1
|
Zhang H, Zhang J. Trichosporon asahii: emerging challenges in pathogenesis and drug resistance. Future Microbiol 2025:1-11. [PMID: 39871602 DOI: 10.1080/17460913.2025.2457858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/21/2025] [Indexed: 01/29/2025] Open
Abstract
Trichosporon asahii (T. asahii) is an opportunistic pathogenic fungus that often causes severe infections in immunosuppressed patients. Among Trichosporon species, T. asahii is the most pathogenic and lethal species. Current research faces challenges related to unknown pathogenic mechanisms, complex resistance mechanisms, insufficiently rapid and accurate diagnostic methods, and insufficient research on susceptibility to infection. These issues need to be explored in depth. This review summarizes research progress on the origin and classification of T. asahii, its virulence factors and pathogenic mechanisms, epidemiological characteristics, infection modes, diagnostic methods, drug treatment options, and drug resistance mechanisms. Traditional culture combined with molecular biology techniques, such as polymerase chain reaction and gene sequencing, has improved the accuracy and speed of detection. Treatment relies mainly on azole antifungal drugs and amphotericin B; however, patients are facing the problem of drug resistance. New techniques, such as gene knockout and gene sequencing, have identified resistance mechanisms, thus supporting the development of novel antifungal drugs. In summary, an in-depth study of T. asahii will aid in developing more effective diagnostic and therapeutic methods and improve patient prognosis.
Collapse
Affiliation(s)
- Hanzhao Zhang
- Infectious Diseases Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingping Zhang
- Infectious Diseases Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Fan N, Duan X, Liu X, Fan P, Chen N, Sun J. First Documented Successful Treatment of Chronic Postoperative Fungal Endophthalmitis Induced by Trichosporon Inkin with Fluconazole. Infect Drug Resist 2024; 17:5803-5813. [PMID: 39734738 PMCID: PMC11681906 DOI: 10.2147/idr.s485152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/11/2024] [Indexed: 12/31/2024] Open
Abstract
This report details an uncommon occurrence of chronic endophthalmitis following cataract surgery attributed to an infection by Trichosporon inkin (T. inkin). The infection was identified through MALDI-TOF mass spectrometry along with sequencing analysis. Although the patient exhibited a robust immune response, the infection escalated quickly from the right eye to the left. Treatment involved vitrectomy and peeling surgery on the right eye, paired with systemic fluconazole antifungal therapy and intravitreal injection, resulting in significant recovery. The visual acuity of the right eye enhanced from finger counting to 20/63. This account represents the inaugural documented instance of endophthalmitis caused by T. inkin that was effectively managed with fluconazole. This underscores the critical role of vitreous humor enrichment culture and antifungal susceptibility testing of T. inkin in the treatment of endophthalmitis.
Collapse
Affiliation(s)
- Ning Fan
- Department of Laboratory Medicine, The First People’s Hospital of Xianyang, Xianyang, People’s Republic of China
| | - Xuehong Duan
- Department of Laboratory Medicine, The First People’s Hospital of Xianyang, Xianyang, People’s Republic of China
| | - Xuan Liu
- Department of Ophthalmology, The First People’s Hospital of Xianyang, Xianyang, People’s Republic of China
| | - Ping Fan
- Department of Laboratory Medicine, The First People’s Hospital of Xianyang, Xianyang, People’s Republic of China
| | - Ningning Chen
- Department of Ophthalmology, The First People’s Hospital of Xianyang, Xianyang, People’s Republic of China
| | - Jihong Sun
- Department of Laboratory Medicine, Xianyang Hospital of Yan’ an University, Xianyang, People’s Republic of China
| |
Collapse
|
3
|
Wang W, Yi J, Zhan J, Luo D, Chen Q, Yu S, Xie L, Chen K. Comparative Genomic Analysis of an Apiotrichum cacaoliposimilis Strain Isolated from a Patient with Urinary Tract Infection. Pol J Microbiol 2024; 73:475-489. [PMID: 39670642 PMCID: PMC11639406 DOI: 10.33073/pjm-2024-038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/12/2024] [Indexed: 12/14/2024] Open
Abstract
Opportunistic infections caused by fungi, particularly those occurring in immunocompromised patients, are considered challenging worldwide. Therefore, a comprehensive understanding of pathogenic fungi is necessary. The present study reports the isolation of a strain of Apiotrichum cacaoliposimilis, which is difficult to detect using conventional clinical assays, from the sterile urine samples of a patient with a urinary tract infection. Sanger sequencing of the internal transcribed spacer regions confirmed the genus of the microbe, while whole-genome sequencing yielded the initial genome assembly of A. cacaoliposimilis. A total of 7,161 predicted proteincoding genes were mapped using multiple databases, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, non-redundant protein database, Pathogen-Host Interactions Database, and Comprehensive Antibiotic Resistance Database. The phenotypic data, biochemical reactions, and antimicrobial susceptibility analyses were conducted to reveal the metabolic properties, virulence, and drug resistance profile of the isolated A. cacaoliposimilis. The rank-sum test revealed the differences in the intergeneric distribution of the highly virulent genes UgeB and Pem2. In addition, other genes exhibited significant overlap in terms of virulence factors with the clinical isolate Apiotrichum mycotoxinivorans GMU1709. Fortunately, similar to most fungi belonging to the Apiotrichum genus, the isolate investigated in the present study was also sensitive to the drug voriconazole (MIC = 0.06 μg/ml). In summary, the phylogenetic placement, potential pathogenic genes, drug sensitivity patterns, and morphological characteristics of the isolated A. cacaoliposimilis were determined precisely in the present study.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Laboratory, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jinping Yi
- Department of Clinical Laboratory, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiahuan Zhan
- Department of Clinical Laboratory, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dong Luo
- Department of Clinical Laboratory, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiang Chen
- Department of Clinical Laboratory, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shengming Yu
- Department of Clinical Laboratory, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ling Xie
- Department of Clinical Laboratory, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kaisen Chen
- Department of Clinical Laboratory, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Hau PT, Shiu A, Tam EWT, Chau ECT, Murillo M, Humer E, Po WW, Yu RCW, Fung J, Seto SW, Tsang CC, Chow FWN. Diversity and Antifungal Susceptibilities of Yeasts from Mangroves in Hong Kong, China-A One Health Aspect. J Fungi (Basel) 2024; 10:728. [PMID: 39452680 PMCID: PMC11508678 DOI: 10.3390/jof10100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
While mangrove ecosystems are rich in biodiversity, they are increasingly impacted by climate change and urban pollutants. The current study provides first insights into the emergence of potentially pathogenic yeasts in Hong Kong's mangroves. Sediment and water samples were collected from ten urban and rural mangroves sites. Initial CHROMagarTM Candida Plus screening, representing the first application of this differential medium for water and soil samples collected from a non-clinical environment, enabled the rapid, preliminary phenotypic identification of yeast isolates from mangroves. Subsequent molecular profiling (ITS and/or 28S nrDNA sequencing) and antifungal drug susceptibility tests were conducted to further elucidate yeast diversity and drug resistance. A diversity of yeasts, including 45 isolates of 18 distinct species across 13 genera/clades, was isolated from sediments and waters from Hong Kong mangroves. Molecular profiling revealed a dominance of the Candida/Lodderomyces clade (44.4%), a group of notorious opportunistic pathogens. The findings also reveal a rich biodiversity of non-Candida/Lodderomyces yeasts in mangroves, including the first reported presence of Apiotrichum domesticum and Crinitomyces flavificans. A potentially novel Yamadazyma species was also discovered. Remarkably, 14.3% of the ubiquitous Candida parapsilosis isolates displayed resistance to multiple antifungal drugs, suggesting that mangroves may be reservoirs of multi-drug resistance. Wildlife, especially migratory birds, may disseminate these hidden threats. With significant knowledge gaps regarding the environmental origins, drug resistance, and public health impacts of pathogenic yeasts, urgent surveillance is needed from a One Health perspective. This study provides an early warning that unrestrained urbanization can unleash resistant pathogens from coastal ecosystems globally. It underscores the necessity for enhanced surveillance studies and interdisciplinary collaboration between clinicians, ornithologists, and environmental microbiologists to effectively monitor and manage this environmental health risk, ensuring the maintenance of 'One Health'.
Collapse
Affiliation(s)
- Pak-Ting Hau
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Anson Shiu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Emily Wan-Ting Tam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China;
| | - Eddie Chung-Ting Chau
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Michaela Murillo
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Eva Humer
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Krems, Am Campus Krems, Trakt G, 3500 Krems an der Donau, Austria
| | - Wai-Wai Po
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Ray Chun-Wai Yu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Joshua Fung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Sai-Wang Seto
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China;
- School of Biomedical Sciences, The University of Western Australia, Perth 6009, WA, Australia
| | - Chi-Ching Tsang
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| |
Collapse
|
5
|
Zhao W, Chen M, Zhao YL. [Infection of Aspergillus fumigatus after allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia: 2 cases report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:848-850. [PMID: 39414609 PMCID: PMC11518902 DOI: 10.3760/cma.j.cn121090-20240319-00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 10/18/2024]
Abstract
Rare yeast infections have been slowly increasing, given the increasing numbers of patients who are immunocompromised after hematopoietic stem cell transplantation. A considered approach to the complex, multidisciplinary management of infections that are caused by these pathogens is essential to optimize patient outcomes. We reported the management of two patients with combined rare yeast Trichosporon asahii infections, that suggested we should perform timely multivisceral screening for systemic dissemination of infection, and early treatment and combination of medications may improve prognosis.
Collapse
Affiliation(s)
- W Zhao
- Department of Transplantation, Beijing Ludaopei Hospital, Beijing 100176, China
| | - M Chen
- Department of Laboratory Medicine, Hebei Yanda Ludaopei Hospital, Langfang 065201, China
| | - Y L Zhao
- Department of Transplantation, Beijing Ludaopei Hospital, Beijing 100176, China
| |
Collapse
|
6
|
Kumar A, Kumari P, Gaba M. Meningitis Due to Apiotrichum mycotoxinivorans: A Rare Case Report. Cureus 2024; 16:e70573. [PMID: 39483950 PMCID: PMC11525039 DOI: 10.7759/cureus.70573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
A young adult male presented as a case of meningitis in the background of a ventriculoperitoneal shunt in situ, uncontrolled type 1 diabetes and a history of treated abdominal tuberculosis. The patient presented with complaints of high-grade fever, non-projectile vomiting, headache and drowsiness. He was eventually diagnosed as a case of fungal meningitis. The patient's cerebrospinal fluid analysis (CSF) analysis revealed budding yeast cells and the culture revealed Apiotrichum mycotoxinivorans. This is a yeast-like fungus that is known to cause opportunistic infections in an immunocompromised host. This is a rare cause of fungal meningitis and very few cases have been reported worldwide. This is the first case of Apiotrichum mycotoxinivorans-associated meningitis reported from India.
Collapse
Affiliation(s)
- Ashok Kumar
- Internal Medicine, Max Smart Super Specialty Hospital, New Delhi, IND
| | | | - Manish Gaba
- Internal Medicine, Max Smart Super Specialty Hospital, New Delhi, IND
| |
Collapse
|
7
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
8
|
Francisco EC, Desnos-Ollivier M, Dieleman C, Boekhout T, Santos DWDCL, Medina-Pestana JO, Colombo AL, Hagen F. Unveiling Trichosporon austroamericanum sp. nov.: A Novel Emerging Opportunistic Basidiomycetous Yeast Species. Mycopathologia 2024; 189:43. [PMID: 38709328 PMCID: PMC11074034 DOI: 10.1007/s11046-024-00851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
During an epidemiological survey, a potential novel species within the basidiomycetous yeast genus Trichosporon was observed. The clinical strain was obtained from a urine sample taken from a Brazilian kidney transplant recipient. The strain was molecularly identified using the intergenic spacer (IGS1) ribosomal DNA locus and a subsequent phylogenetic analysis showed that multiple strains that were previously reported by other studies shared an identical IGS1-genotype most closely related to that of Trichosporon inkin. However, none of these studies provided an in-depth characterization of the involved strains to describe it as a new taxon. Here, we present the novel clinically relevant yeast for which we propose the name Trichosporon austroamericanum sp. nov. (holotype CBS H-24937). T. austroamericanum can be distinguished from other siblings in the genus Trichosporon using morphological, physiological, and phylogenetic characters.
Collapse
Affiliation(s)
- Elaine C Francisco
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute (WI-KNAW), Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
- Division of Infectious Diseases, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marie Desnos-Ollivier
- Département de Mycologie, Centre National de Référence des Mycoses invasives et Antifongiques, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Chendo Dieleman
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute (WI-KNAW), Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Teun Boekhout
- College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | | | - José O Medina-Pestana
- Serviço de Nefrologia, Hospital do Rim, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arnaldo L Colombo
- Division of Infectious Diseases, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, Brazil
| | - Ferry Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute (WI-KNAW), Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands.
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Ma X, Liu Z, Yue C, Wang S, Li X, Wang C, Ling S, Wang Y, Liu S, Gu Y. High-throughput sequencing and characterization of potentially pathogenic fungi from the vaginal mycobiome of giant panda ( Ailuropoda melanoleuca) in estrus and non-estrus. Front Microbiol 2024; 15:1265829. [PMID: 38333585 PMCID: PMC10850575 DOI: 10.3389/fmicb.2024.1265829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction The giant panda (Ailuropoda melanoleuca) reproduction is of worldwide attention, and the vaginal microbiome is one of the most important factors affecting the reproductive rate of giant pandas. The aim of this study is to investigate the diversity of vaginal mycobiota structure, and potential pathogenic fungi in female giant pandas during estrus and non-estrus. Methods This study combined with high-throughput sequencing and laboratory testing to compare the diversity of the vaginal mycobiota in giant pandas during estrus and non-estrus, and to investigate the presence of potentially pathogenic fungi. Potentially pathogenic fungi were studied in mice to explore their pathogenicity. Results and discussion The results revealed that during estrus, the vaginal secretions of giant pandas play a crucial role in fungal colonization. Moreover, the diversity of the vaginal mycobiota is reduced and specificity is enhanced. The abundance of Trichosporon and Cutaneotrichosporon in the vaginal mycobiota of giant pandas during estrus was significantly higher than that during non-estrus periods. Apiotrichum and Cutaneotrichosporon were considered the most important genera, and they primarily originate from the environment owing to marking behavior exhibited during the estrous period of giant pandas. Trichosporon is considered a resident mycobiota of the vagina and is an important pathogen that causes infection when immune system is suppressed. Potentially pathogenic fungi were further isolated and identified from the vaginal secretions of giant pandas during estrus, and seven strains of Apiotrichum (A. brassicae), one strain of Cutaneotrichosporon (C. moniliiforme), and nine strains of Trichosporon (two strains of T. asteroides, one strain of T. inkin, one strain of T. insectorum, and five strains of T. japonicum) were identified. Pathogenicity results showed that T. asteroides was the most pathogenic strain, as it is associated with extensive connective tissue replacement and inflammatory cell infiltration in both liver and kidney tissues. The results of this study improve our understanding of the diversity of the vaginal fungi present in giant pandas and will significantly contribute to improving the reproductive health of giant pandas in the future.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chanjuan Yue
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Siwen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinni Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Chengdu, China
| | - Shanshan Ling
- China Conservation and Research Center for the Giant Panda, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Songrui Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Ahmad S, Asadzadeh M, Al-Sweih N, Khan Z. Spectrum and management of rare Candida/yeast infections in Kuwait in the Middle East. Ther Adv Infect Dis 2024; 11:20499361241263733. [PMID: 39070702 PMCID: PMC11273600 DOI: 10.1177/20499361241263733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
Invasive fungal infections (IFIs) are associated with high mortality rates and mostly affect patients with compromised immunity. The incidence of IFIs is increasing worldwide with the expanding population of susceptible patients. Candida and other yeast infections represent a major component of IFIs. Rare Candida/yeast infections have also increased in recent years and pose considerable diagnostic and management challenges as they are not easily recognized by routine phenotypic characteristic-based diagnostic methods and/or by the automated yeast identification systems. Rare Candida/yeasts also exhibit reduced susceptibility to antifungal drugs making proper management of invasive infections challenging. Here, we review the diagnosis and management of 60 cases of rare Candida/yeast IFIs described so far in Kuwait, an Arabian Gulf country in the Middle East. Interestingly, majority (34 of 60, 56.7%) of these rare Candida/yeast invasive infections occurred among neonates or premature, very-low-birth-weight neonates, usually following prior bacteremia episodes. The clinical details, treatment given, and outcome were available for 28 of 34 neonates. The crude mortality rate among these neonates was 32.2% as 19 of 28 (67.8%) survived the infection and were discharged in healthy condition, likely due to accurate diagnosis and frequent use of combination therapy. Physicians treating patients with extended stay under intensive care, on mechanical ventilation, receiving broad spectrum antibiotics and with gastrointestinal surgery/complications should proactively investigate IFIs. Timely diagnosis and early antifungal treatment are essential to decrease mortality. Understanding the epidemiology and spectrum of rare Candida/yeast invasive infections in different geographical regions, their susceptibility profiles and management will help to devise novel diagnostic and treatment approaches and formulate guidelines for improved patient outcome.
Collapse
Affiliation(s)
- Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Noura Al-Sweih
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
11
|
Ma X, Yang W, Yang A, Chen D, Wang C, Ling S, Cao S, Zuo Z, Wang Y, Zhong Z, Peng G, He M, Gu Y. Metabolome and Transcriptome Combinatory Profiling Reveals Fluconazole Resistance Mechanisms of Trichosporon asahii and the Role of Farnesol in Fluconazole Tolerance. Microorganisms 2023; 11:2798. [PMID: 38004810 PMCID: PMC10672884 DOI: 10.3390/microorganisms11112798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Trichosporon asahii is a basidiomycete yeast that is pathogenic to humans and animals, and fluconazole-resistant strains have recently increased. Farnesol secreted by fungi is a factor that causes variations in fluconazole resistance; however, few studies have explored the underlying mechanisms. Therefore, this study aims to delineate the fluconazole resistance mechanisms of T. asahii and explore farnesol's effects on these processes. A comparative metabolome-transcriptome analysis of untreated fluconazole-sensitive (YAN), fluconazole-resistant (PB) T. asahii strains, and 25 μM farnesol-treated strains (YAN-25 and PB-25, respectively) was performed. The membrane lipid-related genes and metabolites were upregulated in the PB vs. YAN and PB-25 vs. PB comparisons. Farnesol demonstrated strain-dependent mechanisms underlying fluconazole tolerance between the YAN and PB strains, and upregulated and downregulated efflux pumps in PB-25 and YAN-25 strains, respectively. Membrane lipid-related metabolites were highly correlated with transporter-coding genes. Fluconazole resistance in T. asahii was induced by membrane lipid bio-synthesis activation. Farnesol inhibited fluconazole resistance in the sensitive strain, but enhanced resistance in the resistant strain by upregulating efflux pump genes and membrane lipids. This study offers valuable insights into the mechanisms underlying fungal drug resistance and provides guidance for future research aimed at developing more potent antifungal drugs for clinical use.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (A.Y.); (S.C.); (Z.Z.); (Y.W.); (Z.Z.); (G.P.); (M.H.)
| | - Wanling Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (A.Y.); (S.C.); (Z.Z.); (Y.W.); (Z.Z.); (G.P.); (M.H.)
| | - Aining Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (A.Y.); (S.C.); (Z.Z.); (Y.W.); (Z.Z.); (G.P.); (M.H.)
| | - Dong Chen
- Sichuan Provincial Center for Animal Disease Prevention and Control, Chengdu 610041, China;
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Chengdu 611800, China; (C.W.); (S.L.)
| | - Shanshan Ling
- China Conservation and Research Center for the Giant Panda, Chengdu 611800, China; (C.W.); (S.L.)
| | - Sanjie Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (A.Y.); (S.C.); (Z.Z.); (Y.W.); (Z.Z.); (G.P.); (M.H.)
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (A.Y.); (S.C.); (Z.Z.); (Y.W.); (Z.Z.); (G.P.); (M.H.)
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (A.Y.); (S.C.); (Z.Z.); (Y.W.); (Z.Z.); (G.P.); (M.H.)
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (A.Y.); (S.C.); (Z.Z.); (Y.W.); (Z.Z.); (G.P.); (M.H.)
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (A.Y.); (S.C.); (Z.Z.); (Y.W.); (Z.Z.); (G.P.); (M.H.)
| | - Ming He
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (W.Y.); (A.Y.); (S.C.); (Z.Z.); (Y.W.); (Z.Z.); (G.P.); (M.H.)
- China Conservation and Research Center for the Giant Panda, Chengdu 611800, China; (C.W.); (S.L.)
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
12
|
Lee EH, Choi MH, Lee KH, Song YG, Han SH. Differences of clinical characteristics and outcome in proven invasive Trichosporon infections caused by asahii and non-asahii species. Mycoses 2023; 66:992-1002. [PMID: 37515448 DOI: 10.1111/myc.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/22/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Trichosporon is an emerging yeast that causes invasive infections in immunocompromised patients experiencing prolonged hospitalisation, indwelling venous catheters and neutropenia. METHODS This retrospective observational cohort study analysed invasive Trichosporon infections (ITIs) occurring between January 2005 and December 2022 at three tertiary hospitals and compared the clinical characteristics and prognostic factors of ITIs caused by Trichosporon asahii and non-T. asahii spp. After evaluating 1067 clinical isolates, we identified 46 patients with proven ITIs, defined as cases in which Trichosporon was isolated from blood, cerebrospinal fluid, or sterile tissues. RESULTS The patients were separated into T. asahii and non-T. asahii groups containing 25 and 21 patients, respectively, all of which except one were immunocompromised. During this period, both the number of clinical isolates and patients with ITIs (mainly T. asahii) increased; whereas, cases involving non-T. asahii spp. decreased. Compared with the non-T. asahii group, the T. asahii group had more patients with multiple catheters (84% vs. 33%, p = .001) and those receiving renal replacement therapy (48% vs. 14%, p = .005). The all-cause 28-day mortality rate after ITI in the T. asahii group (44%) was significantly higher than in the non-T. asahii group (10%, Log-rank p = .014). The multivariate Cox regression model revealed that T. asahii (reference, non-T. asahii spp.; aHR = 4.3; 95% CI = 1.2-15.2, p = .024) and neutropenia for 5 days or more (aHR = 2.2, 95% CI = 1.5-3.6, p = .035) were independent factors in the 28-day mortality after ITI. CONCLUSION The proven ITIs due to T. asahii produced more unfavourable outcomes compared with ITIs caused by non-T. asahii spp.
Collapse
Affiliation(s)
- Eun Hwa Lee
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Hyuk Choi
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Hwa Lee
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Goo Song
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Han
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Pumeesat P, Wongsuk T. Genetic analysis of emerging fungal pathogens: Trichosporon asahii. Diagn Microbiol Infect Dis 2023; 107:116057. [PMID: 37659120 DOI: 10.1016/j.diagmicrobio.2023.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 09/04/2023]
Abstract
Trichosporon asahii is an emerging opportunistic fungus that mainly causes fatal disseminated trichosporonosis, especially in immunocompromised patients. T. asahii infection has been reported in Thailand, but few studies of this fungus have been published. Therefore, this study investigated the genetic diversity of 51 clinical strains of T. asahii from urine samples in Thailand. We sequenced and characterized the beta-1-tubulin (TUB1), copper-exporting ATPase (ATP), phosphate carrier protein (PHCP), and topoisomerase-1 (TOP1) genes. In addition, intergenic spacer 1 (IGS1) sequences from our previous studies were investigated. The numbers of haplotypes were 3, 3, 2, 2, and 2 for IGS1, TUB1, ATP, PHCP, and TOP1, respectively. The results suggested a relatively low level of genetic diversity among the strains. The findings illustrated that IGS1, TUB1, ATP, PHCP, and TOP1 can be collectively used as an alternative molecular typing tool for investigating the population diversity and structure of T. asahii.
Collapse
Affiliation(s)
- Potjaman Pumeesat
- Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, Thailand
| | - Thanwa Wongsuk
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand.
| |
Collapse
|
14
|
Parashar A, Rastogi V, Prakash H, Pandey A, Rudramurthy SM. Intergenic spacer (IGS-1) region sequence-based identification, genotypic analysis, and antifungal susceptibility of clinical Trichosporon species. Indian J Med Microbiol 2023; 45:100390. [PMID: 37573054 DOI: 10.1016/j.ijmmb.2023.100390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 08/14/2023]
Abstract
OBJECTIVES Molecular genotyping of Trichosporon species using intergenic spacer region (IGS-1) sequencing and antifungal drug susceptibility testing of T. asahii clinical isolates from Indian patients. MATERIALS AND METHODS Fifty-five Trichosporon strains were characterized using IGS-1 sequencing from 2006 to 2018 and tested against 5 antifungals using CLSI M27-A3 guidelines. RESULTS In this study, broad-spectrum antibiotics with steroids, catheters, and ICU stays were major underlying risk factors. These cases were most commonly associated with diabetes (type-2), chronic obstructive pulmonary disease, and hypertension. Out of fifty-five isolates, 47 (85%) were identified as T. asahii, and the remaining 6 were T. inkin (11%) and 2 were Cutaneotrichosporon dermatis (3.6%). The most common genotype of T. asahii was G3 (22; 49%) subsequently G4 (12; 23%), G1 (8; 17%), and G7 (2; 4%). One new genotype of T asahii was found in addition to the fifteen already known genotypes. Indian T. asahii isolates showed a low level of amphotericin B (range 0.06-4 mg/l) resistance but relatively higher in fluconazole (range 0.25-64 mg/l). Although, comparatively low MIC ranges were found in the case of voriconazole (0.03-1 mg/l), posaconazole (0.06-1 mg/l) and itraconazole (0.06-1 mg/l). Voriconazole appeared to be the most active drug in T. asahii isolates. The MICs for all the drugs were comparatively lower in the case of non-Trichosporon asahii strains. CONCLUSION T. asahii was the most common Trichosporon isolate. Speciation is necessary for optimal antifungal therapy. Voriconazole-based treatment, Steroids, removal of catheters and control of underlying conditions results in positive outcomes.
Collapse
Affiliation(s)
- Abhila Parashar
- Department of Microbiology, Jawaharlal Nehru Medical College & Hospital, Ajmer, 305001, Rajasthan, India.
| | - Vijaylatha Rastogi
- Department of Microbiology, Jawaharlal Nehru Medical College & Hospital, Ajmer, 305001, Rajasthan, India.
| | - Hariprasath Prakash
- Department of Medical Microbiology, PES Institute of Medical Sciences & Research, Kuppam, Andhra Pradesh, 517425, India.
| | - Abhishek Pandey
- Department of Medical Microbiology, Postgraduate Institution of Medical Education & Research (PGIMER), Chandigarh, 160012, India.
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institution of Medical Education & Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
15
|
Shen Z, Wang Y, Bao A, Yang J, Sun X, Cai Y, Wan L, Huang C, Xu X, Niu J, Xia X, Shen C, Wei Y, Qiu H, Zhou K, Zhang M, Tong Y, Song X. Metagenomic Next-Generation Sequencing for Pathogens in Bronchoalveolar Lavage Fluid Improves the Survival of Patients with Pulmonary Complications After Allogeneic Hematopoietic Stem Cell Transplantation. Infect Dis Ther 2023; 12:2103-2115. [PMID: 37541984 PMCID: PMC10505113 DOI: 10.1007/s40121-023-00850-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023] Open
Abstract
INTRODUCTION Unbiased metagenomic next-generation sequencing (mNGS) has been used for infection diagnosis. In this study, we explored the clinical diagnosis value of mNGS for pulmonary complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS From August 2019 to June 2021, a prospective study was performed to comparatively analyze the pathogenic results of mNGS and conventional tests for bronchoalveolar lavage fluid (BALF) from 134 cases involving 101 patients with pulmonary complications after allo-HSCT. RESULTS More pathogens were identified by mNGS than with conventional tests (226 vs 120). For bacteria, the diagnostic sensitivity (P = 0.144) and specificity (P = 0.687) were similar between the two methods. For fungus except Pneumocystis jirovecii (PJ), conventional tests had a significantly higher sensitivity (P = 0.013) with a similarly high specificity (P = 0.109). The sensitivities for bacteria and fungi could be increased with the combination of the two methods. As for PJ, both the sensitivity (100%) and specificity (99.12%) of mNGS were very high. For viruses, the sensitivity of mNGS was significantly higher (P = 0.021) and the negative predictive value (NPV) was 95.74% (84.27-99.26%). Pulmonary infection complications accounted for 90.30% and bacterium was the most common pathogen whether in single infection (63.43%) or mixed infection (81.08%). The 6-month overall survival (OS) of 88.89% in the early group (mNGS ≤ 7 days) was significantly higher than that of 65.52% (HR 0.287, 95% CI 0.101-0.819, P = 0.006) in the late group (mNGS > 7 days). CONCLUSIONS mNGS for BALF could facilitate accurate and fast diagnosis for pulmonary complications. Early mNGS could improve the prognosis of patients with pulmonary complications after allo-HSCT. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT04051372.
Collapse
Affiliation(s)
- Zaihong Shen
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Hematology, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou City, 318020, Zhejiang Province, China
| | - Ying Wang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Aihua Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jun Yang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xi Sun
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yu Cai
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Liping Wan
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chongmei Huang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaowei Xu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jiahua Niu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xinxin Xia
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chang Shen
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yu Wei
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Huiying Qiu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Kun Zhou
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yin Tong
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xianmin Song
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
16
|
Francisco EC, Ebbing M, Colombo AL, Hagen F. Identification of Clinical Trichosporon asteroides Strains by MALDI-TOF Mass Spectrometry: Evaluation of the Bruker Daltonics Commercial System and an In-House Developed Library. Mycopathologia 2023; 188:243-249. [PMID: 37067663 DOI: 10.1007/s11046-023-00723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/27/2023] [Indexed: 04/18/2023]
Abstract
Trichosporon asteroides is an emerging yeast-like pathogen commonly misidentified by commercial biochemical identification systems. We evaluated the performance of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of 21 clinical T. asteroides strains using the Bruker Daltonics database (BDAL) and an in-house developed library. Mass spectra were obtained by the FlexControl system v.3.4, and characterizations were performed in the Biotyper BDAL database v.4.1 and the developed in-house library. Species identification for T. asteroides failed as all 21 strains were misidentified as T. japonicum (log-scores 1.89-2.19). Extending the existing database was crucial to achieving 100% correct species-level identification and accurate distinction between species. Our results indicate that the commercial BDAL database has no discriminatory power to distinguish between T. japonicum and T. asteroides. Whereas improvement of the current BDAL database is pending, we strongly advise system users not to exclude the possibility of the failure to report T. asteroides.
Collapse
Affiliation(s)
- Elaine Cristina Francisco
- Division of Infectious Diseases, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil.
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| | - Mexx Ebbing
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Arnaldo Lopes Colombo
- Division of Infectious Diseases, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| | - Ferry Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands.
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Francisco EC, Dieleman C, Hagen F, Colombo AL, Mendes AVA, de Oliveira Silva M, de Andrade Barberino MG, Neves RP, Botura MB, Hahn RC, de Almeida Junior JN, Ponzio V, de Tarso O e Castro P, Guimarães T, Santos DW, de Miranda BG, Silva ILAFE, Carlesse F, Ramos JF, Queiroz-Telles F, Aquino VR, Motta FA, Schwarzbold AV, Perozin JS. In vitro activity of isavuconazole against clinically relevant Trichosporon species: a comparative evaluation of EUCAST broth microdilution and MIC Test Strip methods. J Antimicrob Chemother 2023; 78:817-822. [PMID: 36702754 DOI: 10.1093/jac/dkad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/16/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES To evaluate the in vitro activity of isavuconazole on 154 clinical and reference strains of Trichosporon asahii, Trichosporon asteroides, Trichosporon coremiiforme, Trichosporon faecale and Trichosporon inkin by using the EUCAST broth microdilution method (BMD) and Liofilchem MIC Test Strips (MTS). METHODS Antifungal susceptibility testing for isavuconazole, fluconazole, voriconazole and posaconazole was assessed by EUCAST E.DEF 7.3.2. MIC values of isavuconazole obtained by BMD after 48 h of incubation were compared with MTS MICs after 24 and 48 h of incubation. RESULTS T. asahii and T. asteroides showed the highest isavuconazole MIC90 values (0.5 mg/L). In clinical isolates, T. asahii exhibited the highest MIC90 values (0.5 mg/L) compared with non-T. asahii (0.06-0.25 mg/L). The five non-WT T. asahii isolates for fluconazole, voriconazole and posaconazole also exhibited high MICs of isavuconazole (≥0.5 mg/L). A better correlation between MTS and BMD MICs was observed after 24 h incubation for all species tested. MTS measurements performed at 48 h increased by at least 122% the number of isolates with >2 dilutions compared with the standard method. CONCLUSIONS Isavuconazole exhibited variable in vitro activity among the Trichosporon species tested, showing higher or equal MICs than the other azoles. The five non-WT T. asahii clinical isolates tested also exhibited high isavuconazole MICs, suggesting the occurrence of triazole cross-resistance. Our MTS data indicate that there is no advantage in extended reading time for MTS from 24 to 48 h for Trichosporon yeasts.
Collapse
Affiliation(s)
- Elaine Cristina Francisco
- Division of Infectious Diseases, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo 04024-002, Brazil.,Medical Mycology Group, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Chendo Dieleman
- Medical Mycology Group, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Ferry Hagen
- Medical Mycology Group, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Arnaldo Lopes Colombo
- Division of Infectious Diseases, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo 04024-002, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Aguiar ALR, Silva BND, Fiallos NDM, Pereira LMG, Silva ML, Souza PFSMD, Portela FVM, Sidrim JJC, Rocha MFG, Castelo-Branco DSCM, Cordeiro RDA. Promethazine inhibits efflux, enhances antifungal susceptibility and disrupts biofilm structure and functioning in Trichosporon. BIOFOULING 2023; 39:218-230. [PMID: 37122169 DOI: 10.1080/08927014.2023.2202315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Trichosporon spp. are emerging opportunistic fungi associated with invasive infections, especially in patients with haematological malignancies. The present study investigated the in vitro inhibition of efflux pumps by promethazine (PMZ) as a strategy to control T. asahii and T. inkin. Planktonic cells were evaluated for antifungal susceptibility to PMZ, as well as inhibition of efflux. The effect of PMZ was also studied in Trichosporon biofilms. PMZ inhibited T. asahii and T. inkin planktonic cells at concentrations ranging from 32 to 256 μg ml-1. Subinhibitory concentrations of PMZ inhibited efflux activity in Trichosporon. Biofilms were completely eradicated by PMZ. PMZ potentiated the action of antifungals, affected the morphology, changed the amount of carbohydrates and proteins and reduced the amount of persister cells inside biofilms. The results showed indirect evidences of the occurrence of efflux pumps in Trichosporon and opens a perspective for the use of this target in the control of trichosporonosis.
Collapse
Affiliation(s)
| | | | | | | | - Maria Laína Silva
- Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
de Andrade IB, Figueiredo-Carvalho MHG, Chaves ALDS, Coelho RA, Almeida-Silva F, Zancopé-Oliveira RM, Frases S, Brito-Santos F, Almeida-Paes R. Metabolic and phenotypic plasticity may contribute for the higher virulence of Trichosporon asahii over other Trichosporonaceae members. Mycoses 2022; 66:430-440. [PMID: 36564594 DOI: 10.1111/myc.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND The Trichosporonaceae family comprises a large number of basidiomycetes widely distributed in nature. Some of its members, especially Trichosporon asahii, have the ability to cause human infections. This ability is related to a series of virulence factors, which include lytic enzymes production, biofilm formation, resistance to oxidising agents, melanin and glucuronoxylomannan in the cell wall, metabolic plasticity and phenotypic switching. The last two are poorly addressed within human pathogenic Trichosporonaceae. OBJECTIVE These factors were herein studied to contribute with the knowledge of these emerging pathogens and to uncover mechanisms that would explain the higher frequency of T. asahii in human infections. METHODS We included 79 clinical isolates phenotypically identified as Trichosporon spp. and performed their molecular identification. Lactate and N-acetyl glucosamine were the carbon sources of metabolic plasticity studies. Morphologically altered colonies after subcultures and incubation at 37°C indicated phenotypic switching. RESULTS AND CONCLUSION The predominant species was T. asahii (n = 65), followed by Trichosporon inkin (n = 4), Apiotrichum montevideense (n = 3), Trichosporon japonicum (n = 2), Trichosporon faecale (n = 2), Cutaneotrichosporon debeurmannianum (n = 1), Trichosporon ovoides (n = 1) and Cutaneotrichosporon arboriforme (n = 1). T. asahii isolates had statistically higher growth on lactate and N-acetylglucosamine and on glucose during the first 72 h of culture. T. asahii, T. inkin and T. japonicum isolates were able to perform phenotypic switching. These results expand the virulence knowledge of Trichosporonaceae members and point for a role for metabolic plasticity and phenotypic switching on the trichosporonosis pathogenesis.
Collapse
Affiliation(s)
- Iara Bastos de Andrade
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos agas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Alessandra Leal da Silva Chaves
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Análises Clínicas, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Rowena Alves Coelho
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando Almeida-Silva
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos agas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rede Micologia RJ, FAPERJ, Rio de Janeiro, Brazil
| | | | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Rede Micologia RJ, FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
ERG11 Analysis among Clinical Isolates of Trichosporon asahii with Different Azole Susceptibility Profiles. Antimicrob Agents Chemother 2022; 66:e0110122. [PMID: 36374073 PMCID: PMC9765002 DOI: 10.1128/aac.01101-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We analyzed a cohort of Trichosporon asahii strains with different MICs of fluconazole and voriconazole and evaluated the presence of ERG11 mutations. ERG11 mutation conferring an amino acid change was found and its resistance potential was evaluated by cloning into Saccharomyces cerevisiae susceptible host strain. Transformants were not resistant to either fluconazole nor voriconazole. Our results suggest that ERG11 variants exist among T. asahii isolates, but are not responsible for resistance phenotypes.
Collapse
|
21
|
Malacrida AM, Corrêa JL, Barros ILE, Veiga FF, Pereira EDCA, Negri M, Svidzinski TIE. Hospital Trichosporon asahii isolates with simple architecture biofilms and high resistance to antifungals routinely used in clinical practice. J Mycol Med 2022; 33:101356. [PMID: 36563454 DOI: 10.1016/j.mycmed.2022.101356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Infections by Trichosporon spp. are increasing worldwide and its treatment remains a challenge. Colonization of medical devices has been considered as a predisposing factor for trichosporonosis, which is related to fungal biofilm production. Thus, this study aimed to evaluate the ability of six hospital T. asahii isolates to form biofilm on abiotic surface, as well as to investigate the impact of three classic antifungals on both planktonic and biofilm forms. The fungal identification was based on macro and micromorphological characteristics, biochemical tests and confirmation by mass spectrometry assisted by the flight time desorption/ionization matrix (MALDI-TOF MS). Antifungal susceptibility assay of planktonic cells showed inhibitory and fungicidal concentrations ranging from 2.5 to 10 µg/mL for voriconazole, 2 to 8 µg/mL for fluconazole, and 1 to 4 µg/mL for amphotericin B. All T. asahii strains were able to form biofilms on the polystyrene microplates surface within 24 h, showing a simple architecture when compared with Candida spp. biofilm. On the other hand, the same antifungals did not show action in neither the inhibition of biofilm formation nor on the formed biofilm. Concluding, the present study reinforced the relevance of the MALDI-TOF MS methodology for a safe identification of T. asahii. Classic antifungals were active on the planktonic form, but not on the biofilms. All isolates formed biofilms on the polystyrene microplates and showed a simple architecture.
Collapse
Affiliation(s)
- Amanda Milene Malacrida
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Jakeline Luiz Corrêa
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Isabella Letícia Esteves Barros
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Flávia Franco Veiga
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Elton da Cruz Alves Pereira
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Melyssa Negri
- Department of Clinical Analysis and Biomedicine, Division of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | | |
Collapse
|
22
|
Francisco EC, Hagen F. JMM Profile: Trichosporon yeasts: from superficial pathogen to threat for haematological-neutropenic patients. J Med Microbiol 2022; 71. [PMID: 36748684 DOI: 10.1099/jmm.0.001621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Trichosporon yeasts are classical agents of superficial mycoses, and they are ranked as the first to second predominant basidiomycetous yeast able to cause invasive infections. The clinical presentation of Trichosporon infections varies with the affected anatomical site, with fungaemia present in the majority of invasive trichosporonosis cases. Only a limited number of antifungal compounds can be used to treat Trichosporon infections. Azoles are the first choice due to their intrinsic resistance to echinocandins. Better laboratory methods and up-to-date databases of commercial platforms are required to improve identification, susceptibility testing and surveillance of this potentially threating infection.
Collapse
Affiliation(s)
- Elaine Cristina Francisco
- Division of Infectious Diseases, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo 04039-032, Brazil.,Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, Netherlands.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1012 WX, Amsterdam,, Netherlands
| |
Collapse
|
23
|
Wang N, Tang JY, Wang Z, Wang LY, Song TT, Li BB, Wang L. Trichosporon asahii Infection in an Extremely Preterm Infant in China. Infect Drug Resist 2022; 15:6495-6499. [DOI: 10.2147/idr.s385086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
|
24
|
Wongsuk T, Boonsilp S, Pumeesat P, Homkaew A, Sangsri T, Chongtrakool P. Genotyping, antifungal susceptibility testing, and biofilm formation of Trichosporon spp. isolated from urine samples in a University Hospital in Bangkok, Thailand. Acta Microbiol Immunol Hung 2022; 69:247-257. [PMID: 35976734 DOI: 10.1556/030.2022.01797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022]
Abstract
The basidiomycetes yeast Trichosporon is widespread in the natural environment, but can cause disease, mainly in immunocompromised patients. However, there have been only few studies about this infection in Thailand. In this study, we characterized 53 Trichosporon spp. isolated from urine samples from patients admitted to a single hospital in Bangkok, Thailand over a one-year period from 2019 to 2020. The strains were identified using colony morphology, microscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and nucleotide sequence analysis of intergenic spacer 1 (IGS1). Fifty-one isolates were Trichosporon asahii, and the remaining isolates were Trichosporon inkin and other Trichosporon species. Three genotypes of IGS1-1, 3, and 7 were observed among T. asahii. The sensitivity of the yeasts to the antifungal drugs amphotericin B, fluconazole, and voriconazole ranged from 0.25 to >16 μg ml-1, 0.5-8 μg ml-1, and 0.01-0.25 μg ml-1, respectively. We investigated biofilm formation by the isolates, and no biofilm production was found in one isolate, low biofilm production in forty-four isolates, and medium biofilm production in six isolates. T. inkin produced biofilms at low levels, and Trichosporon spp. produced biofilms at medium levels. This research increases our understanding of the molecular epidemiology of Trichosporon spp. isolated from one university hospital in Bangkok, Thailand, and reveals their genetic diversity, antifungal susceptibility profiles, and capacity for in vitro biofilm production.
Collapse
Affiliation(s)
- Thanwa Wongsuk
- 1 Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Siriphan Boonsilp
- 1 Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Potjaman Pumeesat
- 2 Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, Thailand
| | - Anchalee Homkaew
- 3 Microbiological Unit, Central Laboratory and Blood Bank, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Tanes Sangsri
- 4 Department of Microbiology, Faculty of Medicine, Princess of Naradhiwas University, Narathiwat, Thailand
| | - Piriyaporn Chongtrakool
- 5 Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
25
|
Subramanian A, Sheela devi, Abraham G, Honnavar P. Trichosporon asahii infection associated with glomerulonephritis in a diabetic patient. Med Mycol Case Rep 2022; 35:15-17. [PMID: 35028282 PMCID: PMC8715133 DOI: 10.1016/j.mmcr.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/21/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022] Open
Abstract
Trichosporon colonizes the skin, vagina, gastrointestinal and respiratory tract of humans. Superficial infections are common, while disseminated trichosporonosis is rare, specifically seen among immunocompromised patients and often associated with high mortality. We report a rare case Trichosporon asahii infection in a 78-year-old diabetic, with associated acute interstitial glomerulonephritis. Molecular identification of the isolate was confirmed by sequencing IGS1 region of rDNA. Our study adds to a rather limited literature on renal complications of Trichosporonosis.
Collapse
Affiliation(s)
- Anandhalakshmi Subramanian
- Department of Microbiology, College of Medicine, King Khalid University, Abha, Asir region, 61421, Saudi Arabia
| | - Sheela devi
- Department of Microbiology, Pondicherry Institute of Medical Sciences, Puducherry, 605008, India
| | - Georgi Abraham
- Department of General Medicine, Pondicherry Institute of Medical Sciences, Puducherry, 605008, India
| | - Prasanna Honnavar
- American University of Antigua College of Medicine, Antigua and Barbuda
| |
Collapse
|
26
|
Invasive Trichosporonosis in Neonates and Pediatric Patients with Malignancies or Hematologic Disorders. Pathogens 2022; 11:pathogens11020242. [PMID: 35215184 PMCID: PMC8875650 DOI: 10.3390/pathogens11020242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/28/2022] Open
Abstract
(1) Background: Trichosporon species have emerged as important opportunistic fungal pathogens, with Trichosporon asahii being the leading and most frequent cause of invasive disease. (2) Methods: We performed a global review focused on invasive trichosporonosis in neonates and pediatric patients with malignancies or hematologic disorders. We reviewed case reports and case series of trichosporonosis due to T. asahii published since 1994, the year of the revised taxonomic classification. (3) Results: Twenty-four cases of invasive trichosporonosis were identified in neonates with the presence of central venous catheter and use of broad-spectrum antibiotics recognized as the main predisposing factors. Thirty-two cases were identified in children with malignancies or hematologic disorders, predominantly with severe neutropenia. Trichosporon asahii was isolated from blood in 24/32 (75%) pediatric cases. Cutaneous involvement was frequently observed in invasive trichosporonosis. Micafungin was the most commonly used prophylactic agent (9/22; 41%). Ten patients receiving prophylactic echinocandins were identified with breakthrough infections. A favorable outcome was reported in 12/16 (75%) pediatric patients receiving targeted monotherapy with voriconazole or combined with liposomal amphotericin B. Overall mortality in neonates and children with malignancy was 67% and 60%, respectively. (4) Conclusions: Voriconazole is advocated for the treatment of invasive trichosporonosis given the intrinsic resistance to echinocandins and poor susceptibility to polyenes.
Collapse
|
27
|
Weber JK, Scharf S, Walther G, Flüh G, MacKenzie CR, Kondakci M, Henrich B, Kohns Vasconcelos M. Detection of invasive Trichosporon asahii in patient blood by a fungal PCR array. Access Microbiol 2022; 3:000285. [PMID: 35024550 PMCID: PMC8749139 DOI: 10.1099/acmi.0.000285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/30/2021] [Indexed: 11/24/2022] Open
Abstract
Rare invasive fungal infections are increasingly emerging in hosts with predisposing factors such as immunodeficiency. Their timely diagnosis remains difficult, as their clinical picture may initially mimic infections with more common fungal species and species identification may be difficult with routine methods or may require time-consuming subcultures. This often results in ineffective drug administration and fatal outcomes. We report on a patient in their early twenties with mixed cellularity classical Hodgkin lymphoma with a disseminated Trichosporon asahii (T. asahii) infection. Even though pathogen detection and identification was possible via the standard procedure consisting of culture followed by matrix-assisted laser desorption ionisation–time of flight (MALDI-TOF) mass spectrometry, the patient passed away in the course of multi organ failure. Herein, we report on a retrospectively applied experimental diagnostic fungal PCR-analysis used on an EDTA blood sample and consisting of two pan-fungal reactions and seven branch-specific reactions. Regarding invasive T. asahii infection, this PCR array could considerably shorten time to diagnosis and switch to a targeted therapy with triazoles.
Collapse
Affiliation(s)
- Jasmin K Weber
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Scharf
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Grit Walther
- German National Reference Centre for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Greta Flüh
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Labor Dr. Wisplinghoff, Cologne, Germany
| | - Colin R MacKenzie
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mustafa Kondakci
- Department of Haematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Birgit Henrich
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Malte Kohns Vasconcelos
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
28
|
Chang CC, Hall V, Cooper C, Grigoriadis G, Beardsley J, Sorrell TC, Heath CH. Consensus guidelines for the diagnosis and management of cryptococcosis and rare yeast infections in the haematology/oncology setting, 2021. Intern Med J 2021; 51 Suppl 7:118-142. [PMID: 34937137 DOI: 10.1111/imj.15590] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cryptococcosis caused by the Cryptococcus neoformans-Cryptococcus gattii complex is an important opportunistic infection in people with immunodeficiency, including in the haematology/oncology setting. This may manifest clinically as cryptococcal meningitis or pulmonary cryptococcosis, or be detected incidentally by cryptococcal antigenemia, a positive sputum culture or radiological imaging. Non-Candida, non-Cryptococcus spp. rare yeast fungaemia are increasingly common in this population. These consensus guidelines aim to provide clinicians working in the Australian and New Zealand haematology/oncology setting with clear guiding principles and practical recommendations for the management of cryptococcosis, while also highlighting important and emerging rare yeast infections and their recommended management.
Collapse
Affiliation(s)
- Christina C Chang
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Therapeutic and Vaccine Research Programme, Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, KwaZulu Natal, South Africa
| | - Victoria Hall
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Celia Cooper
- Department of Microbiology and Infectious Diseases, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - George Grigoriadis
- Monash Haematology, Monash Health, Melbourne, Victoria, Australia.,School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Haematology, Alfred Hospital, Prahran, Victoria, Australia
| | - Justin Beardsley
- Marie Bashir Institute for Infectious Diseases & Biosecurity, University of Sydney, Sydney, New South Wales, Australia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Department of Infectious Diseases, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Tania C Sorrell
- Marie Bashir Institute for Infectious Diseases & Biosecurity, University of Sydney, Sydney, New South Wales, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Infectious Diseases and Sexual Health, Western Sydney Local Health District, Parramatta, New South Wales, Australia
| | - Christopher H Heath
- Department of Microbiology, Fiona Stanley Hospital Network, PathWest Laboratory Medicine, Murdoch, Western Australia, Australia.,Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, Western Australia, Australia.,Department of Infectious Diseases, Royal Perth Hospital, Perth, Western Australia, Australia.,Faculty of Health and Medical Sciences, University of Western Australia, Murdoch, Western Australia, Australia
| | | |
Collapse
|
29
|
Chen SCA, Perfect J, Colombo AL, Cornely OA, Groll AH, Seidel D, Albus K, de Almedia JN, Garcia-Effron G, Gilroy N, Lass-Flörl C, Ostrosky-Zeichner L, Pagano L, Papp T, Rautemaa-Richardson R, Salmanton-García J, Spec A, Steinmann J, Arikan-Akdagli S, Arenz DE, Sprute R, Duran-Graeff L, Freiberger T, Girmenia C, Harris M, Kanj SS, Roudbary M, Lortholary O, Meletiadis J, Segal E, Tuon FF, Wiederhold N, Bicanic T, Chander J, Chen YC, Hsueh PR, Ip M, Munoz P, Spriet I, Temfack E, Thompson L, Tortorano AM, Velegraki A, Govender NP. Global guideline for the diagnosis and management of rare yeast infections: an initiative of the ECMM in cooperation with ISHAM and ASM. THE LANCET. INFECTIOUS DISEASES 2021; 21:e375-e386. [PMID: 34419208 DOI: 10.1016/s1473-3099(21)00203-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023]
Abstract
Uncommon, or rare, yeast infections are on the rise given increasing numbers of patients who are immunocompromised or seriously ill. The major pathogens include those of the genera Geotrichum, Saprochaete, Magnusiomyces, and Trichosporon (ie, basidiomycetes) and Kodamaea, Malassezia, Pseudozyma (ie, now Moesziomyces or Dirkmeia), Rhodotorula, Saccharomyces, and Sporobolomyces (ie, ascomycetes). A considered approach to the complex, multidisciplinary management of infections that are caused by these pathogens is essential to optimising patient outcomes; however, management guidelines are either region-specific or require updating. In alignment with the One World-One Guideline initiative to incorporate regional differences, experts from diverse geographical regions analysed publications describing the epidemiology and management of the previously mentioned rare yeasts. This guideline summarises the consensus recommendations with regards to the diagnostic and therapeutic options for patients with these rare yeast infections, with the intent of providing practical assistance in clinical decision making. Because there is less clinical experience of patients with rare yeast infections and studies on these patients were not randomised, nor were groups compared, most recommendations are not robust in their validation but represent insights by use of expert opinions and in-vitro susceptibility results. In this Review, we report the key features of the epidemiology, diagnosis, antifungal susceptibility, and treatment outcomes of patients with Geotrichum, Saprochaete, Magnusiomyces, and Trichosporon spp infections.
Collapse
Affiliation(s)
- Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, NSW, Australia; Centre for Infectious Diseases and Microbiology, Westmead Hospital, The University of Sydney, Sydney, NSW, Australia.
| | | | - Arnaldo L Colombo
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Oliver A Cornely
- Department I of Internal Medicine, Excellence Center for Medical Mycology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany; Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany; Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Andreas H Groll
- Infectious Disease Research Program, Centre for Bone Marrow Transplantation and Department of Paediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Danila Seidel
- Department I of Internal Medicine, Excellence Center for Medical Mycology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany; Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Kerstin Albus
- Department I of Internal Medicine, Excellence Center for Medical Mycology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany; Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Joao N de Almedia
- Central Laboratory Division, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Guillermo Garcia-Effron
- Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, CCT Santa Fe, Santa Fe, Argentina
| | - Nicole Gilroy
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, The University of Sydney, Sydney, NSW, Australia
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, ECMM Excellence Centre, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Livio Pagano
- Fondazione Policlinico Universitario A Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tamas Papp
- Fungal Pathogenicity Mechanisms Research Group, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Riina Rautemaa-Richardson
- Wythenshawe Hospital, ECMM Excellence Centre, Manchester University NHS Foundation Trust, Manchester, UK; Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jon Salmanton-García
- Department I of Internal Medicine, Excellence Center for Medical Mycology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany; Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Andrej Spec
- Division of Infectious Disease, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Joerg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Nuremberg, Germany; Institute of Medical Microbiology, University Hospital Essen, Essen, Germany
| | - Sevtap Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey
| | - Dorothee E Arenz
- Department I of Internal Medicine, Excellence Center for Medical Mycology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany; German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Rosanne Sprute
- Department I of Internal Medicine, Excellence Center for Medical Mycology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany; German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Luisa Duran-Graeff
- Clínica Las Condes, Departamento de Medicina Interna, Unidad de Infectología, Santiago, Chile
| | - Tomas Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic; Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Corrado Girmenia
- Department of Hematology, Umberto I Policlinico di Roma, Rome, Italy
| | | | - Souha S Kanj
- Department of Internal Medicine, Division of Infectious Diseases, American University of Beirut Medical Centre, Beirut, Lebanon
| | - Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Olivier Lortholary
- Service des Maladies Infectieuses et Tropicales, Hôpital Necker-Enfants malades, Université Paris V, Paris, France
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Esther Segal
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Nathan Wiederhold
- Fungus Testing Laboratory, University of Texas Health Science Center, San Antonio, TX, USA
| | - Tihana Bicanic
- Institute of Infection and Immunity, St George's University of London, London, UK
| | - Jagdish Chander
- Department of Microbiology, Government Medical College Hospital, Chandigarh, India
| | - Yee-Chun Chen
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University College of Medicine, Taipeh, Taiwan; Department of Medicine, National Taiwan University College of Medicine, Taipeh, Taiwan
| | - Po-Ren Hsueh
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University College of Medicine, Taipeh, Taiwan; Department of Laboratory Medicine, National Taiwan University College of Medicine, Taipeh, Taiwan
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Patricia Munoz
- Infectious Diseases and Clinical Microbiology Department, Hospital General Universitario Gregorio Marañón, Servicio de Microbiología-Enfermedades Infecciosas, Madrid, Spain
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Elvis Temfack
- Internal Medicine Unit, Douala General Hospital, Douala, Cameroon; National Public Health Laboratory, Yaounde, Cameroon
| | - Luis Thompson
- Clinica Alemana-Universidad del Desarrollo, Departamento de Medicina Interna, Unidad de Infectología, Santiago, Chile
| | - Anna Maria Tortorano
- Department of Biomedical Science for Research, Universita degli Studi di Milano, Milan, Italy
| | - Aristea Velegraki
- Mycology Research Laboratory and UOA/HCPF Culture Collection, Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nelesh P Govender
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
30
|
Malacrida AM, Salci TP, Negri M, Svidzinski TIE. Insight into the antifungals used to address human infection due to Trichosporon spp.: a scoping review. Future Microbiol 2021; 16:1277-1288. [PMID: 34689610 PMCID: PMC8544482 DOI: 10.2217/fmb-2021-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
Trichosporonosis infections have been increasing worldwide. Providing adequate treatment for these infections remains a challenge. This scoping review contains information about potential antifungals to treat this pathology. Using online databases, we found 76 articles published between 2010 and 2020 related to this topic. Classic antifungals, molecules and biomolecules, repositioned drugs and natural products have been tested against species of Trichosporon. Experimental research has lacked depth or was limited to in vitro and in vivo tests, so there are no promising new candidates for the clinical treatment of patients with trichosporonosis. Furthermore, most studies did not present appropriate scientific criteria for drug tests, compromising their quality.
Collapse
Affiliation(s)
- Amanda M Malacrida
- Departament of Clinical Analyses and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, CEP, 87020-900, Brazil
| | - Tânia P Salci
- Departament of Pharmacy and Science, Faculdade Integrado de Campo Mourão, Campo Mourão, Paraná, CEP, 87300-970, Brazil
| | - Melyssa Negri
- Departament of Clinical Analyses and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, CEP, 87020-900, Brazil
| | - Terezinha IE Svidzinski
- Departament of Clinical Analyses and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, CEP, 87020-900, Brazil
| |
Collapse
|
31
|
Tiseo G, Fais R, Forniti A, Melandro F, Tavanti A, Ghelardi E, De Simone P, Falcone M, Lupetti A. Fatal fungemia by biofilm-producing Trichosporon asahii in a liver transplant candidate. LE INFEZIONI IN MEDICINA 2021; 29:464-468. [PMID: 35146352 PMCID: PMC8805490 DOI: 10.53854/liim-2903-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 06/14/2023]
Abstract
Acute-on-chronic liver failure (ACLF) is often associated with a dismal outcome. Infections might preclude access to liver transplantation (LT) for these patients, further reducing their chance of survival. We report the case of a patient with ACLF who died before LT for biofilm-producing Trichosporon asahii fungemia. The patient early started antifungal therapy with anidulafungin, but T. asahii was not susceptible to echinocandins, delaying the start of active antifungal therapy. Although rare, invasive infections by Trichosporon spp. are associated with high mortality rates due to low antimicrobial susceptibility and production of biofilms on indwelling devices. Early diagnosis and treatment are crucial to reduce mortality and enhance patient survival.
Collapse
Affiliation(s)
- Giusy Tiseo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberta Fais
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Arianna Forniti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fabio Melandro
- Hepatobiliary surgery and liver transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | | | - Emilia Ghelardi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paolo De Simone
- Hepatobiliary surgery and liver transplantation, University of Pisa Medical School Hospital, Pisa, Italy
- Department of Surgical, Medical, Molecular Pathology and Intensive Care, University of Pisa, Pisa, Italy
| | - Marco Falcone
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
32
|
Brandão J, Gangneux JP, Arikan-Akdagli S, Barac A, Bostanaru AC, Brito S, Bull M, Çerikçioğlu N, Chapman B, Efstratiou MA, Ergin Ç, Frenkel M, Gitto A, Gonçalves CI, Guégan H, Gunde-Cimerman N, Güran M, Irinyi L, Jonikaitė E, Kataržytė M, Klingspor L, Mares M, Meijer WG, Melchers WJG, Meletiadis J, Meyer W, Nastasa V, Babič MN, Ogunc D, Ozhak B, Prigitano A, Ranque S, Rusu RO, Sabino R, Sampaio A, Silva S, Stephens JH, Tehupeiory-Kooreman M, Tortorano AM, Velegraki A, Veríssimo C, Wunderlich GC, Segal E. Mycosands: Fungal diversity and abundance in beach sand and recreational waters - Relevance to human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146598. [PMID: 33812107 DOI: 10.1016/j.scitotenv.2021.146598] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The goal of most studies published on sand contaminants is to gather and discuss knowledge to avoid faecal contamination of water by run-offs and tide-retractions. Other life forms in the sand, however, are seldom studied but always pointed out as relevant. The Mycosands initiative was created to generate data on fungi in beach sands and waters, of both coastal and freshwater inland bathing sites. A team of medical mycologists and water quality specialists explored the sand culturable mycobiota of 91 bathing sites, and water of 67 of these, spanning from the Atlantic to the Eastern Mediterranean coasts, including the Italian lakes and the Adriatic, Baltic, and Black Seas. Sydney (Australia) was also included in the study. Thirteen countries took part in the initiative. The present study considered several fungal parameters (all fungi, several species of the genus Aspergillus and Candida and the genera themselves, plus other yeasts, allergenic fungi, dematiaceous fungi and dermatophytes). The study considered four variables that the team expected would influence the results of the analytical parameters, such as coast or inland location, urban and non-urban sites, period of the year, geographical proximity and type of sediment. The genera most frequently found were Aspergillus spp., Candida spp., Fusarium spp. and Cryptococcus spp. both in sand and in water. A site-blind median was found to be 89 Colony-Forming Units (CFU) of fungi per gram of sand in coastal and inland freshwaters, with variability between 0 and 6400 CFU/g. For freshwater sites, that number was 201.7 CFU/g (0, 6400 CFU/g (p = 0.01)) and for coastal sites was 76.7 CFU/g (0, 3497.5 CFU/g). For coastal waters and all waters, the median was 0 CFU/ml (0, 1592 CFU/ml) and for freshwaters 6.7 (0, 310.0) CFU/ml (p < 0.001). The results advocate that beaches should be monitored for fungi for safer use and better management.
Collapse
Affiliation(s)
- J Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for Environmental and Marine Studies (CESAM) - Department of Animal Biology, University of Lisbon, Lisbon, Portugal.
| | - J P Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - S Arikan-Akdagli
- Mycology Laboratory at Department of Medical Microbiology of Hacettepe University Medical School, Ankara, Turkey
| | - A Barac
- Clinical Centre of Serbia, Clinic for Infectious and Tropical Diseases, Faculty of Medicine, University of Belgrade, Serbia
| | - A C Bostanaru
- Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine of Iasi, Romania
| | - S Brito
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - M Bull
- Quantal Bioscience, North Parramatta, Australia
| | - N Çerikçioğlu
- Mycology Laboratory at Department of Medical Microbiology of Marmara University Medical School, Istanbul, Turkey
| | - B Chapman
- Quantal Bioscience, North Parramatta, Australia
| | - M A Efstratiou
- Department of Marine Sciences, University of the Aegean, University Hill, Mytilene, Greece
| | - Ç Ergin
- Department of Medical Microbiology, Medical Faculty, Pamukkale University, Denizli, Turkey
| | - M Frenkel
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Gitto
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Ireland; UCD Earth Institute, University College Dublin, Ireland; UCD Conway Institute, University College Dublin, Ireland
| | - C I Gonçalves
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - H Guégan
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - N Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - M Güran
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, Northern Cyprus, Mersin 10, Turkey
| | - L Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Disease and Microbiology, Sydney Medical School, Westmead Clinical School, Westmead Hospital, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - E Jonikaitė
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
| | - M Kataržytė
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
| | - L Klingspor
- Division of Clinical Microbiology, Department of Laboratory Medicin, Karolinska Institutet, Stockholm, Sweden
| | - M Mares
- Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine of Iasi, Romania
| | - W G Meijer
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Ireland; UCD Earth Institute, University College Dublin, Ireland; UCD Conway Institute, University College Dublin, Ireland
| | - W J G Melchers
- Medical Microbiology, Radboud University Medical Centre (Radboudumc), Nijmegen, the Netherlands
| | - J Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - W Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Disease and Microbiology, Sydney Medical School, Westmead Clinical School, Westmead Hospital, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - V Nastasa
- Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine of Iasi, Romania
| | - M Novak Babič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - D Ogunc
- Department of Medical Microbiology, Akdeniz University Medical School, Antalya, Turkey
| | - B Ozhak
- Department of Medical Microbiology, Akdeniz University Medical School, Antalya, Turkey
| | - A Prigitano
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - S Ranque
- Aix Marseille Univ, IHU-Méditerranée Infection, AP-HM, IRD, SSA, VITROME, Marseille, France
| | - R O Rusu
- Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine of Iasi, Romania
| | - R Sabino
- Reference Unit for Parasitic and Fungal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - A Sampaio
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, Vila Real, Portugal
| | - S Silva
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - J H Stephens
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Ireland; UCD Earth Institute, University College Dublin, Ireland; UCD Conway Institute, University College Dublin, Ireland
| | - M Tehupeiory-Kooreman
- Medical Microbiology, Radboud University Medical Centre (Radboudumc), Nijmegen, the Netherlands
| | - A M Tortorano
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - A Velegraki
- Mycology Research Laboratory and UOA/HCPF Culture Collection, Microbiology Department, Medical School, National and Kapodistrian University of Athens, Athens, Greece and Mycology Laboratory, BIOMEDICINE S.A., Athens, Greece
| | - C Veríssimo
- Reference Unit for Parasitic and Fungal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - G C Wunderlich
- Quantal Bioscience, North Parramatta, Australia; Molecular Mycology Research Laboratory, Centre for Infectious Disease and Microbiology, Sydney Medical School, Westmead Clinical School, Westmead Hospital, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - E Segal
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Nobrega de Almeida J, Francisco EC, Holguín Ruiz A, Cuéllar LE, Rodrigues Aquino V, Verena Mendes A, Queiroz-Telles F, Santos DW, Guimarães T, Maranhão Chaves G, Grassi de Miranda B, Araújo Motta F, Vargas Schwarzbold A, Oliveira M, Riera F, Sardi Perozin J, Pereira Neves R, França E Silva ILA, Sztajnbok J, Fernandes Ramos J, Borges Botura M, Carlesse F, de Tarso de O E Castro P, Nyirenda T, Colombo AL. Epidemiology, clinical aspects, outcomes and prognostic factors associated with Trichosporon fungaemia: results of an international multicentre study carried out at 23 medical centres. J Antimicrob Chemother 2021; 76:1907-1915. [PMID: 33890055 DOI: 10.1093/jac/dkab085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Trichosporon fungaemia (TF) episodes have increased in recent years and mortality rates remain high despite the advances in the management of sepsis. New concepts about its clinical course, treatment and microbiology need to be investigated for the better management of this infection. OBJECTIVES To describe the aetiology, natural history, clinical management and prognostic factors of TF. METHODS TF episodes documented between 2005 and 2018 in 23 South American centres were retrospectively investigated by using a standard clinical form. Molecular identification, antifungal susceptibility testing and biofilm production were also performed. RESULTS Eighty-eight TF episodes were studied. Patients had several underlying conditions, including haematological diseases (47.7%), post-operative status (34%), solid organ transplants (n = 7, 7.9%), among others. Seventy-three (82.9%) patients had a central venous catheter (CVC) at TF diagnosis. The 30 day mortality rate was 51.1%. Voriconazole-based therapy was given to 34 patients (38.6%), with a 30 day mortality rate of 38.2%. Multivariate predictors of 30 day mortality were age (OR 1.036), mechanical ventilation (OR 8.25) and persistent neutropenia (OR 9.299). CVC removal was associated with over 75% decreased risk of 30 day mortality (OR 0.241). Microbiological analyses revealed that 77.7% of the strains were identified as Trichosporon asahii, and voriconazole showed the strongest in vitro activity against Trichosporon spp. Most of the strains (63%) were considered medium or high biofilm producers. CONCLUSIONS Older age, mechanical ventilation and persistent neutropenia were associated with poor prognosis. CVC may play a role in the pathogenicity of TF and its removal was associated with a better prognosis.
Collapse
Affiliation(s)
- João Nobrega de Almeida
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.,Central Laboratory Division-LIM03, Hospital das Clínicas da FMUSP, São Paulo, Brazil
| | - Elaine Cristina Francisco
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Luis E Cuéllar
- Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
| | | | | | - Flávio Queiroz-Telles
- Hospital de Clínicas, Infectious Diseases Department, Universidade Federal do Paraná, Curitiba, Brazil
| | - Daniel Wagner Santos
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Guilherme Maranhão Chaves
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | | | | | | | | | - Jaques Sztajnbok
- Instituto da Criança, Hospital das Clínicas da FMUSP, São Paulo, Brazil
| | - Jéssica Fernandes Ramos
- Hospital Sírio Libanês, São Paulo, Brazil.,Infectious Diseases Department, Hospital de Clínicas, Hospital das Clínicas da FMUSP, São Paulo, Brazil
| | | | - Fabianne Carlesse
- Departamento de Pediatria, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto de Oncologia Pediátrica-IOP-GRAACC-UNIFESP, São Paulo, Brazil
| | | | | | - Arnaldo L Colombo
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Yang F, Feng J, Wang L, Jiang L, Sheng L, Wu J, Cao Q, Yi M. Disseminated Trichosporon asahii infection presenting as eosinophilia in an immunocompetent patient: A case report. Indian J Med Microbiol 2021; 39:552-555. [PMID: 34193352 DOI: 10.1016/j.ijmmb.2021.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022]
Abstract
Trichosporon are naturally found in external environments and are a part of the normal flora of the human skin, respiratory tract, and gastrointestinal tract. Disseminated Trichosporon infection occurs sporadically in patients with immunodeficiency, and is mainly manifested as blood, urine, catheter, and thorax/peritoneum infections, rarely as lymphatic, liver and spleen infections. Elevated blood eosinophil granulocyte from Trichosporon infection have rarely been reported. Here, we report a rare Case of eosinophilia associated with lymphatic and liver and spleen infections due to Trichosporon asahii in an immunocompetent patient. No reports of eosinophilia from Trichosporon infections other than lung, to our knowledge, have been published.
Collapse
Affiliation(s)
- Fengzhen Yang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Jiankai Feng
- Department of Laboratory Medicine,Yantai Affiliated Hospital of Binzhou Medical College, Yantai, China
| | - Lipeng Wang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Lihua Jiang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Li Sheng
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Jinying Wu
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Qingmei Cao
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Maoli Yi
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China.
| |
Collapse
|
35
|
Arastehfar A, de Almeida Júnior JN, Perlin DS, Ilkit M, Boekhout T, Colombo AL. Multidrug-resistant Trichosporon species: underestimated fungal pathogens posing imminent threats in clinical settings. Crit Rev Microbiol 2021; 47:679-698. [PMID: 34115962 DOI: 10.1080/1040841x.2021.1921695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Species of Trichosporon and related genera are widely used in biotechnology and, hence, many species have their genome sequenced. Importantly, yeasts of the genus Trichosporon have been increasingly identified as a cause of life-threatening invasive trichosporonosis (IT) in humans and are associated with an exceptionally high mortality rate. Trichosporon spp. are intrinsically resistant to frontline antifungal agents, which accounts for numerous reports of therapeutic failure when echinocandins are used to treat IT. Moreover, these fungi have low sensitivity to polyenes and azoles and, therefore, are potentially regarded as multidrug-resistant pathogens. However, despite the clinical importance of Trichosporon spp., our understanding of their antifungal resistance mechanisms is quite limited. Furthermore, antifungal susceptibility testing is not standardized, and there is a lack of interpretive epidemiological cut-off values for minimal inhibitory concentrations to distinguish non-wild type Trichosporon isolates. The route of infection remains obscure and detailed clinical and environmental studies are required to determine whether the Trichosporon infections are endogenous or exogenous in nature. Although our knowledge on effective IT treatments is rather limited and future randomized clinical trials are required to identify the best antifungal agent, the current paradigm advocates the use of voriconazole, removal of central venous catheters and recovery from neutropenia.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - João N de Almeida Júnior
- Laboratorio de Micologia Medica (LIM 53), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil.,Laboratório Central (LIM 03), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Macit Ilkit
- Division of Mycology, University of Çukurova, Adana, Turkey
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Arnaldo Lopes Colombo
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Ahangarkani F, Ilkit M, Vaseghi N, Zahedi N, Zomorodian K, Khodavaisy S, Afsarian MH, Abbasi K, de Groot T, Meis JF, Badali H. MALDI-TOF MS characterisation, genetic diversity and antifungal susceptibility of Trichosporon species from Iranian clinical samples. Mycoses 2021; 64:918-925. [PMID: 33998718 DOI: 10.1111/myc.13306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Trichosporonosis is an emerging fungal infection caused by Trichosporon species, a genus of yeast-like fungi, which are frequently encountered in human infections ranging from mild cutaneous lesions to fungemia in immunocompromised patients. The incidence of trichosporonosis has increased in recent years, owing to higher numbers of individuals at risk for this infection. Although amphotericin B, posaconazole and isavuconazole are generally effective against Trichosporon species, some isolates may have variable susceptibility to these antifungals. OBJECTIVES Herein, we evaluated the species distribution, genetic diversity and antifungal susceptibility profiles of Trichosporon isolates in Iran. METHODS The yeasts were identified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Phylogenetic analysis was performed based on amplified fragment length polymorphism (AFLP). The in vitro susceptibilities of eight antifungal agents were analysed using the Clinical and Laboratory Standards Institute broth microdilution methods. RESULTS The isolates belonged to the species T asahii (n = 20), T japonicum (n = 4) and T faecale (n = 3). A dendrogram of the AFLP analysis demonstrated that T asahii and non-asahii Trichosporon strains (T japonicum and T faecale) are phylogenetically distinct. While voriconazole was the most active agent (GM MIC = 0.075 μg/ml), high fluconazole MICs (8 μg/ml) were observed for a quarter of Trichosporon isolates. The GM MIC value of amphotericin B for T asahii and non-asahii Trichosporon species was 0.9 μg/ml. CONCLUSIONS The distribution and antifungal susceptibility patterns of the identified Trichosporon species could inform therapeutic choices for treating these emerging life-threatening fungi.
Collapse
Affiliation(s)
- Fatemeh Ahangarkani
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands.,Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Cukurova, Adana, Turkey
| | - Narges Vaseghi
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nina Zahedi
- Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Afsarian
- Department of Medical Mycology and Parasitology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Kiana Abbasi
- Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands.,ECMM Excellence Center for Medical Mycology, Centre of Expertise in Mycology Radboudumc/ Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands.,Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Hamid Badali
- Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
37
|
Bobrek K, Sokół I, Gaweł A. Uncommon Non- Candida Yeasts in Healthy Turkeys-Antimicrobial Susceptibility and Biochemical Characteristic of Trichosporon Isolates. Pathogens 2021; 10:pathogens10050538. [PMID: 33946204 PMCID: PMC8146614 DOI: 10.3390/pathogens10050538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
The microbiota of the gastrointestinal tract of humans and animals is inhabited by a diverse community of bacteria, fungi, protozoa, and viruses. In cases where there is an imbalance in the normal microflora or an immunosuppression on the part of the host, these opportunistic microorganisms can cause severe infections. The study presented here evaluates the biochemical and antifungal susceptibility features of Trichosporon spp., uncommon non-Candida strains isolated from the gastrointestinal tract of healthy turkeys. The Trichosporon coremiiforme and Trichosporon (Apiotrichum) montevideense accounted for 7.7% of all fungi isolates. The biochemical tests showed that Trichosporon coremiiforme had active esterase (C4), esterase-lipase (C8) valine arylamidase, naphthol-AS-BI phosphohydrolase, α-galactosidase, and β-glucosidase. Likewise, Trichosporon montevideense demonstrated esterase-lipase (C8), lipase (C14), valine arylamidase, naphthol-AS-BI phosphohydrolase, α-galactosidase, and β-glucosidase activity. T.coremiiforme and T. monteviidense isolated from turkeys were itraconazole resistant and amphotericin B, fluconazole, and voriconazole susceptible. Compared with human isolates, the MIC range and MIC values of turkey isolates to itraconazole were in a higher range limit in both species, while MIC values to amphotericin B, fluconazole, and voriconazole were in a lower range limit. Furthermore, the obtained ITS1—5.8rRNA—ITS2 fragment sequences were identical with T. coremiiforme and T. montevideense sequences isolated from humans indicating that these isolates are shared pathogens.
Collapse
Affiliation(s)
- Kamila Bobrek
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Wroclaw University of Environmental and Life Sciences, 50-366 Wrocław, Poland;
- Correspondence: author ; Tel./Fax: +48-71-3205-327
| | - Ireneusz Sokół
- Private Veterinary Service, SM-ARTVET, 51-361 Wrocław, Poland;
| | - Andrzej Gaweł
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Wroclaw University of Environmental and Life Sciences, 50-366 Wrocław, Poland;
| |
Collapse
|
38
|
Martínez-Herrera E, Duarte-Escalante E, Reyes-Montes MDR, Arenas R, Acosta-Altamirano G, Moreno-Coutiño G, Vite-Garín TM, Meza-Robles A, Frías-De-León MG. Molecular identification of yeasts from the order Trichosporonales causing superficial infections. Rev Iberoam Micol 2021; 38:119-124. [PMID: 33839018 DOI: 10.1016/j.riam.2021.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND The molecular reclassification of the order Trichosporonales placed the medically relevant Trichosporon species into three genera of the family Trichosporonaceae: Cutaneotrichosporon, Trichosporon, and Apiotrichum. From the clinical and epidemiological standpoint, it is important to identify any species of the family Trichosporonaceae because they present different antifungal susceptibility profiles. In Mexico, little is known about trichosporonosis etiology because the fungi are identified through phenotypic methods. AIMS To identify at a molecular level 12 yeast isolates morfologically compatible with Trichosporon, obtained from patients with superficial infections. METHODS The yeast isolates were obtained from patients with white piedra, onychomycosis, and hand and foot dermatomycosis, and were identified morphologically and genotypically (sequencing of the IGS1 region and phylogenetic analysis using the Maximum Likelihood Method). The phylogenetic analysis included 40 yeast sequences from the order Trichosporonales and one from Cryptococcus neoformans as outgroup. RESULTS Based on the molecular analysis, we identified three (25%) Trichosporon inkin isolates, two (16.7%) Trichosporon asteroides, two (16.7%) Cutaneotrichosporon mucoides, and one each (8.3%) of Trichosporon aquatile, Trichosporon asahii, Apiotrichum montevideense, Cutaneotrichosporon cutaneum, and Cutaneotrichosporon jirovecii. CONCLUSIONS The molecular characterization of the isolates showed a broad diversity of species within the order Trichosporonales, particularly among onychomycosis. It is essential to identify these yeasts at the species level to delve into their epidemiology.
Collapse
Affiliation(s)
- Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca, Edo. Méx., Mexico
| | - Esperanza Duarte-Escalante
- Laboratorio de Micología Molecular, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Mexico
| | - María Del Rocío Reyes-Montes
- Laboratorio de Micología Molecular, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Mexico
| | - Roberto Arenas
- Sección de Micología, Hospital General "Dr. Manuel Gea González", Mexico
| | - Gustavo Acosta-Altamirano
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca, Edo. Méx., Mexico
| | | | - Tania Mayela Vite-Garín
- Laboratorio de Inmunología de Hongos, Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Mexico
| | | | | |
Collapse
|
39
|
Liu Q, Wang X. Characterization and phylogenetic analysis of the complete mitochondrial genome of pathogen Trichosporon inkin (Trichosporonales: Trichosporonaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:803-805. [PMID: 33763584 PMCID: PMC7954414 DOI: 10.1080/23802359.2021.1882912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In the present study, the complete mitochondrial genome of Trichosporon inkin was sequenced and assembled. The complete mitochondrial genome of T. inkin contained 22 protein-coding genes (PCG), 2 ribosomal RNA (rRNA) genes, and 24 transfer RNA (tRNA) genes. The total size of the T. inkin mitochondrial genome is 39,466 bp, with the GC content of 27.56%. Phylogenetic analysis based on combined mitochondrial gene dataset indicated that the T. inkin exhibited a close relationship with Trichosporon asahii.
Collapse
Affiliation(s)
- Qiaofeng Liu
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - Xin Wang
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
40
|
Correlation of Trichosporon asahii Genotypes with Anatomical Sites and Antifungal Susceptibility Profiles: Data Analyses from 284 Isolates Collected in the Last 22 Years across 24 Medical Centers. Antimicrob Agents Chemother 2021; 65:AAC.01104-20. [PMID: 33318016 DOI: 10.1128/aac.01104-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Trichosporon asahii is an opportunistic fungal pathogen that can cause severe infections with high mortality rates. Azole derivatives are the best-targeted therapy for T. asahii invasive infections, but azole-resistant isolates have been reported. To investigate peculiarities in the antifungal susceptibility profile (ASP) of T. asahii clinical isolates, we analyzed the genotype distribution, isolation sources, and ASP of 284 strains collected from 1997 to 2019 in different Brazilian medical centers. Species identification and genotype characterization were performed by analysis of the intergenic spacer (IGS1) region of the ribosomal DNA (rDNA). Antifungal susceptibility testing (AST) for amphotericin B and azoles was with the CLSI M27, 4th edition, microdilution broth method. Trends in the ASP of Brazilian T. asahii isolates were investigated using epidemiological cutoff values. Five different genotypes were found among the 284 isolates tested (G1, 76%; G3, 10%; G4, 3%; G5, 7%; and G7, 4%). The isolates were collected mainly from urine (55%) and blood/catheter tip samples (25%) where G1 was the most frequent genotype found (P < 0.05). The G7 isolates exhibited the highest MIC90 values for azoles compared to those for the other genotypes (P < 0.05). Genotype 7 isolates also contributed to the increasing rates of voriconazole non-wild-type isolates found in recent years (P = 0.02). No significant differences were found among the AST results generated by isolates cultured from different anatomical sites. Monitoring T. asahii genotype distributions and antifungal susceptibility profiles is warranted to prevent the spread of azole-resistant isolates.
Collapse
|
41
|
Zhang L, Yin X, Zhang J, Wei Y, Huo D, Ma C, Chang H, Cai K, Shi H. Comprehensive microbiome and metabolome analyses reveal the physiological mechanism of chlorotic Areca leaves. TREE PHYSIOLOGY 2021; 41:147-161. [PMID: 32857860 DOI: 10.1093/treephys/tpaa112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
As an important economic crop in tropical areas, Areca catechu L. affects the livelihood of millions of farmers. The Areca yellow leaf phenomenon (AYLP) leads to severe crop losses and plant death. To better understand the relationship of microbes and chlorotic Areca leaves, microbial community structure as well as its correlation with differential metabolites was investigated by high-throughput sequencing and metabolomic approaches. High-throughput sequencing of the internal transcribed spacer 1 and 16S rRNA gene revealed that fungal diversity was dominated by Ascomycota and the bacterial community consisted of Proteobacteria as well as Actinobacteria. The microbiota structure on chlorotic Areca leaves exhibited significant changes based on non-metric multidimensional scaling analysis, which were attributed to 477 bacterial genera and 183 fungal genera. According to the results of the Kruskal-Wallis test, several potential pathogens were enriched on chlorotic Areca leaves. Further analysis based on metabolic pathways predicted by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States revealed the metabolism of half-yellow leaves and yellow leaves microbiota were significantly elevated in amino acid metabolism, carbohydrate metabolism, glycan biosynthesis and metabolism, metabolism of cofactors and vitamins, partial xenobiotics biodegradation and metabolism. Furthermore, 22 significantly variable metabolites in Areca leaves were identified by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry and statistical analysis. Moreover, we further investigated the correlation between the predominant microbes and differential metabolites. Taken together, the association between AYLP and microbiome of Areca leaves was explored from the microecological perspective by omics techniques, and these findings provide new insights into possible prevention, monitoring and control of AYLP in the future.
Collapse
Affiliation(s)
- Lin Zhang
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Xiaojian Yin
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Jiachao Zhang
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Yunxie Wei
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Dongxue Huo
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Chenchen Ma
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Haibo Chang
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Kun Cai
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Haitao Shi
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
42
|
Kuo SH, Lu PL, Chen YC, Ho MW, Lee CH, Chou CH, Lin SY. The epidemiology, genotypes, antifungal susceptibility of Trichosporon species, and the impact of voriconazole on Trichosporon fungemia patients. J Formos Med Assoc 2020; 120:1686-1694. [PMID: 33358563 DOI: 10.1016/j.jfma.2020.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/PURPOSE Invasive Trichosporon infections are emerging, but association of different therapeutic management of Trichosporon fungemia and clinical outcomes were rarely reported. This study investigates the epidemiology, species distribution and genotypes of trichosporonosis in Taiwan, and identified the predictors of clinical outcomes in patients with Trichosporon fungemia. METHODS Strains collected from four medical centers in Taiwan, during 2010-2018. Species identification was confirmed by sequencing of IGS1 region, and antifungal susceptibility was performed using Sensititre YeastOne panel. RESULTS Among 115 isolates, Trichosporon asahii was the leading species (73.0%), followed by Trichosporon dermatis (11.3%), Trichosporon faecales (6.1%), and Trichosporon montevideense (5.2%). Of the 84 T. asahii isolates, genotype 1 was the predominant (41.7%). High fluconazole minimal inhibitory concentration (MICs,≧8 μg/mL) were observed for 70.2% T. asahii isolates and 16.1% non-asahii Trichosporon isolates. Posaconazole and voriconazole possess the most potent antifungal activity against all Trichosporon isolates, with geometric mean values of 0.251 μg/mL and 0.111 μg/mL, respectively. Fifty-three isolates collected from blood cultures, and 42 patients with fungemia enrolled for the Kaplan-Meier plot which revealed that voriconazole treatment had a significantly better survival rate compared with those without (p = 0.042). In multivariate analysis, source control (odds ratio [OR]: 0.13 95%CI [confidence interval]: 0.02-0.83, p = 0.031) and voriconazole use (OR: 0.11 95%CI: 0.02-0.74, p = 0.023) are independent predictors of 14-day mortality. CONCLUSION This is the largest series of Trichosporon fungemia up till the present moment. Voriconazole therapy and source control play important roles in 14-day mortality.
Collapse
Affiliation(s)
- Shin-Huei Kuo
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Liang Lu
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yee-Chun Chen
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Mao-Wang Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chen-Hsiang Lee
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital Kaohsiung Branch, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Hui Chou
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shang-Yi Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
43
|
Carolus H, Pierson S, Lagrou K, Van Dijck P. Amphotericin B and Other Polyenes-Discovery, Clinical Use, Mode of Action and Drug Resistance. J Fungi (Basel) 2020; 6:E321. [PMID: 33261213 PMCID: PMC7724567 DOI: 10.3390/jof6040321] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Although polyenes were the first broad spectrum antifungal drugs on the market, after 70 years they are still the gold standard to treat a variety of fungal infections. Polyenes such as amphotericin B have a controversial image. They are the antifungal drug class with the broadest spectrum, resistance development is still relatively rare and fungicidal properties are extensive. Yet, they come with a significant host toxicity that limits their use. Relatively recently, the mode of action of polyenes has been revised, new mechanisms of drug resistance were discovered and emergent polyene resistant species such as Candida auris entered the picture. This review provides a short description of the history and clinical use of polyenes, and focusses on the ongoing debate concerning their mode of action, the diversity of resistance mechanisms discovered to date and the most recent trends in polyene resistance development.
Collapse
Affiliation(s)
- Hans Carolus
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium; (H.C.); (S.P.)
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3001 Leuven, Belgium
| | - Siebe Pierson
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium; (H.C.); (S.P.)
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3001 Leuven, Belgium
| | - Katrien Lagrou
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3001 Leuven, Belgium;
- Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, 3001 Leuven, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium; (H.C.); (S.P.)
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
44
|
Lan Y, Lu S, Zheng B, Tang Z, Li J, Zhang J. Combinatory Effect of ALA-PDT and Itraconazole Treatment for Trichosporon asahii. Lasers Surg Med 2020; 53:722-730. [PMID: 33164224 DOI: 10.1002/lsm.23343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Trichosporiosis is an opportunistic infection that includes superficial infections, white piedra, hypersensitivity pneumonitis, and invasive trichosporonosis. The effect of antifungal agents against these infections is largely weakened by drug resistance and biofilms-related virulence. Photodynamic therapy (PDT) is a new therapeutic approach developed not only to combat cancerous lesions but also to treat infectious diseases such as fungal infections. However, there are few studies on the antimicrobial mechanism of 5-aminolevulinic acid PDT (ALA-PDT) in treating Trichosporon. In this work, we explored the possibility of combining ALA-PDT with an antifungal agent to enhance the therapeutic efficacy of Trichosporon asahii (T. asahii) in a clinical setting and in vitro. STUDY DESIGN/MATERIALS AND METHODS The biofilms of T. asahii were constructed by a 96-well plate-based method in vitro. The planktonic and adherent T. asahii were exposed to different concentrations of photosensitizers and different light doses. After PDT treatment, counting colony-forming units and tetrazolium (XTT) reduction assay were used to estimate the antifungal efficacy. The minimal inhibitory concentration of itraconazole before and after PDT treatment was determined by the broth dilution method, and XTT viability assay was used to detect and evaluate the synergistic potential of ALA-PDT and itraconazole combinations in inhibiting biofilms. Scanning electron microscopy (SEM) was performed to assess the disruption of biofilms. RESULTS Using combination therapy, we have successfully treated a patient who had a T. asahii skin infection. Further in vitro studies showed that the antifungal effect of ALA-PDT on planktonic and adherent T. asahii was dependent on the concentration of ALA and light dosages used. We also found that the sensitivity of both planktonic and biofilm cells to itraconazole were increased after ALA-PDT. Synergistic effect were observed for biofilms in ALA-PDT and itraconazole-combined treatment. The disruption of biofilms was confirmed by SEM, suggesting that ALA-PDT effectively damaged the biofilms and the destruction was further enhanced by ALA-PDT combination of antifungal agents. CONCLUSIONS In conclusion, these data suggest that ALA-PDT could be an alternative strategy for controlling infections caused by Trichosporon. The combination therapy of ALA-PDT with itraconazole could result in increased elimination of planktonic cells and biofilms compared with single therapy. All these findings indicate that it could be a promising treatment against trichosporonosis. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Yu Lan
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China.,Department of Dermatology, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Road Central, Shenzhen, 518033, China
| | - Sha Lu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Bowen Zheng
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China.,Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zengqi Tang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Jiahao Li
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Junmin Zhang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yanjiang Road, Guangzhou, 510120, China
| |
Collapse
|
45
|
Abstract
Trichosporon is a yeast-like basidiomycete, a conditional pathogenic fungus that is rare in the clinic but often causes fatal infections in immunocompromised individuals. Trichosporon asahii is the most common pathogenic fungus in this genus and the occurrence of infections has dramatically increased in recent years. Here, we report a systematic literature review detailing 140 cases of T. asahii infection reported during the past 23 years. Statistical analysis shows that T. asahii infections were most frequently reported within immunodeficient or immunocompromised patients commonly with blood diseases. Antibiotic use, invasive medical equipment and chemotherapy were the leading risk factors for acquiring infection. In vitro susceptibility, clinical information and prognosis analysis showed that voriconazole is the primary drug of choice in the treatment of T. asahii infection. Combination treatment with voriconazole and amphotericin B did not show superiority over either drug alone. Finally, we found that the types of infections prevalent in China are significantly different from those in other countries. These results provide detailed information and relevant clinical treatment strategies for the diagnosis and treatment of T. asahii infection.
Collapse
|
46
|
Molecular Identification, Genotyping, Phenotyping, and Antifungal Susceptibilities of Medically Important Trichosporon, Apiotrichum, and Cutaneotrichosporon Species. Mycopathologia 2019; 185:307-317. [PMID: 31776790 DOI: 10.1007/s11046-019-00407-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022]
Abstract
Recently, Trichosporon taxonomy has been reevaluated and new genera of the Trichosporonaceae family have been described. Here, 26 clinical isolates were submitted for identification via sequencing of the intergenic space 1 (IGS1) region, genotyping, and investigation of virulence factors. Antifungal susceptibility was determined using the CLSI broth microdilution method for fluconazole (FLC), itraconazole (ITC), and amphotericin B (AMB). Of these, 24 isolates were identified, including 12 T. asahii, 4 T. inkin, 3 T. faecale, 1 T. coremiiforme, 1 T. japonicum, 2 Cutaneotrichosporon dermatis (formerly T. dermatis), and 1 Apiotrichum mycotoxinivorans (formerly T. mycotoxinivorans). Species-level identification of 2 isolates was not successful; they were described as Trichosporon sp. We observed optimal colonial development at 35-40 °C. Lipase was the major extracellular enzyme produced (100%); caseinase was not produced (0%). Biofilms were produced by all isolates (classified as low). High AMB minimum inhibitory concentration (MIC) was observed, with all strains resistant. Fluconazole was the most active drug among the antifungals tested. However, high MICs for FLC were observed in C. dermatis and A. mycotoxinivorans species, which also showed resistance to ITC and AMB. This study, conducted in the Northern region of Brazil, identified 5 Trichosporon species along with C. dermatis and A. mycotoxinivorans and demonstrated their pathogenic potential through their ability to produce important virulence factors. This may contribute to our understanding of the epidemiology and factors related to the pathogeneses of species in the Trichosporonaceae family.
Collapse
|
47
|
Species distribution and antifungal susceptibility of 358 Trichosporon clinical isolates collected in 24 medical centres. Clin Microbiol Infect 2019; 25:909.e1-909.e5. [PMID: 30991116 DOI: 10.1016/j.cmi.2019.03.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To provide species distribution and antifungal susceptibility profiles of 358 Trichosporon clinical isolates collected from 24 tertiary-care hospitals. METHODS Species identification was performed by sequencing the IGS1 region of rDNA. Antifungal susceptibility testing for amphotericin B, fluconazole, voriconazole and posaconazole followed the Clinical and Laboratory Standards Institute reference method. Tentative epidemiologic cutoff values (97.5% ECVs) of antifungals for Trichosporon asahii were also calculated. RESULTS Isolates were cultured mostly from urine (155/358, 43.3%) and blood (82/358, 23%) samples. Trichosporon asahii was the most common species (273/358, 76.3%), followed by T. inkin (35/358, 9.7%). Isolation of non-T. asahii species increased substantially over the last 11 years [11/77 (14.2%) from 1997 to 2007 vs. 74/281, (26.3%) from 2008 to 2018, p0.03]. Antifungal susceptibility testing showed high amphotericin B minimum inhibitory concentrations against Trichosporon isolates, with higher values for T. faecale. The ECV for amphotericin B and T. asahii was set at 4 μg/mL. Among the triazole derivatives, fluconazole was the least active drug. The ECVs for fluconazole and posaconazole against T. asahii were set at 8 and 0.5 μg/mL, respectively. Voriconazole showed the strongest in vitro activity against the Trichosporon isolates; its ECV for T. asahii was set at 0.25 μg/mL after 48 hours' incubation. CONCLUSIONS Trichosporon species diversity has increased over the years in human samples, and antifungal susceptibility profiles were species specific. Trichosporon asahii antifungal ECVs were proposed, which may be helpful to guide antifungal therapy.
Collapse
|