1
|
Zhang X, Chen Y, Liu M, Long X, Guo C. Intervention strategies targeting virus and host factors against porcine reproductive and respiratory syndrome virus: A systematic review. Int J Biol Macromol 2024; 279:135403. [PMID: 39245101 DOI: 10.1016/j.ijbiomac.2024.135403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by porcine reproductive and respiratory syndrome virus (PRRSV) causes considerable economic losses to the global swine industry every year and seriously hinders the healthy development of this industry. Although tremendous efforts have been made over the past 30 years toward the development of prevention and control strategies against PRRSV infection, to date, treatments with proven efficacy have yet to be available due to our incomplete understanding of the molecular basis and complexity of the infection machinery. This review systematically discusses recent advances in the research and development of anti-PRRSV therapies targeting different stages of the viral life cycle. Furthermore, this review puts forward novel intervention targets and research approaches based on our in-depth exploration of virus-host interactions and the latest biological technologies, which have the potential to complement or transform current anti-PRRSV strategies and become breakthrough points for the control of PRRS in the future.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Yongjie Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Min Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Xiaoqin Long
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Chunhe Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
2
|
Xu Y, Ding L, Zhang Y, Ren S, Li J, Liu F, Sun W, Chen Z, Yu J, Wu J. Research progress on the pattern recognition receptors involved in porcine reproductive and respiratory syndrome virus infection. Front Cell Infect Microbiol 2024; 14:1428447. [PMID: 39211800 PMCID: PMC11358126 DOI: 10.3389/fcimb.2024.1428447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating infectious diseases of pigs globally. The pathogen, porcine reproductive and respiratory syndrome virus (PRRSV), is an enveloped positive-stranded RNA virus, which is considered to be the key triggers for the activation of effective innate immunity through pattern recognition receptor (PRR)-dependent signaling pathways. Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs) and Cytoplasmic DNA receptors (CDRs) are used as PRRs to identify distinct but overlapping microbial components. The innate immune system has evolved to recognize RNA or DNA molecules from microbes through pattern recognition receptors (PRRs) and to induce defense response against infections, including the production of type I interferon (IFN-I) and inflammatory cytokines. However, PRRSV is capable of continuous evolution through gene mutation and recombination to evade host immune defenses and exploit host cell mechanisms to synthesize and transport its components, thereby facilitating successful infection and replication. This review presents the research progress made in recent years in the study of these PRRs and their associated adapters during PRRSV infection.
Collapse
Affiliation(s)
- Yulin Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Luogang Ding
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Yuyu Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Sufang Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Jianda Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Fei Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Wenbo Sun
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Zhi Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| |
Collapse
|
3
|
Liu Y, Qin Y, Yang B, Zheng H, Qiao S, Luo Z, Li R. Pseudorabies virus usurps non-muscle myosin heavy chain IIA to dampen viral DNA recognition by cGAS for antagonism of host antiviral innate immunity. J Virol 2024; 98:e0048324. [PMID: 38639486 PMCID: PMC11092326 DOI: 10.1128/jvi.00483-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
Alphaherpesvirus pseudorabies virus (PRV) causes severe economic losses to the global pig industry and has garnered increasing attention due to its broad host range including humans. PRV has developed a variety of strategies to antagonize host antiviral innate immunity. However, the underlying mechanisms have not been fully elucidated. In our previous work, we demonstrated that non-muscle myosin heavy chain IIA (NMHC-IIA), a multifunctional cytoskeleton protein, attenuates innate immune responses triggered by RNA viruses. In the current study, we reported a previously unrecognized role of NMHC-IIA in counteracting PRV-induced cyclic GMP-AMP synthase (cGAS)-dependent type I interferon (IFN-I) production. Mechanistically, PRV infection led to an elevation of NMHC-IIA, strengthening the interaction between poly (ADP-ribose) polymerase 1 (PARP1) and cGAS. This interaction impeded cGAS recognition of PRV DNA and hindered downstream signaling activation. Conversely, inhibition of NMHC-IIA by Blebbistatin triggered innate immune responses and enhanced resistance to PRV proliferation both in vitro and in vivo. Taken together, our findings unveil that PRV utilizes NMHC-IIA to antagonize host antiviral immune responses via impairing DNA sensing by cGAS. This in-depth understanding of PRV immunosuppression not only provides insights for potential PRV treatment strategies but also highlights NMHC-IIA as a versatile immunosuppressive regulator usurped by both DNA and RNA viruses. Consequently, NMHC-IIA holds promise as a target for the development of broad-spectrum antiviral drugs.IMPORTANCECyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) axis plays a vital role in counteracting alphaherpesvirus infections. Alphaherpesviruses exploit various strategies for antagonizing cGAS-STING-mediated antiviral immune responses. However, limited examples of pseudorabies virus (PRV)-caused immunosuppression have been documented. Our findings reveal a novel role of non-muscle myosin heavy chain IIA (NMHC-IIA) in suppressing PRV-triggered innate immune responses to facilitate viral propagation both in vitro and in vivo. In detail, NMHC-IIA recruits poly (ADP-ribose) polymerase 1 (PARP1) to augment its interaction with cGAS, which impairs cGAS recognition of PRV DNA. Building on our previous demonstration of NMHC-IIA's immunosuppressive role during RNA virus infections, these findings indicate that NMHC-IIA acts as a broad-spectrum suppressor of host antiviral innate immunity in response to both DNA and RNA viruses. Therefore, NMHC-IIA will be a promising target for the development of comprehensive antiviral strategies.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yidan Qin
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Bingbing Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongmei Zheng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Wang X, Qiu W, Hu G, Diao X, Li Y, Li Y, Li P, Liu Y, Feng Y, Xue C, Cao Y, Xu Z. NS7a of SADS-CoV promotes viral infection via inducing apoptosis to suppress type III interferon production. J Virol 2024; 98:e0031724. [PMID: 38624231 PMCID: PMC11092342 DOI: 10.1128/jvi.00317-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 04/17/2024] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered swine coronavirus with potential cross-species transmission risk. Although SADS-CoV-induced host cell apoptosis and innate immunity antagonization has been revealed, underlying signaling pathways remain obscure. Here, we demonstrated that infection of SADS-CoV induced apoptosis in vivo and in vitro, and that viral protein NS7a is mainly responsible for SADS-CoV-induced apoptosis in host cells. Furthermore, we found that NS7a interacted with apoptosis-inducing factor mitochondria associated 1 (AIFM1) to activate caspase-3 via caspase-6 in SADS-CoV-infected cells, and enhanced SADS-CoV replication. Importantly, NS7a suppressed poly(I:C)-induced expression of type III interferon (IFN-λ) via activating caspase-3 to cleave interferon regulatory factor 3 (IRF3), and caspase-3 inhibitor protects piglets against SADS-CoV infection in vivo. These findings reveal how SADS-CoV induced apoptosis to inhibit innate immunity and provide a valuable clue to the development of effective drugs for the clinical control of SADS-CoV infection.IMPORTANCEOver the last 20 years, multiple animal-originated coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2, have caused millions of deaths, seriously jeopardized human health, and hindered social development, indicating that the study of animal-originated coronaviruses with potential for cross-species transmission is particularly important. Bat-originated swine acute diarrhea syndrome coronavirus (SADS-CoV), discovered in 2017, can not only cause fatal diarrhea in piglets, but also infect multiple human cells, with a potential risk of cross-species transmission, but its pathogenesis is unclear. In this study, we demonstrated that NS7a of SADS-CoV suppresses IFN-λ production via apoptosis-inducing factor mitochondria associated 1 (AIFM1)-caspase-6-caspase-3-interferon regulatory factor 3 (IRF3) pathway, and caspase-3 inhibitor (Z-DEVD-FMK) can effectively inhibit SADS-CoV replication and protect infected piglets. Our findings in this study contribute to a better understanding of SADS-CoV-host interactions as a part of the coronaviruses pathogenesis and using apoptosis-inhibitor as a drug as potential therapeutic approaches for prevention and control of SADS-CoV infection.
Collapse
Affiliation(s)
- Xiaowei Wang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Qiu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Guangli Hu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyuan Diao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yunfei Li
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yue Li
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Peng Li
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, USA
| | - Yufang Liu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yongtong Feng
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Shi X, Wei M, Feng Y, Yang Y, Zhang X, Chen H, Xing Y, Wang K, Wang W, Wang L, Wang A, Zhang G. IFI16 Positively Regulates RIG-I-Mediated Type I Interferon Production in a STING-Independent Manner. DNA Cell Biol 2024; 43:197-205. [PMID: 38466944 DOI: 10.1089/dna.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Previous studies have shown that interferon gene-stimulating protein (STING) is essential for IFN-γ-inducible protein 16 (IFI16) as the DNA sensor and RNA sensor to induce transcription of type I interferon (IFN-I) and is essential for IFI16 to synergize with DNA sensor GMP-AMP (cGAMP) synthase (cGAS) in induction of IFN-I transcription. While other and our previous studies have shown that IFI16 enhanced retinoic acid-inducible gene I (RIG-I)-, which was an RNA sensor, and mitochondrial antiviral signaling (MAVS)-, which was the adaptor protein of RIG-I, induced production of IFN-I, so we wonder whether IFI16 regulates the signal pathway of RNA-RIG-I-MAVS-IFN-I in a STING-dependent manner. We used HEK 293T cells, which did not express endogenous STING and were unable to mount an innate immune response upon DNA transfection and found that IFI16 could enhance RIG-I- and MAVS-mediated induction of IFN-I in a STING-independent way. Furthermore, we found that upregulation of the expression of NF-kappa-B essential modulator (NEMO) by IFI16 was not the mechanism that IFI16 regulated the induction of IFN-I. In conclusion, we found that IFI16 regulated the signal pathway of RNA-RIG-I-MAVS-IFN-I in a STING-independent manner.
Collapse
Affiliation(s)
- Xibao Shi
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Menglu Wei
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuwen Feng
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuanhao Yang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiaozhuan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Hao Chen
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuqi Xing
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Keqi Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wensheng Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, China
| |
Collapse
|
6
|
Chen XX, Qiao S, Li R, Wang J, Li X, Zhang G. Evasion strategies of porcine reproductive and respiratory syndrome virus. Front Microbiol 2023; 14:1140449. [PMID: 37007469 PMCID: PMC10063791 DOI: 10.3389/fmicb.2023.1140449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
During the co-evolution of viruses and their hosts, viruses have developed various strategies for overcoming host immunological defenses so that they can proliferate efficiently. Porcine reproductive and respiratory syndrome virus (PRRSV), a significant virus to the swine industry across the world, typically establishes prolonged infection via diverse and complicated mechanisms, which is one of the biggest obstacles for controlling the associated disease, porcine reproductive and respiratory syndrome (PRRS). In this review, we summarize the latest research on how PRRSV circumvents host antiviral responses from both the innate and adaptive immune systems and how this virus utilizes other evasion mechanisms, such as the manipulation of host apoptosis and microRNA. A thorough understanding of the exact mechanisms of PRRSV immune evasion will help with the development of novel antiviral strategies against PRRSV.
Collapse
Affiliation(s)
- Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jing Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xuewu Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Jian Z, Ma R, Zhu L, Deng H, Li F, Zhao J, Deng L, Lai S, Sun X, Tang H, Xu Z. Evasion of interferon-mediated immune response by arteriviruses. Front Immunol 2022; 13:963923. [PMID: 36091073 PMCID: PMC9454096 DOI: 10.3389/fimmu.2022.963923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022] Open
Abstract
IFN is the most potent antiviral cytokine required for the innate and adaptive immune responses, and its expression can help the host defend against viral infection. Arteriviruses have evolved strategies to antagonize the host cell’s innate immune responses, interfering with IFN expression by interfering with RIG, blocking PRR, obstructing IRF-3/7, NF-κB, and degrading STAT1 signaling pathways, thereby assisting viral immune evasion. Arteriviruses infect immune cells and may result in persistence in infected hosts. In this article, we reviewed the strategies used by Arteriviruses to antagonize IFN production and thwart IFN-activated antiviral signaling, mainly including structural and nonstructural proteins of Arteriviruses encoding IFN antagonists directly or indirectly to disrupt innate immunity. This review will certainly provide a better insight into the pathogenesis of the arthritis virus and provide a theoretical basis for developing more efficient vaccines.
Collapse
Affiliation(s)
- Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Rui Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Fengqin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- College of Animal Science, Xichang University, Xichang, China
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, China
- *Correspondence: Zhiwen Xu,
| |
Collapse
|
8
|
Li S, Zhang X, Yao Y, Zhu Y, Zheng X, Liu F, Feng W. Inducible miR-150 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication by Targeting Viral Genome and Suppressor of Cytokine Signaling 1. Viruses 2022; 14:1485. [PMID: 35891465 PMCID: PMC9318191 DOI: 10.3390/v14071485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Hosts exploit various approaches to defend against porcine reproductive and respiratory syndrome virus (PRRSV) infection. microRNAs (miRNAs) have emerged as key negative post-transcriptional regulators of gene expression and have been reported to play important roles in regulating virus infection. Here, we identified that miR-150 was differentially expressed in virus permissive and non-permissive cells. Subsequently, we demonstrated that PRRSV induced the expression of miR-150 via activating the protein kinase C (PKC)/c-Jun amino-terminal kinases (JNK)/c-Jun pathway, and overexpression of miR-150 suppressed PRRSV replication. Further analysis revealed that miR-150 not only directly targeted the PRRSV genome, but also facilitated type I IFN signaling. RNA immunoprecipitation assay demonstrated that miR-150 targeted the suppressor of cytokine signaling 1 (SOCS1), which is a negative regulator of Janus activated kinase (JAK)/signal transducer and activator of the transcription (STAT) signaling pathway. The inverse correlation between miR-150 and SOCS1 expression implies that miR-150 plays a role in regulating ISG expression. In conclusion, miR-150 expression is upregulated upon PRRSV infection. miR-150 feedback positively targets the PRRSV genome and promotes type I IFN signaling, which can be seen as a host defensive strategy.
Collapse
Affiliation(s)
- Sihan Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yao Yao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yingqi Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaojie Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Guan K, Su Q, Kuang K, Meng X, Zhou X, Liu B. MiR-142-5p/FAM134B Axis Manipulates ER-Phagy to Control PRRSV Replication. Front Immunol 2022; 13:842077. [PMID: 35795666 PMCID: PMC9251429 DOI: 10.3389/fimmu.2022.842077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) can replicate its RNA genome in endoplasmic reticulum (ER) and utilize ER to facilitate its assembly and maturation. To maintain ER homeostasis, host cells initiate reticulophagy (known as ER-phagy) to effectively digest the stressed ER. In this study, we found that PRRSV infection subverted ER-phagy by downregulating ER-phagy receptor FAM134B. PRRSV-induced miR-142-5p directly targeted FAM134B and significantly promoted PRRSV replication. Meanwhile, siRNA-mediated depletion of FAM134B protein and overexpression of FAM134B mutant protein significantly disrupted ER-phagy and facilitated PRRSV replication. Furthermore, our results showed that FAM134B-mediated ER-phagy activated type I interferon signaling to inhibit PRRSV replication. Overall, this study reveals the important role of ER-phagy in PRRSV replication in a FAM134B-dependent manner. Our findings provide an insight into the pathogenesis of PRRSV and offer a theoretical basis for further development of antiviral therapeutic targets.
Collapse
Affiliation(s)
- Kaifeng Guan
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Qiuju Su
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Kailin Kuang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xiangge Meng
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xiang Zhou, ; Bang Liu,
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xiang Zhou, ; Bang Liu,
| |
Collapse
|
10
|
Zhang A, Sun Y, Jing H, Liu J, Duan E, Ke W, Tao R, Li Y, Wang J, Cao S, Zhao P, Wang H, Zhang Y. Interaction of HnRNP F with the guanine-rich segments in viral antigenomic RNA enhances porcine reproductive and respiratory syndrome virus-2 replication. Virol J 2022; 19:82. [PMID: 35570267 PMCID: PMC9107676 DOI: 10.1186/s12985-022-01811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
Background Heterogeneous nuclear ribonucleoprotein (HnRNP) F is a member of HnRNP family proteins that participate in splicing of cellular newly synthesized mRNAs by specifically recognizing tandem guanine-tracts (G-tracts) RNA sequences. Whether HnRNP F could recognize viral-derived tandem G-tracts and affect virus replication remain poorly defined. Methods The effect of HnRNP F on porcine reproductive and respiratory syndrome virus (PRRSV) propagation was evaluated by real-time PCR, western blotting, and plaque-forming unit assay. The association between HnRNP F and PRRSV guanine-rich segments (GRS) were analyzed by RNA pulldown and RNA immunoprecipitation. The expression pattern of HnRNP F was investigated by western blotting and nuclear and cytoplasmic fractionation. Results Knockdown of endogenous HnRNP F effectively blocks the synthesis of viral RNA and nucleocapsid (N) protein. Conversely, overexpression of porcine HnRNP F has the opposite effect. Moreover, RNA pulldown and RNA immunoprecipitation assays reveal that the qRMM1 and qRRM2 domains of HnRNP F recognize the GRS in PRRSV antigenomic RNA. Finally, HnRNP F is redistributed into the cytoplasm and forms a complex with guanine-quadruplex (G4) helicase DHX36 during PRRSV infection. Conclusions These findings elucidate the potential functions of HnRNP F in regulating the proliferation of PRRSV and contribute to a better molecular understanding of host-PRRSV interactions.
Collapse
|
11
|
Xiong J, Cui X, Zhao K, Wang Q, Huang X, Li D, Yu F, Yang Y, Liu D, Tian Z, Cai X, An T. A Novel Motif in the 3′-UTR of PRRSV-2 Is Critical for Viral Multiplication and Contributes to Enhanced Replication Ability of Highly Pathogenic or L1 PRRSV. Viruses 2022; 14:v14020166. [PMID: 35215760 PMCID: PMC8875199 DOI: 10.3390/v14020166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) with enhanced replication capability emerged in China and has become dominant epidemic strain since 2006. Up to now, the replication-regulated genes of PRRSV have not been fully clarified. Here, by swapping the genes or elements between HP-PRRSV and classical PRRSV based on infectious clones, NSP1, NSP2, NSP7, NSP9 and 3′-UTR are found to contribute to the high replication efficiency of HP-PRRSV. Further study revealed that mutations at positions 117th or 119th in the 3′-UTR are significantly related to replication efficiency, and the nucleotide at position 120th is critical for viral rescue. The motif composed by 117–120th nucleotides was quite conservative within each lineage of PRRSV; mutations in the motif of HP-PRRSV and currently epidemic lineage 1 (L1) PRRSV showed higher synthesis ability of viral negative genomic RNA, suggesting that those mutations were beneficial for viral replication. RNA structure analysis revealed that this motif maybe involved into a pseudoknot in the 3′-UTR. The results discovered a novel motif, 117–120th nucleotide in the 3′-UTR, that is critical for replication of PRRSV-2, and mutations in the motif contribute to the enhanced replicative ability of HP-PRRSV or L1 PRRSV. Our findings will help to understand the molecular basis of PRRSV replication and find the potential factors resulting in an epidemic strain of PRRSV.
Collapse
Affiliation(s)
- Junyao Xiong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Xingyang Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Kuan Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Xinyi Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Dongyan Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Fang Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Yongbo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (J.X.); (X.C.); (K.Z.); (Q.W.); (X.H.); (D.L.); (F.Y.); (Y.Y.); (Z.T.); (X.C.)
- Correspondence: ; Tel.: +86-451-5105-1765; Fax: +86-451-5199-7166
| |
Collapse
|
12
|
Zhang T, Liu Y, Chen Y, Wang J, Feng H, Wei Q, Zhao S, Yang S, Ma H, Liu D, Zhang G. Antiviral activity of porcine interferon delta 8 against pesudorabies virus in vitro. Int J Biol Macromol 2021; 177:10-18. [PMID: 33548323 DOI: 10.1016/j.ijbiomac.2021.01.208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Recently, pseudorabies virus (PRV) was isolated from human cases, and infected patients presented with respiratory dysfunction and acute neurological symptoms. However, there was no available effective drug to prevent the progression of PRV infection. In the present study, we screened a stably Drosophila S2 cell line which can secretory express a novel type I IFNs-interferon delta 8 (IFN-δ8) and the yield was about 10 mg/L. After purification, recombinant IFN-δ8 was demonstrated to be acid-stable, heat-stable, and nontoxic to PK-15 and 3D4/21 cells. Antiviral effects of IFN-δ8 against PRV were tested in vitro. Our results showed both pre- and post-treatment, recombinant PoIFN-δ8 exerted a significant protective effect against PRV infection in PK-15 and 3D4/21 cells. In addition, PoIFN-δ8 remarkably increased the expression of eight IFN-stimulated genes (ISGs), including ISG15, OAS1, PKR, MX1, CH25H, IFITM1, IFITM2 and IFITM3, to resist virus infection. These findings highlight the significance of IFN-δ8 that might serve as an antiviral agent for the prevention of PRV infection, and maybe expand the potential function of IFN antiviral drugs in the future.
Collapse
Affiliation(s)
- Teng Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jucai Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua Feng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shuangshuang Zhao
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Suzhen Yang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongfang Ma
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongmin Liu
- Henan Zhongze Biological Engineering Co., Ltd, Zhengzhou, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; School of Life Sciences, Zhengzhou University, Zhengzhou, China; College of Veterinary Medicine, Northwest A&F University, Yangling, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Henan Zhongze Biological Engineering Co., Ltd, Zhengzhou, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.
| |
Collapse
|
13
|
Singh TU, Parida S, Lingaraju MC, Kesavan M, Kumar D, Singh RK. Drug repurposing approach to fight COVID-19. Pharmacol Rep 2020; 72:1479-1508. [PMID: 32889701 PMCID: PMC7474498 DOI: 10.1007/s43440-020-00155-6] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Currently, there are no treatment options available for the deadly contagious disease, coronavirus disease 2019 (COVID-19). Drug repurposing is a process of identifying new uses for approved or investigational drugs and it is considered as a very effective strategy for drug discovery as it involves less time and cost to find a therapeutic agent in comparison to the de novo drug discovery process. The present review will focus on the repurposing efficacy of the currently used drugs against COVID-19 and their mechanisms of action, pharmacokinetics, dosing, safety, and their future perspective. Relevant articles with experimental studies conducted in-silico, in-vitro, in-vivo, clinical trials in humans, case reports, and news archives were selected for the review. Number of drugs such as remdesivir, favipiravir, ribavirin, lopinavir, ritonavir, darunavir, arbidol, chloroquine, hydroxychloroquine, tocilizumab and interferons have shown inhibitory effects against the SARS-CoV2 in-vitro as well as in clinical conditions. These drugs either act through virus-related targets such as RNA genome, polypeptide packing and uptake pathways or target host-related pathways involving angiotensin-converting enzyme-2 (ACE2) receptors and inflammatory pathways. Using the basic knowledge of viral pathogenesis and pharmacodynamics of drugs as well as using computational tools, many drugs are currently in pipeline to be repurposed. In the current scenario, repositioning of the drugs could be considered the new avenue for the treatment of COVID-19.
Collapse
Affiliation(s)
- Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Madhu Cholenahalli Lingaraju
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Manickam Kesavan
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| |
Collapse
|
14
|
Xu Z, Zhang Y, Cao Y. The Roles of Apoptosis in Swine Response to Viral Infection and Pathogenesis of Swine Enteropathogenic Coronaviruses. Front Vet Sci 2020; 7:572425. [PMID: 33324698 PMCID: PMC7725767 DOI: 10.3389/fvets.2020.572425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/28/2020] [Indexed: 01/18/2023] Open
Abstract
Apoptosis is a tightly regulated mechanism of cell death that plays important roles in various biological processes including biological evolution, multiple system development, anticancer, and viral infections. Swine enteropathogenic coronaviruses invade and damage villous epithelial cells of the small intestine causing severe diarrhea with high mortality rate in suckling piglets. Transmissible gastroenteritis virus (TGEV), Porcine epidemic diarrhea virus (PEDV), Porcine deltacoronavirus (PDCoV), and Swine acute diarrhea syndrome coronavirus (SADS-CoV) are on the top list of commonly-seen swine coronaviruses with a feature of diarrhea, resulting in significant economic losses to the swine industry worldwide. Apoptosis has been shown to be involved in the pathogenesis process of animal virus infectious diseases. Understanding the roles of apoptosis in host responses against swine enteropathogenic coronaviruses infection contribute to disease prevention and control. Here we summarize the recent findings that focus on the apoptosis during swine coronaviruses infection, in particular, TGEV, PEDV, PDCoV, and SADS-CoV.
Collapse
Affiliation(s)
- Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
- Higher Education Mega Center, School of Life Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Jin J, Huang Y, Sun S, Wu Z, Wu S, Yin Z, Bao W. The Impact of BPI Expression on Escherichia coli F18 Infection in Porcine Kidney Cells. Animals (Basel) 2020; 10:ani10112118. [PMID: 33203175 PMCID: PMC7696536 DOI: 10.3390/ani10112118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Escherichia coli frequently causes bacterial diarrhea in piglets. Vaccine development and improved feeding and animal management strategies have reduced the incidence of bacterial diarrhea in piglets to some extent. However, current breeding strategies also have the potential to improve piglet resistance to diarrhea at a genetic level. This study sought to advance the current understanding of the functional and regulatory mechanisms whereby the candidate gene bactericidal/permeability-increasing protein (BPI) regulates piglet diarrhea at the cellular level. Abstract The efficacy and regulatory activity of bactericidal/permeability-increasing protein (BPI) as a mediator of Escherichia coli (E. coli) F18 resistance remains to be defined. In the present study, we evaluated lipopolysaccharide (LPS)-induced changes in BPI gene expression in porcine kidney (PK15) cells in response to E. coli F18 exposure. We additionally generated PK15 cells that overexpressed BPI to assess the impact of this gene on Toll-like receptor 4 (TLR4) signaling and glycosphingolipid biosynthesis-related genes. Through these analyses, we found that BPI expression rose significantly following LPS exposure in response to E. coli F18ac stimulation (p < 0.01). Colony count assays and qPCR analyses revealed that E. coli F18 adherence to PK15 cells was markedly suppressed following BPI overexpression (p < 0.01). BPI overexpression had no significant effect on the mRNA-level expression of genes associated with glycosphingolipid biosynthesis or TLR4 signaling. BPI overexpression suppressed the LPS-induced TLR4 signaling pathway-related expression of proinflammatory cytokines (IFN-α, IFN-β, MIP-1α, MIP-1β and IL-6). Overall, our study serves as an overview of the association between BPI and resistance to E. coli F18 at the cellular level, offering a framework for future investigations of the mechanisms whereby piglets are able to resist E. coli F18 infection.
Collapse
Affiliation(s)
- Jian Jin
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.J.); (Y.H.); (S.S.); (Z.W.); (S.W.)
| | - Yanjie Huang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.J.); (Y.H.); (S.S.); (Z.W.); (S.W.)
| | - Shouyong Sun
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.J.); (Y.H.); (S.S.); (Z.W.); (S.W.)
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.J.); (Y.H.); (S.S.); (Z.W.); (S.W.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.J.); (Y.H.); (S.S.); (Z.W.); (S.W.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.J.); (Y.H.); (S.S.); (Z.W.); (S.W.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-514-87979316
| |
Collapse
|
16
|
Xu Z, Gong L, Peng P, Liu Y, Xue C, Cao Y. Porcine enteric alphacoronavirus Inhibits IFN-α, IFN-β, OAS, Mx1, and PKR mRNA Expression in Infected Peyer's Patches in vivo. Front Vet Sci 2020; 7:449. [PMID: 32719818 PMCID: PMC7347908 DOI: 10.3389/fvets.2020.00449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/19/2020] [Indexed: 11/26/2022] Open
Abstract
Porcine enteric alphacoronavirus (PEAV) is a newly identified swine enteropathogenic coronavirus that causes watery diarrhea in neonatal piglets. The pathogenesis and host immune responses of PEAV infection are not fully characterized. The reason lies in the stomach environment, which would degrade cell-cultured live viruses via oral infection, making it difficult to establish an effective infection model to study the pathogenesis and host immune responses in pigs with a mature immune system. To solve this problem, in this study, coated PEAV-loaded microspheres were developed by centrifugal granulation-fluidized bed coating and demonstrated as an effective oral delivery system/animal infection model to protect PEAV virion against the complex gastrointestinal environment in vitro and to cause infection in weaned piglets in vivo. Weaned piglets orally inoculated with coated PEAV-loaded microspheres developed diarrhea and virus RNA was detected in rectal swabs from one to seven days post inoculation. In addition, microscopic lesions in the small intestine were observed, and viral antigens were also detected in the small intestines with PEAV immunohistochemical staining. Importantly, PEAV significantly inhibited mRNA expression of IFN-α, IFN-β, OAS, Mx1, and PKR, the genes involved in modulation of the host immune responses, in infected Peyer's patches, indicating that PEAV can overcome the antiviral response to cause damage when infection occurs. Collectively, our research successfully established a PEAV animal infection model in weaned piglets and suggested that the observed gene expression profile might help explain immunological changes associated with PEAV infection.
Collapse
Affiliation(s)
- Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Lang Gong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peng Peng
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Yufang Liu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
17
|
Avian Influenza A Virus Infects Swine Airway Epithelial Cells without Prior Adaptation. Viruses 2020; 12:v12060589. [PMID: 32481674 PMCID: PMC7374723 DOI: 10.3390/v12060589] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/15/2023] Open
Abstract
Pigs play an important role in the interspecies transmission of influenza A viruses (IAV). The porcine airway epithelium contains binding sites for both swine/human IAV (α2,6-linked sialic acids) and avian IAV (α2,3-linked sialic acids) and therefore is suited for adaptation of viruses from other species as suggested by the “mixing vessel theory”. Here, we applied well-differentiated swine airway epithelial cells to find out whether efficient infection by avian IAV requires prior adaption. Furthermore, we analyzed the influence of the sialic acid-binding activity and the virus-induced detrimental effects. Surprisingly, an avian IAV H1N1 strain circulating in European poultry and waterfowl shows increased and prolonged viral replication without inducing a strong innate immune response. This virus could infect the lower respiratory tract in our precision cut-lung slice model. Pretreating the cells with poly (I:C) and/or JAK/STAT pathway inhibitors revealed that the interferon-stimulated innate immune response influences the replication of avian IAV in swine airway epitheliums but not that of swine IAV. Further studies indicated that in the infection by IAVs, the binding affinity of sialic acid is not the sole factor affecting the virus infectivity for swine or human airway epithelial cells, whereas it may be crucial in well-differentiated ferret tracheal epithelial cells. Taken together, our results suggest that the role of pigs being the vessel of interspecies transmission should be reconsidered, and the potential of avian H1N1 viruses to infect mammals needs to be characterized in more detail.
Collapse
|
18
|
Liu Y, Li R, Zhang Y, Qiao S, Chen XX, Zhang G. Porcine reproductive and respiratory syndrome virus up-regulates sialoadhesin via IFN-STAT signaling to facilitate its infection. Microb Pathog 2020; 142:104112. [PMID: 32126255 DOI: 10.1016/j.micpath.2020.104112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 11/19/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has caused huge economic losses to global swine industry. Porcine sialoadhesin (poSn) was previously reported to be a putative receptor for the causative agent, PRRS virus (PRRSV). In the current study, we first observed that PRRSV infection up-regulated expression of poSn in a dose- and time-dependent manner. Subsequently, we found that PRRSV-triggered transcription of type I interferons (IFNs) was involved in poSn up-regulation through the IFN-signal transducer and activator of transcription (STAT) signaling cascade. Interestingly, poSn up-regulation was shown to promote PRRSV infection during post-entry process. Taken together, this work deepens our understanding of PRRSV pathogenesis and provides a novel idea on its establishment of persistent infection, which will be interesting to unravel the detailed mechanisms in the future.
Collapse
Affiliation(s)
- Yingqi Liu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Yuyang Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
19
|
Liu Y, Li R, Qiao S, Chen XX, Deng R, Zhang G. Porcine sialoadhesin suppresses type I interferon production to support porcine reproductive and respiratory syndrome virus infection. Vet Res 2020; 51:18. [PMID: 32093750 PMCID: PMC7038599 DOI: 10.1186/s13567-020-00743-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/13/2020] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant threat to the global swine industry. Porcine sialoadhesin (poSn) has been previously shown to mediate PRRSV attachment and internalization. In the current study, we report its unidentified role in antagonism of type I interferon (IFN) production during PRRSV infection. We determined that poSn facilitated PRRSV infection via inhibition of type I IFN transcription. Mechanistically, poSn interacted with a 12 kDa DNAX-activation protein (DAP12), which was dependent on residues 51–57 within DAP12 transmembrane domain (TMD). PRRSV exploited the poSn-DAP12 pathway to attenuate activation of nuclear factor-kappa B (NF-κB). More importantly, the poSn-DAP12 pathway was involved in inhibiting poly (I:C)-triggered IFN production. All these results reveal a novel role of poSn in suppressing host antiviral responses, which deepens our understanding of PRRSV pathogenesis.
Collapse
Affiliation(s)
- Yingqi Liu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China. .,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
20
|
Chang X, Shi X, Zhang X, Wang L, Li X, Wang A, Deng R, Zhou E, Zhang G. IFI16 Inhibits Porcine Reproductive and Respiratory Syndrome Virus 2 Replication in a MAVS-Dependent Manner in MARC-145 Cells. Viruses 2019; 11:v11121160. [PMID: 31888156 PMCID: PMC6950192 DOI: 10.3390/v11121160] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a single-stranded positive-sense RNA virus, and the current strategies for controlling PRRSV are limited. Interferon gamma-inducible protein 16 (IFI16) has been reported to have a broader role in the regulation of the type I interferons (IFNs) response to RNA and DNA viruses. However, the function of IFI16 in PRRSV infection is unclear. Here, we revealed that IFI16 acts as a novel antiviral protein against PRRSV-2. IFI16 could be induced by interferon-beta (IFN-β). Overexpression of IFI16 could significantly suppress PRRSV-2 replication, and silencing the expression of endogenous IFI16 by small interfering RNAs led to the promotion of PRRSV-2 replication in MARC-145 cells. Additionally, IFI16 could promote mitochondrial antiviral signaling protein (MAVS)-mediated production of type I interferon and interact with MAVS. More importantly, IFI16 exerted anti-PRRSV effects in a MAVS-dependent manner. In conclusion, our data demonstrated that IFI16 has an inhibitory effect on PRRSV-2, and these findings contribute to understanding the role of cellular proteins in regulating PRRSV replication and may have implications for the future antiviral strategies.
Collapse
Affiliation(s)
- Xiaobo Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xibao Shi
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xiaozhuan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Li Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xuewu Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Aiping Wang
- Department of Bioengineering, Zhengzhou University, Zhengzhou 450000, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Enmin Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-371-6355-0369
| |
Collapse
|
21
|
Luo X, Chen XX, Qiao S, Li R, Xie S, Zhou X, Deng R, Zhou EM, Zhang G. Porcine Reproductive and Respiratory Syndrome Virus Enhances Self-Replication via AP-1-Dependent Induction of SOCS1. THE JOURNAL OF IMMUNOLOGY 2019; 204:394-407. [PMID: 31826939 DOI: 10.4049/jimmunol.1900731] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous economic losses in the swine industry since its emergence in the late 1980s. PRRSV exploits various strategies to evade immune responses and establish chronic persistent infections. Suppressor of cytokine signaling (SOCS) 1, a member of the SOCS family, is a crucial intracellular negative regulator of innate immunity. In this study, it was shown that SOCS1 can be co-opted by PRRSV to evade host immune responses, facilitating viral replication. It was observed that PRRSV induced SOCS1 production in porcine alveolar macrophages, monkey-derived Marc-145 cells, and porcine-derived CRL2843-CD163 cells. SOCS1 inhibited the expression of IFN-β and IFN-stimulated genes, thereby markedly enhancing PRRSV replication. It was observed that the PRRSV N protein has the ability to upregulate SOCS1 production and that nuclear localization signal-2 (NLS-2) is essential for SOCS1 induction. Moreover, SOCS1 upregulation was dependent on p38/AP-1 and JNK/AP-1 signaling pathways rather than classical type I IFN signaling pathways. In summary, to our knowledge, the findings of this study uncovered the molecular mechanism that underlay SOCS1 induction during PRRSV infection, providing new insights into viral immune evasion and persistent infection.
Collapse
Affiliation(s)
- Xuegang Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China.,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Sha Xie
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Xinyu Zhou
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - En-Min Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China; .,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| |
Collapse
|
22
|
Xu J, Zhang L, Xu Y, Zhang H, Gao J, Wang Q, Tian Z, Xuan L, Chen H, Wang Y. PP2A Facilitates Porcine Reproductive and Respiratory Syndrome Virus Replication by Deactivating irf3 and Limiting Type I Interferon Production. Viruses 2019; 11:v11100948. [PMID: 31618847 PMCID: PMC6832233 DOI: 10.3390/v11100948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Protein phosphatase 2A (PP2A), a major serine/threonine phosphatase in mammalian cells, is known to regulate the kinase-driven intracellular signaling pathways. Emerging evidences have shown that the PP2A phosphatase functions as a bona-fide therapeutic target for anticancer therapy, but it is unclear whether PP2A affects a porcine reproductive and respiratory syndrome virus infection. In the present study, we demonstrated for the first time that inhibition of PP2A activity by either inhibitor or small interfering RNA duplexes in target cells significantly reduced their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) infection. Further analysis revealed that inhibition of PP2A function resulted in augmented production of type I interferon (IFN). The mechanism is that inhibition of PP2A activity enhances the levels of phosphorylated interferon regulatory factor 3, which activates the transcription of IFN-stimulated genes. Moreover, inhibition of PP2A activity mainly blocked PRRSV replication in the early stage of viral life cycle, after virus entry but before virus release. Using type I IFN receptor 2 specific siRNA in combination with PP2A inhibitor, we confirmed that the effect of PP2A on viral replication within target cells was an interferon-dependent manner. Taken together, these findings demonstrate that PP2A serves as a negative regulator of host cells antiviral responses and provides a novel therapeutic target for virus infection.
Collapse
Affiliation(s)
- Jiayu Xu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lu Zhang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yunfei Xu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - He Zhang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Junxin Gao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lv Xuan
- Department of public health policy, University of California, Irvine, CA 92697, USA
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
23
|
Xu Z, Zhong H, Huang S, Zhou Q, Du Y, Chen L, Xue C, Cao Y. Porcine deltacoronavirus induces TLR3, IL-12, IFN-α, IFN-β and PKR mRNA expression in infected Peyer's patches in vivo. Vet Microbiol 2018; 228:226-233. [PMID: 30593372 PMCID: PMC7117130 DOI: 10.1016/j.vetmic.2018.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 12/25/2022]
Abstract
PDCoV infection caused severe diarrhea, virus shedding and intestinal lesion in weaned piglets. PDCoV could induce TLR3 mRNA expression in infected Peyer's patches from weaned piglets. PDCoV obviously induced IL-12, IFN-α, IFN-β, and PKR mRNA expression in infected Peyer's patches from weaned piglets.
Porcine deltacoronavirus (PDCoV) is a newly identified swine enteropathogenic coronavirus that causes watery diarrhea in piglets and results in significant economic losses to the pig industry. Currently there are no effective treatments or vaccines for PDCoV. In particular, the pathogenesis of PDCoV infection is still largely unknown. In this study, we reported that inoculating conventional weaned piglets with 1 × 109 TCID50 of the PDCoV CHN-GD-2016 strain by oral feeding could cause severe diarrhea. Virus RNA was detected in rectal swabs from 1 to 7 days post inoculation. In addition, microscopic lesions in small intestine were observed, and viral antigen also detected in the small intestines with PDCoV immunohistochemical staining. Importantly, PDCoV significantly induced mRNA expression of TLR3, IL-12, IFN-α, IFN-β, and PKR, the genes involved in modulation of the host immune responses, in infected Peyer's patches at 3 d.p.i., indicating that Peyer's patches play an important role in PDCoV immune responses in vivo. Collectively, our findings suggest that the observed gene expression profile might help explain immunological and pathological changes associated with PDCoV infection.
Collapse
Affiliation(s)
- Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huiling Zhong
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Songjian Huang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingfeng Zhou
- Wen's Group Academy, Wen's Foodstuffs Group Co, Ltd, Xinxing, Guangdong, 527400, China
| | - Yunping Du
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China; Wen's Group Academy, Wen's Foodstuffs Group Co, Ltd, Xinxing, Guangdong, 527400, China
| | - Li Chen
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China; Wen's Group Academy, Wen's Foodstuffs Group Co, Ltd, Xinxing, Guangdong, 527400, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|