629716 PMCID: PMC9828885 DOI: 10.1590/1678-7757-2022-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/10/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Based on a holistic concept of polymicrobial etiology, we have hypothesized that putative and candidate periodontal pathogens are more frequently detected in consortia than alone in advanced forms of periodontal diseases (PD). OBJECTIVE To correlate specific consortia of periodontal pathogens with clinical periodontal status and severity of periodontitis. METHODOLOGY Subgingival biofilm was obtained from individuals with periodontal health (113, PH), gingivitis (91, G), and periodontitis (209, P). Genomic DNA was purified and the species Aggregatibacter actinomycetemcomitans (Aa), Aa JP2-like strain, Porphyromonas gingivalis (Pg), Dialister pneumosintes (Dp), and Filifactor alocis (Fa) were detected by PCR. Configural frequency and logistic regression analyses were performed to correlate microbial consortia and PD. RESULTS Aa + Pg in the presence of Dp (phi=0.240; χ2=11.9, p<0.01), as well as Aa JP2 + Dp + Fa (phi=0.186, χ2=4.6, p<0.05) were significantly more associated in advanced stages of P. The consortium Aa + Fa + Dp was strongly associated with deep pocketing and inflammation (p<0.001). The best predictors of disease severity (80% accuracy) included older age (OR 1.11 [95% CI 1.07 - 1.15], p<0.001), Black/African-American ancestry (OR 1.89 [95% CI 1.19 - 2.99], p=0.007), and high frequency of Aa + Pg + Dp (OR 3.04 [95% CI 1.49 - 6.22], p=0.002). CONCLUSION Specific microbial consortia of putative and novel periodontal pathogens, associated with demographic parameters, correlate with severe periodontitis, supporting the multifactorial nature of PD.
Collapse
Affiliation(s)
- Lélia Lima ARAÚJO
- Universidade Federal do Rio de JaneiroFaculdade de OdontologiaPrograma de Pós-Graduação em OdontologiaRio de JaneiroBrasilUniversidade Federal do Rio de Janeiro, Faculdade de Odontologia, Programa de Pós-Graduação em Odontologia (Periodontia), Rio de Janeiro, Brasil.,Universidade Federal do Rio de JaneiroInstituto de MicrobiologiaDepartamento de Microbiologia MédicaRio de JaneiroBrasilUniversidade Federal do Rio de Janeiro, Instituto de Microbiologia, Departamento de Microbiologia Médica, Rio de Janeiro, Brasil.
| | - Talita Gomes Baêta LOURENÇO
- Universidade Federal do Rio de JaneiroInstituto de MicrobiologiaDepartamento de Microbiologia MédicaRio de JaneiroBrasilUniversidade Federal do Rio de Janeiro, Instituto de Microbiologia, Departamento de Microbiologia Médica, Rio de Janeiro, Brasil.
| | - Ana Paula Vieira COLOMBO
- Universidade Federal do Rio de JaneiroFaculdade de OdontologiaPrograma de Pós-Graduação em OdontologiaRio de JaneiroBrasilUniversidade Federal do Rio de Janeiro, Faculdade de Odontologia, Programa de Pós-Graduação em Odontologia (Periodontia), Rio de Janeiro, Brasil.,Universidade Federal do Rio de JaneiroInstituto de MicrobiologiaDepartamento de Microbiologia MédicaRio de JaneiroBrasilUniversidade Federal do Rio de Janeiro, Instituto de Microbiologia, Departamento de Microbiologia Médica, Rio de Janeiro, Brasil.
| |
Collapse
|
23
|
qPCR Detection and Quantification of Aggregatibacter actinomycetemcomitans and Other Periodontal Pathogens in Saliva and Gingival Crevicular Fluid among Periodontitis Patients. Pathogens 2023; 12:pathogens12010076. [PMID: 36678429 PMCID: PMC9861831 DOI: 10.3390/pathogens12010076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE The detection of special bacterial species in patients with periodontitis is considered useful for clinical diagnosis and treatment. The aim of this study was to investigate the presence of specific periopathogens and investigate whether there is a correlation between the results of different bacterial species in whole saliva and pooled subgingival plaque samples (healthy and diseased sites) from individuals with periodontitis and periodontally healthy subjects. MATERIALS AND METHODS In total, 52 patients were recruited and divided into two groups: non-periodontitis and periodontitis patients. For each group, the following periodontal pathogens were detected using real-time polymerase chain reaction: A. actinomycetemcomitans JP2 clone, A. actinomycetemcomitans non JP2 clone, Porphyromonasgingivalis, and total eubacteria. RESULTS Higher levels of the various studied bacteria were present in both saliva and plaque samples from the periodontitis group in comparison to non-periodontitis subjects. There were significant differences in P. gingivalis and A. actinomycetemcomitans JP2 clones in the saliva of periodontitis patient compared to the control group. Subgingival plaque of diseased sites presented a significant and strong positive correlation between A. actinomycetemcomitans and P. gingivalis. In saliva samples, there was a significant positive correlation between A. actinomycetemcomitans JP2 clone and P. gingivalis (p ≤ 0.002). CONCLUSION Quantifying and differentiating these periodontal species from subgingival plaque and saliva samples showed a good potential as diagnostic markers for periodontal disease. Regarding the prevalence of the studied bacteria, specifically A. actinomycetemcomitans JP2 clone, found in this work, and the high rate of susceptibility to periodontal species in Africa, future larger studies are recommended.
Collapse
|
24
|
Iskander MMZ, Lamont GJ, Tan J, Pisano M, Uriarte SM, Scott DA. Tobacco smoke exacerbates Filifactor alocis pathogenicity. J Clin Periodontol 2023; 50:121-130. [PMID: 36122937 PMCID: PMC9976951 DOI: 10.1111/jcpe.13729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/11/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
AIM Filifactor alocis has recently emerged as a periodontal pathobiont that appears to thrive in the oral cavity of smokers. We hypothesized that identification of smoke-responsive F. alocis genes would provide insight into adaptive strategies and that cigarette smoke would enhance F. alocis pathogenesis in vivo. MATERIALS AND METHODS F. alocis was grown in vitro and cigarette smoke extract-responsive genes determined by RNAseq. Mice were exposed, or not, to mainstream 1R6F research cigarette smoke and infected with F. alocis, or not, in an acute ligature model of periodontitis. Key clinical, infectious, and immune data were collected. RESULTS In culture, F. alocis growth was unaffected by smoke conditioning and only a small number of genes were specifically regulated by smoke exposure. Reduced murine mass, differences in F. alocis-cognizant antibody production, and altered immune profiles as well as altered alveolar bone loss were all attributable to smoke exposure and/or F. alocis infection in vivo. CONCLUSIONS F. alocis is well-adapted to tobacco-rich conditions and its pathogenesis is enhanced by tobacco smoke exposure. A smoke-exposed ligature model of periodontitis shows promise as a tool with which to further unravel mechanisms underlying tobacco-enhanced, bacteria-induced disease.
Collapse
Affiliation(s)
- Mina M Z Iskander
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Gwyneth J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Jinlian Tan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Michele Pisano
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
25
|
Pandian DS, Victor DJ, Cholan P, Prakash PSG, Subramanian S, Shankar SP. Comparative analysis of the red-complex organisms and recently identified periodontal pathogens in the subgingival plaque of diabetic and nondiabetic patients with severe chronic periodontitis. J Indian Soc Periodontol 2023; 27:51-56. [PMID: 36873973 PMCID: PMC9979820 DOI: 10.4103/jisp.jisp_136_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/01/2021] [Accepted: 01/09/2022] [Indexed: 03/07/2023] Open
Abstract
Aim This analytical case-control study sought to evaluate the presence of the recently established putative periodontal pathogen organisms, Filifactor alocis and Fretibacterium fastidiosum, against the levels of the already established red-complex pathogens, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola, in chronic periodontitis sites of patients with and without diabetes mellitus. Materials and Methods Fifty-six subgingival plaque samples were obtained from the deepest sites of subjects diagnosed with severe chronic periodontitis with and without diabetes mellitus. These patients were categorized into two groups of 28 each. Clinical parameters were recorded and microbial analysis was done with quantitative polymerase chain reaction, and the bacterial counts of F. alocis and F. fastidiosum were determined and then compared with that of the red-complex organisms. Results The bacterial counts were found to be higher in the diabetic group than that in the nondiabetic group, which was statistically significant for T. forsythia (P < 0.037) and T. denticola (P < 0.003). The study found very less number of F. alocis, which was slightly higher in the diabetic group. When correlating the bacterial levels within the nondiabetic groups, the red complex species had a strong positive correlation both individually with F. alocis (P < 0.0001) and F. fastidiosum (P < 0.001) and also when the newer species was clubbed together as a cohort (P < 0.0001). Whereas, in the diabetic group, although there was a positive correlation, there was no statistical significance. Conclusion The results of this study highlighted the presence of a definite difference in the subgingival microbiota of both the patient groups evaluated. They also indicate that of the newly identified microorganisms, both the cohorts had higher levels of F. fastidiosum, suggesting a pathobiont-like role of this bacteria among both these periodontitis groups. F. alocis was comparatively lesser in number among the cohorts evaluated, and the cause for this decreased level of F. alocis needs to be further evaluated. The results of the present study depict a higher bacterial load in the diabetic group when compared to the nondiabetic group. Further, the study demonstrates a strong correlation between the red-complex species and the newer organisms in the nondiabetic group.
Collapse
Affiliation(s)
- Divya Shree Pandian
- Department of Periodontics, Karpaga Vinayaga Institute of Dental Sciences, Kanchipuram, Tamil Nadu, India
| | - Dhayanad John Victor
- Department of Periodontics, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Priyanka Cholan
- Department of Periodontics, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | - PSG Prakash
- Department of Periodontics, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Sangeetha Subramanian
- Department of Periodontics, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | | |
Collapse
|
26
|
Razooqi Z, Höglund Åberg C, Kwamin F, Claesson R, Haubek D, Oscarsson J, Johansson A. Aggregatibacter actinomycetemcomitans and Filifactor alocis as Associated with Periodontal Attachment Loss in a Cohort of Ghanaian Adolescents. Microorganisms 2022; 10:microorganisms10122511. [PMID: 36557764 PMCID: PMC9781193 DOI: 10.3390/microorganisms10122511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The aims of the present study were to document the presence of Aggregatibacter actinomyctemcomitans and the emerging oral pathogen Filifactor alocis, as well as to identify genotypes of these bacterial species with enhanced virulence. In addition, these data were analyzed in relation to periodontal pocket depth (PPD) and the progression of PPD from the sampled periodontal sites during a two-year period. Subgingival plaque samples were collected from 172 periodontal pockets of 68 Ghanaian adolescents. PPD at sampling varied from 3-14 mm and the progression from baseline, i.e., two years earlier up to 8 mm. The levels of A. actinomycetemcomitans and F. alocis were determined with quantitative PCR. The highly leukotoxic JP2-genotype of A. actinomycetemcomitans and the ftxA a gene of F. alocis, encoding a putative Repeats-in-Toxin (RTX) protein, were detected with conventional PCR. The prevalence of A. actinomycetemcomitans was 57%, and 14% of the samples contained the JP2 genotype. F. alocis was detected in 92% of the samples and the ftxA gene in 52%. The levels of these bacterial species were significantly associated with enhanced PPD and progression, with a more pronounced impact in sites positive for the JP2 genotype or the ftxA gene. Taken together, the results indicate that the presence of both A. actinomycetemcomitans and F. alocis with their RTX proteins are linked to increased PPD and progression of disease.
Collapse
Affiliation(s)
- Zeinab Razooqi
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden
| | | | - Francis Kwamin
- Dental School University of Ghana, Korle-Bu, Accra KB 460, Ghana
| | - Rolf Claesson
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden
| | - Dorte Haubek
- Jammerbugt Municipal Dental Service, Skolevej 1, DK-9460 Brovst, Denmark
| | - Jan Oscarsson
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden
| | - Anders Johansson
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden
- Correspondence: ; Tel.: +46-90-8856291
| |
Collapse
|
27
|
Ozuna H, Snider I, Belibasakis GN, Oscarsson J, Johansson A, Uriarte SM. Aggregatibacter actinomycetemcomitans and Filifactor alocis: Two exotoxin-producing oral pathogens. FRONTIERS IN ORAL HEALTH 2022; 3:981343. [PMID: 36046121 PMCID: PMC9420871 DOI: 10.3389/froh.2022.981343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is a dysbiotic disease caused by the interplay between the microbial ecosystem present in the disease with the dysregulated host immune response. The disease-associated microbial community is formed by the presence of established oral pathogens like Aggregatibacter actinomycetemcomitans as well as by newly dominant species like Filifactor alocis. These two oral pathogens prevail and grow within the periodontal pocket which highlights their ability to evade the host immune response. This review focuses on the virulence factors and potential pathogenicity of both oral pathogens in periodontitis, accentuating the recent description of F. alocis virulence factors, including the presence of an exotoxin, and comparing them with the defined factors associated with A. actinomycetemcomitans. In the disease setting, possible synergistic and/or mutualistic interactions among both oral pathogens might contribute to disease progression.
Collapse
Affiliation(s)
- Hazel Ozuna
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Ian Snider
- Department of Biology, School of Arts and Sciences, University of Louisville, Louisville, KY, United States
| | | | - Jan Oscarsson
- Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States,*Correspondence: Silvia M. Uriarte
| |
Collapse
|
28
|
Grundner M, Munjaković H, Tori T, Sepčić K, Gašperšič R, Oblak Č, Seme K, Guella G, Trenti F, Skočaj M. Ceramide Phosphoethanolamine as a Possible Marker of Periodontal Disease. MEMBRANES 2022; 12:membranes12070655. [PMID: 35877858 PMCID: PMC9324278 DOI: 10.3390/membranes12070655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
Periodontal disease is a chronic oral inflammatory disorder initiated by pathobiontic bacteria found in dental plaques—complex biofilms on the tooth surface. The disease begins as an acute local inflammation of the gingival tissue (gingivitis) and can progress to periodontitis, which eventually leads to the formation of periodontal pockets and ultimately results in tooth loss. The main problem in periodontology is that the diagnosis is based on the assessment of the already obvious tissue damage. Therefore, it is necessary to improve the current diagnostics used to assess periodontal disease. Using lipidomic analyses, we show that both crucial periodontal pathogens, Porphyromonas gingivalis and Tannerella forsythia, synthesize ceramide phosphoethanolamine (CPE) species, membrane sphingolipids not typically found in vertebrates. Previously, it was shown that this particular lipid can be specifically detected by an aegerolysin protein, erylysin A (EryA). Here, we show that EryA can specifically bind to CPE species from the total lipid extract from P. gingivalis. Furthermore, using a fluorescently labelled EryA-mCherry, we were able to detect CPE species in clinical samples of dental plaque from periodontal patients. These results demonstrate the potential of specific periodontal pathogen-derived lipids as biomarkers for periodontal disease and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Maja Grundner
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia; (M.G.); (H.M.); (T.T.); (K.S.)
| | - Haris Munjaković
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia; (M.G.); (H.M.); (T.T.); (K.S.)
| | - Tilen Tori
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia; (M.G.); (H.M.); (T.T.); (K.S.)
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia; (M.G.); (H.M.); (T.T.); (K.S.)
| | - Rok Gašperšič
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (R.G.); (Č.O.); (K.S.)
| | - Čedomir Oblak
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (R.G.); (Č.O.); (K.S.)
| | - Katja Seme
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (R.G.); (Č.O.); (K.S.)
| | - Graziano Guella
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy; (G.G.); (F.T.)
| | - Francesco Trenti
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy; (G.G.); (F.T.)
| | - Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia; (M.G.); (H.M.); (T.T.); (K.S.)
- Correspondence: ; Tel.: +386-1-3203-395
| |
Collapse
|
29
|
Doocey CM, Finn K, Murphy C, Guinane CM. The impact of the human microbiome in tumorigenesis, cancer progression, and biotherapeutic development. BMC Microbiol 2022; 22:53. [PMID: 35151278 PMCID: PMC8840051 DOI: 10.1186/s12866-022-02465-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Cancer impacts millions of lives globally each year, with approximately 10 million cancer-related deaths recorded worldwide in 2020. Mounting research has recognised the human microbiome as a key area of interest in the pathophysiology of various human diseases including cancer tumorigenesis, progression and in disease outcome. It is suggested that approximately 20% of human cancers may be linked to microbes. Certain residents of the human microbiome have been identified as potentially playing a role, including: Helicobacter pylori, Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis and Porphyromonas gingivalis.
Main body
In this review, we explore the current evidence that indicate a link between the human microbiome and cancer. Microbiome compositional changes have been well documented in cancer patients. Furthermore, pathogenic microbes harbouring specific virulence factors have been implicated in driving the carcinogenic activity of various malignancies including colorectal, gastric and pancreatic cancer. The associated genetic mechanisms with possible roles in cancer will be outlined. It will be indicated which microbes have a potential direct link with cancer cell proliferation, tumorigenesis and disease progression. Recent studies have also linked certain microbial cytotoxins and probiotic strains to cancer cell death, suggesting their potential to target the tumour microenvironment given that cancer cells are integral to its composition. Studies pertaining to such cytotoxic activity have suggested the benefit of microbial therapies in oncological treatment regimes. It is also apparent that bacterial pathogenic protein products encoded for by certain loci may have potential as oncogenic therapeutic targets given their possible role in tumorigenesis.
Conclusion
Research investigating the impact of the human microbiome in cancer has recently gathered pace. Vast amounts of evidence indicate the human microbiome as a potential player in tumorigenesis and progression. Promise in the development of cancer biomarkers and in targeted oncological therapies has also been demonstrated, although more studies are needed. Despite extensive in vitro and in vivo research, clinical studies involving large cohorts of human patients are lacking. The current literature suggests that further intensive research is necessary to validate both the role of the human microbiome in cancer, and the use of microbiome modification in cancer therapy.
Collapse
|
30
|
Prevalence of the JP2 genotype of Aggregatibacter actinomycetemcomitans in the world population: a systematic review. Clin Oral Investig 2022; 26:2317-2334. [DOI: 10.1007/s00784-021-04343-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
|
31
|
Looh SC, Soo ZMP, Wong JJ, Yam HC, Chow SK, Hwang JS. Aggregatibacter actinomycetemcomitans as the Aetiological Cause of Rheumatoid Arthritis: What Are the Unsolved Puzzles? Toxins (Basel) 2022; 14:toxins14010050. [PMID: 35051027 PMCID: PMC8777676 DOI: 10.3390/toxins14010050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 01/23/2023] Open
Abstract
Leukotoxin A (LtxA) is the major virulence factor of an oral bacterium known as Aggregatibacter actinomycetemcomitans (Aa). LtxA is associated with elevated levels of anti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA) patients. LtxA targets leukocytes and triggers an influx of extracellular calcium into cytosol. The current proposed model of LtxA-mediated hypercitrullination involves the dysregulated activation of peptidylarginine deiminase (PAD) enzymes to citrullinate proteins, the release of hypercitrullinated proteins through cell death, and the production of autoantigens recognized by ACPA. Although model-based evidence is yet to be established, its interaction with the host’s immune system sparked interest in the role of LtxA in RA. The first part of this review summarizes the current knowledge of Aa and LtxA. The next part highlights the findings of previous studies on the association of Aa or LtxA with RA aetiology. Finally, we discuss the unresolved aspects of the proposed link between LtxA of Aa and RA.
Collapse
Affiliation(s)
- Sung Cheng Looh
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (S.C.L.); (H.C.Y.)
| | - Zoey May Pheng Soo
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia; (Z.M.P.S.); (J.J.W.)
| | - Jia Jia Wong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia; (Z.M.P.S.); (J.J.W.)
| | - Hok Chai Yam
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (S.C.L.); (H.C.Y.)
| | | | - Jung Shan Hwang
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
32
|
Cheng X, Zhou X, Liu C, Xu X. Oral Osteomicrobiology: The Role of Oral Microbiota in Alveolar Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:751503. [PMID: 34869060 PMCID: PMC8635720 DOI: 10.3389/fcimb.2021.751503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Osteomicrobiology is a new research field in which the aim is to explore the role of microbiota in bone homeostasis. The alveolar bone is that part of the maxilla and mandible that supports the teeth. It is now evident that naturally occurring alveolar bone loss is considerably stunted in germ-free mice compared with specific-pathogen-free mice. Recently, the roles of oral microbiota in modulating host defense systems and alveolar bone homeostasis have attracted increasing attention. Moreover, the mechanistic understanding of oral microbiota in mediating alveolar bone remodeling processes is undergoing rapid progress due to the advancement in technology. In this review, to provide insight into the role of oral microbiota in alveolar bone homeostasis, we introduced the term “oral osteomicrobiology.” We discussed regulation of alveolar bone development and bone loss by oral microbiota under physiological and pathological conditions. We also focused on the signaling pathways involved in oral osteomicrobiology and discussed the bridging role of osteoimmunity and influencing factors in this process. Finally, the critical techniques for osteomicrobiological investigations were introduced.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Marongiu L, Landry JJM, Rausch T, Abba ML, Delecluse S, Delecluse H, Allgayer H. Metagenomic analysis of primary colorectal carcinomas and their metastases identifies potential microbial risk factors. Mol Oncol 2021; 15:3363-3384. [PMID: 34328665 PMCID: PMC8637581 DOI: 10.1002/1878-0261.13070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
The paucity of microbiome studies at intestinal tissues has contributed to a yet limited understanding of potential viral and bacterial cofactors of colorectal cancer (CRC) carcinogenesis or progression. We analysed whole-genome sequences of CRC primary tumours, their corresponding metastases and matched normal tissue for sequences of viral, phage and bacterial species. Bacteriome analysis showed Fusobacterium nucleatum, Streptococcus sanguinis, F. Hwasookii, Anaerococcus mediterraneensis and further species enriched in primary CRCs. The primary CRC of one patient was enriched for F. alocis, S. anginosus, Parvimonas micra and Gemella sp. 948. Enrichment of Escherichia coli strains IAI1, SE11, K-12 and M8 was observed in metastases together with coliphages enterobacteria phage φ80 and Escherichia phage VT2φ_272. Virome analysis showed that phages were the most preponderant viral species (46%), the main families being Myoviridae, Siphoviridae and Podoviridae. Primary CRCs were enriched for bacteriophages, showing five phages (Enterobacteria, Bacillus, Proteus, Streptococcus phages) together with their pathogenic hosts in contrast to normal tissues. The most frequently detected, and Blast-confirmed, viruses included human endogenous retrovirus K113, human herpesviruses 7 and 6B, Megavirus chilensis, cytomegalovirus (CMV) and Epstein-Barr virus (EBV), with one patient showing EBV enrichment in primary tumour and metastases. EBV was PCR-validated in 80 pairs of CRC primary tumour and their corresponding normal tissues; in 21 of these pairs (26.3%), it was detectable in primary tumours only. The number of viral species was increased and bacterial species decreased in CRCs compared with normal tissues, and we could discriminate primary CRCs from metastases and normal tissues by applying the Hutcheson t-test on the Shannon indices based on viral and bacterial species. Taken together, our results descriptively support hypotheses on microorganisms as potential (co)risk factors of CRC and extend putative suggestions on critical microbiome species in CRC metastasis.
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Experimental Surgery – Cancer MetastasisMedical Faculty MannheimRuprecht‐Karls University of HeidelbergMannheimGermany
| | | | - Tobias Rausch
- Genomics Core FacilityEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Mohammed L. Abba
- Department of Experimental Surgery – Cancer MetastasisMedical Faculty MannheimRuprecht‐Karls University of HeidelbergMannheimGermany
| | | | | | - Heike Allgayer
- Department of Experimental Surgery – Cancer MetastasisMedical Faculty MannheimRuprecht‐Karls University of HeidelbergMannheimGermany
| |
Collapse
|
34
|
Barbagallo G, Santagati M, Guni A, Torrisi P, Spitale A, Stefani S, Ferlito S, Nibali L. Microbiome differences in periodontal, peri-implant, and healthy sites: a cross-sectional pilot study. Clin Oral Investig 2021; 26:2771-2781. [PMID: 34826030 DOI: 10.1007/s00784-021-04253-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES To explore microbial communities associated with health and disease status around teeth and dental implants. MATERIALS AND METHODS A total of 10 healthy, 24 periodontitis, and 24 peri-implant sites from 24 patients were sequenced by next-generation sequencing. Microbial DNA was extracted and 16S rRNA gene was amplified. Bioinformatic analyses were performed using quantitative insights into microbial ecology (QIIME), linear discriminant analysis effect size (LEfSE), and STAMP. RESULTS Differences in microbial diversity across three types of sites were not statistically significant. Several genera and species were more prevalent in healthy compared with diseased sites, including Lautropia, Rothia and Capnocytophaga and Kingella. Among diseased sites, Peptostreptococcaceae, Dialister, Mongibacterium, Atopobium, and Filifactor were over-represented in peri-implantitis sites, while Bacteroidales was more abundant in periodontitis sites. CONCLUSIONS Diseased periodontal and peri-implant sites and corresponding healthy sites have distinct microbiological profiles. These findings suggest that microbial analyses could identify biomarkers for periodontal health and disease and lead to the development of new strategies to improve periodontal health and treat peri-implant and periodontal diseases. CLINICAL RELEVANCE The study contributes to improving our understanding of healthy, periodontally affected, and peri-implantitis sites which can improve our ability to diagnose, monitor, and manage these oral conditions.
Collapse
Affiliation(s)
- Giovanni Barbagallo
- Department of Surgery and Medical Specialties, Division of Dental Medicine, University of Catania, Catania, Italy
| | - Maria Santagati
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy.
| | - Alaa Guni
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Paolo Torrisi
- Department of Surgery and Medical Specialties, Division of Dental Medicine, University of Catania, Catania, Italy
| | - Ambra Spitale
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Stefania Stefani
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Sebastiano Ferlito
- Department of Surgery and Medical Specialties, Division of Dental Medicine, University of Catania, Catania, Italy
| | - Luigi Nibali
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
35
|
Belstrøm D, Constancias F, Markvart M, Sikora M, Sørensen CE, Givskov M. Transcriptional Activity of Predominant Streptococcus Species at Multiple Oral Sites Associate With Periodontal Status. Front Cell Infect Microbiol 2021; 11:752664. [PMID: 34621696 PMCID: PMC8490622 DOI: 10.3389/fcimb.2021.752664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 01/22/2023] Open
Abstract
Background Streptococcus species are predominant members of the oral microbiota in both health and diseased conditions. The purpose of the present study was to explore if different ecological characteristics, such as oxygen availability and presence of periodontitis, associates with transcriptional activity of predominant members of genus Streptococcus. We tested the hypothesis that genetically closely related Streptococcus species express different transcriptional activities in samples collected from environments with critically different ecological conditions determined by site and inflammatory status. Methods Metagenomic and metatranscriptomic data was retrieved from 66 oral samples, subgingival plaque (n=22), tongue scrapings (n=22) and stimulated saliva (n=22) collected from patients with periodontitis (n=11) and orally healthy individuals (n=11). Species-specific transcriptional activity was computed as Log2(RNA/DNA), and transcriptional activity of predominant Streptococcus species was compared between multiple samples collected from different sites in the same individual, and between individuals with different oral health status. Results The predominant Streptococcus species were identified with a site-specific colonization pattern of the tongue and the subgingival plaque. A total of 11, 4 and 2 pathways expressed by S. parasanguinis, S. infantis and S. salivarius, respectively, were recorded with significantly higher transcriptional activity in saliva than in tongue biofilm in healthy individuals. In addition, 18 pathways, including pathways involved in synthesis of peptidoglycan, amino acid biosynthesis, glycolysis and purine nucleotide biosynthesis expressed by S. parasanguinis and 3 pathways expressed by S. salivarius were identified with significantly less transcriptional activity in patients with periodontitis. Conclusion Data from the present study significantly demonstrates the association of site-specific ecological conditions and presence of periodontitis with transcriptional activity of the predominant Streptococcus species of the oral microbiota. In particular, pathways expressed by S. parasanguinis being involved in peptidoglycan, amino acid biosynthesis, glycolysis, and purine nucleotide biosynthesis were identified to be significantly associated with oral site and/or inflammation status.
Collapse
Affiliation(s)
- Daniel Belstrøm
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Florentin Constancias
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University, Singapore, Singapore
| | - Merete Markvart
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christiane Elisabeth Sørensen
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Givskov
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University, Singapore, Singapore.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Neelakandan A, Potluri R, Yadalam PK, Chakraborty P, Saravanan AV, Arunraj R. The Varied Proportion of Filifactor alocis in Periodontal Health and Disease in the South Indian Subpopulation. Contemp Clin Dent 2021; 12:433-438. [PMID: 35068845 PMCID: PMC8740782 DOI: 10.4103/ccd.ccd_803_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/29/2020] [Accepted: 10/31/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND AIM The periodontal microbiome being complex, this study was aimed to detect and quantify the prevalence of Filifactor alocis in various stages of periodontitis and to evaluate its prospect as a diagnostic marker for periodontal disease. SETTINGS AND DESIGN Sixty subjects were selected (20 healthy controls, 20 with chronic periodontitis, and 20 with aggressive periodontitis) for the study. MATERIALS AND METHODS Clinical parameters probing depth and the level of clinical attachment was recorded, subgingival plaque samples were collected. The F. alocis 16srDNA was cloned, sequenced, and used as the standard for real-time quantification of bacterial load using SYBR green chemistry. STATISTICAL ANALYSIS Clinical, microbiological, and quantitative polymerase chain reaction (PCR) data were analyzed using ANOVA and Pearson's coefficient correlation. RESULTS (a) Real-time PCR analysis showed the highest average F. alocis count in chronic periodontitis subjects (32,409.85), which was followed by count in healthy controls (3046.15) and the least count in aggressive periodontitis subjects (939.84). The bacterial count was statistically significant at P = 0.005. (b) An intra-group comparison reveals that there was a statistically significant increase in the bacterial count with age and mean probing pocket depth at P = 0.0005. CONCLUSION F. alocis population in aggressive periodontitis was lower compared to chronic periodontitis and healthy controls. The F. alocis population surge in healthy controls may be due to geographical variations and the ethnicity of the subjects. A higher population of F. alocis in chronic periodontitis proves its high pathogenic potential to invade the host tissues to aid in further periodontal destruction.
Collapse
Affiliation(s)
- Anila Neelakandan
- Department of Periodontology and Implantology, SRM Dental College, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ravishankar Potluri
- Department of Periodontology and Implantology, SRM Dental College, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Pradeep Kumar Yadalam
- Department of Periodontology and Implantology, SRM Dental College, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Priyankar Chakraborty
- Department of Periodontology and Implantology, SRM Dental College, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - A. V. Saravanan
- Department of Periodontology and Implantology, SRM Dental College, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rex Arunraj
- Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
37
|
Kim HY, Song M, Gho YS, Kim H, Choi B. Extracellular vesicles derived from the periodontal pathogen Filifactor alocis induce systemic bone loss through Toll-like receptor 2. J Extracell Vesicles 2021; 10:e12157. [PMID: 34648247 PMCID: PMC8516034 DOI: 10.1002/jev2.12157] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023] Open
Abstract
Periodontitis is an inflammatory disease induced by local infection in tooth-supporting tissue. Periodontitis is associated with systemic bone diseases, but little is known about the mechanism of the causal effect of periodontitis on systemic bone resorption. Bacteria-derived extracellular vesicles (EVs) act as natural carriers of virulence factors that are responsible for systemic inflammation. In this study, we investigated the role of EVs derived from Filifactor alocis, a Gram-positive, anaerobic periodontal pathogen, in systemic bone loss and osteoclast differentiation. F. alocis EVs accumulated in the long bones of mice after intraperitoneal administration. These EVs induced proinflammatory cytokines, osteoclastogenesis, and bone resorption via Toll-like receptor 2 (TLR2). The phase separation of F. alocis EVs showed that amphiphilic molecules were responsible for the induced bone resorption and osteoclastogenesis. The osteoclastogenic effects of F. alocis EVs were reduced by lipoprotein lipase. Proteomic analysis of the amphiphilic molecules identified seven lipoproteins. Our results indicate that lipoprotein-like molecules in F. alocis EVs may contribute to systemic bone loss via TLR2.
Collapse
Affiliation(s)
- Hyun Young Kim
- Department of Oral Microbiology and ImmunologySchool of Dentistry, Seoul National UniversitySeoulRepublic of Korea
| | - Min‐Kyoung Song
- Department of Cell and Developmental BiologySchool of Dentistry, Seoul National UniversitySeoulRepublic of Korea
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Yong Song Gho
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Hong‐Hee Kim
- Department of Cell and Developmental BiologySchool of Dentistry, Seoul National UniversitySeoulRepublic of Korea
- Dental Research InstituteSeoul National UniversitySeoulRepublic of Korea
| | - Bong‐Kyu Choi
- Department of Oral Microbiology and ImmunologySchool of Dentistry, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
38
|
Ozuna H, Uriarte SM, Demuth DR. The Hunger Games: Aggregatibacter actinomycetemcomitans Exploits Human Neutrophils As an Epinephrine Source for Survival. Front Immunol 2021; 12:707096. [PMID: 34456916 PMCID: PMC8387626 DOI: 10.3389/fimmu.2021.707096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a gram-negative facultative anaerobe and an opportunistic oral pathogen, strongly associated with periodontitis and other inflammatory diseases. Periodontitis is a chronic inflammation of the periodontium resulting from the inflammatory response of the host towards the dysbiotic microbial community present at the gingival crevice. Previously, our group identified catecholamines and iron as the signals that activate the QseBC two-component system in A. actinomycetemcomitans, necessary for the organism to acquire iron as a nutrient to survive in the anaerobic environment. However, the source of catecholamines has not been identified. It has been reported that mouse neutrophils can release catecholamines. In periodontitis, large infiltration of neutrophils is found at the subgingival pocket; hence, we wanted to test the hypothesis that A. actinomycetemcomitans exploits human neutrophils as a source for catecholamines. In the present study, we showed that human neutrophils synthesize, store, and release epinephrine, one of the three main types of catecholamines. Human neutrophil challenge with A. actinomycetemcomitans induced exocytosis of neutrophil granule subtypes: secretory vesicles, specific granules, gelatinase granules, and azurophilic granules. In addition, by selectively inhibiting granule exocytosis, we present the first evidence that epinephrine is stored in azurophilic granules. Using QseC mutants, we showed that the periplasmic domain of the QseC sensor kinase is required for the interaction between A. actinomycetemcomitans and epinephrine. Finally, epinephrine-containing supernatants collected from human neutrophils promoted A. actinomycetemcomitans growth and induced the expression of the qseBC operon under anaerobic conditions. Based on our findings, we propose that A. actinomycetemcomitans promotes azurophilic granule exocytosis by neutrophils as an epinephrine source to promote bacterial survival.
Collapse
Affiliation(s)
- Hazel Ozuna
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Silvia M. Uriarte
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Donald R. Demuth
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| |
Collapse
|
39
|
Lehenaff R, Tamashiro R, Nascimento MM, Lee K, Jenkins R, Whitlock J, Li EC, Sidhu G, Anderson S, Progulske-Fox A, Bubb MR, Chan EKL, Wang GP. Subgingival microbiome of deep and shallow periodontal sites in patients with rheumatoid arthritis: a pilot study. BMC Oral Health 2021; 21:248. [PMID: 33964928 PMCID: PMC8105973 DOI: 10.1186/s12903-021-01597-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
Background Subgingival microbiome in disease-associated subgingival sites is known to be dysbiotic and significantly altered. In patients with rheumatoid arthritis (RA), the extent of dysbiosis in disease- and health-associated subgingival sites is not clear. Methods 8 RA and 10 non-RA subjects were recruited for this pilot study. All subjects received full oral examination and underwent collection of subgingival plaque samples from both shallow (periodontal health-associated, probing depth ≤ 3mm) and deep subgingival sites (periodontal disease-associated, probing depth ≥ 4 mm). RA subjects also had rheumatological evaluation. Plaque community profiles were analyzed using 16 S rRNA sequencing. Results The phylogenetic diversity of microbial communities in both RA and non-RA controls was significantly higher in deep subgingival sites compared to shallow sites (p = 0.022), and the overall subgingival microbiome clustered primarily according to probing depth (i.e. shallow versus deep sites), and not separated by RA status. While a large number of differentially abundant taxa and gene functions was observed between deep and shallow sites as expected in non-RA controls, we found very few differentially abundant taxa and gene functions between deep and shallow sites in RA subjects. In addition, compared to non-RA controls, the UniFrac distances between deep and shallow sites in RA subjects were smaller, suggesting increased similarity between deep and shallow subgingival microbiome in RA. Streptococcus parasanguinis and Actinomyces meyeri were overabundant in RA subjects, while Gemella morbillorum, Kingella denitrificans, Prevotella melaninogenica and Leptotrichia spp. were more abundant in non-RA subjects. Conclusions The aggregate subgingival microbiome was not significantly different between individuals with and without rheumatoid arthritis. Although the differences in the overall subgingival microbiome was driven primarily by probing depth, in contrast to the substantial microbiome differences typically seen between deep and shallow sites in non-RA patients, the microbiome of deep and shallow sites in RA patients were more similar to each other. These results suggest that factors associated with RA may modulate the ecology of subgingival microbiome and its relationship to periodontal disease, the basis of which remains unknown but warrants further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01597-x.
Collapse
Affiliation(s)
- Ryanne Lehenaff
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Ryan Tamashiro
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Marcelle M Nascimento
- Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Kyulim Lee
- Department of Oral Biology, College of Dentistry, Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA
| | - Renita Jenkins
- Dental Clinical Research Unit, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Joan Whitlock
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Eric C Li
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Gurjit Sidhu
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Susanne Anderson
- Division of Rheumatology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ann Progulske-Fox
- Department of Oral Biology, College of Dentistry, Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA
| | - Michael R Bubb
- Division of Rheumatology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Edward K L Chan
- Department of Oral Biology, College of Dentistry, Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA.
| | - Gary P Wang
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA. .,Medical Service, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.
| |
Collapse
|
40
|
Janiak MC, Montague MJ, Villamil CI, Stock MK, Trujillo AE, DePasquale AN, Orkin JD, Bauman Surratt SE, Gonzalez O, Platt ML, Martínez MI, Antón SC, Dominguez-Bello MG, Melin AD, Higham JP. Age and sex-associated variation in the multi-site microbiome of an entire social group of free-ranging rhesus macaques. MICROBIOME 2021; 9:68. [PMID: 33752735 PMCID: PMC7986251 DOI: 10.1186/s40168-021-01009-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/02/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND An individual's microbiome changes over the course of its lifetime, especially during infancy, and again in old age. Confounding factors such as diet and healthcare make it difficult to disentangle the interactions between age, health, and microbial changes in humans. Animal models present an excellent opportunity to study age- and sex-linked variation in the microbiome, but captivity is known to influence animal microbial abundance and composition, while studies of free-ranging animals are typically limited to studies of the fecal microbiome using samples collected non-invasively. Here, we analyze a large dataset of oral, rectal, and genital swabs collected from 105 free-ranging rhesus macaques (Macaca mulatta, aged 1 month-26 years), comprising one entire social group, from the island of Cayo Santiago, Puerto Rico. We sequenced 16S V4 rRNA amplicons for all samples. RESULTS Infant gut microbial communities had significantly higher relative abundances of Bifidobacterium and Bacteroides and lower abundances of Ruminococcus, Fibrobacter, and Treponema compared to older age groups, consistent with a diet high in milk rather than solid foods. The genital microbiome varied widely between males and females in beta-diversity, taxonomic composition, and predicted functional profiles. Interestingly, only penile, but not vaginal, microbiomes exhibited distinct age-related changes in microbial beta-diversity, taxonomic composition, and predicted functions. Oral microbiome composition was associated with age, and was most distinctive between infants and other age classes. CONCLUSIONS Across all three body regions, with notable exceptions in the penile microbiome, while infants were distinctly different from other age groups, microbiomes of adults were relatively invariant, even in advanced age. While vaginal microbiomes were exceptionally stable, penile microbiomes were quite variable, especially at the onset of reproductive age. Relative invariance among adults, including elderly individuals, is contrary to findings in humans and mice. We discuss potential explanations for this observation, including that age-related microbiome variation seen in humans may be related to changes in diet and lifestyle. Video abstract.
Collapse
Affiliation(s)
- Mareike C Janiak
- Department of Anthropology and Archaeology, University of Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, Alberta, Canada.
- Department of Anthropology, New York University, New York, USA.
- School of Science, Engineering and Environment, University of Salford, Salford, UK.
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Catalina I Villamil
- School of Chiropractic, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Michala K Stock
- Department of Sociology and Anthropology, Metropolitan State University of Denver, Denver, CO, USA
| | - Amber E Trujillo
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Allegra N DePasquale
- Department of Anthropology and Archaeology, University of Calgary, Alberta, Canada
| | - Joseph D Orkin
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona, Spain
| | | | - Olga Gonzalez
- Disease Intervention and Prevention, Southwest National Primate Research Center, San Antonio, TX, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Melween I Martínez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Susan C Antón
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Department of Anthropology, Rutgers University, New Brunswick, NJ, USA
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Alberta, Canada
| | - James P Higham
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
41
|
Abusleme L, Hoare A, Hong BY, Diaz PI. Microbial signatures of health, gingivitis, and periodontitis. Periodontol 2000 2021; 86:57-78. [PMID: 33690899 DOI: 10.1111/prd.12362] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The subgingival crevice harbors diverse microbial communities. Shifts in the composition of these communities occur with the development of gingivitis and periodontitis, which are considered as successive stages of periodontal health deterioration. It is not clear, however, to what extent health- and gingivitis-associated microbiota are protective, or whether these communities facilitate the successive growth of periodontitis-associated taxa. To further our understanding of the dynamics of the microbial stimuli that trigger disruptions in periodontal homeostasis, we reviewed the available literature with the aim of defining specific microbial signatures associated with different stages of periodontal dysbiosis. Although several studies have evaluated the subgingival communities present in different periodontal conditions, we found limited evidence for the direct comparison of communities in health, gingivitis, and periodontitis. Therefore, we aimed to better define subgingival microbiome shifts by merging and reanalyzing, using unified bioinformatic processing strategies, publicly available 16S ribosomal RNA gene amplicon datasets of periodontal health, gingivitis, and periodontitis. Despite inherent methodological differences across studies, distinct community structures were found for health, gingivitis, and periodontitis, demonstrating the specific associations between gingival tissue status and the subgingival microbiome. Consistent with the concept that periodontal dysbiosis is the result of a process of microbial succession without replacement, more species were detected in disease than in health. However, gingivitis-associated communities were more diverse than those from subjects with periodontitis, suggesting that certain species ultimately become dominant as dysbiosis progresses. We identified the bacterial species associated with each periodontal condition and prevalent species that do not change in abundance from one state to another (core species), and we also outlined species co-occurrence patterns via network analysis. Most periodontitis-associated species were rarely detected in health but were frequently detected, albeit in low abundance, in gingivitis, which suggests that gingivitis and periodontitis are a continuum. Overall, we provide a framework of subgingival microbiome shifts, which can be used to generate hypotheses with respect to community assembly processes and the emergence of periodontal dysbiosis.
Collapse
Affiliation(s)
- Loreto Abusleme
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago, Chile.,Laboratory for Craniofacial Translational Research, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Anilei Hoare
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Bo-Young Hong
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Patricia I Diaz
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.,UB Microbiome Center, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
42
|
Cugini C, Ramasubbu N, Tsiagbe VK, Fine DH. Dysbiosis From a Microbial and Host Perspective Relative to Oral Health and Disease. Front Microbiol 2021; 12:617485. [PMID: 33763040 PMCID: PMC7982844 DOI: 10.3389/fmicb.2021.617485] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The significance of microbiology and immunology with regard to caries and periodontal disease gained substantial clinical or research consideration in the mid 1960's. This enhanced emphasis related to several simple but elegant experiments illustrating the relevance of bacteria to oral infections. Since that point, the understanding of oral diseases has become increasingly sophisticated and many of the original hypotheses related to disease causality have either been abandoned or amplified. The COVID pandemic has reminded us of the importance of history relative to infectious diseases and in the words of Churchill "those who fail to learn from history are condemned to repeat it." This review is designed to present an overview of broad general directions of research over the last 60 years in oral microbiology and immunology, reviewing significant contributions, indicating emerging foci of interest, and proposing future directions based on technical advances and new understandings. Our goal is to review this rich history (standard microbiology and immunology) and point to potential directions in the future (omics) that can lead to a better understanding of disease. Over the years, research scientists have moved from a position of downplaying the role of bacteria in oral disease to one implicating bacteria as true pathogens that cause disease. More recently it has been proposed that bacteria form the ecological first line of defense against "foreign" invaders and also serve to train the immune system as an acquired host defensive stimulus. While early immunological research was focused on immunological exposure as a modulator of disease, the "hygiene hypothesis," and now the "old friends hypothesis" suggest that the immune response could be trained by bacteria for long-term health. Advanced "omics" technologies are currently being used to address changes that occur in the host and the microbiome in oral disease. The "omics" methodologies have shaped the detection of quantifiable biomarkers to define human physiology and pathologies. In summary, this review will emphasize the role that commensals and pathobionts play in their interaction with the immune status of the host, with a prediction that current "omic" technologies will allow researchers to better understand disease in the future.
Collapse
Affiliation(s)
- Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | | | | | | |
Collapse
|
43
|
Oleoresins and naturally occurring compounds of Copaifera genus as antibacterial and antivirulence agents against periodontal pathogens. Sci Rep 2021; 11:4953. [PMID: 33654123 PMCID: PMC7925542 DOI: 10.1038/s41598-021-84480-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Invasion of periodontal tissues by Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans can be associated with aggressive forms of periodontitis. Oleoresins from different copaifera species and their compounds display various pharmacological properties. The present study evaluates the antibacterial and antivirulence activity of oleoresins obtained from different copaifera species and of ten isolated compounds against two causative agents of periodontitis. The following assays were performed: determination of the minimum inhibitory concentration (MIC), determination of the minimum bactericidal concentration (MBC), and determination of the antibiofilm activity by inhibition of biofilm formation and biofilm eradication tests. The antivirulence activity was assessed by hemagglutination, P. gingivalis Arg-X and Lis-X cysteine protease inhibition assay, and A. actinomycetemcomitans leukotoxin inhibition assay. The MIC and MBC of the oleoresins and isolated compounds 1, 2, and 3 ranged from 1.59 to 50 μg/mL against P. gingivalis (ATCC 33277) and clinical isolates and from 6.25 to 400 μg/mL against A. actinomycetemcomitans (ATCC 43717) and clinical isolates. About the antibiofilm activity, the oleoresins and isolated compounds 1, 2, and 3 inhibited biofilm formation by at least 50% and eradicated pre-formed P. gingivalis and A. actinomycetemcomitans biofilms in the monospecies and multispecies modes. A promising activity concerning cysteine protease and leucotoxin inhibition was also evident. In addition, molecular docking analysis was performed. The investigated oleoresins and their compounds may play an important role in the search for novel sources of agents that can act against periodontal pathogens.
Collapse
|
44
|
Yoshida A, Bouziane A, Erraji S, Lakhdar L, Rhissassi M, Miyazaki H, Ansai T, Iwasaki M, Ennibi O. Etiology of aggressive periodontitis in individuals of African descent. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:20-26. [PMID: 33737991 PMCID: PMC7946349 DOI: 10.1016/j.jdsr.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 12/30/2022] Open
Abstract
Aggressive periodontitis (AgP) is a form of periodontitis that affects adolescents and has a significantly higher prevalence in individuals of African descent. AgP typically shows familial aggregation, suggesting a genetic predisposition. Young age, good health status, rapid attachment loss, and familial aggregation are the primary features of this disease. AgP has been closely linked to specific bacterial strains of Aggregatibacter actinomycetemcomitans. A. actinomycetemcomitans strains isolated from patients with AgP produce leukotoxin (LtxA), which specifically affects polymorphonuclear leukocytes in primates, especially humans. High-throughput 16S rRNA gene sequencing and bioinformatics analyses revealed differences in the subgingival microbiota between patients with AgP and those with chronic periodontitis (ChP). The genera Atopobium and Prevotella show increased prevalences in AgP than in ChP. According to AgP susceptibility, several single nucleotide polymorphisms have been detected in different genes in individuals of African descent. Interleukin (IL)-1α and IL-1β genetic polymorphisms may be associated with the severity of both ChP and AgP. An elevated serum level of IL-17 produced by Th17 cells may be a characteristic of AgP. Analyses of the relationships among bacteria, host defenses, genetic predisposition, and numerous other factors are required to understand the progression of this disease.
Collapse
Affiliation(s)
- Akihiro Yoshida
- Department of Oral Microbiology, Faculty of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Amal Bouziane
- Department of Periodontology, School of Medicine Dentistry, Mohammed V University, Rabat, Morocco
| | - Samir Erraji
- Department of Periodontology, School of Medicine Dentistry, Mohammed V University, Rabat, Morocco
| | - Leila Lakhdar
- Department of Periodontology, School of Medicine Dentistry, Mohammed V University, Rabat, Morocco
| | - Meryem Rhissassi
- Department of Periodontology, School of Medicine Dentistry, Mohammed V University, Rabat, Morocco
| | - Hideo Miyazaki
- Department of Dental Technology, Meirin College, Niigata, Japan
| | - Toshihiro Ansai
- Division of Community Oral Health Development, Kyushu Dental University, Kitakyushu, Japan
| | | | - Oumkeltoum Ennibi
- Department of Periodontology, School of Medicine Dentistry, Mohammed V University, Rabat, Morocco
| |
Collapse
|
45
|
Parents with periodontitis impact the subgingival colonization of their offspring. Sci Rep 2021; 11:1357. [PMID: 33446688 PMCID: PMC7809442 DOI: 10.1038/s41598-020-80372-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Early acquisition of a pathogenic microbiota and the presence of dysbiosis in childhood is associated with susceptibility to and the familial aggregation of periodontitis. This longitudinal interventional case-control study aimed to evaluate the impact of parental periodontal disease on the acquisition of oral pathogens in their offspring. Subgingival plaque and clinical periodontal metrics were collected from 18 parents with a history of generalized aggressive periodontitis and their children (6-12 years of age), and 18 periodontally healthy parents and their parents at baseline and following professional oral prophylaxis. 16S rRNA amplicon sequencing revealed that parents were the primary source of the child's microbiome, affecting their microbial acquisition and diversity. Children of periodontitis parents were preferentially colonized by Filifactor alocis, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Streptococcus parasanguinis, Fusobacterium nucleatum and several species belonging to the genus Selenomonas even in the absence of periodontitis, and these species controlled inter-bacterial interactions. These pathogens also emerged as robust discriminators of the microbial signatures of children of parents with periodontitis. Plaque control did not modulate this pathogenic pattern, attesting to the microbiome's resistance to change once it has been established. This study highlights the critical role played by parental disease in microbial colonization patterns in their offspring and the early acquisition of periodontitis-related species and underscores the need for greater surveillance and preventive measures in families of periodontitis patients.
Collapse
|
46
|
Moentadj R, Wang Y, Bowerman K, Rehaume L, Nel H, O Cuiv P, Stephens J, Baharom A, Maradana M, Lakis V, Morrison M, Wells T, Hugenholtz P, Benham H, Le Cao KA, Thomas R. Streptococcus species enriched in the oral cavity of patients with RA are a source of peptidoglycan-polysaccharide polymers that can induce arthritis in mice. Ann Rheum Dis 2021; 80:573-581. [PMID: 33397732 DOI: 10.1136/annrheumdis-2020-219009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Analysis of oral dysbiosis in individuals sharing genetic and environmental risk factors with rheumatoid arthritis (RA) patients may illuminate how microbiota contribute to disease susceptibility. We studied the oral microbiota in a prospective cohort of patients with RA, first-degree relatives (FDR) and healthy controls (HC), then genomically and functionally characterised streptococcal species from each group to understand their potential contribution to RA development. METHODS After DNA extraction from tongue swabs, targeted 16S rRNA gene sequencing and statistical analysis, we defined a microbial dysbiosis score based on an operational taxonomic unit signature of disease. After selective culture from swabs, we identified streptococci by sequencing. We examined the ability of streptococcal cell walls (SCW) from isolates to induce cytokines from splenocytes and arthritis in ZAP-70-mutant SKG mice. RESULTS RA and FDR were more likely to have periodontitis symptoms. An oral microbial dysbiosis score discriminated RA and HC subjects and predicted similarity of FDR to RA. Streptococcaceae were major contributors to the score. We identified 10 out of 15 streptococcal isolates as S. parasalivarius sp. nov., a distinct sister species to S. salivarius. Tumour necrosis factor and interleukin 6 production in vitro differed in response to individual S. parasalivarius isolates, suggesting strain specific effects on innate immunity. Cytokine secretion was associated with the presence of proteins potentially involved in S. parasalivarius SCW synthesis. Systemic administration of SCW from RA and HC-associated S. parasalivarius strains induced similar chronic arthritis. CONCLUSIONS Dysbiosis-associated periodontal inflammation and barrier dysfunction may permit arthritogenic insoluble pro-inflammatory pathogen-associated molecules, like SCW, to reach synovial tissue.
Collapse
Affiliation(s)
- Rabia Moentadj
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Yiwen Wang
- School of Mathematics and Statistics, Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kate Bowerman
- Australian Centre for Ecogenomics, The University of Queensland - Saint Lucia Campus, Saint Lucia, Queensland, Australia
| | - Linda Rehaume
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Hendrik Nel
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Paraic O Cuiv
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.,Current address: Microba Life Sciences, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Juliette Stephens
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Amalina Baharom
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Muralidhara Maradana
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Vanessa Lakis
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Timothy Wells
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, The University of Queensland - Saint Lucia Campus, Saint Lucia, Queensland, Australia
| | - Helen Benham
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.,Department of Rheumatology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Kim-Anh Le Cao
- School of Mathematics and Statistics, Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| |
Collapse
|
47
|
Fang C, Wu L, Zhu C, Xie WZ, Hu H, Zeng XT. A potential therapeutic strategy for prostatic disease by targeting the oral microbiome. Med Res Rev 2020; 41:1812-1834. [PMID: 33377531 PMCID: PMC8246803 DOI: 10.1002/med.21778] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/22/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022]
Abstract
Nowadays, human microbiome research is rapidly growing and emerging evidence has witnessed the critical role that oral microbiome plays in the process of human health and disease. Oral microbial dysbiosis has been confirmed as a contributory cause for diseases in multiple body systems, ranging from the oral cavity to the gastrointestinal, endocrine, immune, cardiovascular, and even nervous system. As research progressing, oral microbiome‐based diagnosis and therapy are proposed and applied, which may represent potential drug targets in systemic diseases. Recent studies have uncovered the possible association between periodontal disease and prostatic disease, suggesting new prevention and therapeutic treatment for the disease by targeting periodontal pathogens. Thus, we performed this review to first explore the association between the oral microbiome and prostatic disease, according to current knowledge based on published articles, and then mainly focus on the underlying molecular and cellular mechanisms and the potential prevention and treatment derived from these mechanistic studies.
Collapse
Affiliation(s)
- Cheng Fang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lan Wu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cong Zhu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen-Zhong Xie
- Department of Stomatology, Kaifeng University Health Science Center, Kaifeng, Henan, China
| | - Hailiang Hu
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA.,School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
48
|
Arredondo A, Blanc V, Mor C, Nart J, León R. Tetracycline and multidrug resistance in the oral microbiota: differences between healthy subjects and patients with periodontitis in Spain. J Oral Microbiol 2020; 13:1847431. [PMID: 33391624 PMCID: PMC7717685 DOI: 10.1080/20002297.2020.1847431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction: Antibiotic resistance is widely found even among bacterial populations not having been exposed to selective pressure by antibiotics, such as tetracycline. In this study we analyzed the tetracycline-resistant subgingival microbiota of healthy subjects and of patients with periodontitis, comparing the prevalence of tet genes and their multidrug resistance profiles. Methods: Samples from 259 volunteers were analyzed, obtaining 813 tetracycline-resistant isolates. The prevalence of 12 antibiotic resistance genes was assessed, and multidrug profiles were built. Each isolate was identified by 16S rRNA sequencing. Differences in qualitative data and quantitative data were evaluated using the chi-square test and the Mann-Whitney-U test, respectively. Results: tet(M) was the most frequently detected tet gene (52.03%). We observed significant differences between the prevalence of tet(M), tet(W), tet(O), tet(32) and tet(L) in both populations studied. Multidrug resistance was largely observed, with resistance to kanamycin being the most detected (83.64%). There were significant differences between the populations in the prevalence of kanamycin, chloramphenicol, and cefotaxime resistance. Resistant isolates showed significantly different prevalence between the two studied groups. Conclusion: The high prevalence of multidrug resistance and tetracycline resistance genes found in the subgingival microbiota, highlights the importance of performing wider and more in-depth analysis of antibiotic resistance in the oral microbiota.
Collapse
Affiliation(s)
- Alexandre Arredondo
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain.,Departament De Genètica I Microbiologia, Universitat Autònoma De Barcelona, Bellaterra, Spain
| | - Vanessa Blanc
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| | - Carolina Mor
- Department of Periodontology, Universitat Internacional De Catalunya, Barcelona, Spain
| | - José Nart
- Department of Periodontology, Universitat Internacional De Catalunya, Barcelona, Spain
| | - Rubén León
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| |
Collapse
|
49
|
Steigmann L, Maekawa S, Sima C, Travan S, Wang CW, Giannobile WV. Biosensor and Lab-on-a-chip Biomarker-identifying Technologies for Oral and Periodontal Diseases. Front Pharmacol 2020; 11:588480. [PMID: 33343358 PMCID: PMC7748088 DOI: 10.3389/fphar.2020.588480] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Periodontitis is a complex multifactorial disease that can lead to destruction of tooth supporting tissues and subsequent tooth loss. The most recent global burden of disease studies highlight that severe periodontitis is one of the most prevalent chronic inflammatory conditions affecting humans. Periodontitis risk is attributed to genetics, host-microbiome and environmental factors. Empirical diagnostic and prognostic systems have yet to be validated in the field of periodontics. Early diagnosis and intervention prevents periodontitis progression in most patients. Increased susceptibility and suboptimal control of modifiable risk factors can result in poor response to therapy, and relapse. The chronic immune-inflammatory response to microbial biofilms at the tooth or dental implant surface is associated with systemic conditions such as cardiovascular disease, diabetes or gastrointestinal diseases. Oral fluid-based biomarkers have demonstrated easy accessibility and potential as diagnostics for oral and systemic diseases, including the identification of SARS-CoV-2 in saliva. Advances in biotechnology have led to innovations in lab-on-a-chip and biosensors to interface with oral-based biomarker assessment. This review highlights new developments in oral biomarker discovery and their validation for clinical application to advance precision oral medicine through improved diagnosis, prognosis and patient stratification. Their potential to improve clinical outcomes of periodontitis and associated chronic conditions will benefit the dental and overall public health.
Collapse
Affiliation(s)
- Larissa Steigmann
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Shogo Maekawa
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Corneliu Sima
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Suncica Travan
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Chin-Wei Wang
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - William V. Giannobile
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
- Biointerfaces Institute and Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
50
|
Amado PPP, Kawamoto D, Albuquerque-Souza E, Franco DC, Saraiva L, Casarin RCV, Horliana ACRT, Mayer MPA. Oral and Fecal Microbiome in Molar-Incisor Pattern Periodontitis. Front Cell Infect Microbiol 2020; 10:583761. [PMID: 33117737 PMCID: PMC7578221 DOI: 10.3389/fcimb.2020.583761] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
In order to improve our understanding on the microbial complexity associated with Grade C/molar-incisor pattern periodontitis (GC/MIP), we surveyed the oral and fecal microbiomes of GC/MIP and compared to non-affected individuals (Control). Seven Afro-descendants with GC/MIP and seven age/race/gender-matched controls were evaluated. Biofilms from supra/subgingival sites (OB) and feces were collected and submitted to 16S rRNA sequencing. Aggregatibacter actinomycetemcomitans (Aa) JP2 clone genotyping and salivary nitrite levels were determined. Supragingival biofilm of GC/MIP presented greater abundance of opportunistic bacteria. Selenomonas was increased in subgingival healthy sites of GC/MIP compared to Control. Synergistetes and Spirochaetae were more abundant whereas Actinobacteria was reduced in OB of GC/MIP compared to controls. Aa abundance was 50 times higher in periodontal sites with PD≥ 4 mm of GC/MIP than in controls. GC/MIP oral microbiome was characterized by a reduction in commensals such as Kingella, Granulicatella, Haemophilus, Bergeyella, and Streptococcus and enrichment in periodontopathogens, especially Aa and sulfate reducing Deltaproteobacteria. The oral microbiome of the Aa JP2-like+ patient was phylogenetically distant from other GC/MIP individuals. GC/MIP presented a higher abundance of sulfidogenic bacteria in the feces, such as Desulfovibrio fairfieldensis, Erysipelothrix tonsillarum, and Peptostreptococcus anaerobius than controls. These preliminary data show that the dysbiosis of the microbiome in Afro-descendants with GC/MIP was not restricted to affected sites, but was also observed in supragingival and subgingival healthy sites, as well as in the feces. The understanding on differences of the microbiome between healthy and GC/MIP patients will help in developing strategies to improve and monitor periodontal treatment.
Collapse
Affiliation(s)
- Pâmela Pontes Penas Amado
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Emmanuel Albuquerque-Souza
- Division of Periodontology, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Diego Castillo Franco
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, São Paulo, Brazil.,Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Luciana Saraiva
- Division of Periodontology, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Renato Corrêa Viana Casarin
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
| | | | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontology, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|