1
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
2
|
Munt JE, Henein S, Adams C, Young E, Hou YJ, Conrad H, Zhu D, Dong S, Kose N, Yount B, Meganck RM, Tse LPV, Kuan G, Balmaseda A, Ricciardi MJ, Watkins DI, Crowe JE, Harris E, DeSilva AM, Baric RS. Homotypic antibodies target novel E glycoprotein domains after natural DENV 3 infection/vaccination. Cell Host Microbe 2023; 31:1850-1865.e5. [PMID: 37909048 PMCID: PMC11221912 DOI: 10.1016/j.chom.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
The envelope (E) glycoprotein is the primary target of type-specific (TS) neutralizing antibodies (nAbs) after infection with any of the four distinct dengue virus serotypes (DENV1-4). nAbs can be elicited to distinct structural E domains (EDs) I, II, or III. However, the relative contribution of these domain-specific antibodies is unclear. To identify the primary DENV3 nAb targets in sera after natural infection or vaccination, chimeric DENV1 recombinant encoding DENV3 EDI, EDII, or EDIII were generated. DENV3 EDII is the principal target of TS polyclonal nAb responses and encodes two or more neutralizing epitopes. In contrast, some were individuals vaccinated with a DENV3 monovalent vaccine-elicited serum TS nAbs targeting each ED in a subject-dependent fashion, with an emphasis on EDI and EDIII. Vaccine responses were also sensitive to DENV3 genotypic variation. This DENV1/3 panel allows the measurement of serum ED TS nAbs, revealing differences in TS nAb immunity after natural infection or vaccination.
Collapse
Affiliation(s)
- Jennifer E Munt
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Sandra Henein
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Cameron Adams
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ellen Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Deanna Zhu
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Nashville, TN, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Long Ping V Tse
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Guillermina Kuan
- Health Center Socrates Flores Vivas, Ministry of Health, Managua, Nicaragua; Sustainable Sciences Institute, Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua; National Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, Managua, Nicaragua
| | | | - David I Watkins
- University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Aravinda M DeSilva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Young E, Yount B, Pantoja P, Henein S, Meganck RM, McBride J, Munt JE, Baric TJ, Zhu D, Scobey T, Dong S, Tse LV, Martinez MI, Burgos AG, Graham RL, White L, DeSilva A, Sariol CA, Baric RS. A live dengue virus vaccine carrying a chimeric envelope glycoprotein elicits dual DENV2-DENV4 serotype-specific immunity. Nat Commun 2023; 14:1371. [PMID: 36914616 PMCID: PMC10009830 DOI: 10.1038/s41467-023-36702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
The four dengue virus serotypes co-circulate globally and cause significant human disease. Dengue vaccine development is challenging because some virus-specific antibodies are protective, while others are implicated in enhanced viral replication and more severe disease. Current dengue tetravalent vaccines contain four live attenuated serotypes formulated to theoretically induce balanced protective immunity. Among the number of vaccine candidates in clinical trials, only Dengvaxia is licensed for use in DENV seropositive individuals. To simplify live-virus vaccine design, we identify co-evolutionary constraints inherent in flavivirus virion assembly and design chimeric viruses to replace domain II (EDII) of the DENV2 envelope (E) glycoprotein with EDII from DENV4. The chimeric DENV2/4EDII virus replicates efficiently in vitro and in vivo. In male macaques, a single inoculation of DENV2/4EDII induces type-specific neutralizing antibodies to both DENV2 and DENV4, thereby providing a strategy to simplify DENV vaccine design by utilizing a single bivalent E glycoprotein immunogen for two DENV serotypes.
Collapse
Affiliation(s)
- Ellen Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Boyd Yount
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Petraleigh Pantoja
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Sandra Henein
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rita M Meganck
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, USA
| | - Jennifer McBride
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer E Munt
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas J Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Deanna Zhu
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Trevor Scobey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie Dong
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Longping V Tse
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, USA
| | - Melween I Martinez
- Caribbean Primate Research Center, School of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Armando G Burgos
- Caribbean Primate Research Center, School of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Rachel L Graham
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Laura White
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Aravinda DeSilva
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Carlos A Sariol
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Caribbean Primate Research Center, School of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Department of Internal Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Smith SA, Chruszcz M, Chapman MD, Pomés A. Human Monoclonal IgE Antibodies-a Major Milestone in Allergy. Curr Allergy Asthma Rep 2023; 23:53-65. [PMID: 36459330 PMCID: PMC9831959 DOI: 10.1007/s11882-022-01055-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 12/04/2022]
Abstract
PURPOSE OF REVIEW Bound to its high affinity receptor on mast cells and basophils, the IgE antibody molecule plays an integral role in the allergic reaction. Through interactions with the allergen, it provides the sensitivity and specificity parameters for cell activation and mediator release that produce allergic symptoms. Advancements in human hybridoma technologies allow for the generation and molecular definition of naturally occurring allergen-specific human IgE monoclonal antibodies. RECENT FINDINGS A high-resolution structure of dust mite allergen Der p 2 in complex with Fab of the human IgE mAb 2F10 was recently determined using X-ray crystallography. The structure reveals the fine molecular details of IgE 2F10 binding its 750 Å2 conformational epitope on Der p 2. This review provides an overview of this major milestone in allergy, the first atomic resolution structure of an authentic human IgE epitope. The molecular insights that IgE epitopes provide will allow for structure-based design approaches to the development of novel diagnostics, antibody therapeutics, and immunotherapies.
Collapse
Affiliation(s)
- Scott A Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | | |
Collapse
|
5
|
Raju N, Zhan X, Das S, Karwal L, Dean HJ, Crowe JE, Carnahan RH, Georgiev IS. Neutralization fingerprinting technology for characterizing polyclonal antibody responses to dengue vaccines. Cell Rep 2022; 41:111807. [PMID: 36516766 DOI: 10.1016/j.celrep.2022.111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/08/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Dengue is a major public health threat. There are four dengue virus (DENV) serotypes; therefore, efforts are focused on developing safe and effective tetravalent DENV vaccines. While neutralizing antibodies contribute to protective immunity, there are still important gaps in understanding of immune responses elicited by dengue infection and vaccination. To that end, here, we develop a computational modeling framework based on the concept of antibody-virus neutralization fingerprints in order to characterize samples from clinical studies of TAK-003, a tetravalent vaccine candidate currently in phase 3 trials. Our results suggest a similarity of neutralizing antibody specificities in baseline-seronegative individuals. In contrast, amplification of pre-existing neutralizing antibody specificities is predicted for baseline-seropositive individuals, thus quantifying the role of immunologic imprinting in driving antibody responses to DENV vaccines. The neutralization fingerprinting analysis framework presented here can contribute to understanding dengue immune correlates of protection and help guide further vaccine development and optimization.
Collapse
Affiliation(s)
- Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaoyan Zhan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Subash Das
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Lovkesh Karwal
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Hansi J Dean
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
6
|
Phan TTN, Hvasta MG, Kudlacek ST, Thiono DJ, Tripathy A, Nicely NI, de Silva AM, Kuhlman B. A conserved set of mutations for stabilizing soluble envelope protein dimers from dengue and Zika viruses to advance the development of subunit vaccines. J Biol Chem 2022; 298:102079. [PMID: 35643320 PMCID: PMC9249817 DOI: 10.1016/j.jbc.2022.102079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Dengue viruses (DENV serotypes 1-4) and Zika virus (ZIKV) are related flaviviruses that continue to be a public health concern, infecting hundreds of millions of people annually. The traditional live-attenuated virus vaccine approach has been challenging for the four DENV serotypes because of the need to achieve balanced replication of four independent vaccine components. Subunit vaccines represent an alternative approach that may circumvent problems inherent with live-attenuated DENV vaccines. In mature virus particles, the envelope (E) protein forms a homodimer that covers the surface of the virus and is the major target of neutralizing antibodies. Many neutralizing antibodies bind to quaternary epitopes that span across both E proteins in the homodimer. For soluble E (sE) protein to be a viable subunit vaccine, the antigens should be easy to produce and retain quaternary epitopes recognized by neutralizing antibodies. However, WT sE proteins are primarily monomeric at conditions relevant for vaccination and exhibit low expression yields. Previously, we identified amino acid mutations that stabilize the sE homodimer from DENV2 and dramatically raise expression yields. Here, we tested whether these same mutations raise the stability of sE from other DENV serotypes and ZIKV. We show that the mutations raise thermostability for sE from all the viruses, increase production yields from 4-fold to 250-fold, stabilize the homodimer, and promote binding to dimer-specific neutralizing antibodies. Our findings suggest that these sE variants could be valuable resources in the efforts to develop effective subunit vaccines for DENV serotypes 1 to 4 and ZIKV.
Collapse
Affiliation(s)
- Thanh T N Phan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew G Hvasta
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephan T Kudlacek
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Devina J Thiono
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ashutosh Tripathy
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathan I Nicely
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
7
|
Thompson D, Metz SW, Abad C, Beaty S, Warfield K. Immunological implications of diverse production approaches for Chikungunya virus-like particle vaccines. Vaccine 2022; 40:3009-3017. [PMID: 35459557 DOI: 10.1016/j.vaccine.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/04/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Chikungunya virus (CHIKV), an arbovirus from the Alphavirus genus, causes sporadic outbreaks and epidemics and can cause acute febrile illness accompanied by severe long-term arthralgias. Over 20 CHIKV vaccine candidates have been developed over the last two decades, utilizing a wide range of vaccine platforms, including virus-like particles (VLP). A CHIKV VLP vaccine candidate is among three candidates in late-stage clinical testing and has potentially promising data in nonclinical and clinical studies exploring safety and vaccine immunogenicity. Despite the consistency of the CHIKV VLP structure, vaccine candidates vary significantly in protein sequence identity, structural protein expression cassettes and their mode of production. Here, we explore the impact of CHIKV VLP coding sequence variation and the chosen expression platform, which affect VLP expression yields, antigenicity and overall vaccine immunogenicity. Additionally, we explore the potential of the CHIKV VLP platform to be modified to elicit protection against other pathogens.
Collapse
Affiliation(s)
- Danielle Thompson
- Emergent BioSolutions Inc., 400 Professional Dr, Gaithersburg, MD 20879, USA
| | - Stefan W Metz
- Emergent BioSolutions Inc., 400 Professional Dr, Gaithersburg, MD 20879, USA
| | - Carmen Abad
- Emergent BioSolutions Inc., 400 Professional Dr, Gaithersburg, MD 20879, USA
| | - Shannon Beaty
- Emergent BioSolutions Inc., 400 Professional Dr, Gaithersburg, MD 20879, USA
| | - Kelly Warfield
- Emergent BioSolutions Inc., 400 Professional Dr, Gaithersburg, MD 20879, USA.
| |
Collapse
|
8
|
Michlmayr D, Andrade P, Nascimento EJM, Parker A, Narvekar P, Dean HJ, Harris E. Characterization of the Type-Specific and Cross-Reactive B-Cell Responses Elicited by a Live-Attenuated Tetravalent Dengue Vaccine. J Infect Dis 2021; 223:247-257. [PMID: 32572472 DOI: 10.1093/infdis/jiaa346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Dengue is caused by 4 antigenically distinct serotypes of dengue virus (DENV1-4). Takeda's live attenuated tetravalent dengue vaccine (TAK-003) candidate is composed of an attenuated DENV2 and chimeric viruses containing prM/E of DENV1, 3 and 4 on the DENV2 backbone. The multicolor FluoroSpot (MCF) assay enables quantitation of serotype-specific and cross-reactive individual memory B cells (MBCs) secreting DENV-specific antibodies in a polyclonal mixture. METHODS Using the MCF assay, we determined the type-specific and cross-reactive MBC response in peripheral blood mononuclear cells collected pre- and postvaccination from 7 macaques and 15 randomly selected individuals who received TAK-003 (8 DENV seronegative and 7 DENV seropositive) in a phase 2 clinical trial in Singapore (DEN-205 study). RESULTS Preexisting DENV-specific MBC responses were detected only in seropositive vaccine recipients at day 0. Following vaccination, both type-specific and cross-reactive MBCs to all 4 DENV serotypes were observed in all macaques and clinical trial participants. The proportion of type-specific MBCs was higher than cross-reactive MBCs and remained stable between day 30 and 360 post vaccination. CONCLUSIONS These results demonstrate that, unlike primary or secondary natural DENV infection, tetravalent vaccination elicits tetravalent type-specific MBCs, and thus all 4 components of TAK-003 contribute to the DENV-specific MBC response following vaccination. CLINICAL TRIALS REGISTRATION NCT02425098.
Collapse
Affiliation(s)
- Daniela Michlmayr
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Paulina Andrade
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA.,Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Quito, Ecuador
| | | | - Allan Parker
- Takeda Vaccines, Inc., Cambridge, Massachusetts, USA
| | - Parnal Narvekar
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Hansi J Dean
- Takeda Vaccines, Inc., Cambridge, Massachusetts, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
9
|
Nivarthi UK, Swanstrom J, Delacruz MJ, Patel B, Durbin AP, Whitehead SS, Kirkpatrick BD, Pierce KK, Diehl SA, Katzelnick L, Baric RS, de Silva AM. A tetravalent live attenuated dengue virus vaccine stimulates balanced immunity to multiple serotypes in humans. Nat Commun 2021; 12:1102. [PMID: 33597521 PMCID: PMC7889627 DOI: 10.1038/s41467-021-21384-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 01/26/2021] [Indexed: 11/24/2022] Open
Abstract
The four-dengue virus (DENV) serotypes infect several hundred million people annually. For the greatest safety and efficacy, tetravalent DENV vaccines are designed to stimulate balanced protective immunity to all four serotypes. However, this has been difficult to achieve. Clinical trials with a leading vaccine demonstrated that unbalanced replication and immunodominance of one vaccine component over others can lead to low efficacy and vaccine enhanced severe disease. The Laboratory of Infectious Diseases at the National Institutes of Health has developed a live attenuated tetravalent DENV vaccine (TV003), which is currently being tested in phase 3 clinical trials. Here we report, our study to determine if TV003 stimulate balanced and serotype-specific (TS) neutralizing antibody (nAb) responses to each serotype. Serum samples from twenty-one dengue-naive individuals participated under study protocol CIR287 (ClinicalTrials.gov NCT02021968) are analyzed 6 months after vaccination. Most subjects (76%) develop TS nAbs to 3 or 4 DENV serotypes, indicating immunity is induced by each vaccine component. Vaccine-induced TS nAbs map to epitopes known to be targets of nAbs in people infected with wild type DENVs. Following challenge with a partially attenuated strain of DENV2, all 21 subjects are protected from the efficacy endpoints. However, some vaccinated individuals develop post challenge nAb boost, while others mount post-challenge antibody responses that are consistent with sterilizing immunity. TV003 vaccine induced DENV2 TS nAbs are associated with sterilizing immunity. Our results indicate that nAbs to TS epitopes on each serotype may be a better correlate than total levels of nAbs currently used for guiding DENV vaccine development.
Collapse
Affiliation(s)
- Usha K Nivarthi
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jesica Swanstrom
- Department of Epidemiology, University of North Carolina Gillings School of Public Health, Chapel Hill, NC, USA
| | - Matthew J Delacruz
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Bhumi Patel
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anna P Durbin
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Baltimore, MD, USA
| | - Steve S Whitehead
- Laboratory of Infectious Diseases, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Beth D Kirkpatrick
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Kristen K Pierce
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Sean A Diehl
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | | | - Ralph S Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Department of Epidemiology, University of North Carolina Gillings School of Public Health, Chapel Hill, NC, USA.
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Adam A, Cuellar S, Wang T. Memory B cell and antibody responses to flavivirus infection and vaccination. Fac Rev 2021; 10:5. [PMID: 33659923 PMCID: PMC7894259 DOI: 10.12703/r/10-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Flaviviruses are a group of mosquito- or tick-borne single-stranded RNA viruses that can cause a wide range of clinical manifestations in humans and animals, including asymptomatic, flu-like febrile illness, hemorrhagic fever, encephalitis, birth defects, and death. Many of them have no licensed vaccines available for human use. Memory B cell development and induction of neutralizing antibody responses, which are important for the control of flavivirus infection and dissemination, have been used as biomarkers for vaccine efficacy. In this review, we will discuss recent findings on memory B cells and antibody responses from studies in clinical specimen and animal models of flavivirus infection and vaccination with a focus on several clinically important flaviviruses, including dengue, West Nile, yellow fever, and Zika viruses.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Servando Cuellar
- School of Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
11
|
Young E, Carnahan RH, Andrade DV, Kose N, Nargi RS, Fritch EJ, Munt JE, Doyle MP, White L, Baric TJ, Stoops M, DeSilva A, Tse LV, Martinez DR, Zhu D, Metz S, Wong MP, Espinosa DA, Montoya M, Biering SB, Sukulpolvi-Petty S, Kuan G, Balmaseda A, Diamond MS, Harris E, Crowe JE, Baric RS. Identification of Dengue Virus Serotype 3 Specific Antigenic Sites Targeted by Neutralizing Human Antibodies. Cell Host Microbe 2021; 27:710-724.e7. [PMID: 32407709 PMCID: PMC7309352 DOI: 10.1016/j.chom.2020.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/18/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
The rational design of dengue virus (DENV) vaccines requires a detailed understanding of the molecular basis for antibody-mediated immunity. The durably protective antibody response to DENV after primary infection is serotype specific. However, there is an incomplete understanding of the antigenic determinants for DENV type-specific (TS) antibodies, especially for DENV serotype 3, which has only one well-studied, strongly neutralizing human monoclonal antibody (mAb). Here, we investigated the human B cell response in children after natural DENV infection in the endemic area of Nicaragua and isolated 15 DENV3 TS mAbs recognizing the envelope (E) glycoprotein. Functional epitope mapping of these mAbs and small animal prophylaxis studies revealed a complex landscape with protective epitopes clustering in at least 6-7 antigenic sites. Potently neutralizing TS mAbs recognized sites principally in E glycoprotein domains I and II, and patterns suggest frequent recognition of quaternary structures on the surface of viral particles.
Collapse
Affiliation(s)
- Ellen Young
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Robert H Carnahan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniela V Andrade
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel S Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ethan J Fritch
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer E Munt
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Michael P Doyle
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura White
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas J Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Mark Stoops
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Aravinda DeSilva
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Longping V Tse
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Deanna Zhu
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Stefan Metz
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Marcus P Wong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Magelda Montoya
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Soila Sukulpolvi-Petty
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Guillermina Kuan
- Health Center Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Angel Balmaseda
- National Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, Managua, Nicaragua
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| | - James E Crowe
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Tu HA, Nivarthi UK, Graham NR, Eisenhauer P, Delacruz MJ, Pierce KK, Whitehead SS, Boyson JE, Botten JW, Kirkpatrick BD, Durbin AP, deSilva AM, Diehl SA. Stimulation of B Cell Immunity in Flavivirus-Naive Individuals by the Tetravalent Live Attenuated Dengue Vaccine TV003. Cell Rep Med 2020; 1:100155. [PMID: 33377126 PMCID: PMC7762770 DOI: 10.1016/j.xcrm.2020.100155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/09/2020] [Accepted: 11/18/2020] [Indexed: 02/05/2023]
Abstract
The tetravalent live attenuated dengue vaccine candidate TV003 induces neutralizing antibodies against all four dengue virus serotypes (DENV1-DENV4) and protects against experimental challenge with DENV2 in humans. Here, we track vaccine viremia and B and T cell responses to this vaccination/challenge model to understand how vaccine viremia links adaptive immunity and development of protective antibody responses. TV003 viremia triggers an acute plasmablast response that, in combination with DENV-specific CD4+ T cells, correlates with serum neutralizing antibodies. TV003 vaccinees develop DENV2-reactive memory B cells, including serotype-specific and multivalent specificities in line with the composition of serum antibodies. There is no post-challenge plasmablast response in vaccinees, although stronger and earlier post-TV003 plasmablast responses associate with sterile humoral protection from DENV2 challenge. TV003 vaccine triggers plasmablasts and memory B cells, which, with support from CD4+ T cells, functionally link early vaccine viremia and the serum antibody responses.
Collapse
Affiliation(s)
- Huy A. Tu
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA
| | - Usha K. Nivarthi
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Nancy R. Graham
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Philip Eisenhauer
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Matthew J. Delacruz
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kristen K. Pierce
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Stephen S. Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan E. Boyson
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jason W. Botten
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Beth D. Kirkpatrick
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Anna P. Durbin
- Department of International Health, Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Aravinda M. deSilva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Sean A. Diehl
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
13
|
Shukla R, Ramasamy V, Shanmugam RK, Ahuja R, Khanna N. Antibody-Dependent Enhancement: A Challenge for Developing a Safe Dengue Vaccine. Front Cell Infect Microbiol 2020; 10:572681. [PMID: 33194810 PMCID: PMC7642463 DOI: 10.3389/fcimb.2020.572681] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 01/05/2023] Open
Abstract
In 2019, the United States Food and Drug Administration accorded restricted approval to Sanofi Pasteur's Dengvaxia, a live attenuated vaccine (LAV) for dengue fever, a mosquito-borne viral disease, caused by four antigenically distinct dengue virus serotypes (DENV 1-4). The reason for this limited approval is the concern that this vaccine sensitized some of the dengue-naïve recipients to severe dengue fever. Recent knowledge about the nature of the immune response elicited by DENV viruses suggests that all LAVs have inherent capacity to predominantly elicit antibodies (Abs) against the pre-membrane (prM) and fusion loop epitope (FLE) of DENV. These antibodies are generally cross-reactive among DENV serotypes carrying a higher risk of promoting Antibody-Dependent Enhancement (ADE). ADE is a phenomenon in which suboptimal neutralizing or non-neutralizing cross-reactive antibodies bind to virus and facilitate Fcγ receptor mediated enhanced entry into host cells, followed by its replication, and thus increasing the cellular viral load. On the other hand, antibody responses directed against the host-cell receptor binding domain of DENV envelope domain-III (EDIII), exhibit a higher degree of type-specificity with lower potential of ADE. The challenges associated with whole DENV-based vaccine strategies necessitate re-focusing our attention toward the designed dengue vaccine candidates, capable of inducing predominantly type-specific immune responses. If the designed vaccines elicited predominantly EDIII-directed serotype specific antibodies in the absence of prM and FLE antibodies, this could avoid the ADE phenomenon largely associated with the prM and FLE antibodies. The generation of type-specific antibodies to each of the four DENV serotypes by the designed vaccines could avoid the immune evasion mechanisms of DENVs. For the enhanced vaccine safety, all dengue vaccine candidates should be assessed for the extent of type-specific (minimal ADE) vs. cross-reactive (ADE promoting) neutralizing antibodies. The type-specific EDIII antibodies may be more directly related to protection from disease in the absence of ADE promoted by the cross-reactive antibodies.
Collapse
Affiliation(s)
- Rahul Shukla
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Viswanathan Ramasamy
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rajgokul K Shanmugam
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Richa Ahuja
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Navin Khanna
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
14
|
Graham NR, Whitaker AN, Strother CA, Miles AK, Grier D, McElvany BD, Bruce EA, Poynter ME, Pierce KK, Kirkpatrick BD, Stapleton RD, An G, van den Broek‐Altenburg E, Botten JW, Crothers JW, Diehl SA. Kinetics and isotype assessment of antibodies targeting the spike protein receptor-binding domain of severe acute respiratory syndrome-coronavirus-2 in COVID-19 patients as a function of age, biological sex and disease severity. Clin Transl Immunology 2020; 9:e1189. [PMID: 33072323 PMCID: PMC7541824 DOI: 10.1002/cti2.1189] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES There is an incomplete understanding of the host humoral immune response to severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2, which underlies COVID-19, during acute infection. Host factors such as age and sex as well as the kinetics and functionality of antibody responses are important factors to consider as vaccine development proceeds. The receptor-binding domain of the CoV spike (RBD-S) protein mediates host cell binding and infection and is a major target for vaccine design to elicit neutralising antibodies. METHODS We assessed serum anti-SARS-CoV-2 RBD-S IgG, IgM and IgA antibodies by a two-step ELISA and neutralising antibodies in a cross-sectional study of hospitalised COVID-19 patients of varying disease severities. Anti-RBD-S IgG levels were also determined in asymptomatic seropositives. RESULTS We found equivalent levels of anti-RBD-S antibodies in male and female patients and no age-related deficiencies even out to 93 years of age. The anti-RBD-S response was evident as little as 6 days after onset of symptoms and for at least 5 weeks after symptom onset. Anti-RBD-S IgG, IgM and IgA responses were simultaneously induced within 10 days after onset, with anti-RBD-S IgG sustained over a 5-week period. Anti-RBD-S antibodies strongly correlated with neutralising activity. Lastly, anti-RBD-S IgG responses were higher in symptomatic COVID-19 patients during acute infection compared with asymptomatic seropositive donors. CONCLUSION Our results suggest that anti-RBD-S IgG reflect functional immune responses to SARS-CoV-2, but do not completely explain age- and sex-related disparities in COVID-19 fatalities.
Collapse
Affiliation(s)
- Nancy R Graham
- Department of Microbiology and Molecular GeneticsLarner College of Medicine, University of VermontBurlingtonVTUSA
- Vaccine Testing CenterLarner College of Medicine, University of VermontBurlingtonVTUSA
| | - Annalis N Whitaker
- Department of Medicine‐ImmunobiologyLarner College of Medicine, University of VermontBurlingtonVTUSA
- Cellular, Molecular, and Biomedical Sciences Graduate ProgramUniversity of VermontBurlingtonVTUSA
- Vermont Center for Immunology and Infectious DiseaseLarner College of Medicine, University of VermontBurlingtonVTUSA
| | - Camilla A Strother
- Department of Microbiology and Molecular GeneticsLarner College of Medicine, University of VermontBurlingtonVTUSA
- Cellular, Molecular, and Biomedical Sciences Graduate ProgramUniversity of VermontBurlingtonVTUSA
| | - Ashley K Miles
- Department of Microbiology and Molecular GeneticsLarner College of Medicine, University of VermontBurlingtonVTUSA
- Vaccine Testing CenterLarner College of Medicine, University of VermontBurlingtonVTUSA
| | - Dore Grier
- Department of Pathology and Laboratory MedicineLarner College of Medicine, University of VermontBurlingtonVTUSA
| | - Benjamin D McElvany
- Department of Microbiology and Molecular GeneticsLarner College of Medicine, University of VermontBurlingtonVTUSA
- Vaccine Testing CenterLarner College of Medicine, University of VermontBurlingtonVTUSA
| | - Emily A Bruce
- Department of Medicine‐ImmunobiologyLarner College of Medicine, University of VermontBurlingtonVTUSA
- Vermont Center for Immunology and Infectious DiseaseLarner College of Medicine, University of VermontBurlingtonVTUSA
- Translational Global Infectious Disease Research CenterUniversity of VermontBurlingtonVTUSA
| | - Matthew E Poynter
- Cellular, Molecular, and Biomedical Sciences Graduate ProgramUniversity of VermontBurlingtonVTUSA
- Vermont Center for Immunology and Infectious DiseaseLarner College of Medicine, University of VermontBurlingtonVTUSA
- Translational Global Infectious Disease Research CenterUniversity of VermontBurlingtonVTUSA
- Vermont Lung CenterLarner College of Medicine, University of VermontBurlingtonVTUSA
- Department of Medicine‐Pulmonary and Critical CareLarner College of Medicine, University of VermontBurlingtonVTUSA
| | - Kristen K Pierce
- Department of Microbiology and Molecular GeneticsLarner College of Medicine, University of VermontBurlingtonVTUSA
- Vaccine Testing CenterLarner College of Medicine, University of VermontBurlingtonVTUSA
- Translational Global Infectious Disease Research CenterUniversity of VermontBurlingtonVTUSA
- Department of Medicine‐Infectious DiseaseLarner College of Medicine University of VermontBurlingtonVTUSA
| | - Beth D Kirkpatrick
- Department of Microbiology and Molecular GeneticsLarner College of Medicine, University of VermontBurlingtonVTUSA
- Vaccine Testing CenterLarner College of Medicine, University of VermontBurlingtonVTUSA
- Vermont Center for Immunology and Infectious DiseaseLarner College of Medicine, University of VermontBurlingtonVTUSA
- Translational Global Infectious Disease Research CenterUniversity of VermontBurlingtonVTUSA
- Department of Medicine‐Infectious DiseaseLarner College of Medicine University of VermontBurlingtonVTUSA
| | - Renee D Stapleton
- Vermont Lung CenterLarner College of Medicine, University of VermontBurlingtonVTUSA
- Department of Medicine‐Pulmonary and Critical CareLarner College of Medicine, University of VermontBurlingtonVTUSA
| | - Gary An
- Translational Global Infectious Disease Research CenterUniversity of VermontBurlingtonVTUSA
- Department of SurgeryLarner College of Medicine, University of VermontBurlingtonVTUSA
| | | | - Jason W Botten
- Department of Microbiology and Molecular GeneticsLarner College of Medicine, University of VermontBurlingtonVTUSA
- Vaccine Testing CenterLarner College of Medicine, University of VermontBurlingtonVTUSA
- Department of Medicine‐ImmunobiologyLarner College of Medicine, University of VermontBurlingtonVTUSA
- Cellular, Molecular, and Biomedical Sciences Graduate ProgramUniversity of VermontBurlingtonVTUSA
- Vermont Center for Immunology and Infectious DiseaseLarner College of Medicine, University of VermontBurlingtonVTUSA
- Translational Global Infectious Disease Research CenterUniversity of VermontBurlingtonVTUSA
| | - Jessica W Crothers
- Vermont Center for Immunology and Infectious DiseaseLarner College of Medicine, University of VermontBurlingtonVTUSA
- Translational Global Infectious Disease Research CenterUniversity of VermontBurlingtonVTUSA
- Department of Medicine‐Infectious DiseaseLarner College of Medicine University of VermontBurlingtonVTUSA
| | - Sean A Diehl
- Department of Microbiology and Molecular GeneticsLarner College of Medicine, University of VermontBurlingtonVTUSA
- Vaccine Testing CenterLarner College of Medicine, University of VermontBurlingtonVTUSA
- Cellular, Molecular, and Biomedical Sciences Graduate ProgramUniversity of VermontBurlingtonVTUSA
- Vermont Center for Immunology and Infectious DiseaseLarner College of Medicine, University of VermontBurlingtonVTUSA
- Translational Global Infectious Disease Research CenterUniversity of VermontBurlingtonVTUSA
| |
Collapse
|
15
|
Antigenic Variation of the Dengue Virus 2 Genotypes Impacts the Neutralization Activity of Human Antibodies in Vaccinees. Cell Rep 2020; 33:108226. [PMID: 33027653 PMCID: PMC7583086 DOI: 10.1016/j.celrep.2020.108226] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/04/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Abstract
Dengue virus (DENV) infects an estimated 390 million people each year worldwide. As tetravalent DENV vaccines have variable efficacy against DENV serotype 2 (DENV2), we evaluated the role of genetic diversity within the pre-membrane (prM) and envelope (E) proteins of DENV2 on vaccine performance. We generated a recombinant DENV2 genotype variant panel with contemporary prM and E isolates that are representative of global genetic diversity. The DENV2 genotype variants differ in growth kinetics, morphology, and virion stability. Importantly, the DENV2 genotypic variants are differentially neutralized by monoclonal antibodies, polyclonal serum neutralizing antibodies from DENV2-infected human subjects, and vaccine-elicited antibody responses from the TV003 NIH DENV2 monovalent and DENV tetravalent vaccines. We conclude that DENV2 prM and E genetic diversity significantly modulates antibody neutralization activity. These findings have important implications for dengue vaccines, which are being developed under the assumption that intraserotype variation has minimal impact on neutralizing antibodies. Martinez et al. demonstrate that dengue virus serotype 2 (DENV2) genetic variation modulates neutralizing antibody activity from infection and vaccination. This observation underlines that genotypic variation impacts dengue virus 2 evasion from humoral immunity, suggesting that intraserotype genotypic variation should be considered in designing dengue vaccines.
Collapse
|
16
|
Shukla R, Beesetti H, Brown JA, Ahuja R, Ramasamy V, Shanmugam RK, Poddar A, Batra G, Krammer F, Lim JK, Kale S, Lal AA, Swaminathan S, Khanna N. Dengue and Zika virus infections are enhanced by live attenuated dengue vaccine but not by recombinant DSV4 vaccine candidate in mouse models. EBioMedicine 2020; 60:102991. [PMID: 32949997 PMCID: PMC7501058 DOI: 10.1016/j.ebiom.2020.102991] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 01/21/2023] Open
Abstract
Background A tetravalent live attenuated dengue vaccine, Dengvaxia, sensitised naïve recipients to severe dengue illness upon a subsequent natural dengue infection and is suspected to be due to antibody-dependent enhancement (ADE). ADE has also been implicated in the severe neurological outcomes of Zika virus (ZIKV) infection. It has become evident that cross-reactive antibodies targeting the viral pre-membrane protein and fusion-loop epitope are ADE-competent. A pre-clinical tetravalent dengue sub-unit vaccine candidate, DSV4, eliminates these ADE-competent epitopes. Methods We compared protective efficacy and ADE-competence of murine polyclonal antibodies induced by DSV4, Dengvaxia and an ‘in house’ tetravalent mixture of all four laboratory DENV strains, TV DENV, using established mouse models. Findings DSV4-induced antibodies, known to be predominantly type-specific, provided significant protection against lethal DENV challenge, but did not promote ADE of either DENV or ZIKV infection in vivo. Antibodies elicited by Dengvaxia and TV DENV, which are predominantly cross-reactive, not only failed to offer protection against lethal DENV challenge, but also promoted ADE of both DENV and ZIKV infection in vivo. Interpretation Protective efficacy against DENV infection may be linked to the induction of neutralising antibodies which are type-specific rather than cross-reactive. Whole virus-based dengue vaccines may be associated with ADE risk, despite their potent virus-neutralising capacity. Vaccines designed to eliminate ADE-competent epitopes may help eliminate/minimise ADE risk. Funding This study was supported partly by ICGEB, India, the National Biopharma Mission, DBT, Government of India, Sun Pharmaceutical Industries Limited, India, and NIAID, NIH, USA.
Collapse
Affiliation(s)
- Rahul Shukla
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Hemalatha Beesetti
- Dengue Laboratory, Sun Pharmaceutical Industries Ltd., Gurugram, Haryana, India
| | - Julia A Brown
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Richa Ahuja
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Viswanathan Ramasamy
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Rajgokul K Shanmugam
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Ankur Poddar
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Gaurav Batra
- Centre for Biodesign and Diagnostics, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sachin Kale
- Dengue Laboratory, Sun Pharmaceutical Industries Ltd., Gurugram, Haryana, India
| | - Altaf A Lal
- Dengue Laboratory, Sun Pharmaceutical Industries Ltd., Gurugram, Haryana, India
| | - Sathyamangalam Swaminathan
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering & Biotechnology, New Delhi, India.
| | - Navin Khanna
- Translational Health Group, Molecular Medicine Division, International Centre for Genetic Engineering & Biotechnology, New Delhi, India.
| |
Collapse
|
17
|
Andrade P, Narvekar P, Montoya M, Michlmayr D, Balmaseda A, Coloma J, Harris E. Primary and Secondary Dengue Virus Infections Elicit Similar Memory B-Cell Responses, but Breadth to Other Serotypes and Cross-Reactivity to Zika Virus Is Higher in Secondary Dengue. J Infect Dis 2020; 222:590-600. [PMID: 32193549 PMCID: PMC7377287 DOI: 10.1093/infdis/jiaa120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The 4 antigenically distinct serotypes of dengue virus (DENV) share extensive homology with each other and with the closely related Zika flavivirus (ZIKV). The development of polyclonal memory B cells (MBCs) to the 4 DENV serotypes and ZIKV during DENV infection is not fully understood. METHODS In this study, we analyzed polyclonal MBCs at the single-cell level from peripheral blood mononuclear cells collected ~2 weeks or 6-7 months postprimary or postsecondary DENV infection from a pediatric hospital-based study in Nicaragua using a Multi-Color FluoroSpot assay. RESULTS Dengue virus elicits robust type-specific and cross-reactive MBC responses after primary and secondary DENV infection, with a significantly higher cross-reactive response in both. Reactivity to the infecting serotype dominated the total MBC response. Although the frequency and proportion of type-specific and cross-reactive MBCs were comparable between primary and secondary DENV infections, within the cross-reactive response, the breadth of MBC responses against different serotypes was greater after secondary DENV infection. Dengue virus infection also induced cross-reactive MBC responses recognizing ZIKV, particularly after secondary DENV infection. CONCLUSIONS Overall, our study sheds light on the polyclonal MBC response to DENV and ZIKV in naive and DENV-preimmune subjects, with important implications for natural infections and vaccine development.
Collapse
Affiliation(s)
- Paulina Andrade
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Parnal Narvekar
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Magelda Montoya
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Daniela Michlmayr
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
18
|
Graham NR, Whitaker AN, Strother CA, Miles AK, Grier D, McElvany BD, Bruce EA, Poynter ME, Pierce KK, Kirkpatrick BD, Stapleton RD, An G, Botten JW, Crothers JW, Diehl SA. Kinetics and Isotype Assessment of Antibodies Targeting the Spike Protein Receptor Binding Domain of SARS-CoV-2 In COVID-19 Patients as a function of Age and Biological Sex. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.07.15.20154443. [PMID: 32743592 PMCID: PMC7386516 DOI: 10.1101/2020.07.15.20154443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 is the newly emerged virus responsible for the global COVID-19 pandemic. There is an incomplete understanding of the host humoral immune response to SARS-CoV-2 during acute infection. Host factors such as age and sex as well the kinetics and functionality of antibody responses are important factors to consider as vaccine development proceeds. The receptor-binding domain of the CoV spike (RBD-S) protein is important in host cell recognition and infection and antibodies targeting this domain are often neutralizing. In a cross-sectional study of anti-RBD-S antibodies in COVID-19 patients we found equivalent levels in male and female patients and no age-related deficiencies even out to 93 years of age. The anti-RBD-S response was evident as little as 6 days after onset of symptoms and for at least 5 weeks after symptom onset. Anti-RBD-S IgG, IgM, and IgA responses were simultaneously induced within 10 days after onset, but isotype-specific kinetics differed such that anti-RBD-S IgG was most sustained over a 5-week period. The kinetics and magnitude of neutralizing antibody formation strongly correlated with that seen for anti-RBD-S antibodies. Our results suggest age- and sex- related disparities in COVID-19 fatalities are not explained by anti-RBD-S responses. The multi-isotype anti-RBD-S response induced by live virus infection could serve as a potential marker by which to monitor vaccine-induced responses.
Collapse
|
19
|
Wilken L, Rimmelzwaan GF. Adaptive Immunity to Dengue Virus: Slippery Slope or Solid Ground for Rational Vaccine Design? Pathogens 2020; 9:pathogens9060470. [PMID: 32549226 PMCID: PMC7350362 DOI: 10.3390/pathogens9060470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
The four serotypes of dengue virus are the most widespread causes of arboviral disease, currently placing half of the human population at risk of infection. Pre-existing immunity to one dengue virus serotype can predispose to severe disease following secondary infection with a different serotype. The phenomenon of immune enhancement has complicated vaccine development and likely explains the poor long-term safety profile of a recently licenced dengue vaccine. Therefore, alternative vaccine strategies should be considered. This review summarises studies dissecting the adaptive immune responses to dengue virus infection and (experimental) vaccination. In particular, we discuss the roles of (i) neutralising antibodies, (ii) antibodies to non-structural protein 1, and (iii) T cells in protection and pathogenesis. We also address how these findings could translate into next-generation vaccine approaches that mitigate the risk of enhanced dengue disease. Finally, we argue that the development of a safe and efficacious dengue vaccine is an attainable goal.
Collapse
|
20
|
Subramaniam KS, Lant S, Goodwin L, Grifoni A, Weiskopf D, Turtle L. Two Is Better Than One: Evidence for T-Cell Cross-Protection Between Dengue and Zika and Implications on Vaccine Design. Front Immunol 2020; 11:517. [PMID: 32269575 PMCID: PMC7109261 DOI: 10.3389/fimmu.2020.00517] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Dengue virus (DENV, family Flaviviridae, genus Flavivirus) exists as four distinct serotypes. Generally, immunity after infection with one serotype is protective and lifelong, though exceptions have been described. However, secondary infection with a different serotype can result in more severe disease for a minority of patients. Host responses to the first DENV infection involve the development of both cross-reactive antibody and T cell responses, which, depending upon their precise balance, may mediate protection or enhance disease upon secondary infection with a different serotype. Abundant evidence now exists that responses elicited by DENV infection can cross-react with other members of the genus Flavivirus, particularly Zika virus (ZIKV). Cohort studies have shown that prior DENV immunity is associated with protection against Zika. Cross-reactive antibody responses may enhance infection with flaviviruses, which likely accounts for the cases of severe disease seen during secondary DENV infections. Data for T cell responses are contradictory, and even though cross-reactive T cell responses exist, their clinical significance is uncertain. Recent mouse experiments, however, show that cross-reactive T cells are capable of mediating protection against ZIKV. In this review, we summarize and discuss the evidence that T cell responses may, at least in part, explain the cross-protection seen against ZIKV from DENV infection, and that T cell antigens should therefore be included in putative Zika vaccines.
Collapse
Affiliation(s)
- Krishanthi S. Subramaniam
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Suzannah Lant
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Lynsey Goodwin
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Tropical and Infectious Disease Unit, Liverpool University Hospitals, Liverpool, United Kingdom
| |
Collapse
|
21
|
Hosseini S, Muñoz-Soto RB, Oliva-Ramírez J, Vázquez-Villegas P, Aghamohammadi N, Rodriguez-Garcia A, Martinez-Chapa SO. Latest Updates in Dengue Fever Therapeutics: Natural, Marine and Synthetic Drugs. Curr Med Chem 2020; 27:719-744. [DOI: 10.2174/0929867325666180629124709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 11/22/2022]
Abstract
In this paper, we review the history of Dengue, the mechanism of infection, the
molecular characteristics and components of Dengue, the mechanism of entry to the target
cells, cyclization of the genome and replication process, as well as translation of the proteins
for virus assembly. The major emphasis of this work is on natural products and plant extracts,
which were used for as palliative or adjuvant treatment of Dengue. This review article also
summarizes the latest findings in regards to the marine products as effective drugs to target
different symptoms of Dengue. Furthermore, an update on synthetic drugs for treating Dengue
is provided in this review. As a novel alternative, we describe monoclonal antibody therapy
for Dengue management and treatment.
Collapse
Affiliation(s)
- Samira Hosseini
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, N.L. 64849, Mexico
| | - Rodrigo B. Muñoz-Soto
- Tecnologico de Monterrey, Campus Ciudad de México, Escuela de Ingeniería y Ciencias, Calle del Puente 222, Mexico City, Mexico
| | - Jacqueline Oliva-Ramírez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Lago de Guadalupe Km 3.5, Cd Lopez Mateos, Atizapan, Estado de Mexico, Mexico
| | | | - Nasrin Aghamohammadi
- Centre for Occupational and Environmental Health, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Aida Rodriguez-Garcia
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biologicas, Instituto de Biotecnología. Ave. Pedro de Alba S/N, Ciudad Universitaria, San Nicolás de los Garza, N.L. 66455, Mexico
| | | |
Collapse
|
22
|
Hurtado-Monzón AM, Cordero-Rivera CD, Farfan-Morales CN, Osuna-Ramos JF, De Jesús-González LA, Reyes-Ruiz JM, Del Ángel RM. The role of anti-flavivirus humoral immune response in protection and pathogenesis. Rev Med Virol 2020; 30:e2100. [PMID: 32101633 DOI: 10.1002/rmv.2100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Flavivirus infections are a public health threat in the world that requires the development of safe and effective vaccines. Therefore, the understanding of the anti-flavivirus humoral immune response is fundamental to future studies on flavivirus pathogenesis and the design of anti-flavivirus therapeutics. This review aims to provide an overview of the current understanding of the function and involvement of flavivirus proteins in the humoral immune response as well as the ability of the anti-envelope (anti-E) antibodies to interfere (neutralizing antibodies) or not (non-neutralizing antibodies) with viral infection, and how they can, in some circumstances enhance dengue virus infection on Fc gamma receptor (FcγR) bearing cells through a mechanism known as antibody-dependent enhancement (ADE). Thus, the dual role of the antibodies against E protein poses a formidable challenge for vaccine development. Also, we discuss the roles of antibody binding stoichiometry (the concentration, affinity, or epitope recognition) in the neutralization of flaviviruses and the "breathing" of flavivirus virions in the humoral immune response. Finally, the relevance of some specific antibodies in the design and improvement of effective vaccines is addressed.
Collapse
Affiliation(s)
- Arianna Mahely Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - José Manuel Reyes-Ruiz
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| |
Collapse
|
23
|
|
24
|
Swanstrom JA, Nivarthi UK, Patel B, Delacruz MJ, Yount B, Widman DG, Durbin AP, Whitehead SS, De Silva AM, Baric RS. Beyond Neutralizing Antibody Levels: The Epitope Specificity of Antibodies Induced by National Institutes of Health Monovalent Dengue Virus Vaccines. J Infect Dis 2020; 220:219-227. [PMID: 30895307 PMCID: PMC6581895 DOI: 10.1093/infdis/jiz109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/19/2019] [Indexed: 11/24/2022] Open
Abstract
Background Dengue virus is an emerging mosquito-borne flavivirus responsible for considerable morbidity and mortality worldwide. The Division of Intramural Research, National Institute of Allergy and Infectious Diseases of the US National Institutes of Health (NIH) has developed live attenuated vaccines to each of the 4 serotypes of dengue virus (DENV1–4). While overall levels of DENV neutralizing antibodies (nAbs) in humans have been correlated with protection, these correlations vary depending on DENV serotype, prevaccination immunostatus, age, and study site. By combining both the level and molecular specificity of nAbs to each serotype, it may be possible to develop more robust correlates that predict long-term outcome. Methods Using depletions and recombinant chimeric epitope transplant DENVs, we evaluate the molecular specificity and mapped specific epitopes and antigenic regions targeted by vaccine-induced nAbs in volunteers who received the NIH monovalent vaccines against each DENV serotype. Results After monovalent vaccination, subjects developed high levels of nAbs that mainly targeted epitopes that are unique (type-specific) to each DENV serotype. The DENV1, 2, and 4 monovalent vaccines induced type-specific nAbs directed to quaternary structure envelope epitopes known to be targets of strongly neutralizing antibodies induced by wild-type DENV infections. Conclusions Our results reported here on the molecular specificity of NIH vaccine–induced antibodies enable new strategies, beyond the absolute levels of nAbs, for determining correlates and mechanisms of protective immunity.
Collapse
Affiliation(s)
- Jesica A Swanstrom
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill
| | - Usha K Nivarthi
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill
| | - Bhumi Patel
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill
| | - Matthew J Delacruz
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill
| | - Boyd Yount
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill
| | - Douglas G Widman
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill
| | - Anna P Durbin
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore.,Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Aravinda M De Silva
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill
| |
Collapse
|
25
|
Sanjuan Nandin I, Fong C, Deantonio C, Torreno-Pina JA, Pecetta S, Maldonado P, Gasparrini F, Ordovas-Montanes J, Kazer SW, Kjaer S, Borley DW, Nair U, Coleman JA, Lingwood D, Shalek AK, Meffre E, Poignard P, Burton DR, Batista FD. Novel in vitro booster vaccination to rapidly generate antigen-specific human monoclonal antibodies. J Exp Med 2020; 214:2471-2490. [PMID: 28739603 PMCID: PMC5551578 DOI: 10.1084/jem.20170633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/01/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
Vaccines remain the most effective tool to prevent infectious diseases. Here, we introduce an in vitro booster vaccination approach that relies on antigen-dependent activation of human memory B cells in culture. This stimulation induces antigen-specific B cell proliferation, differentiation of B cells into plasma cells, and robust antibody secretion after a few days of culture. We validated this strategy using cells from healthy donors to retrieve human antibodies against tetanus toxoid and influenza hemagglutinin (HA) from H1N1 and newly emergent subtypes such as H5N1 and H7N9. Anti-HA antibodies were cross-reactive against multiple subtypes, and some showed neutralizing activity. Although these antibodies may have arisen as a result of previous influenza infection, we also obtained gp120-reactive antibodies from non-HIV-infected donors, indicating that we can generate antibodies without prior antigenic exposure. Overall, our novel approach can be used to rapidly produce therapeutic antibodies and has the potential to assess the immunogenicity of candidate antigens, which could be exploited in future vaccine development.
Collapse
Affiliation(s)
| | - Carol Fong
- Lymphocyte Interaction Laboratory, Francis Crick Institute, London, England, UK
| | - Cecilia Deantonio
- Lymphocyte Interaction Laboratory, Francis Crick Institute, London, England, UK
| | - Juan A Torreno-Pina
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| | - Simone Pecetta
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| | - Paula Maldonado
- Lymphocyte Interaction Laboratory, Francis Crick Institute, London, England, UK
| | | | - Jose Ordovas-Montanes
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA.,Broad Institute of MIT and Harvard, Cambridge, MA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA
| | - Samuel W Kazer
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA.,Broad Institute of MIT and Harvard, Cambridge, MA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA.,Department of Chemistry, MIT, Cambridge, MA
| | - Svend Kjaer
- Protein Purification and Structural Biology, Francis Crick Institute, London, England, UK
| | - Daryl W Borley
- Diagnostic and Molecular Development, hLAB Division, hVIVO PLC, Queen Mary BioEnterprises Innovation Centre, London, England, UK
| | - Usha Nair
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| | - Julia A Coleman
- Lymphocyte Interaction Laboratory, Francis Crick Institute, London, England, UK
| | - Daniel Lingwood
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| | - Alex K Shalek
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA.,Broad Institute of MIT and Harvard, Cambridge, MA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA.,Department of Chemistry, MIT, Cambridge, MA.,Division of Health Sciences and Technology, Harvard Medical School, Boston, MA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Pascal Poignard
- International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Dennis R Burton
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Facundo D Batista
- Lymphocyte Interaction Laboratory, Francis Crick Institute, London, England, UK.,Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| |
Collapse
|
26
|
Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020; 27:1. [PMID: 31894001 PMCID: PMC6939334 DOI: 10.1186/s12929-019-0592-z] [Citation(s) in RCA: 1189] [Impact Index Per Article: 237.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
It has been more than three decades since the first monoclonal antibody was approved by the United States Food and Drug Administration (US FDA) in 1986, and during this time, antibody engineering has dramatically evolved. Current antibody drugs have increasingly fewer adverse effects due to their high specificity. As a result, therapeutic antibodies have become the predominant class of new drugs developed in recent years. Over the past five years, antibodies have become the best-selling drugs in the pharmaceutical market, and in 2018, eight of the top ten bestselling drugs worldwide were biologics. The global therapeutic monoclonal antibody market was valued at approximately US$115.2 billion in 2018 and is expected to generate revenue of $150 billion by the end of 2019 and $300 billion by 2025. Thus, the market for therapeutic antibody drugs has experienced explosive growth as new drugs have been approved for treating various human diseases, including many cancers, autoimmune, metabolic and infectious diseases. As of December 2019, 79 therapeutic mAbs have been approved by the US FDA, but there is still significant growth potential. This review summarizes the latest market trends and outlines the preeminent antibody engineering technologies used in the development of therapeutic antibody drugs, such as humanization of monoclonal antibodies, phage display, the human antibody mouse, single B cell antibody technology, and affinity maturation. Finally, future applications and perspectives are also discussed.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Chyi Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Chiu Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Han-Zen Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Hsin-Jung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan. .,, 128 Academia Rd., Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
27
|
Swanstrom JA, Henein S, Plante JA, Yount BL, Widman DG, Gallichotte EN, Dean HJ, Osorio JE, Partidos CD, de Silva AM, Baric RS. Analyzing the Human Serum Antibody Responses to a Live Attenuated Tetravalent Dengue Vaccine Candidate. J Infect Dis 2019; 217:1932-1941. [PMID: 29800370 DOI: 10.1093/infdis/jiy063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Dengue virus serotypes 1-4 (DENV-1-4) are the most common vector-borne viral pathogens of humans and the etiological agents of dengue fever and dengue hemorrhagic syndrome. A live-attenuated tetravalent dengue vaccine (TDV) developed by Takeda Vaccines has recently progressed to phase 3 safety and efficacy evaluation. Methods We analyzed the qualitative features of the neutralizing antibody (nAb) response induced in naive and DENV-immune individuals after TDV administration. Using DENV-specific human monoclonal antibodies (mAbs) and recombinant DENV displaying different serotype-specific Ab epitopes, we mapped the specificity of TDV-induced nAbs against DENV-1-3. Results Nearly all subjects had high levels of DENV-2-specific nAbs directed to epitopes centered on domain III of the envelope protein. In some individuals, the vaccine induced nAbs that tracked with a DENV-1-specific neutralizing epitope centered on domain I of the envelope protein. The vaccine induced binding Abs directed to a DENV-3 type-specific neutralizing epitope, but findings of mapping of DENV-3 type-specific nAbs were inconclusive. Conclusion Here we provide qualitative measures of the magnitude and epitope specificity of the nAb responses to TDV. This information will be useful for understanding the performance of TDV in clinical trials and for identifying correlates of protective immunity.
Collapse
Affiliation(s)
- Jesica A Swanstrom
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill
| | - Sandra Henein
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill
| | - Jessica A Plante
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill
| | - Boyd L Yount
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill
| | - Douglas G Widman
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill
| | - Emily N Gallichotte
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill
| | | | | | | | - Aravinda M de Silva
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill
| | - Ralph S Baric
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill.,Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill
| |
Collapse
|
28
|
Waickman AT, Friberg H, Gargulak M, Kong A, Polhemus M, Endy T, Thomas SJ, Jarman RG, Currier JR. Assessing the Diversity and Stability of Cellular Immunity Generated in Response to the Candidate Live-Attenuated Dengue Virus Vaccine TAK-003. Front Immunol 2019; 10:1778. [PMID: 31417556 PMCID: PMC6684763 DOI: 10.3389/fimmu.2019.01778] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/15/2019] [Indexed: 11/13/2022] Open
Abstract
The development of an efficacious DENV vaccine has been a long-standing public health priority. However, this effort has been complicated significantly due to the hazard presented by incomplete humoral immunity in mediating immune enhancement of infection and disease severity. Therefore, there is a significant need for DENV vaccine platforms capable of generating broad immune responses including durable cellular immunity, as well as novel analytical tools to assess the magnitude, diversity, and persistence of vaccine-elicited immunity. In this study, we demonstrate that a single dose of the recombinant, tetravalent, live-attenuated DENV vaccine TAK-003 elicits potent and durable cellular immunity against both the structural and non-structural proteins of all four DENV serotypes, which is maintained for at least 4 months post-immunization. Although not contained within the vaccine formulation, significant reactivity against the non-structural (NS) proteins of DENV-1,-3, and-4 is observed following vaccination, to an extent directly proportional to the magnitude of responses to the corresponding vaccine (DENV-2) components. Distinct, quantifiable, and durable patterns of DENV antigen reactivity can be observed in individuals following vaccination. Detailed epitope mapping of T cell reactivity against the DENV-2 proteome using a matrix of overlapping peptide pools demonstrated that TAK-003 elicits a broad response directed across the DENV-2 proteome, with focused reactivity against NS1 and NS3. We conclude that, as measured by an IFN-γ ELISPOT assay, a single dose of TAK-003 generates potent T cell-mediated immunity which is durable in magnitude and breadth through 4 months post-vaccination.
Collapse
Affiliation(s)
- Adam T Waickman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Morgan Gargulak
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Amanda Kong
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Mark Polhemus
- Department of Medicine, Upstate Medical University of New York, Syracuse, NY, United States
| | - Timothy Endy
- Department of Medicine, Upstate Medical University of New York, Syracuse, NY, United States
| | - Stephen J Thomas
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| |
Collapse
|
29
|
Hassert M, Harris MG, Brien JD, Pinto AK. Identification of Protective CD8 T Cell Responses in a Mouse Model of Zika Virus Infection. Front Immunol 2019; 10:1678. [PMID: 31379867 PMCID: PMC6652237 DOI: 10.3389/fimmu.2019.01678] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/04/2019] [Indexed: 11/30/2022] Open
Abstract
Many flaviviruses including dengue (DENV), and Zika (ZIKV) have attracted significant attention in the past few years. As many flaviviruses are spread by arthropods, most of the world's population is at risk of encountering a flavivirus, and infection with these viruses has created a significant disease burden worldwide. Vaccination against flaviviruses is thought to be one of the most promising avenues for reducing the disease burden associated with these viruses. The optimism surrounding a vaccine approach is supported by the highly successful vaccines for yellow fever and Japanese encephalitis. Central to the development of new successful vaccines is the understanding of the correlates of protection that will be necessary to engineer into new vaccines. To aid in this endeavor we have directed our efforts to identify correlates of protection that will reduce the disease burden associated with ZIKV and DENV. Within this study we have identified a novel murine ZIKV specific CD8+ T cell epitope, and shown that the ZIKV epitope specific CD8+ T cell response has a distinct immunodominance hierarchy present during acute infection and is detectible as part of the memory T cell responses. Our studies confirm that ZIKV-specific CD8+ T cells are an important correlate of protection for ZIKV and demonstrate that both naïve and ZIKV immune CD8+ T cells are sufficient for protection against a lethal ZIKV infection. Overall this study adds to the body of literature demonstrating a role for CD8+ T cells in controlling flavivirus infection.
Collapse
Affiliation(s)
- Mariah Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - Madison G Harris
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - James D Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - Amelia K Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
30
|
Lyski ZL, Messer WB. Approaches to Interrogating the Human Memory B-Cell and Memory-Derived Antibody Repertoire Following Dengue Virus Infection. Front Immunol 2019; 10:1276. [PMID: 31244836 PMCID: PMC6562360 DOI: 10.3389/fimmu.2019.01276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Memory B-cells (MBCs) are potential antibody secreting immune cells that differentiate and mature following host exposure to a pathogen. Following differentiation, MBCs remain in peripheral circulation after recovery and are poised to secrete antigen-specific antibodies if and when they are re-exposed to their cognate antigen. Consequently, MBCs form the founder population and provide one of the first lines of pathogen-specific defense against reinfection. The role MBCs play is complicated for viruses that are heterologous, such as dengue virus (DENV), which exist as antigenically different serotypes. On second infection with a different serotype, MBCs from initial dengue infection rapidly proliferate and secrete antibodies: many of these MBC derived antibodies will be cross-reactive and weakly neutralizing, while some antibodies may recognize epitopes conserved across serotypes and have the capacity to broadly neutralize 2 or more serotypes. It is also possible that a new population of MBCs and antibodies specific for the second virus serotype need to arise for long-term broader immunity to develop. Methods to interrogate and track memory B cell responses are important for evaluating both natural immunity and vaccine response. However, the low abundance of MBCs for any specific pathogen makes it challenging to interrogate frequency, specificity, and breadth for the pathogen of interest. This review discusses current approaches that have been used to interrogate the memory B cell immune response against viral pathogens in general and DENV specifically. Including strengths, limitations, and future directions. Single-cell approaches could help uncover the DENV specific MBC antibody repertoire, and improved methods for isolating DENV specific monoclonal antibodies from human peripheral blood cells would allow for a functional analysis of the anti-DENV repertoire.
Collapse
Affiliation(s)
- Zoe L Lyski
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, United States
| | - William B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, United States
| |
Collapse
|
31
|
Nivarthi UK, Tu HA, Delacruz MJ, Swanstrom J, Patel B, Durbin AP, Whitehead SS, Pierce KK, Kirkpatrick BD, Baric RS, Nguyen N, Emerling DE, de Silva AM, Diehl SA. Longitudinal analysis of acute and convalescent B cell responses in a human primary dengue serotype 2 infection model. EBioMedicine 2019; 41:465-478. [PMID: 30857944 PMCID: PMC6444124 DOI: 10.1016/j.ebiom.2019.02.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Acute viral infections induce a rapid and transient increase in antibody-secreting plasmablasts. At convalescence, memory B cells (MBC) and long-lived plasma cells (LLPC) are responsible for long-term humoral immunity. Following an acute viral infection, the specific properties and relationships between antibodies produced by these B cell compartments are poorly understood. METHODS We utilized a controlled human challenge model of primary dengue virus serotype 2 (DENV2) infection to study acute and convalescent B-cell responses. FINDINGS The level of DENV2 replication was correlated with the magnitude of the plasmablast response. Functional analysis of plasmablast-derived monoclonal antibodies showed that the DENV2-specific response was dominated by cells producing DENV2 serotype-specific antibodies. DENV2-neutralizing antibodies targeted quaternary structure epitopes centered on domain III of the viral envelope protein (EDIII). Functional analysis of MBC and serum antibodies from the same subjects six months post-challenge revealed maintenance of the serotype-specific response in both compartments. The serum response mainly targeted DENV2 serotype-specific epitopes on EDIII. INTERPRETATION Our data suggest overall functional alignment of DENV2-specific responses from the plasmablast, through the MBC and LLPC compartments following primary DENV2 inflection. These results provide enhanced resolution of the temporal and specificity of the B cell compartment in viral infection and serve as framework for evaluation of B cell responses in challenge models. FUNDING This study was supported by the Bill and Melinda Gates Foundation and the National Institutes of Health.
Collapse
Affiliation(s)
- Usha K Nivarthi
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Huy A Tu
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA
| | - Matthew J Delacruz
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Jesica Swanstrom
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Bhumi Patel
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Anna P Durbin
- Department of International Health, Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristen K Pierce
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Beth D Kirkpatrick
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Ralph S Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Ngan Nguyen
- Atreca, Inc. Redwood City, California 94063, USA
| | | | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA.
| | - Sean A Diehl
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
32
|
Andrade P, Gimblet-Ochieng C, Modirian F, Collins M, Cárdenas M, Katzelnick LC, Montoya M, Michlmayr D, Kuan G, Balmaseda A, Coloma J, de Silva AM, Harris E. Impact of pre-existing dengue immunity on human antibody and memory B cell responses to Zika. Nat Commun 2019; 10:938. [PMID: 30808875 PMCID: PMC6391383 DOI: 10.1038/s41467-019-08845-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/04/2019] [Indexed: 12/21/2022] Open
Abstract
Little is known about enduring memory B cell (MBC) responses to Zika virus (ZIKV) and their relationship with circulating antibodies. Here we comprehensively assess MBC frequency and specificity alongside serum binding and neutralizing antibody responses to ZIKV ~2 weeks and ~8 months postinfection in 31 pediatric subjects with 0, 1 or >1 prior infections with the related dengue virus (DENV). ZIKV infection elicits a robust type-specific MBC response, and the majority of late convalescent anti-ZIKV serum neutralizing activity is attributable to ZIKV-specific antibodies. The number of prior DENV infections does not influence type-specific or cross-reactive MBC responses, although ZIKV has the highest cross-reactivity with DENV3. DENV cross-reactive MBCs expanded by ZIKV infection decline in number and proportion by late convalescence. Finally, ZIKV induces greater cross-reactivity in the MBC pool than in serum antibodies. Our data suggest immunity to DENV only modestly shapes breadth and magnitude of enduring ZIKV antibody responses.
Collapse
Affiliation(s)
- Paulina Andrade
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, EC170157, Ecuador
| | - Ciara Gimblet-Ochieng
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599-7292, USA
| | - Faraz Modirian
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Matthew Collins
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599-7292, USA
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA, 30030, USA
| | - Maritza Cárdenas
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Magelda Montoya
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Daniela Michlmayr
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, 12014, Nicaragua
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, 16064, Nicaragua
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599-7292, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA.
| |
Collapse
|
33
|
Aliprandini E, Takata DY, Lepique A, Kalil J, Boscardin SB, Moro AM. An oligoclonal combination of human monoclonal antibodies able to neutralize tetanus toxin in vivo. Toxicon X 2019; 2:100006. [PMID: 32550563 PMCID: PMC7285915 DOI: 10.1016/j.toxcx.2019.100006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/27/2018] [Accepted: 01/10/2019] [Indexed: 12/01/2022] Open
Abstract
The use of antibody-based therapy to treat a variety of diseases and conditions is well documented. The use of antibodies as an antidote to treat tetanus infections was one of the first examples of immunotherapy and remains the standard of care for cases involving potential infections. Plasma-derived immunoglobulins obtained from human or horse pose risks of infection from undetectable emergent viruses or may cause anaphylaxis. Further, there is a lack of consistency between lots. In the search for new formulations, we obtained a series of clonally related human monoclonal antibodies (mAbs) derived from B cells sorted from donors that presented anti-tetanus neutralizing titers. Donors were revaccinated prior to blood collection. Different strategies were used for single-cell sorting, since it was challenging to identify cells at a very low frequency: memory B cell sorting using fluorescent-labeled tetanus toxoid and toxin as baits, and plasmablast sorting done shortly after revaccination. Screening of the recombinant mAbs with the whole tetanus toxin allowed us to select candidates with therapeutic potential, since mAbs to different domains can contribute additively to the neutralizing effect. Because of selective binding to different domains, we tested mAbs individually, or in mixtures of two or three, in the neutralizing in vivo assay specified by Pharmacopeia for the determination of polyclonal hyperimmune sera potency. An oligoclonal mixture of three human mAbs completely neutralized the toxin injected in the animals, signaling an important step for clinical mAb development.
Collapse
Affiliation(s)
- Eduardo Aliprandini
- Laboratory of Biopharmaceuticals in Animal Cells, Instituto Butantan, São Paulo, Brazil.,Interunits Graduate Program in Biotechnology, University of São Paulo, Brazil
| | - Daniela Yumi Takata
- Laboratory of Biopharmaceuticals in Animal Cells, Instituto Butantan, São Paulo, Brazil.,Interunits Graduate Program in Biotechnology, University of São Paulo, Brazil
| | - Ana Lepique
- Dept of Immunology, Biomedical Sciences Institute, University of São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Immunology, School of Medicine, University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology, iii - INCT (National Institute of Science and Technology), São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Dept of Parasitology, Biomedical Sciences Institute, University of São Paulo, Brazil.,Institute for Investigation in Immunology, iii - INCT (National Institute of Science and Technology), São Paulo, Brazil
| | - Ana Maria Moro
- Laboratory of Biopharmaceuticals in Animal Cells, Instituto Butantan, São Paulo, Brazil.,Institute for Investigation in Immunology, iii - INCT (National Institute of Science and Technology), São Paulo, Brazil
| |
Collapse
|
34
|
Potent Neutralizing Human Monoclonal Antibodies Preferentially Target Mature Dengue Virus Particles: Implication for Novel Strategy for Dengue Vaccine. J Virol 2018; 92:JVI.00556-18. [PMID: 30185598 PMCID: PMC6232466 DOI: 10.1128/jvi.00556-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/22/2018] [Indexed: 11/20/2022] Open
Abstract
The four serotypes of dengue virus (DENV) cause the most important mosquito-borne viral disease in humans. The envelope (E) protein is the major target of neutralizing antibodies and contains 3 domains (domain I [DI], DII, and DIII). Recent studies reported that human monoclonal antibodies (MAbs) recognizing DIII, the D1/DII hinge, the E-dimer epitope, or a quaternary epitope involving DI/DII/DIII are more potently neutralizing than those recognizing the fusion loop (FL) of DII. Due to inefficient cleavage of the premembrane protein, DENV suspensions consist of a mixture of mature, immature, and partially immature particles. We investigated the neutralization and binding of 22 human MAbs to DENV serotype 1 (DENV1) virions with differential maturation status. Compared with FL MAbs, DIII, DI/DII hinge, and E-dimer epitope MAbs showed higher maximum binding and avidity to mature particles relative to immature particles; this feature may contribute to the strong neutralizing potency of such MAbs. FL-specific MAbs required 57 to 87% occupancy on mature particles to achieve half-maximal neutralization (NT50), whereas the potently neutralizing MAbs achieved NT50 states at 20 to 38% occupancy. Analysis of the MAb repertoire and polyclonal sera from patients with primary DENV1 infection supports the immunodominance of cross-reactive anti-E antibodies over type-specific antibodies. After depletion with viral particles from a heterologous DENV serotype, the type-specific neutralizing antibodies remained and showed binding features shared by potent neutralizing MAbs. Taken together, these findings suggest that the use of homogeneous mature DENV particles as an immunogen may induce more potent neutralizing antibodies against DENV than the use of immature or mixed particles.IMPORTANCE With an estimated 390 million infections per year, the four serotypes of dengue virus (DENV) cause the most important mosquito-borne viral disease in humans. The dengue vaccine Dengvaxia was licensed; however, its low efficacy among dengue-naive individuals and increased risk of causing severe dengue in children highlight the need for a better understanding of the role of human antibodies in immunity against DENV. DENV suspensions contain mature, immature, and partially immature particles. We investigated the binding of 22 human monoclonal antibodies (MAbs) to the DENV envelope protein on particles with different maturation states. Potently neutralizing MAbs had higher relative maximum binding and avidity to mature particles than weakly neutralizing MAbs. This was supported by analysis of MAb repertoires and polyclonal sera from patients with primary DENV infection. Together, these findings suggest that mature particles may be the optimal form of presentation of the envelope protein to induce more potent neutralizing antibodies against DENV.
Collapse
|
35
|
Adam A, Woda M, Kounlavouth S, Rothman AL, Jarman RG, Cox JH, Ledgerwood JE, Gromowski GD, Currier JR, Friberg H, Mathew A. Multiplexed FluoroSpot for the Analysis of Dengue Virus- and Zika Virus-Specific and Cross-Reactive Memory B Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:3804-3814. [PMID: 30413671 DOI: 10.4049/jimmunol.1800892] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/14/2018] [Indexed: 01/13/2023]
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) are mosquito-borne pathogens that have a significant impact on human health. Immune sera, mAbs, and memory B cells (MBCs) isolated from patients infected with one DENV type can be cross-reactive with the other three DENV serotypes and even more distantly related flaviviruses such as ZIKV. Conventional ELISPOTs effectively measure Ab-secreting B cells but because they are limited to the assessment of a single Ag at a time, it is challenging to distinguish serotype-specific and cross-reactive MBCs in the same well. We developed a novel multifunction FluoroSpot assay using fluorescently labeled DENV and ZIKV (FLVs) that measures the cross-reactivity of Abs secreted by single B cells. Conjugation efficiency and recognition of FLVs by virus-specific Abs were confirmed by flow cytometry. Using a panel of DENV immune, ZIKV immune, and naive PBMC, FLVs were able to simultaneously detect DENV serotype-specific, ZIKV-specific, DENV serotype cross-reactive, and DENV/ZIKV cross-reactive Abs secreted by individual MBCs. Our findings indicate that the FLVs are sensitive and specific tools to detect specific and cross-reactive MBCs. These reagents will allow the assessment of the breadth as well as the durability of DENV/ZIKV B cell responses following vaccination or natural infection. This novel approach using FLVs in a FluoroSpot assay can be applied to other diseases such as influenza in which prior immunity with homosubtype- or heterosubtype-specific MBCs may influence subsequent infections.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903
| | - Marcia Woda
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903
| | - Sonia Kounlavouth
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903
| | - Alan L Rothman
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910; and
| | - Josephine H Cox
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910; and
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910; and
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910; and
| | - Anuja Mathew
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903;
| |
Collapse
|
36
|
Santos MLD, Quintilio W, Manieri TM, Tsuruta LR, Moro AM. Advances and challenges in therapeutic monoclonal antibodies drug development. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000001007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | - Ana Maria Moro
- Butantan Institute, Brazil; National Institute for Science and Technology, Brazil
| |
Collapse
|
37
|
Immunoinformatics Approach for Epitope-Based Peptide Vaccine Design and Active Site Prediction against Polyprotein of Emerging Oropouche Virus. J Immunol Res 2018; 2018:6718083. [PMID: 30402510 PMCID: PMC6196980 DOI: 10.1155/2018/6718083] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022] Open
Abstract
Oropouche virus (OROV) is an emerging pathogen which causes Oropouche fever and meningitis in humans. Several outbreaks of OROV in South America, especially in Brazil, have changed its status as an emerging disease, but no vaccine or specific drug target is available yet. Our approach was to identify the epitope-based vaccine candidates as well as the ligand-binding pockets through the use of immunoinformatics. In this report, we identified both T-cell and B-cell epitopes of the most antigenic OROV polyprotein with the potential to induce both humoral and cell-mediated immunity. Eighteen highly antigenic and immunogenic CD8+ T-cell epitopes were identified, including three 100% conserved epitopes (TSSWGCEEY, CSMCGLIHY, and LAIDTGCLY) as the potential vaccine candidates. The selected epitopes showed 95.77% coverage for the mixed Brazilian population. The docking simulation ensured the binding interaction with high affinity. A total of five highly conserved and nontoxic linear B-cell epitopes "NQKIDLSQL," "HPLSTSQIGDRC," "SHCNLEFTAITADKIMSL," "PEKIPAKEGWLTFSKEHTSSW," and "HHYKPTKNLPHVVPRYH" were selected as potential vaccine candidates. The predicted eight conformational B-cell epitopes represent the accessibility for the entered virus. In the posttherapeutic strategy, ten ligand-binding pockets were identified for effective inhibitor design against emerging OROV infection. Collectively, this research provides novel candidates for epitope-based peptide vaccine design against OROV.
Collapse
|
38
|
Metz SW, Thomas A, Brackbill A, Xianwen Y, Stone M, Horvath K, Miley MJ, Luft C, DeSimone JM, Tian S, de Silva AM. Nanoparticle delivery of a tetravalent E protein subunit vaccine induces balanced, type-specific neutralizing antibodies to each dengue virus serotype. PLoS Negl Trop Dis 2018; 12:e0006793. [PMID: 30248097 PMCID: PMC6171938 DOI: 10.1371/journal.pntd.0006793] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/04/2018] [Accepted: 08/27/2018] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV) is the causative agent of dengue fever and dengue hemorrhagic shock syndrome. Dengue vaccine development is challenging because of the need to induce protection against four antigenically distinct DENV serotypes. Recent studies indicate that tetravalent DENV vaccines must induce balanced, serotype-specific neutralizing antibodies to achieve durable protective immunity against all 4 serotypes. With the leading live attenuated tetravalent DENV vaccines, it has been difficult to achieve balanced and type-specific responses to each serotype, most likely because of unbalanced replication of vaccine viral strains. Here we evaluate a tetravalent DENV protein subunit vaccine, based on recombinant envelope protein (rE) adsorbed to the surface of poly (lactic-co-glycolic acid) (PLGA) nanoparticles for immunogenicity in mice. In monovalent and tetravalent formulations, we show that particulate rE induced higher neutralizing antibody titers compared to the soluble rE antigen alone. Importantly, we show the trend that tetravalent rE adsorbed to nanoparticles stimulated a more balanced serotype specific antibody response to each DENV serotype compared to soluble antigens. Our results demonstrate that tetravalent DENV subunit vaccines displayed on nanoparticles have the potential to overcome unbalanced immunity observed for leading live-attenuated vaccine candidates.
Collapse
Affiliation(s)
- Stefan W. Metz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Ashlie Thomas
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Alex Brackbill
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Yi Xianwen
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Michele Stone
- Liquidia Technologies, Research Triangle Park, Durham, NC, United States of America
| | - Katie Horvath
- Liquidia Technologies, Research Triangle Park, Durham, NC, United States of America
| | - Michael J. Miley
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Chris Luft
- Liquidia Technologies, Research Triangle Park, Durham, NC, United States of America
| | - Joseph M. DeSimone
- Liquidia Technologies, Research Triangle Park, Durham, NC, United States of America
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Shaomin Tian
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail: (ST); (AMdS)
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail: (ST); (AMdS)
| |
Collapse
|
39
|
Alt M, Falk J, Eis-Hübinger AM, Kropff B, Sinzger C, Krawczyk A. Detection of antibody-secreting cells specific for the cytomegalovirus and herpes simplex virus surface antigens. J Immunol Methods 2018; 462:13-22. [PMID: 30056033 PMCID: PMC7094464 DOI: 10.1016/j.jim.2018.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/29/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022]
Abstract
Infections with the herpes simplex virus (HSV) and the human cytomegalovirus (HCMV) can lead to life-threatening diseases, particularly in immunosuppressed patients. Furthermore, HSV infections at birth (herpes neonatorum) can result in a disseminated disease associated with a fatal multiorgan failure. Congenital HCMV infections can result in miscarriage, serious birth defects or developmental disabilities. Antibody-based interventions with hyperimmunoglobulins showed encouraging results in clinical studies, but clearly need to be improved. The isolation of highly neutralizing monoclonal antibodies is a promising strategy to establish potent therapy options against HSV and HCMV infections. Monoclonal antibodies are commonly isolated from hybridomas or EBV-immortalized B-cell clones. The screening procedure to identify virus-specific cells from a cell mixture is a challenging step, since most of the highly neutralizing antibodies target complex conformational epitopes on the virus surface. Conventional assays such as ELISA are based on purified viral proteins and inappropriate to display complex epitopes. To overcome this obstacle, we have established two full-virus based methods that allow screening for cells and antibodies targeting complex conformational epitopes on viral surface antigens. The methods are suitable to detect surface antigen-specific cells from a cell mixture and may facilitate the isolation of highly neutralizing antibodies against HSV and HCMV.
Collapse
Affiliation(s)
- Mira Alt
- Institute for Virology, University Hospital of Essen, 45147 Essen, Germany
| | - Jessica Falk
- Institute for Virology, University Hospital of Ulm, 89081 Ulm, Germany
| | | | - Barbara Kropff
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Christian Sinzger
- Institute for Virology, University Hospital of Ulm, 89081 Ulm, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital of Essen, 45147 Essen, Germany.
| |
Collapse
|
40
|
Lu J, Wang R, Xia B, Yu Y, Zhou X, Yang Z, Huang P. Potent Neutralization Ability of a Human Monoclonal Antibody Against Serotype 1 Dengue Virus. Front Microbiol 2018; 9:1214. [PMID: 29928270 PMCID: PMC5997965 DOI: 10.3389/fmicb.2018.01214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/18/2018] [Indexed: 11/13/2022] Open
Abstract
The incidence of dengue virus (DENV) infections has been escalating in tropical and subtropical countries, but there are still no effective therapeutic options. In the present study, a DENV-1-specific human monoclonal antibody (HMAb), 1G5, isolated from single plasma cells obtained from the peripheral blood mononuclear cells of dengue patients was found to have potent neutralization activity against serotype 1 DENV (DENV-1). Its neutralization activity against DENV-2 was not as strong, and it was almost absent for DENV-3 and DENV-4. The results showed that HMAb 1G5 only binds to the envelop protein of intact DENV-1 or the envelop protein under unheated and non-reducing conditions, and that it does not bind to recombinant envelope protein. This could mean that the antibody recognizes a conformational epitope of the envelope protein. Further, the findings showed that HMAb 1G5 potently neutralizes DENV-1 in both the pre- and post-attachment phases of the virus at low concentrations. In vivo studies showed that HMAb 1G5 provides protection from DENV-1 infection in a murine model. In addition, antibody-dependent enhancement that occurs at lower doses of the antibody was completely abrogated by the introduction of Leu-to-Ala mutations (1G5-LALA) or deletion of nine amino acids (1G5-9del) in the Fc region. Therefore, HMAb 1G5 shows promise as a safe and effective agent for prophylactic and therapeutic treatment of DENV-1 infection.
Collapse
Affiliation(s)
- Jiansheng Lu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Rong Wang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Binghui Xia
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yunzhou Yu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaowei Zhou
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhixin Yang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Peitang Huang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
41
|
Coffman JE, Metz SW, Brackbill A, Paul M, Miley MJ, DeSimone J, Luft JC, de Silva A, Tian S. Optimization of Surface Display of DENV2 E Protein on a Nanoparticle to Induce Virus Specific Neutralizing Antibody Responses. Bioconjug Chem 2018; 29:1544-1552. [DOI: 10.1021/acs.bioconjchem.8b00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jason E. Coffman
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27607, United States
| | | | | | | | | | - Joseph DeSimone
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27607, United States
| | | | | | | |
Collapse
|
42
|
Lecouturier V, Berry C, Saulnier A, Naville S, Manin C, Girerd-Chambaz Y, Crowe JE, Jackson N, Guy B. Characterization of recombinant yellow fever-dengue vaccine viruses with human monoclonal antibodies targeting key conformational epitopes. Vaccine 2018; 37:4601-4609. [PMID: 29706291 DOI: 10.1016/j.vaccine.2018.04.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/27/2018] [Accepted: 04/20/2018] [Indexed: 11/16/2022]
Abstract
The recombinant yellow fever-17D-dengue virus, live, attenuated, tetravalent dengue vaccine (CYD-TDV) is licensed in several dengue-endemic countries. Although the vaccine provides protection against dengue, the level of protection differs by serotype and warrants further investigation. We characterized the antigenic properties of each vaccine virus serotype using highly neutralizing human monoclonal antibodies (hmAbs) that bind quaternary structure-dependent epitopes. Specifically, we monitored the binding of dengue virus-1 (DENV-1; 1F4), DENV-2 (2D22) or DENV-3 (5J7) serotype-specific or DENV-1-4 cross-reactive (1C19) hmAbs to the four chimeric yellow fever-dengue vaccine viruses (CYD-1-4) included in phase III vaccine formulations using a range of biochemical and functional assays (dot blot, ELISA, surface plasmon resonance and plaque reduction neutralization assays). In addition, we used the "classic" live, attenuated DENV-2 vaccine serotype, immature CYD-2 viruses and DENV-2 virus-like particles as control antigens for anti-serotype-2 reactivity. The CYD vaccine serotypes were recognized by each hmAbs with the expected specificity, moreover, surface plasmon resonance indicated a high functional affinity interaction with the CYD serotypes. In addition, the hmAbs provided similar protection against CYD and wild-type dengue viruses in the in vitro neutralization assay. Overall, these findings demonstrate that the four CYD viruses used in clinical trials display key conformational and functional epitopes targeted by serotype-specific and/or cross-reactive neutralizing human antibodies. More specifically, we showed that CYD-2 displays serotype- specific epitopes present only on the mature virus. This indicates that the CYD-TDV has the ability to elicit antibody specificities which are similar to those induced by the wild type DENV. Future investigations will be needed to address the nature of CYD-TDV-induced responses after vaccine administration, and how these laboratory markers relate to vaccine efficacy and safety.
Collapse
Affiliation(s)
- Valerie Lecouturier
- Research & Development, Sanofi Pasteur, Avenue Marcel Merieux, 69280 Marcy l'Etoile, France.
| | - Catherine Berry
- Research & Development, Sanofi Pasteur, Avenue Marcel Merieux, 69280 Marcy l'Etoile, France.
| | - Aure Saulnier
- Research & Development, Sanofi Pasteur, Avenue Marcel Merieux, 69280 Marcy l'Etoile, France.
| | - Sophie Naville
- Research & Development, Sanofi Pasteur, Avenue Marcel Merieux, 69280 Marcy l'Etoile, France.
| | - Catherine Manin
- Research & Development, Sanofi Pasteur, Avenue Marcel Merieux, 69280 Marcy l'Etoile, France.
| | - Yves Girerd-Chambaz
- Research & Development, Sanofi Pasteur, Avenue Marcel Merieux, 69280 Marcy l'Etoile, France.
| | - James E Crowe
- Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Nicholas Jackson
- Research & Development, Sanofi Pasteur, Avenue Marcel Merieux, 69280 Marcy l'Etoile, France.
| | - Bruno Guy
- Research & Development, Sanofi Pasteur, Avenue Marcel Merieux, 69280 Marcy l'Etoile, France.
| |
Collapse
|
43
|
Crowe JE. Principles of Broad and Potent Antiviral Human Antibodies: Insights for Vaccine Design. Cell Host Microbe 2018; 22:193-206. [PMID: 28799905 DOI: 10.1016/j.chom.2017.07.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Antibodies are the principal immune effectors that mediate protection against reinfection following viral infection or vaccination. Robust techniques for human mAb isolation have been developed in the last decade. The study of human mAbs isolated from subjects with prior immunity has become a mainstay for rational structure-based, next-generation vaccine development. The plethora of detailed molecular and genetic studies coupling the structure of antigen-antibody complexes with their antiviral function has begun to reveal common principles of critical interactions on which we can build better vaccines and therapeutic antibodies. This review outlines the approaches to isolating and studying human antiviral mAbs and discusses the common principles underlying the basis for their activity. This review also examines progress toward the goal of achieving a comprehensive understanding of the chemical and physical basis for molecular recognition of viral surface proteins in order to build predictive molecular models that can be used for vaccine design.
Collapse
Affiliation(s)
- James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
44
|
Metz SW, Thomas A, White L, Stoops M, Corten M, Hannemann H, de Silva AM. Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virol J 2018; 15:60. [PMID: 29609659 PMCID: PMC5879749 DOI: 10.1186/s12985-018-0970-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/20/2018] [Indexed: 11/28/2022] Open
Abstract
Background The 4 dengue serotypes (DENV) are mosquito-borne pathogens that are associated with severe hemorrhagic disease. DENV particles have a lipid bilayer envelope that anchors two membrane glycoproteins prM and E. Two E-protein monomers form head-to-tail homodimers and three E-dimers align to form “rafts” that cover the viral surface. Some human antibodies that strongly neutralize DENV bind to quaternary structure epitopes displayed on E protein dimers or higher order structures forming the infectious virus. Expression of prM and E in cell culture leads to the formation of DENV virus-like particles (VLPs) which are smaller than wildtype virus particles and replication defective due to the absence of a viral genome. There is no data available that describes the antigenic landscape on the surface of flavivirus VLPs in comparison to the better studied infectious virion. Methods A large panel of well characterized antibodies that recognize epitope of ranging complexity were used in biochemical analytics to obtain a comparative antigenic surface view of VLPs in respect to virus particles. DENV patient serum depletions were performed the show the potential of VLPs in serological diagnostics. Results VLPs were confirmed to be heterogeneous in size morphology and maturation state. Yet, we show that many highly conformational and quaternary structure-dependent antibody epitopes found on virus particles are efficiently displayed on DENV1–4 VLP surfaces as well. Additionally, DENV VLPs can efficiently be used as antigens to deplete DENV patient sera from serotype specific antibody populations. Conclusions This study aids in further understanding epitopic landscape of DENV VLPs and presents a comparative antigenic surface view of VLPs in respect to virus particles. We propose the use VLPs as a safe and practical alternative to infectious virus as a vaccine and diagnostic antigen. Electronic supplementary material The online version of this article (10.1186/s12985-018-0970-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan W Metz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA.
| | - Ashlie Thomas
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Laura White
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Mark Stoops
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Markus Corten
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | | | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
45
|
Rey FA, Stiasny K, Vaney MC, Dellarole M, Heinz FX. The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep 2018; 19:206-224. [PMID: 29282215 PMCID: PMC5797954 DOI: 10.15252/embr.201745302] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 01/07/2023] Open
Abstract
Zika and dengue viruses belong to the Flavivirus genus, a close group of antigenically related viruses that cause significant arthropod-transmitted diseases throughout the globe. Although infection by a given flavivirus is thought to confer lifelong protection, some of the patient's antibodies cross-react with other flaviviruses without cross-neutralizing. The original antigenic sin phenomenon may amplify such antibodies upon subsequent heterologous flavivirus infection, potentially aggravating disease by antibody-dependent enhancement (ADE). The most striking example is provided by the four different dengue viruses, where infection by one serotype appears to predispose to more severe disease upon infection by a second one. A similar effect was postulated for sequential infections with Zika and dengue viruses. In this review, we analyze the molecular determinants of the dual antibody response to flavivirus infection or vaccination in humans. We highlight the role of conserved partially cryptic epitopes giving rise to cross-reacting and poorly neutralizing, ADE-prone antibodies. We end by proposing a strategy for developing an epitope-focused vaccine approach to avoid eliciting undesirable antibodies while focusing the immune system on producing protective antibodies only.
Collapse
Affiliation(s)
- Félix A Rey
- Structural Virology Unit, Virology Department, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Marie-Christine Vaney
- Structural Virology Unit, Virology Department, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
| | - Mariano Dellarole
- Structural Virology Unit, Virology Department, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
46
|
Widman DG, Young E, Nivarthi U, Swanstrom JA, Royal SR, Yount BL, Debbink K, Begley M, Marcet S, Durbin A, de Silva AM, Messer WB, Baric RS. Transplantation of a quaternary structure neutralizing antibody epitope from dengue virus serotype 3 into serotype 4. Sci Rep 2017; 7:17169. [PMID: 29215033 PMCID: PMC5719398 DOI: 10.1038/s41598-017-17355-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/23/2017] [Indexed: 01/04/2023] Open
Abstract
Dengue vaccine trials have revealed deficits in our understanding of the mechanisms of protective immunity, demonstrating a need to measure epitope-specific antibody responses against each DENV serotype. HmAb 5J7 binds to a complex, 3-monomer spanning quaternary epitope in the DENV3 envelope (E) protein, but it is unclear whether all interactions are needed for neutralization. Structure guided design and reverse genetics were used to sequentially transplant larger portions of the DENV3-specific 5J7 mAb epitope into dengue virus serotype 4 (DENV4). We observed complete binding and neutralization only when the entire 3 monomer spanning epitope was transplanted into DENV4, providing empirical proof that cooperative monomer-hmAb 5J7 interactions maximize activity. The rDENV4/3 virus containing the most expanded 5J7 epitope was also significantly more sensitive than WT DENV4 to neutralization by DENV3 primary immune sera. We conclude that the hinge-spanning region of the 5J7 quaternary epitope is a target for serotype-specific neutralizing antibodies after DENV3 infection.
Collapse
Affiliation(s)
- Douglas G Widman
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Ellen Young
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Usha Nivarthi
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jesica A Swanstrom
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Scott R Royal
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Boyd L Yount
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kari Debbink
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.,Department of Natural Sciences, Bowie State University, Bowie, MD, USA
| | - Matthew Begley
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie Marcet
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Anna Durbin
- Center for Immunization Research, Department for International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - William B Messer
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Ralph S Baric
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA. .,Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
47
|
Pelliccia S, Wu YH, Coluccia A, La Regina G, Tseng CK, Famiglini V, Masci D, Hiscott J, Lee JC, Silvestri R. Inhibition of dengue virus replication by novel inhibitors of RNA-dependent RNA polymerase and protease activities. J Enzyme Inhib Med Chem 2017; 32:1091-1101. [PMID: 28776445 PMCID: PMC6010079 DOI: 10.1080/14756366.2017.1355791] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/01/2017] [Accepted: 07/12/2017] [Indexed: 11/26/2022] Open
Abstract
Dengue virus (DENV) is the leading mosquito-transmitted viral infection in the world. With more than 390 million new infections annually, and up to 1 million clinical cases with severe disease manifestations, there continues to be a need to develop new antiviral agents against dengue infection. In addition, there is no approved anti-DENV agents for treating DENV-infected patients. In the present study, we identified new compounds with anti-DENV replication activity by targeting viral replication enzymes - NS5, RNA-dependent RNA polymerase (RdRp) and NS3 protease, using cell-based reporter assay. Subsequently, we performed an enzyme-based assay to clarify the action of these compounds against DENV RdRp or NS3 protease activity. Moreover, these compounds exhibited anti-DENV activity in vivo in the ICR-suckling DENV-infected mouse model. Combination drug treatment exhibited a synergistic inhibition of DENV replication. These results describe novel prototypical small anti-DENV molecules for further development through compound modification and provide potential antivirals for treating DENV infection and DENV-related diseases.
Collapse
Affiliation(s)
- Sveva Pelliccia
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - Yu-Hsuan Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Antonio Coluccia
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - Giuseppe La Regina
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Valeria Famiglini
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - Domiziana Masci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - John Hiscott
- Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Romano Silvestri
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| |
Collapse
|
48
|
Sequence analysis of feline immunoglobulin mRNAs and the development of a felinized monoclonal antibody specific to feline panleukopenia virus. Sci Rep 2017; 7:12713. [PMID: 28983085 PMCID: PMC5629197 DOI: 10.1038/s41598-017-12725-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/14/2017] [Indexed: 11/30/2022] Open
Abstract
In response to immunization, B-cells generate a repertoire of antigen-specific antibodies. Antibody-based immunotherapies hold great promise for treating a variety of diseases in humans. Application of antibody-based immunotherapy in cats is limited by the lack of species-specific complete sequences for mRNAs encoding rearranged heavy and light chain immunoglobulins in B cells. To address this barrier, we isolated mRNAs from feline peripheral blood mononuclear cells (PBMCs), and used available immunoglobulin sequences and 5′ and 3′ RACE to clone and sequence heavy and light chain immunoglobulin mRNAs. We recovered mRNA from PBMCs from two cats, cloned and sequenced the variable and constant domains of the feline heavy chains of IgG1a (IGHG1a), IgG2 (IGHG2), and IgA (IGHA), and the light chains (lambda and kappa). Using these sequences, we prepared two bicistronic vectors for mammalian expression of a representative feline heavy (IGHG1a) together with a light (lambda or kappa) chain. Here we report novel feline Ig sequences, a technique to express antigen-specific felinized monoclonal antibodies, and the initial characterization of a functional felinized monoclonal antibody against feline panleukopenia virus.
Collapse
|
49
|
Haslwanter D, Blaas D, Heinz FX, Stiasny K. A novel mechanism of antibody-mediated enhancement of flavivirus infection. PLoS Pathog 2017; 13:e1006643. [PMID: 28915259 PMCID: PMC5617232 DOI: 10.1371/journal.ppat.1006643] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/27/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Antibody-dependent enhancement of viral infection is a well-described phenomenon that is based on the cellular uptake of infectious virus-antibody complexes following their interaction with Fcγ receptors expressed on myeloid cells. Here we describe a novel mechanism of antibody-mediated enhancement of infection by a flavivirus (tick-borne encephalitis virus) in transformed and primary human cells, which is independent of the presence of Fcγ receptors. Using chemical cross-linking and immunoassays, we demonstrate that the monoclonal antibody (mab) A5, recognizing an epitope at the interface of the dimeric envelope protein E, causes dimer dissociation and leads to the exposure of the fusion loop (FL). Under normal conditions of infection, this process is triggered only after virus uptake by the acidic pH in endosomes, resulting in the initiation of membrane fusion through the interaction of the FL with the endosomal membrane. Analysis of virus binding and cellular infection, together with inhibition by the FL-specific mab 4G2, indicated that the FL, exposed after mab A5- induced dimer-dissociation, mediated attachment of the virus to the plasma membrane also at neutral pH, thereby increasing viral infectivity. Since antibody-induced enhancement of binding was not only observed with cells but also with liposomes, it is likely that increased infection was due to FL-lipid interactions and not to interactions with cellular plasma membrane proteins. The novel mechanism of antibody-induced infection enhancement adds a new facet to the complexity of antibody interactions with flaviviruses and may have implications for yet unresolved effects of polyclonal antibody responses on biological properties of these viruses.
Collapse
Affiliation(s)
| | - Dieter Blaas
- Max F. Perutz Laboratories, Department for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Franz X. Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Tsai WY, Lin HE, Wang WK. Complexity of Human Antibody Response to Dengue Virus: Implication for Vaccine Development. Front Microbiol 2017; 8:1372. [PMID: 28775720 PMCID: PMC5517401 DOI: 10.3389/fmicb.2017.01372] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/06/2017] [Indexed: 01/21/2023] Open
Abstract
The four serotypes of dengue virus (DENV) are the leading cause of arboviral diseases in humans. Decades of efforts have made remarkable progress in dengue vaccine development. Despite the first dengue vaccine (dengvaxia from Sanofi Pasteur), a live-attenuated tetravalent chimeric yellow fever-dengue vaccine, has been licensed by several countries since 2016, its overall moderate efficacy (56.5–60.8%) in the presence of neutralizing antibodies during the Phase 2b and 3 trials, lower efficacy among dengue naïve compared with dengue experienced individuals, and increased risk of hospitalization among young children during the follow-up highlight the need for a better understanding of humoral responses after natural DENV infection. Recent studies of more than 300 human monoclonal antibodies (mAbs) against DENV have led to the discovery of several novel epitopes on the envelope protein recognized by potent neutralizing mAbs. This information together with in-depth studies on polyclonal sera and B-cells following natural DENV infection has tremendous implications for better immunogen design for a safe and effective dengue vaccine. This review outlines the progress in our understanding of mouse mAbs, human mAbs, and polyclonal sera against DENV envelope and precursor membrane proteins, two surface proteins involved in vaccine development, following natural infection; analyses of these discoveries have provided valuable insight into new strategies involving molecular technology to induce more potent neutralizing antibodies and less enhancing antibodies for next-generation dengue vaccine development.
Collapse
Affiliation(s)
- Wen-Yang Tsai
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| | - Hong-En Lin
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| | - Wei-Kung Wang
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at ManoaHonolulu, HI, United States
| |
Collapse
|