1
|
Faizah AN, Kobayashi D, Matsumura R, Watanabe M, Higa Y, Sawabe K, Isawa H. Blood meal source identification and RNA virome determination in Japanese encephalitis virus vectors collected in Ishikawa Prefecture, Japan, show distinct avian/mammalian host preference. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:620-628. [PMID: 37027507 DOI: 10.1093/jme/tjad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 05/13/2023]
Abstract
In Asia, Culex mosquitoes are of particular interest because of their role in maintaining endemic mosquito-borne viral diseases, including the Japanese encephalitis virus (JEV). Nonetheless, host-feeding preferences, along with naturally infecting RNA viruses in certain Culex species, remain understudied. In this study, selected blood-fed mosquitoes were processed for avian and mammalian blood meal source identification. Concurrently, cell culture propagation and high-throughput sequencing (HTS) approaches were used to determine the RNA virome of Culex mosquitoes collected in Ishikawa Prefecture, Japan. The identification of blood meal sources from wild-caught Culex spp. revealed that Culex (Culex) tritaeniorhynchus Giles, 1901, has a robust preference toward wild boar (62%, 26/42), followed by heron (21%, 9/42). The other two species, Culex (Oculeomyia) bitaeniorhynchus Giles, 1901, and Culex (Culex) orientalis Edwards, 1921, showed a distinct preference for avian species, including migratory birds. From the HTS results, 34 virus sequences were detected, four of which were newly identified virus sequences of unclassified Aspiviridae, Qinviridae, Iflaviridae, and Picornaviridae. The absence of observable cytopathic effects in mammalian cells and phylogenetic analysis suggested that all identified virus sequences were insect-specific. Further investigations involving other mosquito populations collected in different areas are warranted to explore previously unknown vertebrate hosts that may be linked to JEV dispersal in nature.
Collapse
Affiliation(s)
- Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ryo Matsumura
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mamoru Watanabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
2
|
Olendraite I, Brown K, Firth AE. Identification of RNA Virus-Derived RdRp Sequences in Publicly Available Transcriptomic Data Sets. Mol Biol Evol 2023; 40:msad060. [PMID: 37014783 PMCID: PMC10101049 DOI: 10.1093/molbev/msad060] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/15/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
RNA viruses are abundant and highly diverse and infect all or most eukaryotic organisms. However, only a tiny fraction of the number and diversity of RNA virus species have been catalogued. To cost-effectively expand the diversity of known RNA virus sequences, we mined publicly available transcriptomic data sets. We developed 77 family-level Hidden Markov Model profiles for the viral RNA-dependent RNA polymerase (RdRp)-the only universal "hallmark" gene of RNA viruses. By using these to search the National Center for Biotechnology Information Transcriptome Shotgun Assembly database, we identified 5,867 contigs encoding RNA virus RdRps or fragments thereof and analyzed their diversity, taxonomic classification, phylogeny, and host associations. Our study expands the known diversity of RNA viruses, and the 77 curated RdRp Profile Hidden Markov Models provide a useful resource for the virus discovery community.
Collapse
Affiliation(s)
- Ingrida Olendraite
- Division of Virology, Department of Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Division of Virology, Department of Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E Firth
- Division of Virology, Department of Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Hirai Y, Horie M. Nyamanini Virus Nucleoprotein and Phosphoprotein Organize Viral Inclusion Bodies That Associate with Host Biomolecular Condensates in the Nucleus. Int J Mol Sci 2023; 24:6550. [PMID: 37047525 PMCID: PMC10095084 DOI: 10.3390/ijms24076550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Many mononegaviruses form inclusion bodies (IBs) in infected cells. However, little is known about nuclear IBs formed by mononegaviruses, since only a few lineages of animal-derived mononegaviruses replicate in the nucleus. In this study, we characterized the IBs formed by Nyamanini virus (NYMV), a unique tick-borne mononegavirus undergoing replication in the nucleus. We discovered that NYMV forms IBs, consisting of condensates and puncta of various sizes and morphologies, in the host nucleus. Likewise, we found that the expressions of NYMV nucleoprotein (N) and phosphoprotein (P) alone induce the formation of condensates and puncta in the nucleus, respectively, even though their morphologies are somewhat different from the IBs observed in the actual NYMV-infected cells. In addition, IB-like structures can be reconstructed by co-expressions of NYMV N and P, and localization analyses using a series of truncated mutants of P revealed that the C-terminal 27 amino acid residues of P are important for recruiting P to the condensates formed by N. Furthermore, we found that nuclear speckles, cellular biomolecular condensates, are reorganized and recruited to the IB-like structures formed by the co-expressions of N and P, as well as IBs formed in NYMV-infected cells. These features are unique among mononegaviruses, and our study has contributed to elucidating the replication mechanisms of nuclear-replicating mononegaviruses and the virus-host interactions.
Collapse
Affiliation(s)
- Yuya Hirai
- Department of Biology, Osaka Dental University, 8-1 Kuzuha Hanazono-Cho, Hirakata 573-1121, Osaka, Japan
| | - Masayuki Horie
- Laboratory of Veterinary Microbiology, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-Oraikita, Izumisano 598-8531, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Izumisano 598-8531, Osaka, Japan
| |
Collapse
|
4
|
Palatini U, Alfano N, Carballar RL, Chen XG, Delatte H, Bonizzoni M. Virome and nrEVEome diversity of Aedes albopictus mosquitoes from La Reunion Island and China. Virol J 2022; 19:190. [DOI: 10.1186/s12985-022-01918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Aedes albopictus is a public health threat for its worldwide spread and ability to transmit arboviruses. Understanding mechanisms of mosquito immunity can provide new tools to control arbovirus spread. The genomes of Aedes mosquitoes contain hundreds of nonretroviral endogenous viral elements (nrEVEs), which are enriched in piRNA clusters and produce piRNAs, with the potential to target cognate viruses. Recently, one nrEVE was shown to limit cognate viral infection through nrEVE-derived piRNAs. These findings suggest that nrEVEs constitute an archive of past viral infection and that the landscape of viral integrations may be variable across populations depending on their viral exposure.
Methods
We used bioinformatics and molecular approaches to identify known and novel (i.e. absent in the reference genome) viral integrations in the genome of wild collected Aedes albopictus mosquitoes and characterize their virome.
Results
We showed that the landscape of viral integrations is dynamic with seven novel viral integrations being characterized, but does not correlate with the virome, which includes both viral species known and unknown to infect mosquitoes. However, the small RNA coverage profile of nrEVEs and the viral genomic contigs we identified confirmed an interaction among these elements and the piRNA and siRNA pathways in mosquitoes.
Conclusions
Mosquitoes nrEVEs have been recently described as a new form of heritable, sequence-specific mechanism of antiviral immunity. Our results contribute to understanding the dynamic distribution of nrEVEs in the genomes of wild Ae. albopictus and their interaction with mosquito viruses.
Collapse
|
5
|
Kobayashi D, Kuwata R, Kimura T, Faizah AN, Azerigyik FA, Higa Y, Hayashi T, Sawabe K, Isawa H. Detection of Japanese Encephalitis Virus RNA in Host-Questing Ticks in Japan, 2019-2020. Am J Trop Med Hyg 2022; 106:tpmd210700. [PMID: 35405649 PMCID: PMC9209924 DOI: 10.4269/ajtmh.21-0700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/15/2021] [Indexed: 11/07/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne virus, causes severe clinical symptoms in humans in the Asian-Pacific region, where it circulates in a primary transmission cycle among Culex tritaeniorhynchus mosquitoes, domestic swine (Sus scrofa domesticus), and wading birds. We report here an anomalous result that mosquito-borne JEV was detected in unfed host-questing ticks collected from the field in Japan. JEV genomic RNA was detected in four pools of Haemaphysalis flava nymphs collected in November and December 2019, and March 2020, when Cx. tritaeniorhynchus adults were not presumed to be active. Moreover, JEV antigenomic RNA was detected in some JEV-positive tick samples, suggesting virus replication in ticks. However, taken together with no infectious virus isolated, the possibility that the antigenomic RNA was derived from the undigested bloodmeal source in ticks cannot be ruled out. Thus, the role of the ticks as a natural reservoir for JEV remains to be confirmed.
Collapse
Affiliation(s)
- Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryusei Kuwata
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Toshiya Kimura
- Meat Inspection Center of Ehime Prefecture, Ehime, Japan
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshihiko Hayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
6
|
Kuhn JH, Adkins S, Agwanda BR, Al Kubrusli R, Alkhovsky SV, Amarasinghe GK, Avšič-Županc T, Ayllón MA, Bahl J, Balkema-Buschmann A, Ballinger MJ, Basler CF, Bavari S, Beer M, Bejerman N, Bennett AJ, Bente DA, Bergeron É, Bird BH, Blair CD, Blasdell KR, Blystad DR, Bojko J, Borth WB, Bradfute S, Breyta R, Briese T, Brown PA, Brown JK, Buchholz UJ, Buchmeier MJ, Bukreyev A, Burt F, Büttner C, Calisher CH, Cao M, Casas I, Chandran K, Charrel RN, Cheng Q, Chiaki Y, Chiapello M, Choi IR, Ciuffo M, Clegg JCS, Crozier I, Dal Bó E, de la Torre JC, de Lamballerie X, de Swart RL, Debat H, Dheilly NM, Di Cicco E, Di Paola N, Di Serio F, Dietzgen RG, Digiaro M, Dolnik O, Drebot MA, Drexler JF, Dundon WG, Duprex WP, Dürrwald R, Dye JM, Easton AJ, Ebihara H, Elbeaino T, Ergünay K, Ferguson HW, Fooks AR, Forgia M, Formenty PBH, Fránová J, Freitas-Astúa J, Fu J, Fürl S, Gago-Zachert S, Gāo GF, García ML, García-Sastre A, Garrison AR, Gaskin T, Gonzalez JPJ, Griffiths A, Goldberg TL, Groschup MH, Günther S, Hall RA, Hammond J, Han T, Hepojoki J, Hewson R, Hong J, Hong N, Hongo S, Horie M, Hu JS, Hu T, Hughes HR, Hüttner F, Hyndman TH, Ilyas M, Jalkanen R, Jiāng D, Jonson GB, Junglen S, Kadono F, Kaukinen KH, Kawate M, Klempa B, Klingström J, Kobinger G, Koloniuk I, Kondō H, Koonin EV, Krupovic M, Kubota K, Kurath G, Laenen L, Lambert AJ, Langevin SL, Lee B, Lefkowitz EJ, Leroy EM, Li S, Li L, Lǐ J, Liu H, Lukashevich IS, Maes P, de Souza WM, Marklewitz M, Marshall SH, Marzano SYL, Massart S, McCauley JW, Melzer M, Mielke-Ehret N, Miller KM, Ming TJ, Mirazimi A, Mordecai GJ, Mühlbach HP, Mühlberger E, Naidu R, Natsuaki T, Navarro JA, Netesov SV, Neumann G, Nowotny N, Nunes MRT, Olmedo-Velarde A, Palacios G, Pallás V, Pályi B, Papa A, Paraskevopoulou S, Park AC, Parrish CR, Patterson DA, Pauvolid-Corrêa A, Pawęska JT, Payne S, Peracchio C, Pérez DR, Postler TS, Qi L, Radoshitzky SR, Resende RO, Reyes CA, Rima BK, Luna GR, Romanowski V, Rota P, Rubbenstroth D, Rubino L, Runstadler JA, Sabanadzovic S, Sall AA, Salvato MS, Sang R, Sasaya T, Schulze AD, Schwemmle M, Shi M, Shí X, Shí Z, Shimomoto Y, Shirako Y, Siddell SG, Simmonds P, Sironi M, Smagghe G, Smither S, Song JW, Spann K, Spengler JR, Stenglein MD, Stone DM, Sugano J, Suttle CA, Tabata A, Takada A, Takeuchi S, Tchouassi DP, Teffer A, Tesh RB, Thornburg NJ, Tomitaka Y, Tomonaga K, Tordo N, Torto B, Towner JS, Tsuda S, Tu C, Turina M, Tzanetakis IE, Uchida J, Usugi T, Vaira AM, Vallino M, van den Hoogen B, Varsani A, Vasilakis N, Verbeek M, von Bargen S, Wada J, Wahl V, Walker PJ, Wang LF, Wang G, Wang Y, Wang Y, Waqas M, Wèi T, Wen S, Whitfield AE, Williams JV, Wolf YI, Wu J, Xu L, Yanagisawa H, Yang C, Yang Z, Zerbini FM, Zhai L, Zhang YZ, Zhang S, Zhang J, Zhang Z, Zhou X. 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch Virol 2021; 166:3513-3566. [PMID: 34463877 PMCID: PMC8627462 DOI: 10.1007/s00705-021-05143-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.
Collapse
Affiliation(s)
- Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA.
| | - Scott Adkins
- United States Department of Agriculture, Agricultural Research Service, US Horticultural Research Laboratory, Fort Pierce, FL, USA
| | - Bernard R Agwanda
- Zoology Department, National Museums of Kenya, Nairobi, Kenya
- Jomo Kenyatta University of Agriculture & Technology, Nairobi, Kenya
| | - Rim Al Kubrusli
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sergey V Alkhovsky
- D.I. Ivanovsky Institute of Virology of N.F. Gamaleya National Center on Epidemiology and Microbiology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Justin Bahl
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, Department of Epidemiology and Biostatistics, Insitute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Matthew J Ballinger
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sina Bavari
- Edge BioInnovation Consulting and Mgt, Frederick, MD, USA
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | - Andrew J Bennett
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD, USA
| | | | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brian H Bird
- School of Veterinary Medicine, One Health Institute, University of California, Davis, Davis, CA, USA
| | - Carol D Blair
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kim R Blasdell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | | | - Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK
| | | | - Steven Bradfute
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rachel Breyta
- University of Washington, Seattle, WA, USA
- US Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - Thomas Briese
- Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Paul A Brown
- Laboratory of Ploufragan-Plouzané-Niort, French Agency for Food, Environmental and Occupational Heath Safety ANSES, Ploufragan, France
| | - Judith K Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Buchmeier
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Alexander Bukreyev
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Felicity Burt
- Division of Virology, National Health Laboratory Service and Division of Virology, University of the Free State, Bloemfontein, Republic of South Africa
| | - Carmen Büttner
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, People's Republic of China
| | - Inmaculada Casas
- Respiratory Virus and Influenza Unit, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rémi N Charrel
- Unité des Virus Emergents (Aix-Marseille Univ, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France
| | - Qi Cheng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuya Chiaki
- Grape and Persimmon Research Station, Institute of Fruit tree and Tea Science, NARO, Higashihiroshima, Hiroshima, Japan
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Strada delle Cacce 73, 10135, Turin, Italy
| | - Il-Ryong Choi
- Plant Breeding Genetics and Biotechnology Division and International Rice Research Institute, Los Baños, Philippines
| | - Marina Ciuffo
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Strada delle Cacce 73, 10135, Turin, Italy
| | | | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Elena Dal Bó
- CIDEFI, Facultad de Ciencias Agrarias y Forestales, Universidad de La Plata, La Plata, Argentina
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology IMM-6, The Scripps Research Institute, La Jolla, CA, USA
| | - Xavier de Lamballerie
- Unité des Virus Emergents (Aix-Marseille Univ, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France
| | - Rik L de Swart
- Department Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Humberto Debat
- Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas (UFYMA-CONICET), Córdoba, Argentina
| | - Nolwenn M Dheilly
- UMR 1161 Virology ANSES/INRAE/ENVA, ANSES Animal Health Laboratory, 94704, Maisons-Alfort, France
| | | | - Nicholas Di Paola
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Michele Digiaro
- CIHEAM, Istituto Agronomico Mediterraneo di Bari, Valenzano, Italy
| | - Olga Dolnik
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Michael A Drebot
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - J Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität Berlin, Berlin, Germany
| | - William G Dundon
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - W Paul Duprex
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Andrew J Easton
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Koray Ergünay
- Virology Unit, Department of Medical Microbiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Hugh W Ferguson
- School of Veterinary Medicine, St. George's University, True Blue, Grenada
| | | | - Marco Forgia
- Institute for sustainable plant protection, CNR, Turin, Italy
| | | | - Jana Fránová
- Plant Virology Department, Institute of Plant Molecular Biology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| | | | - Jingjing Fu
- College of Life Science and Engineering, Shenyang University, Shenyang, Liaoning, People's Republic of China
| | - Stephanie Fürl
- Albrecht Daniel Thaer-Institute for Crop and Animal Sciences, Division Phytomedicine, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Selma Gago-Zachert
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - George Fú Gāo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - María Laura García
- nstituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, I, CONICET UNLP, La Plata, Argentina
| | | | - Aura R Garrison
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Thomas Gaskin
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Landwirtschaft und Flurneuordnung, Landesamt für ländliche Entwicklung, Frankfurt (Oder), Germany
| | - Jean-Paul J Gonzalez
- Department of Microbiology and Immunology, Division of Biomedical Graduate Research Organization, School of Medicine, Georgetown University, Washington, DC, 20057, USA
- Centaurus Biotechnologies, CTP, Manassas, VA, USA
| | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Stephan Günther
- WHO Collaborating Centre for Arboviruses and Hemorrhagic Fever Reference and Research, Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - John Hammond
- Floral and Nursery Plants Research Unit, United States Department of Agriculture, Agricultural Research Service, USNA, Beltsville, MD, USA
| | - Tong Han
- College of Life Science and Engineering, Shenyang University, Shenyang, Liaoning, People's Republic of China
| | - Jussi Hepojoki
- Department of Virology, University of Helsinki, Medicum, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Hewson
- London School of Hygeine and Tropical Medicine, London, UK
| | - Jiang Hong
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Ni Hong
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masayuki Horie
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
- Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | - John S Hu
- University of Hawaii, Honolulu, HI, USA
| | - Tao Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Holly R Hughes
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Florian Hüttner
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Timothy H Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, WA, Australia
| | - M Ilyas
- Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | | | - Dàohóng Jiāng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Gilda B Jonson
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Centre for Infection Research, Berlin, Germany
| | - Fujio Kadono
- Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry, Hosei University, Koganei, Tokyo, Japan
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | | | - Boris Klempa
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Gary Kobinger
- Department of Microbiology, Immunology and Infectious Diseases, Université Laval, Quebec City, Canada
| | - Igor Koloniuk
- Plant Virology Department, Institute of Plant Molecular Biology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| | - Hideki Kondō
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Kenji Kubota
- Central Region Agricultural Research Center, NARO, Tsukuba, Ibaraki, Japan
| | - Gael Kurath
- US Geological Survey Western Fisheries Research Center, Seattle, WA, USA
| | - Lies Laenen
- KU Leuven, Rega Institute, Zoonotic Infectious Diseases unit, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Amy J Lambert
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | | | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Eric M Leroy
- MIVEGEC (IRD-CNRS-Montpellier university) Unit, French National Research Institute for Sustainable Development (IRD), Montpellier, France
| | - Shaorong Li
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, V9T 6N7, Canada
| | - Longhui Li
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jiànróng Lǐ
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Huazhen Liu
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Piet Maes
- KU Leuven, Rega Institute, Zoonotic Infectious Diseases unit, Leuven, Belgium
| | | | - Marco Marklewitz
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Sergio H Marshall
- Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile
| | - Shin-Yi L Marzano
- United States Department of Agriculture, Agricultural Research Service , Washington, USA
| | - Sebastien Massart
- Gembloux Agro-Bio Tech, TERRA, Plant Pathology Laboratory, Liège University, Liege, Belgium
| | - John W McCauley
- Worldwide Influenza Centre, Francis Crick Institute, London, UK
| | - Michael Melzer
- Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Tobi J Ming
- Molecular Genetics, Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, Canada
| | | | - Gideon J Mordecai
- Department of Medicine, Univeristy of British Columbia, Vancouver, Canada
| | | | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Rayapati Naidu
- Department of Plant Pathology, Irrigated Agricultural Research and Extension Center, Washington State University, Prosser, WA, USA
| | - Tomohide Natsuaki
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - José A Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Sergey V Netesov
- Novosibirsk State University, Novosibirsk, Novosibirsk Oblast, Russia
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | | | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Bernadett Pályi
- National Biosafety Laboratory, National Public Health Center, Budapest, Hungary
| | - Anna Papa
- National Reference Centre for Arboviruses and Haemorrhagic Fever Viruses, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Paraskevopoulou
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Adam C Park
- University of Hawaii, Honolulu, HI, USA
- Hawaii Department of Agriculture, Honolulu, HI, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - David A Patterson
- Fisheries and Oceans Canada, Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - Alex Pauvolid-Corrêa
- Department of Veterinary Integrated Biosciences and Department of Entomology, Texas A&M University, College Station, USA
- Laboratory of Respiratory Viruses and Measles, Fiocruz, Rio de Janeiro, Brazil
| | - Janusz T Pawęska
- Center for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham-Johannesburg, Gauteng, South Africa
| | - Susan Payne
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Carlotta Peracchio
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Strada delle Cacce 73, 10135, Turin, Italy
| | - Daniel R Pérez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Thomas S Postler
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Liying Qi
- Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, People's Republic of China
| | | | - Renato O Resende
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Carina A Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Bertus K Rima
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Gabriel Robles Luna
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular, Centro Cientifico Technológico-La Plata, Consejo Nacional de Investigaciones Científico Tecnológico-Universidad Nacional de La Plata, La Plata, Argentina
| | - Paul Rota
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Luisa Rubino
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| | - Jonathan A Runstadler
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA, 01536, USA
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | | | - Maria S Salvato
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MA, USA
| | - Rosemary Sang
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Takahide Sasaya
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Angela D Schulze
- Molecular Genetics Lab, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Martin Schwemmle
- Faculty of Medicine, University Medical Center-University Freiburg, Freiburg, Germany
| | - Mang Shi
- Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Xiǎohóng Shí
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Zhènglì Shí
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, People's Republic of China
| | | | - Yukio Shirako
- Asian Center for Bioresources and Environmental Sciences, University of Tokyo, Tokyo, Japan
| | - Stuart G Siddell
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Manuela Sironi
- Bioinformatics Unit, Scientific Institute IRCCS "E. Medea", Bosisio Parini, Italy
| | - Guy Smagghe
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Sophie Smither
- CBR Division, DSTL, Porton Down, Salisbury, Wiltshire, UK
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kirsten Spann
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, USA
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - David M Stone
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | | | - Curtis A Suttle
- Departments of Earth, Ocean and Atmospheric Sciences, Microbiology and Immunology, and Botany, and the Institute for Oceans and Fisheries, University of British Columbia, Vancouver, Canada
| | - Amy Tabata
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shigeharu Takeuchi
- Japan Plant Protection Association Kochi Experiment Station, Konan, Kochi, Japan
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Amy Teffer
- Department of Forest Sciences, University of British Columbia, Vancouver, Canada
| | - Robert B Tesh
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Yasuhiro Tomitaka
- Kyushu Okinawa Agricultural Research Center, NARO, Koshi, Kumamoto, Japan
| | - Keizō Tomonaga
- Institute for Frontier Life and Medical Sciences (inFront), , Kyoto University, Kyoto, Japan
| | - Noël Tordo
- Unité des Stratégies Antivirales, WHO Collaborative Centre for Viral Haemorrhagic Fevers and Arboviruses, OIE Reference Laboratory for RVFV & CCHFV, Institut Pasteur, Paris, France
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Institut Pasteur de Guinée, Conakry, Guinea
| | - Shinya Tsuda
- Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry, Hosei University, Koganei, Tokyo, Japan
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People's Republic of China
| | - Massimo Turina
- National Institute of Optics, National Research Council of Italy (INO-CNR), Via Branze 45, 25123Brescia, Italy
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System,, Fayetteville, AR, 72701, USA
| | | | - Tomio Usugi
- Central Region Agricultural Research Center, NARO, Tsukuba, Ibaraki, Japan
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Strada delle Cacce 73, 10135, Turin, Italy
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Strada delle Cacce 73, 10135, Turin, Italy
| | - Bernadette van den Hoogen
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Nikos Vasilakis
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Martin Verbeek
- Wageningen University and Research, Biointeractions and Plant Health, Wageningen, The Netherlands
| | - Susanne von Bargen
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Victoria Wahl
- National Biodefense Analysis and Countermeasures Center, Fort Detrick, Frederick, MD, USA
| | - Peter J Walker
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yanxiang Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Muhammad Waqas
- Key Laboratory of Crop Disease Monitoring and Safety Control in Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Tàiyún Wèi
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Shaohua Wen
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - John V Williams
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jiangxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Lei Xu
- Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, People's Republic of China
| | | | - Caixia Yang
- College of Life Science and Engineering, Shenyang University, Shenyang, Liaoning, People's Republic of China
| | - Zuokun Yang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - F Murilo Zerbini
- Departamento de Fitopatologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Lifeng Zhai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, Hubei , People's Republic of China
| | - Yong-Zhen Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, People's Republic of China
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Song Zhang
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, People's Republic of China
| | - Jinguo Zhang
- National Sand Pear Germplasm Repository in Wuchang, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, Hubei, People's Republic of China
| | - Zhe Zhang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
7
|
Carvalho VL, Long MT. Insect-Specific Viruses: An overview and their relationship to arboviruses of concern to humans and animals. Virology 2021; 557:34-43. [PMID: 33631523 DOI: 10.1016/j.virol.2021.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023]
Abstract
The group of Insect-specific viruses (ISVs) includes viruses apparently restricted to insects based on their inability to replicate in the vertebrates. Increasing numbers of ISVs have been discovered and characterized representing a diverse number of viral families. However, most studies have focused on those ISVs belonging to the family Flaviviridae, which highlights the importance of ISV study from other viral families, which allow a better understanding for the mechanisms of transmission and evolution used for this diverse group of viruses. Some ISVs have shown the potential to modulate arboviruses replication and vector competence of mosquitoes. Based on this, ISVs may be used as an alternative tool for biological control, development of vaccines, and diagnostic platforms for arboviruses. In this review, we provide an update of the general characteristics of ISVs and their interaction with arboviruses that infect vertebrates.
Collapse
Affiliation(s)
- Valéria L Carvalho
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, 1945 SW 16th Ave, Gainesville, FL, 32608, USA; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Rodovia BR-316, Km 7, S/n, Ananindeua, Para, 67030-000, Brazil.
| | - Maureen T Long
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, 1945 SW 16th Ave, Gainesville, FL, 32608, USA.
| |
Collapse
|
8
|
Du J, Li F, Han Y, Fu S, Liu B, Shao N, Su H, Zhang W, Zheng D, Lei W, Dong J, Sun L, He Y, Wang J, Yang F, Wang H, Liang G, Wu Z, Jin Q. Characterization of viromes within mosquito species in China. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1089-1092. [PMID: 31834603 DOI: 10.1007/s11427-019-1583-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/12/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Jiang Du
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Fan Li
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Shihong Fu
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Nan Shao
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, China
| | - Haoxiang Su
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Weijia Zhang
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, China
| | - Dandan Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Wenwen Lei
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Lilian Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ying He
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, China
| | - Jianmin Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Huanyu Wang
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China. .,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, China.
| | - Guodong Liang
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China. .,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, China.
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| |
Collapse
|
9
|
Gao Z, Wu J, Jiang D, Xie J, Cheng J, Lin Y. ORF Ι of Mycovirus SsNSRV-1 is Associated with Debilitating Symptoms of Sclerotinia sclerotiorum. Viruses 2020; 12:E456. [PMID: 32316519 PMCID: PMC7232168 DOI: 10.3390/v12040456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
We previously identified Sclerotinia sclerotiorum negative-stranded virus 1 (SsNSRV-1), the first (-) ssRNA mycovirus, associated with hypovirulence of its fungal host Sclerotinia sclerotiorum. In this study, functional analysis of Open Reading Frame Ι (ORF Ι) of SsNSRV-1 was performed. The integration and expression of ORF Ι led to defects in hyphal tips, vegetative growth, and virulence of the mutant strains of S. sclerotiorum. Further, differentially expressed genes (DEGs) responding to the expression of ORF Ι were identified by transcriptome analysis. In all, 686 DEGs consisted of 267 up-regulated genes and 419 down-regulated genes. DEGs reprogramed by ORF Ι were relevant to secretory proteins, pathogenicity, transcription, transmembrane transport, protein biosynthesis, modification, and metabolism. Alternative splicing was also detected in all mutant strains, but not in hypovirulent strain AH98, which was co-infected by SsNSRV-1 and Sclerotinia sclerotiorum hypovirus 1 (SsHV-1). Thus, the integrity of SsNSRV-1 genome may be necessary to protect viral mRNA from splicing and inactivation by the host. Taken together, the results suggested that protein ORF Ι could regulate the transcription, translation, and modification of host genes in order to facilitate viral proliferation and reduce the virulence of the host. Therefore, ORF Ι may be a potential gene used for the prevention of S. sclerotiorum.
Collapse
Affiliation(s)
- Zhixiao Gao
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.G.); (J.W.); (D.J.); (J.X.); (J.C.)
| | - Junyan Wu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.G.); (J.W.); (D.J.); (J.X.); (J.C.)
| | - Daohong Jiang
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.G.); (J.W.); (D.J.); (J.X.); (J.C.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.G.); (J.W.); (D.J.); (J.X.); (J.C.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiasen Cheng
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.G.); (J.W.); (D.J.); (J.X.); (J.C.)
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.G.); (J.W.); (D.J.); (J.X.); (J.C.)
| |
Collapse
|
10
|
Hameed M, Liu K, Anwar MN, Wahaab A, Li C, Di D, Wang X, Khan S, Xu J, Li B, Nawaz M, Shao D, Qiu Y, Wei J, Ma Z. A viral metagenomic analysis reveals rich viral abundance and diversity in mosquitoes from pig farms. Transbound Emerg Dis 2019; 67:328-343. [PMID: 31512812 DOI: 10.1111/tbed.13355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
Mosquitoes harbour a diversity of viruses and are responsible for several mosquito-borne viral diseases of humans and animals, thereby leading to major public health concerns, and significant economic losses across the globe. Viral metagenomics offers a great opportunity for bulk analysis of viral genomes retrieved directly from environmental samples. In this study, we performed a viral metagenomic analysis of five pools of mosquitoes belonging to Aedes, Anopheles and Culex species, collected from different pig farms in the vicinity of Shanghai, China, to explore the viral community carried by mosquitoes. The resulting metagenomic data revealed that viral community in the mosquitoes was highly diverse and varied in abundance among pig farms, which comprised of more than 48 viral taxonomic families, specific to vertebrates, invertebrates, plants, fungi, bacteria and protozoa. In addition, a considerable number of viral reads were related to viruses that are not classified by host. The read sequences related to animal viruses included parvoviruses, anelloviruses, circoviruses, flavivirus, rhabdovirus and seadornaviruses, which might be taken up by mosquitoes from viremic animal hosts during blood feeding. Notably, sample G1 contained the most abundant sequence related to Banna virus, which is of public health interest because it causes encephalitis in humans. Furthermore, non-classified viruses also shared considerable virus sequences in all the samples, presumably belonging to unexplored virus category. Overall, the present study provides a comprehensive knowledge of diverse viral populations carried by mosquitoes at pig farms, which is a potential source of diseases for mammals including humans and animals. These viral metagenomic data are valuable for assessment of emerging and re-emerging viral epidemics.
Collapse
Affiliation(s)
- Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Chenxi Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Di Di
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Xin Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Sawar Khan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Jinpeng Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Mohsin Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| |
Collapse
|
11
|
Agboli E, Leggewie M, Altinli M, Schnettler E. Mosquito-Specific Viruses-Transmission and Interaction. Viruses 2019; 11:v11090873. [PMID: 31533367 PMCID: PMC6784079 DOI: 10.3390/v11090873] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Mosquito-specific viruses (MSVs) are a subset of insect-specific viruses that are found to infect mosquitoes or mosquito derived cells. There has been an increase in discoveries of novel MSVs in recent years. This has expanded our understanding of viral diversity and evolution but has also sparked questions concerning the transmission of these viruses and interactions with their hosts and its microbiome. In fact, there is already evidence that MSVs interact with the immune system of their host. This is especially interesting, since mosquitoes can be infected with both MSVs and arthropod-borne (arbo) viruses of public health concern. In this review, we give an update on the different MSVs discovered so far and describe current data on their transmission and interaction with the mosquito immune system as well as the effect MSVs could have on an arboviruses-co-infection. Lastly, we discuss potential uses of these viruses, including vector and transmission control.
Collapse
Affiliation(s)
- Eric Agboli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho PMB 31, Ghana.
| | - Mayke Leggewie
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Mine Altinli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Esther Schnettler
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| |
Collapse
|
12
|
Økland AL, Nylund A, Øvergård AC, Skoge RH, Kongshaug H. Genomic characterization, phylogenetic position and in situ localization of a novel putative mononegavirus in Lepeophtheirus salmonis. Arch Virol 2019; 164:675-689. [PMID: 30535526 PMCID: PMC6394706 DOI: 10.1007/s00705-018-04119-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/15/2018] [Indexed: 11/28/2022]
Abstract
The complete genome sequence of a novel mononegavirus, Lepeophtheirus salmonis negative-stranded RNA virus 1 (LsNSRV-1), obtained from a salmonid ectoparasite, Lepeophtheirus salmonis was determined. The viral genome contains five open reading frames encoding three unknown proteins (ORF I, II and III), a putative glycoprotein (G), and a large (L) protein. Phylogenetic analysis placed LsNSRV-1 in the recently established mononegaviral family Artoviridae. LsNSRV-1 showed a prevalence of around 97% and was detected in all L. salmonis developmental stages. Viral genomic and antigenomic RNA was localized to nerve tissue, connective tissue, epithelial cells of the gut, subepidermal tissue, exocrine and cement glands, as well as the testis, vas deferens and spermatophore sac of male L. salmonis and the ovaries and oocytes of females. Viral RNA was detected in both the cytoplasm and the nucleoli of infected cells, and putative nuclear export and localization signals were found within the ORF I, III and L proteins, suggesting nuclear replication of LsNSRV-1. RNA interference (RNAi) was induced twice during development by the introduction of a double-stranded RNA fragment of ORF I, resulting in a transient knockdown of viral RNA. A large variation in the knockdown level was seen in adult males and off springs of knockdown animals, whereas the RNA level was more stable in adult females. Together with the localization of viral RNA within the male spermatophore and female oocytes and the amplification of viral RNA in developing embryos, this suggests that LsNSRV-1 is transmitted both maternally and paternally. Small amounts of viral RNA were detected at the site where chalimi were attached to the skin of Atlantic salmon (Salmo salar). However, as the RNAi-mediated treatment did not result in LsNSRV-1-negative offspring and the virus failed to replicate in the tested fish cell cultures, it is difficult to investigate the influence of secreted LsNSRV-1 on the salmon immune response.
Collapse
Affiliation(s)
- Arnfinn Lodden Økland
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway.
| | - Are Nylund
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Renate Hvidsten Skoge
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| | - Heidi Kongshaug
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgt. 55, Pb. 7803, 5020, Bergen, Norway
| |
Collapse
|
13
|
Splicing-Dependent Subcellular Targeting of Borna Disease Virus Nucleoprotein Isoforms. J Virol 2019; 93:JVI.01621-18. [PMID: 30541858 DOI: 10.1128/jvi.01621-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
Targeting of viral proteins to specific subcellular compartments is a fundamental step for viruses to achieve successful replication in infected cells. Borna disease virus 1 (BoDV-1), a nonsegmented, negative-strand RNA virus, uniquely replicates and persists in the cell nucleus. Here, it is demonstrated that BoDV nucleoprotein (N) transcripts undergo mRNA splicing to generate truncated isoforms. In combination with alternative usage of translation initiation sites, the N gene potentially expresses at least six different isoforms, which exhibit diverse intracellular localizations, including the nucleoplasm, cytoplasm, and endoplasmic reticulum (ER), as well as intranuclear viral replication sites. Interestingly, the ER-targeting signal peptide in N is exposed by removing the intron by mRNA splicing. Furthermore, the spliced isoforms inhibit viral polymerase activity. Consistently, recombinant BoDVs lacking the N-splicing signals acquire the ability to replicate faster than wild-type virus in cultured cells, suggesting that N isoforms created by mRNA splicing negatively regulate BoDV replication. These results provided not only the mechanism of how mRNA splicing generates viral proteins that have distinct functions but also a novel strategy for replication control of RNA viruses using isoforms with different subcellular localizations.IMPORTANCE Borna disease virus (BoDV) is a highly neurotropic RNA virus that belongs to the orthobornavirus genus. A zoonotic orthobornavirus that is genetically related to BoDV has recently been identified in squirrels, thus increasing the importance of understanding the replication and pathogenesis of orthobornaviruses. BoDV replicates in the nucleus and uses alternative mRNA splicing to express viral proteins. However, it is unknown whether the virus uses splicing to create protein isoforms with different functions. The present study demonstrated that the nucleoprotein transcript undergoes splicing and produces four new isoforms in coordination with alternative usage of translation initiation codons. The spliced isoforms showed a distinct intracellular localization, including in the endoplasmic reticulum, and recombinant viruses lacking the splicing signals replicated more efficiently than the wild type. The results provided not only a new regulation of BoDV replication but also insights into how RNA viruses produce protein isoforms from small genomes.
Collapse
|
14
|
Sadeghi M, Altan E, Deng X, Barker CM, Fang Y, Coffey LL, Delwart E. Virome of > 12 thousand Culex mosquitoes from throughout California. Virology 2018; 523:74-88. [DOI: 10.1016/j.virol.2018.07.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/25/2022]
|
15
|
Horie M, Tomonaga K. Paleovirology of bornaviruses: What can be learned from molecular fossils of bornaviruses. Virus Res 2018; 262:2-9. [PMID: 29630909 DOI: 10.1016/j.virusres.2018.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 02/05/2023]
Abstract
Endogenous viral elements (EVEs) are virus-derived sequences embedded in eukaryotic genomes formed by germline integration of viral sequences. As many EVEs were integrated into eukaryotic genomes millions of years ago, EVEs are considered molecular fossils of viruses. EVEs can be valuable informational sources about ancient viruses, including their time scale, geographical distribution, genetic information, and hosts. Although integration of viral sequences is not required for replications of viruses other than retroviruses, many non-retroviral EVEs have been reported to exist in eukaryotes. Investigation of these EVEs has expanded our knowledge regarding virus-host interactions, as well as provided information on ancient viruses. Among them, EVEs derived from bornaviruses, non-retroviral RNA viruses, have been relatively well studied. Bornavirus-derived EVEs are widely distributed in animal genomes, including the human genome, and the history of bornaviruses can be dated back to more than 65 million years. Although there are several reports focusing on the biological significance of bornavirus-derived sequences in mammals, paleovirology of bornaviruses has not yet been well described and summarized. In this paper, we describe what can be learned about bornaviruses from endogenous bornavirus-like elements from the view of paleovirology using published results and our novel data.
Collapse
Affiliation(s)
- Masayuki Horie
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan; Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Keizo Tomonaga
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Abstract
A group of related bacilliform, nuclear viruses with a bisegmented negative-sense RNA genome that are transmitted by Brevipalpus mites likely in a circulative-propagative manner were recently classified in the new genus Dichorhavirus, family Rhabdoviridae. These viruses cause localized lesions on leaves, stems, and fruits of economically significant horticultural and ornamental plant species. Among its members, orchid fleck virus, citrus leprosis virus N, and coffee ringspot virus are most prominent. This chapter summarizes the current knowledge about these viruses, available detection techniques, and their interactions with their plant hosts and mite vectors.
Collapse
|
17
|
Bigot D, Atyame CM, Weill M, Justy F, Herniou EA, Gayral P. Discovery of Culex pipiens associated tunisia virus: a new ssRNA(+) virus representing a new insect associated virus family. Virus Evol 2018; 4:vex040. [PMID: 29340209 PMCID: PMC5763275 DOI: 10.1093/ve/vex040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In the global context of arboviral emergence, deep sequencing unlocks the discovery of new mosquito-borne viruses. Mosquitoes of the species Culex pipiens, C. torrentium, and C. hortensis were sampled from 22 locations worldwide for transcriptomic analyses. A virus discovery pipeline was used to analyze the dataset of 0.7 billion reads comprising 22 individual transcriptomes. Two closely related 6.8 kb viral genomes were identified in C. pipiens and named as Culex pipiens associated tunisia virus (CpATV) strains Ayed and Jedaida. The CpATV genome contained four ORFs. ORF1 possessed helicase and RNA-dependent RNA polymerase (RdRp) domains related to new viral sequences recently found mainly in dipterans. ORF2 and 4 contained a capsid protein domain showing strong homology with Virgaviridae plant viruses. ORF3 displayed similarities with eukaryotic Rhoptry domain and a merozoite surface protein (MSP7) domain only found in mosquito-transmitted Plasmodium, suggesting possible interactions between CpATV and vertebrate cells. Estimation of a strong purifying selection exerted on each ORFs and the presence of a polymorphism maintained in the coding region of ORF3 suggested that both CpATV sequences are genuine functional viruses. CpATV is part of an entirely new and highly diversified group of viruses recently found in insects, and that bears the genomic hallmarks of a new viral family.
Collapse
Affiliation(s)
- Diane Bigot
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université François-Rabelais, 37200 Tours, France
| | - Célestine M Atyame
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
| | - Mylène Weill
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
| | - Fabienne Justy
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université François-Rabelais, 37200 Tours, France
| | - Philippe Gayral
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université François-Rabelais, 37200 Tours, France
| |
Collapse
|
18
|
de Lara Pinto AZ, Santos de Carvalho M, de Melo FL, Ribeiro ALM, Morais Ribeiro B, Dezengrini Slhessarenko R. Novel viruses in salivary glands of mosquitoes from sylvatic Cerrado, Midwestern Brazil. PLoS One 2017; 12:e0187429. [PMID: 29117239 PMCID: PMC5678729 DOI: 10.1371/journal.pone.0187429] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
Viruses may represent the most diverse microorganisms on Earth. Novel viruses and variants continue to emerge. Mosquitoes are the most dangerous animals to humankind. This study aimed at identifying viral RNA diversity in salivary glands of mosquitoes captured in a sylvatic area of Cerrado at the Chapada dos Guimarães National Park, Mato Grosso, Brazil. In total, 66 Culicinae mosquitoes belonging to 16 species comprised 9 pools, subjected to viral RNA extraction, double-strand cDNA synthesis, random amplification and high-throughput sequencing, revealing the presence of seven insect-specific viruses, six of which represent new species of Rhabdoviridae (Lobeira virus), Chuviridae (Cumbaru and Croada viruses), Totiviridae (Murici virus) and Partitiviridae (Araticum and Angico viruses). In addition, two mosquito pools presented Kaiowa virus sequences that had already been reported in South Pantanal, Brazil. These findings amplify the understanding of viral diversity in wild-type Culicinae. Insect-specific viruses may present a broader diversity than previously imagined and future studies may address their possible role in mosquito vector competence.
Collapse
Affiliation(s)
- Andressa Zelenski de Lara Pinto
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Michellen Santos de Carvalho
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Fernando Lucas de Melo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Ana Lúcia Maria Ribeiro
- Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Bergmann Morais Ribeiro
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Renata Dezengrini Slhessarenko
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
- * E-mail:
| |
Collapse
|
19
|
High-Resolution Metatranscriptomics Reveals the Ecological Dynamics of Mosquito-Associated RNA Viruses in Western Australia. J Virol 2017. [PMID: 28637756 DOI: 10.1128/jvi.00680-17] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mosquitoes harbor a high diversity of RNA viruses, including many that impact human health. Despite a growing effort to describe the extent and nature of the mosquito virome, little is known about how these viruses persist, spread, and interact with both their hosts and other microbes. To address this issue we performed a metatranscriptomics analysis of 12 Western Australian mosquito populations structured by species and geographic location. Our results identified the complete genomes of 24 species of RNA viruses from a diverse range of viral families and orders, among which 19 are newly described. Comparisons of viromes revealed a striking difference between the two mosquito genera, with viromes of mosquitoes of the Aedes genus exhibiting substantially less diversity and lower abundances than those of mosquitoes of the Culex genus, within which the viral abundance reached 16.87% of the total non-rRNA. In addition, there was little overlap in viral diversity between the two genera, although the viromes were very similar among the three Culex species studied, suggesting that the host taxon plays a major role in structuring virus diversity. In contrast, we found no evidence that geographic location played a major role in shaping RNA virus diversity, and several viruses discovered here exhibited high similarity (95 to 98% nucleotide identity) to those from Indonesia and China. Finally, using abundance-level and phylogenetic relationships, we were able to distinguish potential mosquito viruses from those present in coinfecting bacteria, fungi, and protists. In sum, our metatranscriptomics approach provides important insights into the ecology of mosquito RNA viruses.IMPORTANCE Studies of virus ecology have generally focused on individual viral species. However, recent advances in bulk RNA sequencing make it possible to utilize metatranscriptomic approaches to reveal both complete virus diversity and the relative abundance of these viruses. We used such a metatranscriptomic approach to determine key aspects of the ecology of mosquito viruses in Western Australia. Our results show that RNA viruses are some of the most important components of the mosquito transcriptome, and we identified 19 new virus species from a diverse set of virus families. A key result was that host genetic background plays a more important role in shaping virus diversity than sampling location, with Culex species harboring more viruses at higher abundance than those from Aedes mosquitoes.
Collapse
|
20
|
Ergünay K, Brinkmann A, Litzba N, Günay F, Kar S, Öter K, Örsten S, Sarıkaya Y, Alten B, Nitsche A, Linton YM. A novel rhabdovirus, related to Merida virus, in field-collected mosquitoes from Anatolia and Thrace. Arch Virol 2017; 162:1903-1911. [PMID: 28283817 DOI: 10.1007/s00705-017-3314-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/21/2017] [Indexed: 01/26/2023]
Abstract
Next-generation sequencing technologies have significantly facilitated the discovery of novel viruses, and metagenomic surveillance of arthropods has enabled exploration of the diversity of novel or known viral agents. We have identified a novel rhabdovirus that is genetically related to the recently described Merida virus via next-generation sequencing in a mosquito pool from Thrace. The complete viral genome contains 11,798 nucleotides with 83% genome-wide nucleotide sequence similarity to Merida virus. Five major putative open reading frames that follow the canonical rhabdovirus genome organization were identified. A total of 1380 mosquitoes comprising 13 species, collected from Thrace and the Mediterranean and Aegean regions of Anatolia were screened for the novel virus using primers based on the N and L genes of the prototype genome. Eight positive pools (6.2%) exclusively comprised Culex pipiens sensu lato specimens originating from all study regions. Infections were observed in pools with female as well as male or mixed-sex individuals. The overall and Cx. pipiens-specific minimal infection rates were calculated to be 5.7 and 14.8, respectively. Sequencing of the PCR products revealed marked diversity within a portion of the N gene, with up to 4% divergence and distinct amino acid substitutions that were unrelated to the collection site. Phylogenetic analysis of the complete and partial viral polymerase (L gene) amino acid sequences placed the novel virus and Merida virus in a distinct group, indicating that these strains are closely related. The strain is tentatively named "Merida-like virus Turkey". Studies are underway to isolate and further explore the host range and distribution of this new strain.
Collapse
Affiliation(s)
- Koray Ergünay
- Virology Unit, Department of Medical Microbiology, Hacettepe University Faculty of Medicine, Morphology Building 3rd Floor, Sihhiye, 06100, Ankara, Turkey. .,Center for Biological Threats and Special Pathogens 1 (ZBS-1), Robert Koch Institute, Berlin, Germany.
| | - Annika Brinkmann
- Center for Biological Threats and Special Pathogens 1 (ZBS-1), Robert Koch Institute, Berlin, Germany
| | - Nadine Litzba
- Center for Biological Threats and Special Pathogens 1 (ZBS-1), Robert Koch Institute, Berlin, Germany
| | - Filiz Günay
- Division of Ecology, Department of Biology, Faculty of Sciences, Hacettepe University, Ankara, Turkey
| | - Sırrı Kar
- Department of Biology, Faculty of Arts and Sciences, Namık Kemal University, Tekirdağ, Turkey
| | - Kerem Öter
- Department of Parasitology, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| | - Serra Örsten
- Virology Unit, Department of Medical Microbiology, Hacettepe University Faculty of Medicine, Morphology Building 3rd Floor, Sihhiye, 06100, Ankara, Turkey
| | - Yasemen Sarıkaya
- Division of Ecology, Department of Biology, Faculty of Sciences, Hacettepe University, Ankara, Turkey
| | - Bülent Alten
- Division of Ecology, Department of Biology, Faculty of Sciences, Hacettepe University, Ankara, Turkey
| | - Andreas Nitsche
- Center for Biological Threats and Special Pathogens 1 (ZBS-1), Robert Koch Institute, Berlin, Germany
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit, Museum Support Center MRC-534, Smithsonian Institution, Suitland, MD, USA.,Department of Entomology, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
21
|
Discovery of Novel Viruses in Mosquitoes from the Zambezi Valley of Mozambique. PLoS One 2016; 11:e0162751. [PMID: 27682810 PMCID: PMC5040392 DOI: 10.1371/journal.pone.0162751] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/26/2016] [Indexed: 11/19/2022] Open
Abstract
Mosquitoes carry a wide variety of viruses that can cause vector-borne infectious diseases and affect both human and veterinary public health. Although Mozambique can be considered a hot spot for emerging infectious diseases due to factors such as a rich vector population and a close vector/human/wildlife interface, the viral flora in mosquitoes have not previously been investigated. In this study, viral metagenomics was employed to analyze the viral communities in Culex and Mansonia mosquitoes in the Zambezia province of Mozambique. Among the 1.7 and 2.6 million sequences produced from the Culex and Mansonia samples, respectively, 3269 and 983 reads were classified as viral sequences. Viruses belonging to the Flaviviridae, Rhabdoviridae and Iflaviridae families were detected, and different unclassified single- and double-stranded RNA viruses were also identified. A near complete genome of a flavivirus, tentatively named Cuacua virus, was obtained from the Mansonia mosquitoes. Phylogenetic analysis of this flavivirus, using the NS5 amino acid sequence, showed that it grouped with 'insect-specific' viruses and was most closely related to Nakiwogo virus previously identified in Uganda. Both mosquito genera had viral sequences related to Rhabdoviruses, and these were most closely related to Culex tritaeniorhynchus rhabdovirus (CTRV). The results from this study suggest that several viruses specific for insects belonging to, for example, the Flaviviridae and Rhabdoviridae families, as well as a number of unclassified RNA viruses, are present in mosquitoes in Mozambique.
Collapse
|
22
|
Fauver JR, Grubaugh ND, Krajacich BJ, Weger-Lucarelli J, Lakin SM, Fakoli LS, Bolay FK, Diclaro JW, Dabiré KR, Foy BD, Brackney DE, Ebel GD, Stenglein MD. West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses. Virology 2016; 498:288-299. [PMID: 27639161 DOI: 10.1016/j.virol.2016.07.031] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 12/19/2022]
Abstract
Anopheles gambiae are a major vector of malaria in sub-Saharan Africa. Viruses that naturally infect these mosquitoes may impact their physiology and ability to transmit pathogens. We therefore used metagenomics sequencing to search for viruses in adult Anopheles mosquitoes collected from Liberia, Senegal, and Burkina Faso. We identified a number of virus and virus-like sequences from mosquito midgut contents, including 14 coding-complete genome segments and 26 partial sequences. The coding-complete sequences define new viruses in the order Mononegavirales, and the families Flaviviridae, and Totiviridae. The identification of a flavivirus infecting Anopheles mosquitoes broadens our understanding of the evolution and host range of this virus family. This study increases our understanding of virus diversity in general, begins to define the virome of a medically important vector in its natural setting, and lays groundwork for future studies examining the potential impact of these viruses on anopheles biology and disease transmission.
Collapse
Affiliation(s)
- Joseph R Fauver
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Nathan D Grubaugh
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Benjamin J Krajacich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Steven M Lakin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Fatorma K Bolay
- Liberian Institute for Biomedical Research, Charlesville, Liberia
| | | | | | - Brian D Foy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Doug E Brackney
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
23
|
Velazquez-Salinas L, Zarate S, Eschbaumer M, Pereira Lobo F, Gladue DP, Arzt J, Novella IS, Rodriguez LL. Selective Factors Associated with the Evolution of Codon Usage in Natural Populations of Arboviruses. PLoS One 2016; 11:e0159943. [PMID: 27455096 PMCID: PMC4959722 DOI: 10.1371/journal.pone.0159943] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/11/2016] [Indexed: 11/18/2022] Open
Abstract
Arboviruses (arthropod borne viruses) have life cycles that include both vertebrate and invertebrate hosts with substantial differences in vector and host specificity between different viruses. Most arboviruses utilize RNA for their genetic material and are completely dependent on host tRNAs for their translation, suggesting that virus codon usage could be a target for selection. In the current study we analyzed the relative synonymous codon usage (RSCU) patterns of 26 arboviruses together with 25 vectors and hosts, including 8 vertebrates and 17 invertebrates. We used hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify trends in codon usage. HCA demonstrated that the RSCU of arboviruses reflects that of their natural hosts, but not that of dead-end hosts. Of the two major components identified by PCA, the first accounted for 62.1% of the total variance, and among the 59 codons analyzed in this study, the leucine codon CTG had the highest correlation with the first principal component, however isoleucine had the highest correlation during amino acid analysis. Nucleotide and dinucleotide composition were the variables that explained most of the total codon usage variance. The results suggest that the main factors driving the evolution of codon usage in arboviruses is based on the nucleotide and dinucleotide composition present in the host. Comparing codon usage of arboviruses and potential vector hosts can help identifying potential vectors for emerging arboviruses.
Collapse
Affiliation(s)
- Lauro Velazquez-Salinas
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Orient Point, New York, United States of America.,Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, United States of America
| | - Selene Zarate
- Autonomous University of Mexico City, Genomics Sciences Program, Mexico City, Mexico
| | - Michael Eschbaumer
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Orient Point, New York, United States of America.,Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, United States of America
| | - Francisco Pereira Lobo
- Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária, Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Campinas, Brazil
| | - Douglas P Gladue
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Orient Point, New York, United States of America
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Orient Point, New York, United States of America
| | - Isabel S Novella
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, United States of America
| | - Luis L Rodriguez
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Orient Point, New York, United States of America
| |
Collapse
|
24
|
Gillich N, Kuwata R, Isawa H, Horie M. Persistent natural infection of a Culex tritaeniorhynchus cell line with a novel Culex tritaeniorhynchus rhabdovirus strain. Microbiol Immunol 2016; 59:562-6. [PMID: 26112738 DOI: 10.1111/1348-0421.12279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/29/2015] [Accepted: 06/22/2015] [Indexed: 12/25/2022]
Abstract
Culex tritaeniorhynchus rhabdovirus (CTRV) is a mosquito virus that establishes persistent infection without any obvious cell death. Therefore, occult infection by CTRV can be present in mosquito cell lines. In this study, it is shown that NIID-CTR cells, which were derived from Cx. tritaeniorhynchus, are persistently infected with a novel strain of CTRV. Complete genome sequencing of the infecting strain revealed that it is genetically similar but distinct from the previously isolated CTRV strain, excluding the possibility of contamination. These findings raise the importance of further CTRV studies, such as screening of CTRV in other mosquito cell lines.
Collapse
Affiliation(s)
- Nadine Gillich
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065.,Institute of Virology, University Medical Center Freiburg, Freiburg 79104, Germany
| | - Ryusei Kuwata
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640
| | - Masayuki Horie
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
25
|
Temmam S, Monteil-Bouchard S, Robert C, Baudoin JP, Sambou M, Aubadie-Ladrix M, Labas N, Raoult D, Mediannikov O, Desnues C. Characterization of Viral Communities of Biting Midges and Identification of Novel Thogotovirus Species and Rhabdovirus Genus. Viruses 2016; 8:77. [PMID: 26978389 PMCID: PMC4810267 DOI: 10.3390/v8030077] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/22/2016] [Accepted: 03/01/2016] [Indexed: 12/17/2022] Open
Abstract
More than two thirds of emerging viruses are of zoonotic origin, and among them RNA viruses represent the majority. Ceratopogonidae (genus Culicoides) are well-known vectors of several viruses responsible for epizooties (bluetongue, epizootic haemorrhagic disease, etc.). They are also vectors of the only known virus infecting humans: the Oropouche virus. Female midges usually feed on a variety of hosts, leading to possible transmission of emerging viruses from animals to humans. In this context, we report here the analysis of RNA viral communities of Senegalese biting midges using next-generation sequencing techniques as a preliminary step toward the identification of potential viral biohazards. Sequencing of the RNA virome of three pools of Culicoides revealed the presence of a significant diversity of viruses infecting plants, insects and mammals. Several novel viruses were detected, including a novel Thogotovirus species, related but genetically distant from previously described tick-borne thogotoviruses. Novel rhabdoviruses were also detected, possibly constituting a novel Rhabdoviridae genus, and putatively restricted to insects. Sequences related to the major viruses transmitted by Culicoides, i.e., African horse sickness, bluetongue and epizootic haemorrhagic disease viruses were also detected. This study highlights the interest in monitoring the emergence and circulation of zoonoses and epizooties using their arthropod vectors.
Collapse
Affiliation(s)
- Sarah Temmam
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Université, Marseille 13005, France.
| | - Sonia Monteil-Bouchard
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Université, Marseille 13005, France.
| | - Catherine Robert
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Université, Marseille 13005, France.
| | - Jean-Pierre Baudoin
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Université, Marseille 13005, France.
| | - Masse Sambou
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Université, Marseille 13005, France.
| | - Maxence Aubadie-Ladrix
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Université, Marseille 13005, France.
| | - Noémie Labas
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Université, Marseille 13005, France.
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Université, Marseille 13005, France.
- Fondation IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Marseille 13005, France.
| | - Oleg Mediannikov
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Université, Marseille 13005, France.
| | - Christelle Desnues
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Université, Marseille 13005, France.
| |
Collapse
|
26
|
Charles J, Firth AE, Loroño-Pino MA, Garcia-Rejon JE, Farfan-Ale JA, Lipkin WI, Blitvich BJ, Briese T. Merida virus, a putative novel rhabdovirus discovered in Culex and Ochlerotatus spp. mosquitoes in the Yucatan Peninsula of Mexico. J Gen Virol 2016; 97:977-987. [PMID: 26868915 DOI: 10.1099/jgv.0.000424] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequences corresponding to a putative, novel rhabdovirus [designated Merida virus (MERDV)] were initially detected in a pool of Culex quinquefasciatus collected in the Yucatan Peninsula of Mexico. The entire genome was sequenced, revealing 11 798 nt and five major ORFs, which encode the nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). The deduced amino acid sequences of the N, G and L proteins have no more than 24, 38 and 43 % identity, respectively, to the corresponding sequences of all other known rhabdoviruses, whereas those of the P and M proteins have no significant identity with any sequences in GenBank and their identity is only suggested based on their genome position. Using specific reverse transcription-PCR assays established from the genome sequence, 27 571 C. quinquefasciatus which had been sorted in 728 pools were screened to assess the prevalence of MERDV in nature and 25 pools were found positive. The minimal infection rate (calculated as the number of positive mosquito pools per 1000 mosquitoes tested) was 0.9, and similar for both females and males. Screening another 140 pools of 5484 mosquitoes belonging to four other genera identified positive pools of Ochlerotatus spp. mosquitoes, indicating that the host range is not restricted to C. quinquefasciatus. Attempts to isolate MERDV in C6/36 and Vero cells were unsuccessful. In summary, we provide evidence that a previously undescribed rhabdovirus occurs in mosquitoes in Mexico.
Collapse
Affiliation(s)
- Jermilia Charles
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Maria A Loroño-Pino
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julian E Garcia-Rejon
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Jose A Farfan-Ale
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
27
|
Bolling BG, Weaver SC, Tesh RB, Vasilakis N. Insect-Specific Virus Discovery: Significance for the Arbovirus Community. Viruses 2015; 7:4911-28. [PMID: 26378568 PMCID: PMC4584295 DOI: 10.3390/v7092851] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 01/23/2023] Open
Abstract
Arthropod-borne viruses (arboviruses), especially those transmitted by mosquitoes, are a significant cause of morbidity and mortality in humans and animals worldwide. Recent discoveries indicate that mosquitoes are naturally infected with a wide range of other viruses, many within taxa occupied by arboviruses that are considered insect-specific. Over the past ten years there has been a dramatic increase in the literature describing novel insect-specific virus detection in mosquitoes, which has provided new insights about viral diversity and evolution, including that of arboviruses. It has also raised questions about what effects the mosquito virome has on arbovirus transmission. Additionally, the discovery of these new viruses has generated interest in their potential use as biological control agents as well as novel vaccine platforms. The arbovirus community will benefit from the growing database of knowledge concerning these newly described viral endosymbionts, as their impacts will likely be far reaching.
Collapse
Affiliation(s)
- Bethany G Bolling
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Scott C Weaver
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Robert B Tesh
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
28
|
Shi C, Liu Y, Hu X, Xiong J, Zhang B, Yuan Z. A metagenomic survey of viral abundance and diversity in mosquitoes from Hubei province. PLoS One 2015; 10:e0129845. [PMID: 26030271 PMCID: PMC4452694 DOI: 10.1371/journal.pone.0129845] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/13/2015] [Indexed: 01/27/2023] Open
Abstract
Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process.
Collapse
Affiliation(s)
- Chenyan Shi
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaomin Hu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jinfeng Xiong
- Hubei Disease Control and Prevention Center, Wuhan, China
| | - Bo Zhang
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
29
|
Chandler JA, Liu RM, Bennett SN. RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. Front Microbiol 2015; 6:185. [PMID: 25852655 PMCID: PMC4371751 DOI: 10.3389/fmicb.2015.00185] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/19/2015] [Indexed: 01/09/2023] Open
Abstract
Mosquitoes, most often recognized for the microbial agents of disease they may carry, harbor diverse microbial communities that include viruses, bacteria, and fungi, collectively called the microbiota. The composition of the microbiota can directly and indirectly affect disease transmission through microbial interactions that could be revealed by its characterization in natural populations of mosquitoes. Furthermore, the use of shotgun metagenomic sequencing (SMS) approaches could allow the discovery of unknown members of the microbiota. In this study, we use RNA SMS to characterize the microbiota of seven individual mosquitoes (species include Culex pipiens, Culiseta incidens, and Ochlerotatus sierrensis) collected from a variety of habitats in California, USA. Sequencing was performed on the Illumina HiSeq platform and the resulting sequences were quality-checked and assembled into contigs using the A5 pipeline. Sequences related to single stranded RNA viruses of the Bunyaviridae and Rhabdoviridae were uncovered, along with an unclassified genus of double-stranded RNA viruses. Phylogenetic analysis finds that in all three cases, the closest relatives of the identified viral sequences are other mosquito-associated viruses, suggesting widespread host-group specificity among disparate viral taxa. Interestingly, we identified a Narnavirus of fungi, also reported elsewhere in mosquitoes, that potentially demonstrates a nested host-parasite association between virus, fungi, and mosquito. Sequences related to 8 bacterial families and 13 fungal families were found across the seven samples. Bacillus and Escherichia/Shigella were identified in all samples and Wolbachia was identified in all Cx. pipiens samples, while no single fungal genus was found in more than two samples. This study exemplifies the utility of RNA SMS in the characterization of the natural microbiota of mosquitoes and, in particular, the value of identifying all microbes associated with a specific host.
Collapse
Affiliation(s)
- James Angus Chandler
- Department of Microbiology, California Academy of Sciences San Francisco, CA, USA
| | - Rachel M Liu
- Department of Microbiology, California Academy of Sciences San Francisco, CA, USA
| | - Shannon N Bennett
- Department of Microbiology, California Academy of Sciences San Francisco, CA, USA
| |
Collapse
|
30
|
Kuwata R, Isawa H, Hoshino K, Sasaki T, Kobayashi M, Maeda K, Sawabe K. Analysis of Mosquito-Borne Flavivirus Superinfection in Culex tritaeniorhynchus (Diptera: Culicidae) Cells Persistently Infected with Culex Flavivirus (Flaviviridae). JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:222-229. [PMID: 26336307 DOI: 10.1093/jme/tju059] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 12/07/2014] [Indexed: 06/05/2023]
Abstract
Superinfection exclusion is generally defined as a phenomenon in which a pre-existing viral infection prevents a secondary viral infection; this has also been observed in infections with mosquito-borne viruses. In this study, we examined the superinfection exclusion of the vertebrate-infecting flaviviruses, Japanese encephalitis virus (JEV) and dengue virus (DENV), by stable and persistent infection with an insect-specific flavivirus, Culex flavivirus (CxFV), in a Culex tritaeniorhynchus Giles cell line (CTR cells). Our experimental system was designed based on the premise that wild Cx. tritaeniorhynchus mosquitoes naturally infected with CxFV are superinfected with JEV by feeding on JEV-infected animals. As a result, we found no evidence of the superinfection exclusion of both JEV and DENV by pre-existing CxFV infection at the cellular level. However, JEV superinfection induced severe cytopathic effects on persistently CxFV-infected CTR cells. These observations imply the possibility that JEV superinfection in CxFV-infected Cx. tritaeniorhynchus mosquitoes has an adverse effect on their fitness.
Collapse
Affiliation(s)
- Ryusei Kuwata
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi City, Yamaguchi 753-8511, Japan. Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan. Corresponding author, e-mail:
| | - Keita Hoshino
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Toshinori Sasaki
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mutsuo Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi City, Yamaguchi 753-8511, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
31
|
First isolation and characterization of a mosquito-borne orbivirus belonging to the species Umatilla virus in East Asia. Arch Virol 2014; 159:2675-85. [DOI: 10.1007/s00705-014-2117-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 05/11/2014] [Indexed: 10/25/2022]
|
32
|
Abstract
UNLABELLED The Sf9 cell line, derived from Spodoptera frugiperda, is used as a cell substrate for biological products, and no viruses have been reported in this cell line after extensive testing. We used degenerate PCR assays and massively parallel sequencing (MPS) to identify a novel RNA virus belonging to the order Mononegavirales in Sf9 cells. Sequence analysis of the assembled virus genome showed the presence of five open reading frames (ORFs) corresponding to the genes for the N, P, M, G, and L proteins in other rhabdoviruses and an unknown ORF of 111 amino acids located between the G- and L-protein genes. BLAST searches indicated that the S. frugiperda rhabdovirus (Sf-rhabdovirus) was related in a limited region of the L-protein gene to Taastrup virus, a newly discovered member of the Mononegavirales from a leafhopper (Hemiptera), and also to plant rhabdoviruses, particularly in the genus Cytorhabdovirus. Phylogenetic analysis of sequences in the L-protein gene indicated that Sf-rhabdovirus is a novel virus that branched with Taastrup virus. Rhabdovirus morphology was confirmed by transmission electron microscopy of filtered supernatant samples from Sf9 cells. Infectivity studies indicated potential transient infection by Sf-rhabdovirus in other insect cell lines, but there was no evidence of entry or virus replication in human cell lines. Sf-rhabdovirus sequences were also found in the Sf21 parental cell line of Sf9 cells but not in other insect cell lines, such as BT1-TN-5B1-4 (Tn5; High Five) cells and Schneider's Drosophila line 2 [D.Mel.(2); SL2] cells, indicating a species-specific infection. The results indicate that conventional methods may be complemented by state-of-the-art technologies with extensive bioinformatics analysis for identification of novel viruses. IMPORTANCE The Spodoptera frugiperda Sf9 cell line is used as a cell substrate for the development and manufacture of biological products. Extensive testing has not previously identified any viruses in this cell line. This paper reports on the identification and characterization of a novel rhabdovirus in Sf9 cells. This was accomplished through the use of next-generation sequencing platforms, de novo assembly tools, and extensive bioinformatics analysis. Rhabdovirus identification was further confirmed by transmission electron microscopy. Infectivity studies showed the lack of replication of Sf-rhabdovirus in human cell lines. The overall study highlights the use of a combinatorial testing approach including conventional methods and new technologies for evaluation of cell lines for unexpected viruses and use of comprehensive bioinformatics strategies for obtaining confident next-generation sequencing results.
Collapse
|
33
|
Kondo H, Maruyama K, Chiba S, Andika IB, Suzuki N. Transcriptional mapping of the messenger and leader RNAs of orchid fleck virus, a bisegmented negative-strand RNA virus. Virology 2014; 452-453:166-74. [PMID: 24606694 DOI: 10.1016/j.virol.2014.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/25/2013] [Accepted: 01/11/2014] [Indexed: 11/24/2022]
Abstract
The transcriptional strategy of orchid fleck virus (OFV), which has a two-segmented negative-strand RNA genome and resembles plant nucleorhabdoviruses, remains unexplored. In this study, the transcripts of six genes encoded by OFV RNA1 and RNA2 in the poly(A)-enriched RNA fraction from infected plants were molecularly characterized. All of the OFV mRNAs were initiated at a start sequence 3'-UU-5' with one to three non-viral adenine nucleotides which were added at the 5' end of each mRNA, whereas their 3' termini ended with a 5'-AUUUAAA(U/G)AAAA(A)n-3' sequence. We also identified the presence of polyadenylated short transcripts derived from the 3'-terminal leader regions of both genomic and antigenomic strands, providing the first example of plus- and minus-strand leader RNAs in a segmented minus-strand RNA virus. The similarity in the transcriptional strategy between this bipartite OFV and monopartite rhabdoviruses, especially nucleorhabdoviruses (family Rhabdoviridae) is additional support for their close relationship.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan.
| | - Kazuyuki Maruyama
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Sotaro Chiba
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Ida Bagus Andika
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|