1
|
Marcet PL, Short B, Deas A, Sun H, Harrington C, Shaukat S, Alam MM, Baba M, Faneye A, Namuwulya P, Apostol LN, Elshaarawy T, Odoom JK, Borus P, Moonsamy S, Riziki Y, Endegue Zanga MC, Tefera M, Kfutwah AKW, Sharif S, Grabovac V, Burns CC, Gerloff N. Advancing poliovirus eradication: lessons learned from piloting direct molecular detection of polioviruses in high-risk and priority geographies. Microbiol Spectr 2025; 13:e0227924. [PMID: 39665559 PMCID: PMC11792523 DOI: 10.1128/spectrum.02279-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
In the Global Polio Laboratory Network (GPLN), poliovirus (PV) screening results from acute flaccid paralysis (AFP) surveillance is based on virus isolation (VI) through cell culture, entailing long turnaround times and the amplification of live poliovirus. An alternative Direct Detection strategy (DD-ITD) for screening viral nucleic acid from stools, bypassing the need for virus culture, has been developed and extensively validated by GPLN partners. A multi-laboratory demonstration project was conceived to field-test the DD-ITD method by GPLN laboratories from the WHO African, Western Pacific, and Eastern Mediterranean regions, where wild serotype 1 or vaccine-derived polioviruses still circulate. Strategically selected laboratories were tasked to simultaneously process stool suspensions with the current gold-standard VI method and the new DD-ITD strategy. Results from 12 laboratories were compiled and analyzed to assess the quality of each RNA extraction and rRT-PCR run. Matched results for both methods of over 10,500 specimens showed an overall method agreement of 91%. All laboratories detected more PV presumptive positive samples with the DD-ITD strategy than with VI, but a large proportion of DD-ITD positive results (72%) were inconclusive or non-typeable, requiring confirmation through sequencing. A total of 298 (2.8%) samples were PV positive using both methods, 828 (7.9%) positive only for DD-ITD, and 62 (0.6%) positive only with VI. The DD-ITD overall performance, quality of results, and agreement between method results varied significantly across participating laboratories. DD-ITD implementation would entail building proficiency in advanced molecular laboratory techniques and data analysis, and increased demand for confirmatory sequencing. IMPORTANCE Surveillance of acute flaccid paralysis (AFP) and sensitive poliovirus detection are key components of the WHO Global Polio Eradication Strategy. This work summarizes the results of a multi-laboratory evaluation designed to field-test the performance and applicability of a molecular Direct Detection strategy (DD-ITD) that does not require amplification of live poliovirus. AFP samples were processed in parallel with both the DD-ITD and the current gold-standard PV detection methodology, based on virus isolation (VI) through cell culture. All participating laboratories detected more PV presumptive positive samples using the DD-ITD strategy than with virus isolation methodology, although a higher proportion of DD-ITD results required confirmatory sequencing. Significant variability among laboratories was observed in the quality of the results and overall DD-ITD performance. Implementing DD-ITD would entail building proficiency in advanced molecular laboratory techniques and strengthening data analysis skills.
Collapse
Affiliation(s)
- Paula L. Marcet
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Brandon Short
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ashley Deas
- Tanaq, Contracting agency to the Division of Viral Diseases, CDC, Atlanta, Georgia, USA
| | - Hong Sun
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Chelsea Harrington
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Shahzad Shaukat
- World Health Organization, Global Polio Laboratory Network Headquarters, Geneva, Switzerland
| | | | | | | | | | - Lea Necitas Apostol
- National Polio Laboratory, Research Institute for Tropical Medicine, Manila, Philippines
| | - Tamer Elshaarawy
- Polio Regional Reference Laboratory, VACSERA, Greater Cairo, Egypt
| | - John Kofi Odoom
- Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Peter Borus
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Shelina Moonsamy
- National Institute of Communicable Diseases, Johannesburg, South Africa
| | - Yogolelo Riziki
- National Institute of Biomedical Research, Kinshasa, Democratic Republic of Congo
| | | | | | - Anfumbom K. W. Kfutwah
- World Health Organization, Regional Office for Africa, Brazzaville, Democratic Republic of Congo
| | - Salmaan Sharif
- World Health Organization, Regional Office for the Eastern Mediterranean, Amman, Jordan
| | - Varja Grabovac
- World Health Organization, Regional Office for the Western Pacific, Manila, Philippines
| | - Cara C. Burns
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nancy Gerloff
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Toancha K, Borges A, Lázaro L, Teixeira N, Lima AK, Gonçalves A, Winter D, Santos A, do Nascimento M, de Sousa AB, May J, Sequeira YS, Neto RMA, Fernandez-Cassi X, Schuldt K. Wastewater-based surveillance for Hepatitis A virus, Enterovirus, Poliovirus, and SARS-CoV-2 in São Tomé and Príncipe: A pilot study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176923. [PMID: 39427898 DOI: 10.1016/j.scitotenv.2024.176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Wastewater-based surveillance is a valuable tool for monitoring pathogen transmission in communities, especially in regions where formal surveillance systems are limited. AIM The aim of this study was to implement and evaluate a wastewater-based monitoring system for viral pathogens in São Tomé and Príncipe. METHODS A total of 122 water samples were collected bi-weekly from June 2022 to July 2023 at six locations in São Tomé city and analysed for molecular detection of Hepatitis A Virus (HAV), Enterovirus (EV), Poliovirus (PV), SARS-CoV-2, as well as JC-Polyomavirus (JCPyV) and pepper mild mottle virus (PMMoV) as indicators of human contamination. Prevalence was analysed per pathogen and across sampling locations. Results for SARS-CoV-2 were assessed together with notifications from national COVID-19 surveillance. Further, we estimated resources needed to establish a wastewater-based approach to assess community-level transmission of viral pathogens. RESULTS All 122 and 117 samples were found positive for PMMoV and JCPyV, respectively, demonstrating a high level of human contamination at all sampling locations. The prevalence of HAV and EV ranged from 0 % to 59 % and 56 % respectively. Consistent with national surveillance data the highest proportion of SARS-CoV-2 positive water samples coincides with the highest number of COVID-19 cases reported during the study, demonstrating the potential of wastewater-based surveillance to identify signals. In addition, for SARS-CoV-2 this approach provided evidence of continuous circulation of the virus in the community, most importantly during weeks when no COVID-19 cases were reported. CONCLUSION Our findings provide evidence of high transmission of HAV and EV in communities in São Tomé and continuous circulation of SARS-CoV-2, even in weeks without COVID-19 case notifications. This study demonstrates that monitoring of viral pathogens in humanly impacted open water streams and sewage tanks is a valuable tool to complement clinical surveillance in resource-limited settings.
Collapse
Affiliation(s)
- Katia Toancha
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Adjaia Borges
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Lazismino Lázaro
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Nilton Teixeira
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Anery Katia Lima
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Anabela Gonçalves
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Doris Winter
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Asmiralda Santos
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Marcos do Nascimento
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | | | - Jürgen May
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany; Tropical Medicine II, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Yardlene Sacramento Sequeira
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Rosa Maria Afonso Neto
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Xavier Fernandez-Cassi
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, University of Barcelona, Spain
| | - Kathrin Schuldt
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
3
|
Raharinantoanina J, Joffret ML, Bessaud M, Rakoto DAD, Dussart P, Lacoste V, Razafindratsimandresy R. Wide circulation of type 1 vaccine-derived poliovirus strains in clinical specimens from suspected cases of poliomyelitis, their contacts and in wastewater in Madagascar since late 2020. Virology 2024; 600:110253. [PMID: 39357254 DOI: 10.1016/j.virol.2024.110253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Madagascar has faced three major outbreaks of vaccine-derived polioviruses (VDPVs) in recent decades, with VDPV type 1 reemerging in late 2020. Here, we report the molecular characterization of these cVDPV1 strains. WHO protocols were used for poliovirus detection in stool and wastewater samples. Molecular genotyping was based on the 5' non-coding (5'NC), VP1, and 3Dpol regions. From 2020 to 2022, 92 of 5690 stool samples and 129 of 1046 wastewater samples tested positive for cVDPV1. Genetic analysis of the VP1 gene revealed 1.3%-6.1% variability compared to the Sabin strain. Most sequences showed mutations at neurovirulence attenuation sites. Phylogenetic analysis distributed strains into four genogroups originating from Southern Madagascar. All analyzed cVDPV1 strains were recombinant, containing mutated oral polio vaccine sequences in VP1 and type C enterovirus sequences in other regions. This study demonstrated that all strains were closely related during this epidemic.
Collapse
Affiliation(s)
| | - Marie-Line Joffret
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France; Laboratoire Associé Au Centre National de Référence Entérovirus/Paréchovirus, France
| | - Maël Bessaud
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France; Laboratoire Associé Au Centre National de Référence Entérovirus/Paréchovirus, France
| | - Danielle Aurore Doll Rakoto
- Ecole D'Enseignement Supérieure, Sciences de La Vie et de L'Environnement, Université D'Antananarivo, Antananarivo, Madagascar
| | - Philippe Dussart
- Unité de Virologie, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Vincent Lacoste
- Unité de Virologie, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | |
Collapse
|
4
|
Gerloff N, Burns CC. Evaluating the Effectiveness of External Molecular Proficiency Testing in the Global Polio Laboratory Network, 2021-2022. Pathogens 2024; 13:1014. [PMID: 39599567 PMCID: PMC11597380 DOI: 10.3390/pathogens13111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
In the Global Poliovirus Laboratory Network (GPLN), participation and successful completion in annual proficiency test (PT) panels has been a part of the WHO accreditation process for decades. The PT panel is a molecular external quality assessment (mEQA) that evaluates laboratory preparedness, technical proficiency, the accuracy of data interpretation, and result reporting. Using the Intratypic Differentiation (ITD) real-time RT-PCR kits from CDC, laboratories run screening assays and report results in accordance with the ITD algorithm to identify and type polioviruses. The mEQA panels consisted of 10 blinded, non-infectious lyophilized RNA transcripts, including programmatically relevant viruses and targets contained in the real-time PCR assays. Sample identities included wildtype, vaccine-derived (VDPV), Sabin-like polioviruses, enterovirus, and negatives, as well as categories of invalid and indeterminate. The performance of individual laboratories was assessed based on the laboratory's ability to correctly detect and characterize the serotype/genotype identities of each sample. The scoring scheme assessed the laboratory readiness following GPLN guidelines. Laboratories receiving mEQA scores of 90 or higher passed the assessment, scores of less than 90 failed and required remedial actions and re-evaluation. In 2021 and 2022, 123 and 129 GPLN laboratories were invited to request the annual PT panel, and 118 and 127 laboratories submitted results, respectively. The overall results were good, with 86% and 91.5% of laboratories passing the PT panel on their first attempt in 2021 and 2022, respectively. Most labs scored the highest score of 100, and less than one quarter scored between 90 and 95. Less than 10% of submitting laboratories failed the PT, resulting in in-depth troubleshooting to identify root causes and remediations. Most of these laboratories were issued a second PT panel for repeat testing, and almost all laboratories passed the repeat PT panel. The results of the 2021 and 2022 annual mEQA PTs showed that, despite the COVID-19 pandemic, the performance remained high in the GPLN, with most labs achieving the highest score. For these labs, the real-time PCR assay updates that were implemented during 2021-2022 were carried out with full adherence to procedures and algorithms. Even initially failing labs achieved passing scores after remediation.
Collapse
Affiliation(s)
- Nancy Gerloff
- Division of Viral Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA
| | | |
Collapse
|
5
|
Whitehouse ER, Gerloff N, English R, Reckling SK, Alazawi MA, Fuschino M, St George K, Lang D, Rosenberg ES, Omoregie E, Rosen JB, Kitter A, Korban C, Pacilli M, Jeon T, Coyle J, Faust RA, Xagoraraki I, Miyani B, Williams C, Wendt J, Owens SM, Wilton R, Poretsky R, Sosa L, Kudish K, Juthani M, Zaremski EF, Kehler SE, Bayoumi NS, Kidd S. Wastewater Surveillance for Poliovirus in Selected Jurisdictions, United States, 2022-2023. Emerg Infect Dis 2024; 30:2279-2287. [PMID: 39447148 PMCID: PMC11521156 DOI: 10.3201/eid3011.240771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Wastewater testing can inform public health action as a component of polio outbreak response. During 2022-2023, a total of 7 US jurisdictions (5 states and 2 cities) participated in prospective or retrospective testing of wastewater for poliovirus after a paralytic polio case was identified in New York state. Two distinct vaccine-derived poliovirus type 2 viruses were detected in wastewater from New York state and New York City during 2022, representing 2 separate importation events. Of those viruses, 1 resulted in persistent community transmission in multiple New York counties and 1 paralytic case. No poliovirus was detected in the other participating jurisdictions (Connecticut, New Jersey, Michigan, and Illinois and Chicago, IL). The value of routine wastewater surveillance for poliovirus apart from an outbreak is unclear. However, these results highlight the ongoing risk for poliovirus importations into the United States and the need to identify undervaccinated communities and increase vaccination coverage to prevent paralytic polio.
Collapse
|
6
|
Raffestin S, Tinard A, Enfissi A, Joffret ML, Lichtenstein T, Tirera S, Zanetti L, Barrau M, Mubenga F, Ortelli A, Peyrefitte CN, Lavergne A, Rousset D, Bessaud M. Detection of circulating type 3 vaccine-derived polioviruses in French Guiana, May to August 2024. Euro Surveill 2024; 29:2400705. [PMID: 39512164 PMCID: PMC11544717 DOI: 10.2807/1560-7917.es.2024.29.45.2400705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024] Open
Abstract
Circulating type 3 vaccine-derived polioviruses (cVDPV3s) were detected in three wastewater samples collected in French Guiana from May through August 2024. As the oral polio vaccine is not used in French Guiana, this event involved an import either of cVDPV3s themselves or of a vaccine strain from which the cVDPV3s emerged in French Guiana. This highlights the importance of environmental surveillance for the detection of silent poliovirus circulation. Eliminating any pockets of cVDPVs is crucial for the polio eradication programme.
Collapse
Affiliation(s)
- Stéphanie Raffestin
- Consortium OBEPINE, Paris, France
- Institut Pasteur de la Guyane, Laboratoire hygiène et environnement, Cayenne, France
| | - Ambre Tinard
- Centre collaborateur de l'OMS, Épidémiologie et macro-évolution des poliovirus and entérovirus non-polio, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Signalisation antivirale, Paris, France
- Laboratoire associé au Centre national de référence entérovirus/paréchovirus, Paris, France
| | - Antoine Enfissi
- Institut Pasteur de la Guyane, Laboratoire de virologie, Cayenne, France
- Consortium OBEPINE, Paris, France
| | - Marie-Line Joffret
- Centre collaborateur de l'OMS, Épidémiologie et macro-évolution des poliovirus and entérovirus non-polio, Paris, France
- Laboratoire associé au Centre national de référence entérovirus/paréchovirus, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Signalisation antivirale, Paris, France
| | | | - Sourakhata Tirera
- Institut Pasteur de la Guyane, Laboratoire des interactions virus-hôtes, Cayenne, France
| | - Laura Zanetti
- Santé publique France, Direction des maladies infectieuses, Saint-Maurice, France
| | - Marie Barrau
- Santé publique France, Direction des régions, Cellules Guyane, Cayenne, France
| | - Francky Mubenga
- Agence régionale de santé de Guyane, Direction de la santé publique Cayenne, France
| | - Adrien Ortelli
- Agence régionale de santé de Guyane, Direction de la santé publique Cayenne, France
| | | | - Anne Lavergne
- Institut Pasteur de la Guyane, Laboratoire des interactions virus-hôtes, Cayenne, France
| | - Dominique Rousset
- Institut Pasteur de la Guyane, Laboratoire de virologie, Cayenne, France
- Consortium OBEPINE, Paris, France
| | - Maël Bessaud
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Signalisation antivirale, Paris, France
- Laboratoire associé au Centre national de référence entérovirus/paréchovirus, Paris, France
- Centre collaborateur de l'OMS, Épidémiologie et macro-évolution des poliovirus and entérovirus non-polio, Paris, France
| |
Collapse
|
7
|
Shabana MR, Zaghloul AY, El Shaarawy TH, Elleboudy NS, Aboshanab KM. Monitoring the VDPV2 outbreak in Egypt during 2020-2021 highlights the crucial role of environmental surveillance and boosting immunization in combating Poliovirus. BMC Infect Dis 2024; 24:866. [PMID: 39187787 PMCID: PMC11348703 DOI: 10.1186/s12879-024-09731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Poliovirus is a highly infectious enterovirus (EV) that primarily affects children and can lead to lifelong paralysis or even death. Vaccine-derived polioviruses (VDPVs) are a great threat since they are derived from the attenuated virus in the Oral Poliovirus Vaccine (OPV) and can mutate to a more virulent form. The purpose of this study was to identify VDPV serotype 2 through the year 2020-2021 via surveillance of sewage samples collected from different localities and governorates in Egypt and stool specimens from Acute Flaccid Paralysis (AFP) cases. Both were collected through the national poliovirus surveillance system and according to the guidelines recommended by the WHO. METHODS A total of 1266 sewage samples and 3241 stool samples from January 2020 to December 2021 were investigated in the lab according to World Health Organization (WHO) protocol for the presence of Polioviruses by cell culture, molecular identification of positive isolates on L20B cell line was carried out using real-time polymerase chain reactions (RT-PCR). Any positive isolates for Poliovirus type 2 and isolates suspected of Vaccine Derived Poliovirus Type 1 and type 3 screened by (VDPV1) or Vaccine Poliovirus Type 3 (VDPV3) assay in RT-PCR were referred for VP1 genetic sequencing. RESULTS The outbreak was caused by circulating VDPV2 (cVDPV2) strains started in January 2021. By the end of February 2021, a total of 11 cVDPV2s were detected in sewage samples from six governorates confirming the outbreak situation. One additional cVDPV2 was detected later in the sewage sample from Qena (June 2021). The first and only re-emergence of VDPV2 in stool samples during the outbreak was in contact with Luxor in June 2021. By November 2021, a total of 80 VDPVs were detected. The Egyptian Ministry of Health and Population (MOHP), in collaboration with the WHO, responded quickly by launching two massive vaccination campaigns targeting children under the age of five. Additionally, surveillance systems were strengthened to detect new cases and prevent further spread of the virus. CONCLUSION The continued threat of poliovirus and VDPVs requires ongoing efforts to prevent their emergence and spread. Strategies such as improving immunization coverage, using genetically stable vaccines, and establishing surveillance systems are critical to achieving global eradication of poliovirus and efficient monitoring of VDPVs outbreaks.
Collapse
Affiliation(s)
- Menna R Shabana
- WHO Regional Reference lab for Diagnosis of Poliovirus and Enteroviruses, VACSERA Dokki, Giza, Cairo, Egypt
| | - Amira Y Zaghloul
- WHO Regional Reference lab for Diagnosis of Poliovirus and Enteroviruses, VACSERA Dokki, Giza, Cairo, Egypt
| | - Tamer H El Shaarawy
- WHO Regional Reference lab for Diagnosis of Poliovirus and Enteroviruses, VACSERA Dokki, Giza, Cairo, Egypt
| | - Nooran S Elleboudy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Union, Ain Shams University, St. Abbassia, Cairo, 11566, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Union, Ain Shams University, St. Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
8
|
Ivanova OE, Eremeeva TP, Baykova OY, Krasota AY, Yakovchuk EV, Shustova EY, Malyshkina LP, Mustafina ANI, Mikhailova YM, Chirova AV, Cherepanova EA, Morozova NS, Gladkikh AS, Dolgova AS, Dedkov VG, Totolian AA, Kozlovskaya LI. Detection of Polioviruses Type 2 among Migrant Children Arriving to the Russian Federation from a Country with a Registered Poliomyelitis Outbreak. Vaccines (Basel) 2024; 12:718. [PMID: 39066356 PMCID: PMC11281678 DOI: 10.3390/vaccines12070718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
The widespread use of the oral poliovaccine from Sabin strains (tOPV) radically reduced poliomyelitis incidence worldwide. However, OPV became a source of neurovirulent vaccine-derived polioviruses (VDPVs). Currently, circulating type 2 VDPVs (cVDPV2) are the leading cause of poliomyelitis. The novel OPV type 2 vaccine (nOPV2), based on genetically modified Sabin strain with increased genetic stability and reduced risk of cVDPV formation, has been used to combat cVDPV2 outbreaks, including one in Tajikistan in 2021. In order to identify the importation of cVDPV2 and nOPV2-derivates, stool samples from 12,127 healthy migrant children under 5 years of age arriving from Tajikistan were examined in Russia (March 2021-April 2022). Viruses were isolated in cell culture and identified via intratype differentiation RT-PCR, VP1 and whole-genome sequencing. cVDPV2 isolates closely related with the Tajikistan one were isolated from two children, and nOPV2-derived viruses were detected in specimens from 106 children from 37 regions of Russia. The duration of nOPV2 excretion ranged from 24 to 124 days post-vaccination. nOPV2 isolates contained 27 mutations per genome (0.36%) on average, with no critical genetic changes, which confirms the genetic stability of nOPV2 during field use. The possibility of epidemiologically significant poliovirus introduction into polio-free countries has been confirmed. The screening of special populations, including migrants, is required to maintain epidemiological well-being.
Collapse
Affiliation(s)
- Olga E. Ivanova
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (T.P.E.); (O.Y.B.); (E.V.Y.); (E.Y.S.)
- Department of Organization and Technology of Production of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia
| | - Tatiana P. Eremeeva
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (T.P.E.); (O.Y.B.); (E.V.Y.); (E.Y.S.)
| | - Olga Y. Baykova
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (T.P.E.); (O.Y.B.); (E.V.Y.); (E.Y.S.)
| | - Alexandr Y. Krasota
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (T.P.E.); (O.Y.B.); (E.V.Y.); (E.Y.S.)
| | - Elizaveta V. Yakovchuk
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (T.P.E.); (O.Y.B.); (E.V.Y.); (E.Y.S.)
| | - Elena Y. Shustova
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (T.P.E.); (O.Y.B.); (E.V.Y.); (E.Y.S.)
| | - Lyudmila P. Malyshkina
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (T.P.E.); (O.Y.B.); (E.V.Y.); (E.Y.S.)
| | - Aida N.-I. Mustafina
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (T.P.E.); (O.Y.B.); (E.V.Y.); (E.Y.S.)
| | - Yulia M. Mikhailova
- Federal Budgetary Health Institution “Federal Center of Hygiene and Epidemiology” of the Federal Office for Inspectorate in the Field of Customers and Human Well-Being Protection” (FBHI FCH&E), 117105 Moscow, Russia; (Y.M.M.); (A.V.C.); (E.A.C.); (N.S.M.)
| | - Alina V. Chirova
- Federal Budgetary Health Institution “Federal Center of Hygiene and Epidemiology” of the Federal Office for Inspectorate in the Field of Customers and Human Well-Being Protection” (FBHI FCH&E), 117105 Moscow, Russia; (Y.M.M.); (A.V.C.); (E.A.C.); (N.S.M.)
| | - Evgeniya A. Cherepanova
- Federal Budgetary Health Institution “Federal Center of Hygiene and Epidemiology” of the Federal Office for Inspectorate in the Field of Customers and Human Well-Being Protection” (FBHI FCH&E), 117105 Moscow, Russia; (Y.M.M.); (A.V.C.); (E.A.C.); (N.S.M.)
| | - Nadezhda S. Morozova
- Federal Budgetary Health Institution “Federal Center of Hygiene and Epidemiology” of the Federal Office for Inspectorate in the Field of Customers and Human Well-Being Protection” (FBHI FCH&E), 117105 Moscow, Russia; (Y.M.M.); (A.V.C.); (E.A.C.); (N.S.M.)
| | - Anna S. Gladkikh
- Saint-Petersburg Pasteur Institute, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 197101 Saint-Petersburg, Russia; (A.S.G.); (A.S.D.); (V.G.D.); (A.A.T.)
| | - Anna S. Dolgova
- Saint-Petersburg Pasteur Institute, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 197101 Saint-Petersburg, Russia; (A.S.G.); (A.S.D.); (V.G.D.); (A.A.T.)
| | - Vladimir G. Dedkov
- Saint-Petersburg Pasteur Institute, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 197101 Saint-Petersburg, Russia; (A.S.G.); (A.S.D.); (V.G.D.); (A.A.T.)
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia
| | - Areg A. Totolian
- Saint-Petersburg Pasteur Institute, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 197101 Saint-Petersburg, Russia; (A.S.G.); (A.S.D.); (V.G.D.); (A.A.T.)
| | - Liubov I. Kozlovskaya
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (T.P.E.); (O.Y.B.); (E.V.Y.); (E.Y.S.)
- Department of Organization and Technology of Production of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia
| |
Collapse
|
9
|
Miles SJ, Harrington C, Sun H, Deas A, Oberste MS, Nix WA, Vega E, Gerloff N. Validation of improved automated nucleic acid extraction methods for direct detection of polioviruses for global polio eradication. J Virol Methods 2024; 326:114914. [PMID: 38458353 DOI: 10.1016/j.jviromet.2024.114914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Polioviruses (PV), the main causative agent of acute flaccid paralysis (AFP), are positive-sense single-stranded RNA viruses of the family Picornaviridae. As we approach polio eradication, accurate and timely detection of poliovirus in stool from AFP cases becomes vital to success for the eradication efforts. Direct detection of PV from clinical diagnostic samples using nucleic acid (NA) extraction and real-time reverse transcriptase polymerase chain reaction (rRT-PCR) instead of the current standard method of virus isolation in culture, eliminates the long turn-around time to diagnosis and the need for high viral titer amplification in laboratories. An essential component of direct detection of PV from AFP surveillance samples is the efficient extraction of NA. Potential supply chain issues and lack of vendor presence in certain areas of the world necessitates the validation of multiple NA extraction methods. Using retrospective PV-positive surveillance samples (n=104), two extraction kits were compared to the previously validated Zymo Research Quick-RNA™ Viral Kit. The Roche High Pure Viral RNA Kit, a column-based manual extraction method, and the MagMaX™ Pathogen RNA/DNA kit used in the automated Kingfisher Flex system were both non-inferior to the Zymo kit, with similar rates of PV detection in pivotal rRT-PCR assays, such as pan-poliovirus (PanPV), poliovirus serotype 2 (PV2), and wild poliovirus serotype 1 (WPV1). These important assays allow the identification and differentiation of PV genotypes and serotypes and are fundamental to the GPLN program. Validation of two additional kits provides feasible alternatives to the current piloted method of NA extraction for poliovirus rRT-PCR assays.
Collapse
Affiliation(s)
- Stacey Jeffries Miles
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Chelsea Harrington
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Hong Sun
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Ashley Deas
- Cherokee Nation Assurance, Contracting Agency to the Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - M Steven Oberste
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - W Allan Nix
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Everardo Vega
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Nancy Gerloff
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| |
Collapse
|
10
|
Wilkinson AL, Zaman K, Hoque M, Estivariz CF, Burns CC, Konopka-Anstadt JL, Mainou BA, Kovacs SD, An Q, Lickness JS, Yunus M, Snider CJ, Zhang Y, Coffee E, Abid T, Wassilak SGF, Pallansch MA, Oberste MS, Vertefeuille JF, Anand A. Immunogenicity of novel oral poliovirus vaccine type 2 administered concomitantly with bivalent oral poliovirus vaccine: an open-label, non-inferiority, randomised, controlled trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:1062-1071. [PMID: 37178706 PMCID: PMC10503264 DOI: 10.1016/s1473-3099(23)00139-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Novel oral poliovirus vaccine type 2 (nOPV2) was developed by modifying the Sabin strain to increase genetic stability and reduce risk of seeding new circulating vaccine-derived poliovirus type 2 outbreaks. Bivalent oral poliovirus vaccine (bOPV; containing Sabin types 1 and 3) is the vaccine of choice for type 1 and type 3 outbreak responses. We aimed to assess immunological interference between nOPV2 and bOPV when administered concomitantly. METHODS We conducted an open-label, non-inferiority, randomised, controlled trial at two clinical trial sites in Dhaka, Bangladesh. Healthy infants aged 6 weeks were randomly assigned (1:1:1) using block randomisation, stratified by site, to receive nOPV2 only, nOPV2 plus bOPV, or bOPV only, at the ages of 6 weeks, 10 weeks, and 14 weeks. Eligibility criteria included singleton and full term (≥37 weeks' gestation) birth and parents intending to remain in the study area for the duration of study follow-up activities. Poliovirus neutralising antibody titres were measured at the ages of 6 weeks, 10 weeks, 14 weeks, and 18 weeks. The primary outcome was cumulative immune response for all three poliovirus types at the age of 14 weeks (after two doses) and was assessed in the modified intention-to-treat population, which was restricted to participants with adequate blood specimens from all study visits. Safety was assessed in all participants who received at least one dose of study product. A non-inferiority margin of 10% was used to compare single and concomitant administration. This trial is registered with ClinicalTrials.gov, NCT04579510. FINDINGS Between Feb 8 and Sept 26, 2021, 736 participants (244 in the nOPV2 only group, 246 in the nOPV2 plus bOPV group, and 246 in the bOPV only group) were enrolled and included in the modified intention-to-treat analysis. After two doses, 209 (86%; 95% CI 81-90) participants in the nOPV2 only group and 159 (65%; 58-70) participants in the nOPV2 plus bOPV group had a type 2 poliovirus immune response; 227 (92%; 88-95) participants in the nOPV2 plus bOPV group and 229 (93%; 89-96) participants in the bOPV only group had a type 1 response; and 216 (88%; 83-91) participants in the nOPV2 plus bOPV group and 212 (86%; 81-90) participants in the bOPV only group had a type 3 response. Co-administration was non-inferior to single administration for types 1 and 3, but not for type 2. There were 15 serious adverse events (including three deaths, one in each group, all attributable to sudden infant death syndrome); none were attributed to vaccination. INTERPRETATION Co-administration of nOPV2 and bOPV interfered with immunogenicity for poliovirus type 2, but not for types 1 and 3. The blunted nOPV2 immunogenicity we observed would be a major drawback of using co-administration as a vaccination strategy. FUNDING The US Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
| | - Khalequ Zaman
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Masuma Hoque
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Cara C Burns
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | - Qian An
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Mohammad Yunus
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Yiting Zhang
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Talha Abid
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | - Abhijeet Anand
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
11
|
Nanteza MB, Tushabe P, Bukenya H, Namuwulya P, Kabaliisa T, Birungi M, Tibanagwa M, Ampeire I, Kakooza P, Katushabe E, Bwogi J, Bakamutumaho B, Nanyunja M, Byabamazima CR. The road to a polio-free Uganda; contribution of the Expanded Program on Immunization Laboratory (EPI-LAB) at Uganda Virus Research Institute. Afr Health Sci 2023; 23:186-196. [PMID: 38357183 PMCID: PMC10862580 DOI: 10.4314/ahs.v23i3.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Background The control of poliomyelitis in Uganda dates back as far as 1950 and acute flaccid paralysis (AFP) surveillance has since been used as a criterion for identifying wild polioviruses. Poliovirus isolation was initially pursued through collaborative research however, in 1993, the Expanded Program on Immunization Laboratory (EPI-LAB) was established as a member of the Global Poliovirus Laboratory Network (GPLN) and spearheaded this activity at Uganda Virus Research Institute. Objectives The aim of this report is to document the progress and impact of the EPI-LAB on poliovirus eradication in Uganda. Methods Poliovirus detection and identification were achieved fundamentally through tissue culture and intra-typic differentiation of the poliovirus based on the real-time reverse transcriptase polymerase chain reaction (rRT PCR). The data obtained was entered into the national AFP database and analysed using EpiInfoTM statistical software. Results Quantitative and qualitative detection of wild and Sabin polioviruses corresponded with the polio campaigns. The WHO target indicators for AFP surveillance were achieved essentially throughout the study period. Conclusion Virological tracking coupled with attaining standard AFP surveillance indicators has been pivotal in achieving and maintaining the national wild polio-free status. Laboratory surveillance remains key in informing the certification process of polio eradication.
Collapse
Affiliation(s)
- Mary B Nanteza
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Phionah Tushabe
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Henry Bukenya
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Prossy Namuwulya
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Theopista Kabaliisa
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Molly Birungi
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Mayi Tibanagwa
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Immaculate Ampeire
- Ministry of Health, Government of Uganda, Plot 6, Lourdel Road, Nakasero P. O. Box 7272, Kampala, Uganda
| | - Proscovia Kakooza
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Edson Katushabe
- World Health Organization Office, Plot 60 Prince Charles Avenue, Kololo, Kampala
| | - Josephine Bwogi
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Barnabas Bakamutumaho
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Miriam Nanyunja
- World Health Organization AFRO, East and Southern Africa (ESA), Nairobi, 45335 Nairobi, Kenya
| | - Charles R Byabamazima
- World Health Organization AFRO, East and Southern Africa (ESA), Harare, 82-86 Enterprise Road, Highlands, P. O. Box BE 773, Belvedere, Harare, Zimbabwe
| |
Collapse
|
12
|
Koets L, van Leeuwen K, Derlagen M, van Wijk J, Keijzer N, Feenstra JDM, Gandhi M, Sorel O, van de Laar TJW, Koppelman MHGM. Efficient SARS-CoV-2 Surveillance during the Pandemic-Endemic Transition Using PCR-Based Genotyping Assays. Microbiol Spectr 2023; 11:e0345022. [PMID: 37154727 PMCID: PMC10269661 DOI: 10.1128/spectrum.03450-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VOC) pose an increased risk to public health due to higher transmissibility and/or immune escape. In this study, we assessed the performance of a custom TaqMan SARS-CoV-2 mutation panel consisting of 10 selected real-time PCR (RT-PCR) genotyping assays compared to whole-genome sequencing (WGS) for identification of 5 VOC circulating in The Netherlands. SARS-CoV-2 positive samples (N = 664), collected during routine PCR screening (15 ≤ CT ≤ 32) between May-July 2021 and December 2021-January 2022, were selected and analyzed using the RT-PCR genotyping assays. VOC lineage was determined based on the detected mutation profile. In parallel, all samples underwent WGS with the Ion AmpliSeq SARS-CoV-2 research panel. Among 664 SARS-CoV-2 positive samples, the RT-PCR genotyping assays classified 31.2% as Alpha (N = 207); 48.9% as Delta (N = 325); 19.4% as Omicron (N = 129), 0.3% as Beta (N = 2), and 1 sample as a non-VOC. Matching results were obtained using WGS in 100% of the samples. RT-PCR genotyping assays enable accurate detection of SARS-CoV-2 VOC. Furthermore, they are easily implementable, and the costs and turnaround time are significantly reduced compared to WGS. For this reason, a higher proportion of SARS-CoV-2 positive cases in the VOC surveillance testing can be included, while reserving valuable WGS resources for identification of new variants. Therefore, RT-PCR genotyping assays would be a powerful method to include in SARS-CoV-2 surveillance testing. IMPORTANCE The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genome changes constantly. It is estimated that there are thousands of variants of SARS-CoV-2 by now. Some of those variants, variants of concern (VOC), pose an increased risk to public health due to higher transmissibility and/or immune escape. Pathogen surveillance helps researchers, epidemiologists, and public health officials to monitor the evolution of infectious diseases agents, alert on the spread of pathogens, and develop counter measures like vaccines. The technique used for the pathogen surveillance is called sequence analysis which makes it possible to examine the building blocks of SARS-CoV-2. In this study, a new PCR method based on the detection of specific changes of those building blocks is presented. This method enables a fast, accurate and cheap determination of different SARS-CoV-2 VOC. Therefore, it would be a powerful method to include in SARS-CoV-2 surveillance testing.
Collapse
Affiliation(s)
- Lianne Koets
- Sanquin Research and Lab Services, National Screening Laboratory of Sanquin, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Sanquin Diagnostics, Department of Phagocytes Diagnostics, Amsterdam, The Netherlands
| | - Maaike Derlagen
- Sanquin Diagnostics, Department of Immune Cytology, Amsterdam, The Netherlands
| | - Jalenka van Wijk
- Sanquin Diagnostics, Department of Immune Cytology, Amsterdam, The Netherlands
| | - Nadia Keijzer
- Sanquin Diagnostics, Department of Immune Cytology, Amsterdam, The Netherlands
| | | | - Manoj Gandhi
- Thermo Fisher Scientific, South San Francisco, California, USA
| | - Oceane Sorel
- Thermo Fisher Scientific, South San Francisco, California, USA
| | - Thijs J. W. van de Laar
- Sanquin Research, Department of Blood-Borne Infections, Amsterdam, The Netherlands
- Onze Lieve Vrouwe Gasthuis, Laboratory of Medical Microbiology, Amsterdam, The Netherlands
| | - Marco H. G. M. Koppelman
- Sanquin Research and Lab Services, National Screening Laboratory of Sanquin, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Mbani CJ, Nekoua MP, Moukassa D, Hober D. The Fight against Poliovirus Is Not Over. Microorganisms 2023; 11:1323. [PMID: 37317297 DOI: 10.3390/microorganisms11051323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023] Open
Abstract
Poliovirus (PV), the virus that causes both acute poliomyelitis and post-polio syndrome, is classified within the Enterovirus C species, and there are three wild PV serotypes: WPV1, WPV2 and WPV3. The launch of the Global Polio Eradication Initiative (GPEI) in 1988 eradicated two of the three serotypes of WPV (WPV2 and WPV3). However, the endemic transmission of WPV1 persists in Afghanistan and Pakistan in 2022. There are cases of paralytic polio due to the loss of viral attenuation in the oral poliovirus vaccine (OPV), known as vaccine-derived poliovirus (VDPV). Between January 2021 and May 2023, a total of 2141 circulating VDPV (cVDPV) cases were reported in 36 countries worldwide. Because of this risk, inactivated poliovirus (IPV) is being used more widely, and attenuated PV2 has been removed from OPV formulations to obtain bivalent OPV (containing only types 1 and 3). In order to avoid the reversion of attenuated OPV strains, the new OPV, which is more stable due to genome-wide modifications, as well as sabin IPV and virus-like particle (VLP) vaccines, is being developed and offers promising solutions for eradicating WP1 and VDPV.
Collapse
Affiliation(s)
- Chaldam Jespère Mbani
- Laboratoire de Virologie URL3610, Université de Lille, CHU Lille, 59000 Lille, France
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Technique, Université Marien Ngouabi, Brazzaville BP 69, Congo
| | | | - Donatien Moukassa
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Technique, Université Marien Ngouabi, Brazzaville BP 69, Congo
| | - Didier Hober
- Laboratoire de Virologie URL3610, Université de Lille, CHU Lille, 59000 Lille, France
| |
Collapse
|
14
|
Tushabe P, Bwogi J, Eliku JP, Aine F, Birungi M, Gaizi J, Nakabazzi L, Kabaliisa T, Turyahabwe I, Namuwulya P, Nanteza MB, Bukenya H, Kanyesigye C, Katushabe E, Ampeire I, Kisakye A, Bakamutumaho B, Byabamazima CR. Environmental surveillance detects circulating vaccine-derived poliovirus type 2 that was undetected by acute flaccid paralysis surveillance in 2021 in Uganda. Arch Virol 2023; 168:140. [PMID: 37059887 PMCID: PMC10104764 DOI: 10.1007/s00705-023-05759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
The success of the global polio eradication initiative is threatened by the genetic instability of the oral polio vaccine, which can result in the emergence of pathogenic vaccine-derived polioviruses following prolonged replication in the guts of individuals with primary immune deficiencies or in communities with low vaccination coverage. Through environmental surveillance, circulating vaccine-derived poliovirus type 2 was detected in Uganda in the absence of detection by acute flaccid paralysis (AFP) surveillance. This underscores the sensitivity of environmental surveillance and emphasizes its usefulness in supplementing AFP surveillance for poliovirus infections in the race towards global polio eradication.
Collapse
Affiliation(s)
- Phionah Tushabe
- Expanded Programme on Immunization Laboratory, Uganda Virus Research Institute, Entebbe, Uganda.
| | - Josephine Bwogi
- Expanded Programme on Immunization Laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - James Peter Eliku
- Expanded Programme on Immunization Laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Francis Aine
- Expanded Programme on Immunization Laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Molly Birungi
- Expanded Programme on Immunization Laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Joseph Gaizi
- Expanded Programme on Immunization Laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Lucy Nakabazzi
- Expanded Programme on Immunization Laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Theopista Kabaliisa
- Expanded Programme on Immunization Laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Irene Turyahabwe
- Expanded Programme on Immunization Laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Prossy Namuwulya
- Expanded Programme on Immunization Laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Mary Bridget Nanteza
- Expanded Programme on Immunization Laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Henry Bukenya
- Expanded Programme on Immunization Laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | | | - Edson Katushabe
- World Health Organization, Uganda Country Office, Kampala, Uganda
| | | | - Annet Kisakye
- World Health Organization, Uganda Country Office, Kampala, Uganda
| | - Barnabas Bakamutumaho
- Expanded Programme on Immunization Laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Charles R Byabamazima
- WHO Inter-Country Support Team Office for Eastern and Southern Africa (IST/ESA), Harare, Zimbabwe
| |
Collapse
|
15
|
Akello JO, Bujaki E, Shaw AG, Khurshid A, Arshad Y, Troman C, Majumdar M, O'Toole Á, Rambaut A, Alam MM, Martin J, Grassly NC. Comparison of Eleven RNA Extraction Methods for Poliovirus Direct Molecular Detection in Stool Samples. Microbiol Spectr 2023; 11:e0425222. [PMID: 36939356 PMCID: PMC10100708 DOI: 10.1128/spectrum.04252-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2023] Open
Abstract
Direct detection by PCR of poliovirus RNA in stool samples provides a rapid diagnostic and surveillance tool that can replace virus isolation by cell culture in global polio surveillance. The sensitivity of direct detection methods is likely to depend on the choice of RNA extraction method and sample volume. We report a comparative analysis of 11 nucleic acid extraction methods (7 manual and 4 semiautomated) for poliovirus molecular detection using stool samples (n = 59) that had been previously identified as poliovirus positive by cell culture. To assess the effect of RNA recovery methods, extracted RNA using each of the 11 methods was tested with a poliovirus-specific reverse transcription-quantitative PCR (RT-qPCR), a pan-poliovirus RT-PCR (near-whole-genome amplification), a pan-enterovirus RT-PCR (entire capsid region), and a nested VP1 PCR that is the basis of a direct detection method based on nanopore sequencing. We also assessed extracted RNA integrity and quantity. The overall effect of extraction method on poliovirus PCR amplification assays tested in this study was found to be statistically significant (P < 0.001), thus indicating that the choice of RNA extraction method is an important component that needs to be carefully considered for any diagnostic based on nucleic acid amplification. Performance of the methods was generally consistent across the different assays used. Of the 11 extraction methods tested, the MagMAX viral RNA isolation kit used manually or automatically was found to be the preferable method for poliovirus molecular direct detection considering performance, cost, and processing time. IMPORTANCE Poliovirus, the causative agent of poliomyelitis, is a target of global eradication led by the World Health Organization since 1988. Direct molecular detection and genomic sequencing without virus propagation in cell culture is arguably a critical tool in the final stages of polio eradication. Efficient recovery of good-quality viral RNA from stool samples is a prerequisite for direct detection by nucleic acid amplification. We tested 11 nucleic acid extraction methods to identify those facilitating sensitive, fast, simple, and cost-effective extraction, with flexibility for manual and automated protocols considered. Several different PCR assays were used to compare the recovered viral RNA to test suitability for poliovirus direct molecular detection. Our findings highlight the importance of choosing a suitable RNA extraction protocol and provide useful information to diagnostic laboratories and researchers facing the choice of RNA extraction method for direct molecular virus detection from stool.
Collapse
Affiliation(s)
- Joyce Odeke Akello
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Erika Bujaki
- Division of Vaccines, National Institute for Biological Standards and Control (NIBSC), MHRA, Potters Bar, United Kingdom
| | - Alexander G. Shaw
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Adnan Khurshid
- Department of Virology, National Institute for Health, Islamabad, Pakistan
| | - Yasir Arshad
- Department of Virology, National Institute for Health, Islamabad, Pakistan
| | - Catherine Troman
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Manasi Majumdar
- Division of Vaccines, National Institute for Biological Standards and Control (NIBSC), MHRA, Potters Bar, United Kingdom
| | - Áine O'Toole
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | | | - Javier Martin
- Division of Vaccines, National Institute for Biological Standards and Control (NIBSC), MHRA, Potters Bar, United Kingdom
| | - Nicholas C. Grassly
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Fernandez-Garcia MD, Faye M, Diez-Fuertes F, Moreno-Docón A, Chirlaque-López MD, Faye O, Cabrerizo M. Metagenomic sequencing, molecular characterization, and Bayesian phylogenetics of imported type 2 vaccine-derived poliovirus, Spain, 2021. Front Cell Infect Microbiol 2023; 13:1168355. [PMID: 37201115 PMCID: PMC10185892 DOI: 10.3389/fcimb.2023.1168355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction In 2021, a type 2 vaccine-derived poliovirus (VDPV2) was isolated from the stool of a patient with acute flaccid paralysis (AFP) admitted to Spain from Senegal. A virological investigation was conducted to characterize and trace the origin of VDPV2. Methods We used an unbiased metagenomic approach for the whole-genome sequencing of VDPV2 from the stool (pre-treated with chloroform) and from the poliovirus-positive supernatant. Phylogenetic analyses and molecular epidemiological analyses relying on the Bayesian Markov Chain Monte Carlo methodology were used to determine the geographical origin and estimate the date of the initiating dose of the oral poliovirus vaccine for the imported VDPV2. Results We obtained a high percentage of viral reads per total reads mapped to the poliovirus genome (69.5% for pre-treated stool and 75.8% for isolate) with a great depth of sequencing coverage (5,931 and 11,581, respectively) and complete genome coverage (100%). The two key attenuating mutations in the Sabin 2 strain had reverted (A481G in the 5'UTR and Ile143Thr in VP1). In addition, the genome had a recombinant structure between type-2 poliovirus and an unidentified non-polio enterovirus-C (NPEV-C) strain with a crossover point in the protease-2A genomic region. VP1 phylogenetic analysis revealed that this strain is closely related to VDPV2 strains circulating in Senegal in 2021. According to Bayesian phylogenetics, the most recent common ancestor of the imported VDPV2 could date back 2.6 years (95% HPD: 1.7-3.7) in Senegal. We suggest that all VDPV2s circulating in 2020-21 in Senegal, Guinea, Gambia, and Mauritania have an ancestral origin in Senegal estimated around 2015. All 50 stool samples from healthy case contacts collected in Spain (n = 25) and Senegal (n = 25) and four wastewater samples collected in Spain were poliovirus negative. Discussion By using a whole-genome sequencing protocol with unbiased metagenomics from the clinical sample and viral isolate with high sequence coverage, efficiency, and throughput, we confirmed the classification of VDPV as a circulating type. The close genomic linkage with strains from Senegal was consistent with their classification as imported. Given the scarce number of complete genome sequences for NPEV-C in public databases, this protocol could help expand poliovirus and NPEV-C sequencing capacity worldwide.
Collapse
Affiliation(s)
- Maria Dolores Fernandez-Garcia
- Enterovirus and Viral Gastroenteritis Unit/National Polio Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Consortium of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Maria Dolores Fernandez-Garcia,
| | - Martin Faye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Francisco Diez-Fuertes
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
- Consortium of Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Moreno-Docón
- Microbiology Department, Hospital U. Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia University, Murcia, Spain
| | - Maria Dolores Chirlaque-López
- Consortium of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia University, Murcia, Spain
- Department of Epidemiology, Murcia Regional Health Council, Murcia, Spain
| | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Maria Cabrerizo
- Enterovirus and Viral Gastroenteritis Unit/National Polio Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Consortium of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Ryerson AB, Lang D, Alazawi MA, Neyra M, Hill DT, St. George K, Fuschino M, Lutterloh E, Backenson B, Rulli S, Ruppert PS, Lawler J, McGraw N, Knecht A, Gelman I, Zucker JR, Omoregie E, Kidd S, Sugerman DE, Jorba J, Gerloff N, Ng TFF, Lopez A, Masters NB, Leung J, Burns CC, Routh J, Bialek SR, Oberste MS, Rosenberg ES. Wastewater Testing and Detection of Poliovirus Type 2 Genetically Linked to Virus Isolated from a Paralytic Polio Case - New York, March 9-October 11, 2022. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2022; 71:1418-1424. [PMID: 36327157 PMCID: PMC9639435 DOI: 10.15585/mmwr.mm7144e2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
In July 2022, a case of paralytic poliomyelitis resulting from infection with vaccine-derived poliovirus (VDPV) type 2 (VDPV2)§ was confirmed in an unvaccinated adult resident of Rockland County, New York (1). As of August 10, 2022, poliovirus type 2 (PV2)¶ genetically linked to this VDPV2 had been detected in wastewater** in Rockland County and neighboring Orange County (1). This report describes the results of additional poliovirus testing of wastewater samples collected during March 9-October 11, 2022, and tested as of October 20, 2022, from 48 sewersheds (the community area served by a wastewater collection system) serving parts of Rockland County and 12 surrounding counties. Among 1,076 wastewater samples collected, 89 (8.3%) from 10 sewersheds tested positive for PV2. As part of a broad epidemiologic investigation, wastewater testing can provide information about where poliovirus might be circulating in a community in which a paralytic case has been identified; however, the most important public health actions for preventing paralytic poliomyelitis in the United States remain ongoing case detection through national acute flaccid myelitis (AFM) surveillance†† and improving vaccination coverage in undervaccinated communities. Although most persons in the United States are sufficiently immunized, unvaccinated or undervaccinated persons living or working in Kings, Orange, Queens, Rockland, or Sullivan counties, New York should complete the polio vaccination series as soon as possible.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - 2022 U.S. Poliovirus Response Team
- 2022 CDC Domestic Poliovirus Emergency Response Team; New York State Department of Health; Department of Public Health, Syracuse University, Syracuse, New York; Department of Biomedical Science, State University of New York at Albany, Albany, New York; Rockland County Department of Health, Pomona, New York; Orange County Department of Health, Goshen, New York; Sullivan County Department of Public Health, Liberty, New York; Nassau County Department of Health, Mineola, New York; New York City Department of Health and Mental Hygiene, New York, New York; Epidemic Intelligence Service, CDC; Department of Epidemiology and Biostatistics, State University of New York at Albany, Albany, New York
| |
Collapse
|
18
|
Belgasmi H, Miles SJ, Sayyad L, Wong K, Harrington C, Gerloff N, Coulliette-Salmond AD, Guntapong R, Tacharoenmuang R, Ayutthaya AIN, Apostol LNG, Valencia MLD, Burns CC, Benito GR, Vega E. CaFÉ: A Sensitive, Low-Cost Filtration Method for Detecting Polioviruses and Other Enteroviruses in Residual Waters. FRONTIERS IN ENVIRONMENTAL SCIENCE 2022; 10:10.3389/fenvs.2022.914387. [PMID: 35928599 PMCID: PMC9344547 DOI: 10.3389/fenvs.2022.914387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acute flaccid paralysis (AFP) surveillance has been used to identify polio cases and target vaccination campaigns since the inception of the Global Poliovirus Eradication Initiative (GPEI) in 1988. To date, only Afghanistan and Pakistan have failed to interrupt wild poliovirus transmission. Circulation of vaccine-derived polioviruses (VDPV) continues to be a problem in high-risk areas of the Eastern Mediterranean, African, and Southeast Asian regions. Environmental surveillance (ES) is an important adjunct to AFP surveillance, helping to identify circulating polioviruses in problematic areas. Stools from AFP cases and contacts (>200,000 specimens/year) and ES samples (>642 sites) are referred to 146 laboratories in the Global Polio Laboratory Network (GPLN) for testing. Although most World Health Organization supported laboratories use the two-phase separation method due to its simplicity and effectiveness, alternative simple, widely available, and cost-effective methods are needed. The CAFÉ (Concentration and Filtration Elution) method was developed from existing filtration methods to handle any type of sewage or residual waters. At $10-20 US per sample for consumable materials, CAFÉ is cost effective, and all equipment and reagents are readily available from markets and suppliers globally. The report describes the results from a parallel study of CAFÉ method with the standard two-phase separation method. The study was performed with samples collected from five countries (Guatemala, Haïti, Thailand, Papua New Guinea, and the Philippines), run in three laboratories-(United States, Thailand and in the Philippines) to account for regional and sample-to-sample variability. Samples from each site were divided into two 500 ml aliquots and processed by both methods, with no other additional concentration or manipulation. The results of 338 parallel-tested samples show that the CAFÉ method is more sensitive than the two-phase separation method for detection of non-polio enteroviruses (p-value < 0.0001) and performed as well as the two-phase separation method for polioviruses detection with no significant difference (p-value > 0.05). The CAFÉ method is a robust, sensitive, and cost-effective method for isolating enteroviruses from residual waters.
Collapse
Affiliation(s)
- Hanen Belgasmi
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Stacey Jeffries Miles
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | | | | | - Chelsea Harrington
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Nancy Gerloff
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Angela D Coulliette-Salmond
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
- U.S Public Health Service, Rockville, MD, United States
| | - Ratigorn Guntapong
- Department of Medical Science, Enteric Viruses Section, National Institute of Health, Nonthaburi, Thailand
| | - Ratana Tacharoenmuang
- Department of Medical Science, Enteric Viruses Section, National Institute of Health, Nonthaburi, Thailand
| | | | | | | | - Cara C. Burns
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Gloria-Rey Benito
- Pan American Health Organization, World Health Organization, Washington, DC, United States
| | - Everardo Vega
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
19
|
Kline A, Dean K, Kossik AL, Harrison JC, Januch JD, Beck NK, Zhou NA, Shirai JH, Boyle DS, Mitchell J, Meschke JS. Persistence of poliovirus types 2 and 3 in waste-impacted water and sediment. PLoS One 2022; 17:e0262761. [PMID: 35081146 PMCID: PMC8791527 DOI: 10.1371/journal.pone.0262761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022] Open
Abstract
Eradication of poliovirus (PV) is a global public health priority, and as clinical cases decrease, the role of environmental surveillance becomes more important. Persistence of PV and the environmental factors that influence it (such as temperature and sample type) are an important part of understanding and interpreting positive environmental surveillance samples. The objective of this study was to evaluate the persistence of poliovirus type 2 (PV2) and type 3 (PV3) in wastewater and sediment. Microcosms containing either 1) influent wastewater or 2) influent wastewater with a sediment matrix were seeded with either PV2 or PV3, and stored for up to 126 days at three temperatures (4°C, room temperature [RT], and 30°C). Active PV in the liquid of (1), and the sediment and liquid portions of (2) were sampled and quantified at up to 10 time points via plaque assay and RT-qPCR. A suite of 17 models were tested for best fit to characterize decay of PV2 and PV3 over time and determine the time points at which >90% (T90) and >99% (T99) reduction was reached. Linear models assessed the influence of experimental factors (matrix, temperature, virus type and method of detection) on the predicted T90 and T99 values. Results showed that when T90 was the dependent variable, virus type, matrix, and temperature significantly affected decay, and there was a clear interaction between the sediment matrix and temperature. When T99 was the dependent variable, only temperature and matrix type significantly influenced the decay metric. This study characterizes the persistence of both active and molecular PV2 and PV3 in relevant environmental conditions, and demonstrates that temperature and sediment both play important roles in PV viability. As eradication nears and clinical cases decrease, environmental surveillance and knowledge of PV persistence will play a key role in understanding the silent circulation in endemic countries.
Collapse
Affiliation(s)
- Allison Kline
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Kara Dean
- Biosystems & Agricultural Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Alexandra L. Kossik
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Joanna Ciol Harrison
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - James D. Januch
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Nicola K. Beck
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Nicolette A. Zhou
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Jeffry H. Shirai
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | | | - Jade Mitchell
- Biosystems & Agricultural Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - John Scott Meschke
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
20
|
Chirlaque López MD, Cabrerizo M, Guzmán Herrador BR, Masa-Calles J, Alarcón-Linares ME, Allende A, Aznar Cano E, Barranco Boada MI, Cantero Gudino E, Fernández-Balbuena S, Fernández Dueñas A, Fernández-García MD, García Hernández L, García Ortúzar V, López-Perea N, Martínez-Salcedo E, Moreno-Docón A, Ordobás Gavín M, Rodero Garduño I, Sierra Moros MJ, Simón Soria F, Limia Sánchez A, Suárez Rodríguez B. An imported case of vaccine-derived poliovirus type 2, Spain in the context of the ongoing polio Public Health Emergency of International Concern, September 2021. Euro Surveill 2021; 26:2101068. [PMID: 34915974 PMCID: PMC8728495 DOI: 10.2807/1560-7917.es.2021.26.50.2101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
The monthly retrospective search for unreported acute flaccid paralysis (AFP) cases conducted as a complementary component of the Spanish AFP surveillance system identified a case of AFP in a child admitted in Spain from Senegal during August 2021. Vaccine-derived poliovirus 2 was identified in the stool in September 2021. We present public health implications and response undertaken within the framework of the National Action Plan for Polio Eradication and the Public Health Emergency of International Concern.
Collapse
Affiliation(s)
- María Dolores Chirlaque López
- Department of Epidemiology, Murcia Regional Health Council, Murcia, Spain
- IMIB-Arrixaca, Murcia University, Murcia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - María Cabrerizo
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- National Polio Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Bernardo R Guzmán Herrador
- Coordinating Centre for Health Alerts and Emergencies (CCAES), Directorate General of Public Health, Ministry of Health, Madrid, Spain
| | - Josefa Masa-Calles
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- National Centre of Epidemiology, Carlos III Health Institute, Madrid, Spain
| | | | - Ana Allende
- Research Group on Microbiology and Quality of Fruit and Vegetables, Food Science and Technology Department, CEBAS-CSIC, Espinardo, Murcia, Spain
| | - Esteban Aznar Cano
- Coordinating Centre for Health Alerts and Emergencies (CCAES), Directorate General of Public Health, Ministry of Health, Madrid, Spain
| | | | - Elena Cantero Gudino
- Immunization Programme Area, Directorate General of Public Health, Ministry of Health, Madrid, Spain
| | - Sonia Fernández-Balbuena
- Coordinating Centre for Health Alerts and Emergencies (CCAES), Directorate General of Public Health, Ministry of Health, Madrid, Spain
| | - Ana Fernández Dueñas
- Immunization Programme Area, Directorate General of Public Health, Ministry of Health, Madrid, Spain
| | | | - Laura García Hernández
- Epidemiology and Prevention Service, Public Health General Direction, Canary Islands Health Service, Santa Cruz de Tenerife, Spain
| | | | - Noemí López-Perea
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- National Centre of Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Eduardo Martínez-Salcedo
- Neuropediatric Unit, Department of Paediatrics, University Hospital Virgen of Arrixaca, Murcia, Spain
- IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Antonio Moreno-Docón
- Microbiology Service. Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- IMIB-Arrixaca, Murcia University, Murcia, Spain
| | | | | | - Maria José Sierra Moros
- CIBER in Infectious Diseases (CIBERINFEC), Madrid, Spain
- Coordinating Centre for Health Alerts and Emergencies (CCAES), Directorate General of Public Health, Ministry of Health, Madrid, Spain
| | - Fernando Simón Soria
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Coordinating Centre for Health Alerts and Emergencies (CCAES), Directorate General of Public Health, Ministry of Health, Madrid, Spain
| | - Aurora Limia Sánchez
- Immunization Programme Area, Directorate General of Public Health, Ministry of Health, Madrid, Spain
| | - Berta Suárez Rodríguez
- Coordinating Centre for Health Alerts and Emergencies (CCAES), Directorate General of Public Health, Ministry of Health, Madrid, Spain
| |
Collapse
|
21
|
Alam MM, Ikram A, Mahmood N, Sharif S, Shaukat S, Fatmi Q, Angez M, Khurshid A, Rehman L, Akhtar R, Mujtaba G, Arshad Y, Rana MS, Yousaf A, Zaidi SSZ, Salman M. Antigenic structure of wild poliovirus type 1 strains endemic in Pakistan is highly conserved and completely neutralized by Sabin's Oral Polio Vaccine. J Infect Dis 2021; 226:843-851. [PMID: 34791319 DOI: 10.1093/infdis/jiab555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 10/31/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Elimination of poliovirus in Pakistan and Afghanistan is challenged by notions against the role of oral polio vaccine in eradicating contemporary wild poliovirus strains. METHODS 1,055 WPV1 strains isolated between 2013-2018 were categorized into 68 antigenic groups and tested for neutralization by OPV derived antibodies. Molecular docking was conducted to determine neutralization efficiency of antibodies against wild poliovirus. The clinical significance of WPV1 variants was assessed to ascertain their role in patient's outcome. RESULTS We found that 88% of WPV1 strains isolated from paralytic children belonged to a single antigenic lineage identical to WPV1 strain detected in 1993. WPV1 antigenic variants were effectively neutralized by OPV derived antibodies with geometric mean titers comparable to the neutralization titers found for three strains in OPV (OPV1-3: 7.96-9.149, 95%CI: 6.864-10.171; WPV1 strains: 7.542-8.786, 95%CI: 6.493-9.869). Docking examination underscored a strong antigen-antibody interaction despite variations within the VP1 epitopes. No significant association (p-value = 0.78) of clinical prognosis was inferred among patients infected with antigenically diverse WPV1 strains and patients' outcome including death. CONCLUSIONS Our findings substantiate the robustness of OPV to neutralize the contemporary WPV1 strains endemic in Pakistan and Afghanistan. The vaccination coverage must be augmented to achieve eradication early on.
Collapse
Affiliation(s)
- Muhammad Masroor Alam
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Aamir Ikram
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Nayab Mahmood
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Salmaan Sharif
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Shahzad Shaukat
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Qaiser Fatmi
- COMSATS University, Park road, Chak Shahzad, Islamabad, Pakistan
| | - Mehar Angez
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Adnan Khurshid
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Lubna Rehman
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Ribqa Akhtar
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Ghulam Mujtaba
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Yasir Arshad
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Muhammad Suleman Rana
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Aneela Yousaf
- COMSATS University, Park road, Chak Shahzad, Islamabad, Pakistan
| | | | - Muhammad Salman
- Department of Virology, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| |
Collapse
|
22
|
Abstract
Laboratory surveillance for poliovirus (PV) relies on virus isolation by cell culture to identify PV in stool specimens from acute flaccid paralysis (AFP) cases. Although this method successfully identifies PV, it is time-consuming and necessitates the additional biorisk of growing live virus in an increasingly polio-free world. To reduce the risk of culturing PV, the Global Polio Laboratory Network (GPLN) must switch to culture-independent diagnostic methods with sensitivity at least equivalent to that of cell culture procedures. Five commercial nucleic acid extraction kits and one enrichment method were tested for PV extraction efficiency. RNA yield was measured using real-time reverse transcription (RT)-PCR. Based on greater RNA yield, compared with the other kits, the Quick-RNA viral kit was selected for further testing and was optimized using an RNA extraction procedure for stool suspensions. RNA extraction was retrospectively tested with 182 stool samples that had previously tested positive for PVs, in parallel with the standard GPLN virus isolation algorithm. After virus isolation or RNA extraction, real-time RT-PCR assays were performed. RNA extraction was significantly more sensitive than virus isolation (McNemar’s test, P < 0.001). Thereafter, the RNA extraction method was tested in parallel for 202 prospective samples; RNA extraction and virus isolation were not significantly different from each other (McNemar’s test, P = 0.13). Direct RNA extraction was noninferior to current cell culture methods for detecting PV in stool samples. Our results show that direct RNA extraction can make downstream manipulation safer and can reduce the risk of accidental posteradication viral release. The method is amenable to implementation in a wide variety of polio laboratories. IMPORTANCE Successfully identifying poliovirus from acute flaccid paralysis (AFP) cases is a vital role of the Global Polio Laboratory Network to achieve the goals of the Global Polio Eradication Initiative. Currently, laboratory surveillance relies on virus isolation by cell culture to test for PV present in stool samples. Although this method can identify polioviruses, laboratories must switch to culture-independent methods to reduce the risk associated with growing live viruses in a soon-to-be polio-free world. By implementing this streamlined method, in combination with real-time RT-PCR, laboratories can quickly screen for and type polioviruses of programmatic importance to support the final stages of global polio eradication.
Collapse
|
23
|
Gerloff N, Mandelbaum M, Pang H, Collins N, Brown B, Sun H, Harrington C, Hecker J, Agha C, Burns CC, Vega E. Direct detection of polioviruses using a recombinant poliovirus receptor. PLoS One 2021; 16:e0259099. [PMID: 34727100 PMCID: PMC8562806 DOI: 10.1371/journal.pone.0259099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022] Open
Abstract
Polioviruses are positive-sense, single-stranded RNA picornaviruses and the principal cause of poliomyelitis. Global poliovirus surveillance has relied on poliovirus isolation in cells, which may take a minimum of 10 days, involves maintaining two cell lines, and propagates virus in high titers. With eradication underway, a major objective of the Global Polio Eradication Initiative (GPEI) is to develop culture-independent detection of polioviruses as an alternative method to complement the current virus isolation technique. A culture-independent method on poliovirus-positive stool suspensions was assessed with commercially available recombinant soluble poliovirus receptor (PVR) coupled to Histidine (His) tags. Viral RNA was screened by quantitative real-time reverse transcription PCR using the poliovirus intratypic differentiation kit. Poliovirus recovery was optimized with PVR-His-tagged protein and buffers supplemented with polyethylene glycol. To validate the poliovirus-PVR-His tag purification assay, 182 poliovirus-positive stools of programmatic importance were parallel tested against the GPLN-accepted virus isolation method. The PVR-His tag enrichment method detected poliovirus in 164 of 171 poliovirus-positive stools, whereas the virus isolation method misidentified 38 stools as poliovirus-negative (McNemar χ2 p<0.0001). Using this method in combination with RNA extraction, viral RNA recovery increased and showed similar (WPV1) or higher (Sabin 1) sensitivity than the World Health Organization accredited variation of the virus isolation method. The PVR-His enrichment method could be a viable addition to poliovirus surveillance; similar methods have the potential to capture other human pathogens such as EV71 using an appropriate soluble His tag receptor.
Collapse
Affiliation(s)
- Nancy Gerloff
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mark Mandelbaum
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Hong Pang
- Cherokee Nation Assurance, Contracting Agency to the Division of Viral Diseases, Atlanta, Georgia, United States of America
| | - Nikail Collins
- IHRC, Contracting agency to the Division of Viral Diseases, Atlanta, Georgia, United States of America
| | - Brittani Brown
- IHRC, Contracting agency to the Division of Viral Diseases, Atlanta, Georgia, United States of America
| | - Hong Sun
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Chelsea Harrington
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jessica Hecker
- Cherokee Nation Assurance, Contracting Agency to the Division of Viral Diseases, Atlanta, Georgia, United States of America
| | - Chadi Agha
- IHRC, Contracting agency to the Division of Viral Diseases, Atlanta, Georgia, United States of America
| | - Cara C. Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Everardo Vega
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
24
|
Sun H, Harrington C, Gerloff N, Mandelbaum M, Jeffries-Miles S, Apostol LNG, Valencia MALD, Shaukat S, Angez M, Sharma DK, Nalavade UP, Pawar SD, Pukuta Simbu E, Andriamamonjy S, Razafindratsimandresy R, Vega E. Validation of a redesigned pan-poliovirus assay and real-time PCR platforms for the global poliovirus laboratory network. PLoS One 2021; 16:e0255795. [PMID: 34358268 PMCID: PMC8345876 DOI: 10.1371/journal.pone.0255795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/25/2021] [Indexed: 11/19/2022] Open
Abstract
Surveillance and detection of polioviruses (PV) remain crucial to monitoring eradication progress. Intratypic differentiation (ITD) using the real-time RT-PCR kit is key to the surveillance workflow, where viruses are screened after cell culture isolation before a subset are verified by sequencing. The ITD kit is a series of real-time RT-PCR assays that screens cytopathic effect (CPE)-positive cell cultures using the standard WHO method for virus isolation. Because ITD screening is a critical procedure in the poliovirus identification workflow, validation of performance of real-time PCR platforms is a core requirement for the detection of poliovirus using the ITD kit. In addition, the continual update and improvement of the ITD assays to simplify interpretation in all platforms is necessary to ensure that all real-time machines are capable of detecting positive real-time signals. Four platforms (ABI7500 real-time systems, Bio-Rad CFX96, Stratagene MX3000P, and the Qiagen Rotor-Gene Q) were validated with the ITD kit and a redesigned poliovirus probe. The poliovirus probe in the real-time RT-PCR pan-poliovirus (PanPV) assay was re-designed with a double-quencher (Zen™) to reduce background fluorescence and potential false negatives. The updated PanPV probe was evaluated with a panel consisting of 184 polioviruses and non-polio enteroviruses. To further validate the updated PanPV probe, the new assay was pilot tested in five Global Polio Laboratory Network (GPLN) laboratories (Madagascar, India, Philippines, Pakistan, and Democratic Republic of Congo). The updated PanPV probe performance was shown to reduce background fluorescence and decrease the number of false positives compared to the standard PanPV probe.
Collapse
Affiliation(s)
- Hong Sun
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Chelsea Harrington
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nancy Gerloff
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mark Mandelbaum
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Stacey Jeffries-Miles
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | | | | | - Mehar Angez
- National Institute of Health, Islamabad, Pakistan
| | | | | | | | - Elisabeth Pukuta Simbu
- National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo, Congo
| | | | | | - Everardo Vega
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
25
|
Rojas-Bonilla M, Coulliette-Salmond A, Belgasmi H, Wong K, Sayyad L, Vega E, Grimoldi F, Oberste MS, Rüttimann R. Environmental Surveillance for Risk Assessment in the Context of a Phase 2 Clinical Trial of Type 2 Novel Oral Polio Vaccine in Panama. Viruses 2021; 13:v13071355. [PMID: 34372561 PMCID: PMC8310065 DOI: 10.3390/v13071355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/12/2023] Open
Abstract
Environmental surveillance was recommended for risk mitigation in a novel oral polio vaccine-2 (nOPV2) clinical trial (M5-ABMG) to monitor excretion, potential circulation, and loss of attenuation of the two nOPV2 candidates. The nOPV2 candidates were developed to address the risk of poliovirus (PV) type 2 circulating vaccine-derived poliovirus (cVDPV) as part of the global eradication strategy. Between November 2018 and January 2020, an environmental surveillance study for the clinical trial was conducted in parallel to the M5-ABMG clinical trial at five locations in Panama. The collection sites were located upstream from local treatment plant inlets, to capture the excreta from trial participants and their community. Laboratory analyses of 49 environmental samples were conducted using the two-phase separation method. Novel OPV2 strains were not detected in sewage samples collected during the study period. However, six samples were positive for Sabin-like type 3 PV, two samples were positive for Sabin-like type 1 PV, and non-polio enteroviruses NPEVs were detected in 27 samples. One of the nOPV2 candidates has been granted Emergency Use Listing by the World Health Organization and initial use started in March 2021. This environmental surveillance study provided valuable risk mitigation information to support the Emergency Use Listing application.
Collapse
Affiliation(s)
- Magda Rojas-Bonilla
- Hospital de Especialidades Pediátricas, Servicio de Infectología Pediátrica, Panama City, Panama;
| | - Angela Coulliette-Salmond
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA 30329, USA; (E.V.); (M.S.O.)
- United States Public Health Service, Rockville, MD 20852, USA
- Correspondence:
| | - Hanen Belgasmi
- IHRC, Inc., Atlanta, GA 30303, USA; Contracting Agency to the Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA 30329, USA; (H.B.); (K.W.)
| | - Kimberly Wong
- IHRC, Inc., Atlanta, GA 30303, USA; Contracting Agency to the Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA 30329, USA; (H.B.); (K.W.)
- Cherokee Nation Assurance, Tulsa, OK 74116, USA; Contracting Agency to the Division of Viral Diseases, Centers for Diseases Control, and Prevention, Atlanta, GA 30329, USA;
| | - Leanna Sayyad
- Cherokee Nation Assurance, Tulsa, OK 74116, USA; Contracting Agency to the Division of Viral Diseases, Centers for Diseases Control, and Prevention, Atlanta, GA 30329, USA;
| | - Everardo Vega
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA 30329, USA; (E.V.); (M.S.O.)
| | - Fabian Grimoldi
- DVM, Quality Assurance Manager, VacciNet, Panama City, Panama;
| | - M. Steven Oberste
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA 30329, USA; (E.V.); (M.S.O.)
| | - Ricardo Rüttimann
- Fighting Infectious Diseases in Emerging Countries, Miami, FL 33145, USA;
| |
Collapse
|
26
|
Bandyopadhyay AS, Gast C, Brickley EB, Rüttimann R, Clemens R, Oberste MS, Weldon WC, Ackerman ME, Connor RI, Wieland-Alter WF, Wright P, Usonis V. A Randomized Phase 4 Study of Immunogenicity and Safety After Monovalent Oral Type 2 Sabin Poliovirus Vaccine Challenge in Children Vaccinated with Inactivated Poliovirus Vaccine in Lithuania. J Infect Dis 2021; 223:119-127. [PMID: 32621741 PMCID: PMC7781454 DOI: 10.1093/infdis/jiaa390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 11/14/2022] Open
Abstract
Background Understanding immunogenicity and safety of monovalent type 2 oral poliovirus vaccine (mOPV2) in inactivated poliovirus vaccine (IPV)–immunized children is of major importance in informing global policy to control circulating vaccine-derived poliovirus outbreaks. Methods In this open-label, phase 4 study (NCT02582255) in 100 IPV-vaccinated Lithuanian 1–5-year-olds, we measured humoral and intestinal type 2 polio neutralizing antibodies before and 28 days after 1 or 2 mOPV2 doses given 28 days apart and measured stool viral shedding after each dose. Parents recorded solicited adverse events (AEs) for 7 days after each dose and unsolicited AEs for 6 weeks after vaccination. Results After 1 mOPV2 challenge, the type 2 seroprotection rate increased from 98% to 100%. Approximately 28 days after mOPV2 challenge 34 of 68 children (50%; 95% confidence interval, 38%–62%) were shedding virus; 9 of 37 (24%; 12%–41%) were shedding 28 days after a second challenge. Before challenge, type 2 intestinal immunity was undetectable in IPV-primed children, but 28 of 87 (32%) had intestinal neutralizing titers ≥32 after 1 mOPV2 dose. No vaccine-related serious or severe AEs were reported. Conclusions High viral excretion after mOPV2 among exclusively IPV-vaccinated children was substantially lower after a subsequent dose, indicating induction of intestinal immunity against type 2 poliovirus.
Collapse
Affiliation(s)
| | - Chris Gast
- Biostatistical Consulting, Washington, USA
| | - Elizabeth B Brickley
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ricardo Rüttimann
- Fighting Infectious Diseases in Emerging Countries, Miami, Florida, USA
| | - Ralf Clemens
- Global Research in Infectious Diseases, Rio de Janeiro, Brazil
| | - M Steven Oberste
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - William C Weldon
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Ruth I Connor
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Wendy F Wieland-Alter
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Peter Wright
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Vytautas Usonis
- Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Lithuania
| |
Collapse
|
27
|
Alleman MM, Coulliette-Salmond AD, Wilnique P, Belgasmi-Wright H, Sayyad L, Wong K, Gue E, Barrais R, Rey-Benito G, Burns CC, Vega E. Environmental Surveillance for Polioviruses in Haïti (2017-2019): The Dynamic Process for the Establishment and Monitoring of Sampling Sites. Viruses 2021; 13:v13030505. [PMID: 33803868 PMCID: PMC8003210 DOI: 10.3390/v13030505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Haïti is at risk for wild poliovirus (WPV) importation and circulation, as well as vaccine-derived poliovirus (VDPV) emergence. Environmental surveillance (ES) for polioviruses was established in Port au Prince and Gonaïves in 2016. During 2017–2019, initial ES sites were re-evaluated, and ES was expanded into Cap Haïtien and Saint Marc. Wastewater samples and data on weather, hour of collection, and sample temperature and pH were collected every 4 weeks during March 2017–December 2019 (272 sampling events) from 21 sites in Cap Haïtien, Gonaïves, Port au Prince, and Saint Marc. Samples were processed for the detection of polio and non-polio enteroviruses using the two-phase and “Concentration and Filter Elution” methodologies. Polioviruses were serotyped and underwent intra-typic characterization. No WPV or VDPVs were isolated. Sabin-like polioviruses (oral vaccine strain) of serotypes 1 and 3 were sporadically detected. Five of six (83%), one of six (17%), five of six (83%), and two of three (67%) sites evaluated in Cap Haïtien, Gonaïves, Port au Prince, and Saint Marc, respectively, had enterovirus isolation from >50% of sampling events; these results and considerations, such as watershed population size and overlap, influence of sea water, and excessive particulates in samples, were factors in site retention or termination. The evaluation of 21 ES sampling sites in four Haïtian cities led to the termination of 11 sites. Every-four-weekly sampling continues at the remaining 10 sites across the four cities as a core Global Polio Eradication Initiative activity.
Collapse
Affiliation(s)
- Mary M. Alleman
- Polio Eradication Branch, Centers for Disease Control and Prevention, Global Immunization Division, Atlanta, GA 30329, USA
- Correspondence: ; Tel.: +1-404-639-8703
| | - Angela D. Coulliette-Salmond
- Polio and Picornavirus Laboratory Branch, Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA 30329, USA; (A.D.C.-S.); (C.C.B.); (E.V.)
- United States Public Health Service, Rockville, MD 20852, USA
| | - Pierre Wilnique
- Laboratory and Research, Division of Epidemiology, Ministère de la Santé Publique et de la Population (Ministry of Public Health and Population (MSPP)), Port au Prince HT6110, Haiti; (P.W.); (R.B.)
| | | | | | - Kimberly Wong
- IHRC, Inc., Atlanta, GA 30346, USA; (H.B.-W.); (K.W.)
- Cherokee Nation Assurance, Catoosa, OK 74015, USA;
| | - Edmund Gue
- Pan American Health Organization, World Health Organization, Region of the Americas, Port au Prince HT6110, Haiti;
| | - Robert Barrais
- Laboratory and Research, Division of Epidemiology, Ministère de la Santé Publique et de la Population (Ministry of Public Health and Population (MSPP)), Port au Prince HT6110, Haiti; (P.W.); (R.B.)
| | - Gloria Rey-Benito
- Pan American Health Organization, World Health Organization, Washington, DC 20037, USA;
| | - Cara C. Burns
- Polio and Picornavirus Laboratory Branch, Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA 30329, USA; (A.D.C.-S.); (C.C.B.); (E.V.)
| | - Everardo Vega
- Polio and Picornavirus Laboratory Branch, Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA 30329, USA; (A.D.C.-S.); (C.C.B.); (E.V.)
| |
Collapse
|
28
|
Fagnant‐Sperati C, Ren Y, Zhou N, Komen E, Mwangi B, Hassan J, Chepkurui A, Nzunza R, Nyangao J, van Zyl W, Wolfaardt M, Matsapola P, Ngwana F, Jeffries‐Miles S, Coulliette‐Salmond A, Peñaranda S, Vega E, Shirai J, Kossik A, Beck N, Boyle D, Burns C, Taylor M, Borus P, Meschke J. Validation of the bag-mediated filtration system for environmental surveillance of poliovirus in Nairobi, Kenya. J Appl Microbiol 2021; 130:971-981. [PMID: 32743931 PMCID: PMC7854911 DOI: 10.1111/jam.14807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 01/15/2023]
Abstract
AIMS This study compared the bag-mediated filtration system (BMFS) and standard WHO two-phase separation methods for poliovirus (PV) environmental surveillance, examined factors impacting PV detection and monitored Sabin-like (SL) PV type 2 presence with withdrawal of oral polio vaccine type 2 (OPV2) in April 2016. METHODS AND RESULTS Environmental samples were collected in Nairobi, Kenya (Sept 2015-Feb 2017), concentrated via BMFS and two-phase separation methods, then assayed using the WHO PV isolation algorithm and intratypic differentiation diagnostic screening kit. SL1, SL2 and SL3 were detected at higher rates in BMFS than two-phase samples (P < 0·05). In BMFS samples, SL PV detection did not significantly differ with volume filtered, filtration time or filter shipment time (P > 0·05), while SL3 was detected less frequently with higher shipment temperatures (P = 0·027). SL2 was detected more frequently before OPV2 withdrawal in BMFS and two-phase samples (P < 1 × 10-5 ). CONCLUSIONS Poliovirus was detected at higher rates with the BMFS, a method that includes a secondary concentration step, than using the standard WHO two-phase method. SL2 disappearance from the environment was commensurate with OPV2 withdrawal. SIGNIFICANCE AND IMPACT OF THE STUDY The BMFS offers comparable or improved PV detection under the conditions in this study, relative to the two-phase method.
Collapse
Affiliation(s)
- C.S. Fagnant‐Sperati
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| | - Y. Ren
- Department of BiostatisticsUniversity of WashingtonSeattleWAUSA
| | - N.A. Zhou
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| | - E. Komen
- Centre for Viral ResearchKenya Medical Research InstituteNairobiKenya
| | - B. Mwangi
- Centre for Viral ResearchKenya Medical Research InstituteNairobiKenya
| | - J. Hassan
- Centre for Viral ResearchKenya Medical Research InstituteNairobiKenya
| | - A. Chepkurui
- Centre for Viral ResearchKenya Medical Research InstituteNairobiKenya
| | - R. Nzunza
- Centre for Viral ResearchKenya Medical Research InstituteNairobiKenya
| | - J. Nyangao
- Centre for Viral ResearchKenya Medical Research InstituteNairobiKenya
| | - W.B. van Zyl
- Department of Medical VirologyUniversity of PretoriaPretoriaSouth Africa
| | - M. Wolfaardt
- Department of Medical VirologyUniversity of PretoriaPretoriaSouth Africa
| | - P.N. Matsapola
- Department of Medical VirologyUniversity of PretoriaPretoriaSouth Africa
| | - F.B. Ngwana
- Department of Medical VirologyUniversity of PretoriaPretoriaSouth Africa
| | - S. Jeffries‐Miles
- Cherokee Nation Assurance a contracting agency to the Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | | | - S. Peñaranda
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - E. Vega
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - J.H. Shirai
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| | - A.L. Kossik
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| | - N.K. Beck
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| | | | - C.C. Burns
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - M.B. Taylor
- Department of Medical VirologyUniversity of PretoriaPretoriaSouth Africa
| | - P. Borus
- Centre for Viral ResearchKenya Medical Research InstituteNairobiKenya
| | - J.S. Meschke
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
29
|
Chadwick S, Townes DA, Perrone LA. Utility of Point of Care and Rapid Diagnostics in Humanitarian Emergencies. J Appl Lab Med 2020; 6:236-246. [DOI: 10.1093/jalm/jfaa180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022]
Abstract
Abstract
Background
In 2019, there were 70.8 million forcibly displaced people worldwide. Among the top causes of morbidity and mortality were measles, diarrhea, respiratory illness, and malaria. Availability of accurate diagnostics that are of low complexity, affordable, and produce timely results on site without the need for expensive laboratory equipment, extensive training, or distant transport of samples, are essential tools in the response to humanitarian emergencies (HE). Early detection of infectious diseases with epidemic potential and coordinated outbreak response, can result in significant decrease in morbidity and mortality.
Content
This review explores the utility of point of care and rapid diagnostic tests (POCT/RDTs) in HE and presents a review and analysis of the low complexity, availability, and ease of use of these diagnostic modalities that make them helpful tools in these settings, despite the generally lower test performance metrics associated with them over conventional laboratory-based assays. We review the literature to understand how POCT/RDTs have been used in HE response to produce lifesaving information without the need for a robust system for transporting test samples to more sophisticated laboratories, as this is often prohibitive in areas affected by conflict or natural disasters.
Summary
We propose that POCT/RDTs be considered essential healthcare tools provided to countries following a HE and suggest that UN agencies and vulnerable countries include effective RDTs in their essential diagnostics as part of their national preparedness and response plans.
Collapse
Affiliation(s)
- Stephen Chadwick
- Department of Global Health, School of Public Health, University of Washington, Seattle, WA
| | - David A Townes
- Department of Global Health, School of Public Health, University of Washington, Seattle, WA
- Department of Emergency Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Lucy A Perrone
- Department of Global Health, School of Public Health, University of Washington, Seattle, WA
- Department of Laboratory Medicine, School of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
30
|
Li R, Zhang R, Tan P, Han Y, Chen Y, Wang Z, Han D, Zhang J, Xie J, Zhang R, Li J. Quality evaluation of molecular diagnostic tests for astrovirus, sapovirus and poliovirus: A multicenter study. Clin Chim Acta 2020; 512:172-178. [PMID: 33181150 DOI: 10.1016/j.cca.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Astrovirus (AstV), Sapovirus (SaV) and Poliovirus (PV) are important pathogens that cause infections in children under five years of age. It is a very important task to systematically monitor and evaluate the diagnostic performance of these viruses in clinical laboratories. METHODS In our study, we performed a multicenter evaluation study among 21 laboratories across China using simulated stool samples spiked with self-designed AstV, SaV and PV pseudoviral particles. RESULTS The testing capability of 80.0% (16/20, AstV), 52.6% (10/19, SaV), and 25.0% (2/8, PV) of the participating laboratories were found to be "competent" in reporting correct results for all samples. The main type of errors were false negatives. None of the laboratories identified the subtypes of AstV and SaV, and six laboratories specifically identified the subtypes of PV. Lacking of well-trained personnel and adequate funding were the main challenges. From the questionnaire results, 55.6% laboratories (10/18) believe that training personnel could improve the laboratory testing performance. CONCLUSIONS The laboratories showed a competent diagnostic performance for AstV, but inferior diagnostic performances for SaV and PV. Sensitivity of detection and the ability for virus typing should be improved clinically. Professional and standardized personnel training is urgently needed to further improve laboratory performance.
Collapse
Affiliation(s)
- Rui Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Runling Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Ping Tan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Yanxi Han
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Yuqing Chen
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Zhe Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Dongsheng Han
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Jiawei Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Jiehong Xie
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| |
Collapse
|
31
|
Tao Z, Chen P, Cui N, Lin X, Ji F, Liu Y, Xiong P, Zhang L, Xu Q, Song Y, Xu A. Detection of enteroviruses in urban sewage by next generation sequencing and its application in environmental surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138818. [PMID: 32570328 DOI: 10.1016/j.scitotenv.2020.138818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/26/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Environmental surveillance has been used successfully in monitoring enterovirus (EV) circulation; however cell culture method may introduce a selective bias in those EV strains that are recovered from the environment. In this study, urban sewage samples were collected monthly in Jinan, China in 2018 and concentrated via membrane adsorption/elution method. A P1 seminested RT-PCR (RT-snPCR) and NGS method was developed, by which amplicons of 4000 nucleotide in length covering the entire P1 region of EVs were obtained from sewage concentrates and were further analyzed by next generation sequencing (NGS). In addition, for each sewage concentrate, two other assays - cell culture and NGS based partial VP1 amplicon sequencing - were conducted in parallel and compared. The results showed that the P1 RT-snPCR and NGS method generated the most data, with 32 serotypes identified belonging to species EV-A (n = 11), EV-B (n = 14), and EV-C (n = 7). These serotypes covered all those detected from the methods of cell culture (n = 10) and partial VP1 amplicon sequencing (n = 16). EV serotypes from acute flaccid paralysis surveillance correlated with those from sewage. Phylogenetic analysis on coxsackievirus B5, a common pathogen of meningitis, revealed close genetic relationship between environmental and clinical sequences. These results demonstrate sewage contains different EVs related to a variety of diseases. Traditional cell culture method underestimates the existence of some serotypes. NGS based environmental surveillance provides data which are consistent with those from clinical diseases, greatly improves our understanding on the actual circulation in the population, and should be encouraged for public health surveillance.
Collapse
Affiliation(s)
- Zexin Tao
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Peng Chen
- School and Hospital of Stomatology, Shandong University, 44-1 Wenhuaxi Road, Jinan 250012, China
| | - Ning Cui
- Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Xiaojuan Lin
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Feng Ji
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Yao Liu
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Ping Xiong
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Li Zhang
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Qing Xu
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Yanyan Song
- School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China.
| | - Aiqiang Xu
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China; School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China.
| |
Collapse
|
32
|
Near-Complete Genome Sequence of an Enterovirus Species F Isolate Recovered from Sewage in Nigeria. Microbiol Resour Announc 2020; 9:9/22/e00094-20. [PMID: 32467260 PMCID: PMC7256247 DOI: 10.1128/mra.00094-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Here, we describe the near-complete genome of an enterovirus F (EV-F) isolate from Nigeria. The obtained sequence was 7,378 nucleotides (nt) long and encodes 2 open reading frames (ORFs), an upstream ORF (uORF; 56 amino acids [aa]) and a polyprotein ORF (ppORF; 2,167 aa). Both ORFs overlap but are in different reading frames, with the uORF in a +1 reading frame relative to the ppORF. Here, we describe the near-complete genome of an enterovirus F (EV-F) isolate from Nigeria. The obtained sequence was 7,378 nucleotides (nt) long and encodes 2 open reading frames (ORFs), an upstream ORF (uORF; 56 amino acids [aa]) and a polyprotein ORF (ppORF; 2,167 aa). Both ORFs overlap but are in different reading frames, with the uORF in a +1 reading frame relative to the ppORF.
Collapse
|
33
|
Coulliette-Salmond AD, Alleman MM, Wilnique P, Rey-Benito G, Wright HB, Hecker JW, Miles S, Peñaranda S, Lafontant D, Corvil S, Francois J, Rossignol E, Stanislas M, Gue E, Faye PC, Castro CJ, Schmidt A, Ng TFF, Burns CC, Vega E. Haiti Poliovirus Environmental Surveillance. Am J Trop Med Hyg 2020; 101:1240-1248. [PMID: 31701857 DOI: 10.4269/ajtmh.19-0469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Poliovirus (PV) environmental surveillance was established in Haiti in three sites each in Port-au-Prince and Gonaïves, where sewage and fecal-influenced environmental open water channel samples were collected monthly from March 2016 to February 2017. The primary objective was to monitor for the emergence of vaccine-derived polioviruses (VDPVs) and the importation and transmission of wild polioviruses (WPVs). A secondary objective was to compare two environmental sample processing methods, the gold standard two-phase separation method and a filter method (bag-mediated filtration system [BMFS]). In addition, non-polio enteroviruses (NPEVs) were characterized by next-generation sequencing using Illumina MiSeq to provide insight on surrogates for PVs. No WPVs or VDPVs were detected at any site with either concentration method. Sabin (vaccine) strain PV type 2 and Sabin strain PV type 1 were found in Port-au-Prince, in March and April samples, respectively. Non-polio enteroviruses were isolated in 75-100% and 0-58% of samples, by either processing method during the reporting period in Port-au-Prince and Gonaïves, respectively. Further analysis of 24 paired Port-au-Prince samples confirmed the detection of a human NPEV and echovirus types E-3, E-6, E-7, E-11, E-19, E-20, and E-29. The comparison of the BMFS filtration method to the two-phase separation method found no significant difference in sensitivity between the two methods (mid-P-value = 0.55). The experience of one calendar year of sampling has informed the appropriateness of the initially chosen sampling sites, importance of an adequate PV surrogate, and robustness of two processing methods.
Collapse
Affiliation(s)
- Angela D Coulliette-Salmond
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mary M Alleman
- Polio Eradication Branch, Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Pierre Wilnique
- Division of Epidemiology, Laboratory and Research, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Gloria Rey-Benito
- Pan American Health Organization, World Health Organization, Washington, District of Columbia
| | | | | | | | - Silvia Peñaranda
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Donald Lafontant
- Division of Epidemiology, Laboratory and Research, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Salomon Corvil
- Division of Epidemiology, Laboratory and Research, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Jeannot Francois
- Expanded Programme on Immunization, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Emmanuel Rossignol
- National Public Health Laboratory, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Magalie Stanislas
- National Public Health Laboratory, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Edmond Gue
- Pan American Health Organization, World Health Organization Region of the Americas, Port-au-Prince, Haiti
| | - Papa C Faye
- Pan American Health Organization, World Health Organization Region of the Americas, Port-au-Prince, Haiti
| | - Christina J Castro
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee.,Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Terry Fei Fan Ng
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Cara C Burns
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Everardo Vega
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
34
|
Zhou NA, Fagnant-Sperati CS, Komen E, Mwangi B, Mukubi J, Nyangao J, Hassan J, Chepkurui A, Maina C, van Zyl WB, Matsapola PN, Wolfaardt M, Ngwana FB, Jeffries-Miles S, Coulliette-Salmond A, Peñaranda S, Shirai JH, Kossik AL, Beck NK, Wilmouth R, Boyle DS, Burns CC, Taylor MB, Borus P, Meschke JS. Feasibility of the Bag-Mediated Filtration System for Environmental Surveillance of Poliovirus in Kenya. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:35-47. [PMID: 31679104 PMCID: PMC7052051 DOI: 10.1007/s12560-019-09412-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/15/2019] [Indexed: 05/24/2023]
Abstract
The bag-mediated filtration system (BMFS) was developed to facilitate poliovirus (PV) environmental surveillance, a supplement to acute flaccid paralysis surveillance in PV eradication efforts. From April to September 2015, environmental samples were collected from four sites in Nairobi, Kenya, and processed using two collection/concentration methodologies: BMFS (> 3 L filtered) and grab sample (1 L collected; 0.5 L concentrated) with two-phase separation. BMFS and two-phase samples were analyzed for PV by the standard World Health Organization poliovirus isolation algorithm followed by intratypic differentiation. BMFS samples were also analyzed by a cell culture independent real-time reverse transcription polymerase chain reaction (rRT-PCR) and an alternative cell culture method (integrated cell culture-rRT-PCR with PLC/PRF/5, L20B, and BGM cell lines). Sabin polioviruses were detected in a majority of samples using BMFS (37/42) and two-phase separation (32/42). There was statistically more frequent detection of Sabin-like PV type 3 in samples concentrated with BMFS (22/42) than by two-phase separation (14/42, p = 0.035), possibly due to greater effective volume assayed (870 mL vs. 150 mL). Despite this effective volume assayed, there was no statistical difference in Sabin-like PV type 1 and Sabin-like PV type 2 detection between these methods (9/42 vs. 8/42, p = 0.80 and 27/42 vs. 32/42, p = 0.18, respectively). This study demonstrated that BMFS can be used for PV environmental surveillance and established a feasible study design for future research.
Collapse
Affiliation(s)
- Nicolette A Zhou
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Christine S Fagnant-Sperati
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Evans Komen
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - Benlick Mwangi
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - Johnstone Mukubi
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - James Nyangao
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - Joanne Hassan
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - Agnes Chepkurui
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - Caroline Maina
- Kenya Ministry of Health, Afya House, Cathedral Road, P.O. Box 30016, Nairobi, 00100, Kenya
| | - Walda B van Zyl
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Peter N Matsapola
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Marianne Wolfaardt
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Fhatuwani B Ngwana
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Stacey Jeffries-Miles
- IHRC, Inc. (contracting agency to the Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA 30329, USA), 2 Ravinia Drive, Suite 1200, Atlanta, GA, 30329, USA
| | - Angela Coulliette-Salmond
- Division of Viral Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop H17-6, Atlanta, GA, 30329, USA
| | - Silvia Peñaranda
- Division of Viral Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop H17-6, Atlanta, GA, 30329, USA
| | - Jeffry H Shirai
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Alexandra L Kossik
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Nicola K Beck
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Robyn Wilmouth
- PATH, 2201 Westlake Ave, Suite 200, Seattle, WA, 98121, USA
| | - David S Boyle
- PATH, 2201 Westlake Ave, Suite 200, Seattle, WA, 98121, USA
| | - Cara C Burns
- Division of Viral Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop H17-6, Atlanta, GA, 30329, USA
| | - Maureen B Taylor
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Peter Borus
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - John Scott Meschke
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA.
| |
Collapse
|
35
|
Estívariz CF, Pérez-Sánchez EE, Bahena A, Burns CC, Gary HE, García-Lozano H, Rey-Benito G, Peñaranda S, Castillo-Montufar KV, Nava-Acosta RS, Meschke JS, Oberste MS, Lopez-Martínez I, Díaz-Quiñonez JA. Field Performance of Two Methods for Detection of Poliovirus in Wastewater Samples, Mexico 2016-2017. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:364-373. [PMID: 31571037 PMCID: PMC10389298 DOI: 10.1007/s12560-019-09399-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
To enhance our ability to monitor poliovirus circulation and certify eradication, we evaluated the performance of the bag-mediated filtration system (BMFS) against the two-phase separation (TPS) method for concentrating wastewater samples for poliovirus detection. Sequential samples were collected at two sites in Mexico; one L was collected by grab and ~ 5 L were collected and filtered in situ with the BMFS. In the laboratory, 500 mL collected by grab were concentrated using TPS and the sample contained in the filter of the BMFS was eluted without secondary concentration. Concentrates were tested for the presence of poliovirus and non-poliovirus enterovirus (NPEV) using Global Poliovirus Laboratory Network standard procedures. Between February 16, 2016, and April 18, 2017, 125 pairs of samples were obtained. Collectors spent an average (± standard deviation) of 4.3 ± 2.2 min collecting the TPS sample versus 73.5 ± 30.5 min collecting and filtering the BMFS sample. Laboratory processing required an estimated 5 h for concentration by TPS and 3.5 h for elution. Sabin 1 poliovirus was detected in 37 [30%] samples with the TPS versus 24 [19%] samples with the BMFS (McNemar's mid p value = 0.004). Sabin 3 poliovirus was detected in 59 [47%] versus 49 (39%) samples (p = 0.043), and NPEV was detected in 67 [54%] versus 40 [32%] samples (p < 0.001). The BMFS method without secondary concentration did not perform as well as the TPS method for detecting Sabin poliovirus and NPEV. Further studies are needed to guide the selection of cost-effective environmental surveillance methods for the polio endgame.
Collapse
Affiliation(s)
- Concepción F Estívariz
- Global Immunization Division, Global Health Center, Centers for Control Disease and Prevention, 1600 Clifton Rd NE, Atlanta, GA, 30329, USA.
| | - Elda E Pérez-Sánchez
- Instituto de Diagnóstico y Referencia Epidemiológico, Francisco de P. Miranda 177, Lomas de Plateros-Alvaro Obregon, Ciudad De México, 01480, Mexico
| | - Anita Bahena
- Organización Panamericana de la Salud, Ciudad de México, Montes Urales 440, 2nd floor, Col. Lomas de Chapultepec, 11000, Ciudad De Mexico, Mexico
| | - Cara C Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Howard E Gary
- Global Immunization Division, Global Health Center, Centers for Control Disease and Prevention, 1600 Clifton Rd NE, Atlanta, GA, 30329, USA
| | - Herlinda García-Lozano
- Instituto de Diagnóstico y Referencia Epidemiológico, Francisco de P. Miranda 177, Lomas de Plateros-Alvaro Obregon, Ciudad De México, 01480, Mexico
| | - Gloria Rey-Benito
- Immunization Unit, Pan American Health Organization, 525 23rd Street NW, Washington, DC, 20037, USA
| | - Silvia Peñaranda
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Katy V Castillo-Montufar
- Organización Panamericana de la Salud, Ciudad de México, Montes Urales 440, 2nd floor, Col. Lomas de Chapultepec, 11000, Ciudad De Mexico, Mexico
| | - Raúl S Nava-Acosta
- Organización Panamericana de la Salud, Ciudad de México, Montes Urales 440, 2nd floor, Col. Lomas de Chapultepec, 11000, Ciudad De Mexico, Mexico
| | - John Scott Meschke
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, 98195, USA
| | - M Steven Oberste
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Irma Lopez-Martínez
- Instituto de Diagnóstico y Referencia Epidemiológico, Francisco de P. Miranda 177, Lomas de Plateros-Alvaro Obregon, Ciudad De México, 01480, Mexico
| | - José A Díaz-Quiñonez
- Instituto de Diagnóstico y Referencia Epidemiológico, Francisco de P. Miranda 177, Lomas de Plateros-Alvaro Obregon, Ciudad De México, 01480, Mexico
- División de Estudios de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad De México, Mexico
| |
Collapse
|
36
|
Sadeuh-Mba SA, Joffret ML, Mazitchi A, Endegue-Zanga MC, Njouom R, Delpeyroux F, Gouandjika-Vasilache I, Bessaud M. Genetic and phenotypic characterization of recently discovered enterovirus D type 111. PLoS Negl Trop Dis 2019; 13:e0007797. [PMID: 31622358 PMCID: PMC6818792 DOI: 10.1371/journal.pntd.0007797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 10/29/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
Members of the species Enterovirus D (EV-D) remain poorly studied. The two first EV-D types (EV-D68 and EV-D70) have regularly caused outbreaks in humans since their discovery five decades ago but have been neglected until the recent occurrence of severe respiratory diseases due to EV-D68. The three other known EV-D types (EV-D94, EV-D111 and EV-D120) were discovered in the 2000s-2010s in Africa and have never been observed elsewhere. One strain of EV-D111 and all known EV-D120s were detected in stool samples of wild non-human primates, suggesting that these viruses could be zoonotic viruses. To date, EV-D111s are only known through partial genetic sequences of the few strains that have been identified so far. In an attempt to bring new pieces to the puzzle, we genetically characterized four EV-D111 strains (among the seven that have been reported until now). We observed that the EV-D111 strains from human samples and the unique simian EV-D111 strain were not phylogenetically distinct, thus suggesting a recent zoonotic transmission. We also discovered evidences of probable intertypic genetic recombination events between EV-D111s and EV-D94s. As recombination can only happen in co-infected cells, this suggests that EV-D94s and EV-D111s share common replication sites in the infected hosts. These sites could be located in the gut since the phenotypic analysis we performed showed that, contrary to EV-D68s and like EV-D94s, EV-D111s are resistant to acid pHs. We also found that EV-D111s induce strong cytopathic effects on L20B cells, a cell line routinely used to specifically detect polioviruses. An active circulation of EV-D111s among humans could then induce a high number of false-positive detection of polioviruses, which could be particularly problematic in Central Africa, where EV-D111 circulates and which is a key region for poliovirus eradication.
Collapse
Affiliation(s)
| | - Marie-Line Joffret
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| | - Arthur Mazitchi
- Enteric Viruses and Measles Laboratory—Institut Pasteur de Bangui—Bangui, Central African Republic
| | | | - Richard Njouom
- Virology Service—Centre Pasteur of Cameroon–Yaounde, Cameroon
| | - Francis Delpeyroux
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| | | | - Maël Bessaud
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| |
Collapse
|
37
|
Environmental Surveillance for Poliovirus and Other Enteroviruses: Long-Term Experience in Moscow, Russian Federation, 2004⁻2017. Viruses 2019; 11:v11050424. [PMID: 31072058 PMCID: PMC6563241 DOI: 10.3390/v11050424] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/24/2019] [Accepted: 05/07/2019] [Indexed: 11/17/2022] Open
Abstract
Polio and enterovirus surveillance may include a number of approaches, including incidence-based observation, a sentinel physician system, environmental monitoring and acute flaccid paralysis (AFP) surveillance. The relative value of these methods is widely debated. Here we summarized the results of 14 years of environmental surveillance at four sewage treatment plants of various capacities in Moscow, Russia. A total of 5450 samples were screened, yielding 1089 (20.0%) positive samples. There were 1168 viruses isolated including types 1–3 polioviruses (43%) and 29 different types of non-polio enteroviruses (51%). Despite using the same methodology, a significant variation in detection rates was observed between the treatment plants and within the same facility over time. The number of poliovirus isolates obtained from sewage was roughly 60 times higher than from AFP surveillance over the same time frame. All except one poliovirus isolate were Sabin-like polioviruses. The one isolate was vaccine-derived poliovirus type 2 with 17.6% difference from the corresponding Sabin strain, suggesting long-term circulation outside the scope of the surveillance. For some non-polio enterovirus types (e.g., Echovirus 6) there was a good correlation between detection in sewage and incidence of clinical cases in a given year, while other types (e.g., Echovirus 30) could cause large outbreaks and be almost absent in sewage samples. Therefore, sewage monitoring can be an important part of enterovirus surveillance, but cannot substitute other approaches.
Collapse
|
38
|
Draft Genome Sequence of a Bovine Enterovirus Isolate Recovered from Sewage in Nigeria. Microbiol Resour Announc 2018; 7:MRA01466-18. [PMID: 30574588 PMCID: PMC6298555 DOI: 10.1128/mra.01466-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022] Open
Abstract
We describe the draft genome of a bovine enterovirus (EV) isolate recovered from sewage in Nigeria. This isolate replicates on both RD and L20B cell lines but is negative for all EV screens in use by the Global Poliovirus Eradication Initiative (GPEI). It contains 7,368 nucleotides (nt) with 50.2% G+C content and an open reading frame (ORF) with 6,525 nt (2,174 amino acids).
Collapse
|
39
|
Epidemiology of the silent polio outbreak in Rahat, Israel, based on modeling of environmental surveillance data. Proc Natl Acad Sci U S A 2018; 115:E10625-E10633. [PMID: 30337479 DOI: 10.1073/pnas.1808798115] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Israel experienced an outbreak of wild poliovirus type 1 (WPV1) in 2013-2014, detected through environmental surveillance of the sewage system. No cases of acute flaccid paralysis were reported, and the epidemic subsided after a bivalent oral polio vaccination (bOPV) campaign. As we approach global eradication, polio will increasingly be detected only through environmental surveillance. We developed a framework to convert quantitative polymerase chain reaction (qPCR) cycle threshold data into scaled WPV1 and OPV1 concentrations for inference within a deterministic, compartmental infectious disease transmission model. We used this approach to estimate the epidemic curve and transmission dynamics, as well as assess alternate vaccination scenarios. Our analysis estimates the outbreak peaked in late June, much earlier than previous estimates derived from analysis of stool samples, although the exact epidemic trajectory remains uncertain. We estimate the basic reproduction number was 1.62 (95% CI 1.04-2.02). Model estimates indicate that 59% (95% CI 9-77%) of susceptible individuals (primarily children under 10 years old) were infected with WPV1 over a little more than six months, mostly before the vaccination campaign onset, and that the vaccination campaign averted 10% (95% CI 1-24%) of WPV1 infections. As we approach global polio eradication, environmental monitoring with qPCR can be used as a highly sensitive method to enhance disease surveillance. Our analytic approach brings public health relevance to environmental data that, if systematically collected, can guide eradication efforts.
Collapse
|
40
|
Kew O, Pallansch M. Breaking the Last Chains of Poliovirus Transmission: Progress and Challenges in Global Polio Eradication. Annu Rev Virol 2018; 5:427-451. [PMID: 30001183 DOI: 10.1146/annurev-virology-101416-041749] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the launch of the Global Polio Eradication Initiative (GPEI), paralytic cases associated with wild poliovirus (WPV) have fallen from ∼350,000 in 1988 to 22 in 2017. WPV type 2 (WPV2) was last detected in 1999, WPV3 in 2012, and WPV1 appeared to be localized to Pakistan and Afghanistan in 2017. Through continuous refinement, the GPEI has overcome operational and biological challenges far more complex and daunting than originally envisioned. Operational challenges had led to sustained WPV endemicity in core reservoirs and widespread dissemination to polio-free countries. The biological challenges derive from intrinsic limitations to the oral poliovirus vaccine: ( a) reduced immunogenicity in high-risk settings and ( b) genetic instability, leading to repeated outbreaks of circulating vaccine-derived polioviruses and prolonged infections in individuals with primary immunodeficiencies. As polio eradication enters its multifaceted endgame, the GPEI, with its technical, operational, and social innovations, stands as the preeminent model for control of vaccine-preventable diseases worldwide.
Collapse
Affiliation(s)
- Olen Kew
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA; ,
| | - Mark Pallansch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA; ,
| |
Collapse
|