1
|
Lim Y, Cho YB, Seo YJ. Emerging roles of cytoskeletal transport and scaffold systems in human viral propagation. Anim Cells Syst (Seoul) 2024; 28:506-518. [PMID: 39439927 PMCID: PMC11494721 DOI: 10.1080/19768354.2024.2418332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Viruses have long been recognized as significant pathogens, contributing to multiple global pandemics throughout human history. Recent examples include the 2009 influenza pandemic and the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019. Despite ongoing experimental and clinical efforts, the development of effective antiviral treatments and vaccines remains challenging due to the high mutation rates of many human pathogenic viruses including influenza virus and SARS-CoV-2. As an alternative approach, antiviral strategies targeting host factors shared by multiple viruses could provide a more universally applicable solution. Emerging evidence suggests that viruses exploit the host cytoskeletal network to facilitate efficient viral replication and propagation. Therefore, a comprehensive understanding of the interactions between viral components and the cytoskeletal machinery may offer valuable insights for the development of broad-spectrum antiviral therapeutics. This review compiles and discusses current knowledge on the interactions between viruses and cytoskeletal elements, including kinesin, dynein, myosin, and vimentin, and explores their potential as therapeutic targets. The potential for these cytoskeletal components to serve as targets for new antiviral interventions is discussed in the context of diverse human viruses, including influenza virus, SARS-CoV-2, herpes simplex virus, human papillomavirus, and human immunodeficiency virus.
Collapse
Affiliation(s)
- Younghyun Lim
- Department of Life Science, Chung-Ang University, Dongjak-gu, Republic of Korea
| | - Yong-Bin Cho
- Department of Life Science, Chung-Ang University, Dongjak-gu, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Dongjak-gu, Republic of Korea
| |
Collapse
|
2
|
Wang L, Shi L, Liu H, Zhang J, Yang W, Schountz T, Ma W. Incompatible packaging signals and impaired protein functions hinder reassortment of bat H17N10 or H18N11 segment 7 with human H1N1 influenza A viruses. J Virol 2024; 98:e0086424. [PMID: 39162567 PMCID: PMC11406886 DOI: 10.1128/jvi.00864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024] Open
Abstract
Novel bat H17N10 and H18N11 influenza A viruses (IAVs) are incapable of reassortment with conventional IAVs during co-infection. To date, the underlying mechanisms that inhibit bat and conventional IAV reassortment remain poorly understood. Herein, we used the bat influenza M gene in the PR8 H1N1 virus genetic background to determine the molecular basis that restricts reassortment of segment 7. Our results showed that NEP and M1 from bat H17N10 and H18N11 can interact with PR8 M1 and NEP, resulting in mediating PR8 viral ribonucleoprotein (vRNP) nuclear export and formation of virus-like particles with single vRNP. Further studies demonstrated that the incompatible packaging signals (PSs) of H17N10 or H18N11 M segment led to the failure to rescue recombinant viruses in the PR8 genetic background. Recombinant PR8 viruses (rPR8psH18M and rPR8psH17M) containing bat influenza M coding region flanked with the PR8 M PSs were rescued but displayed lower replication in contrast to the parental PR8 virus, which is due to a low efficiency of recombinant virus uncoating correlating with the functions of the bat M2. Our studies reveal molecular mechanisms of the M gene that hinder reassortment between bat and conventional IAVs, which will help to understand the biology of novel bat IAVs. IMPORTANCE Reassortment is one of the mechanisms in fast evolution of influenza A viruses (IAVs) and responsible for generating pandemic strains. To date, why novel bat IAVs are incapable of reassorting with conventional IAVs remains completely understood. Here, we attempted to rescue recombinant PR8 viruses with M segment from bat IAVs to understand the molecular mechanisms in hindering their reassortment. Results showed that bat influenza NEP and M1 have similar functions as respective counterparts of PR8 to medicating viral ribonucleoprotein nuclear export. Moreover, the incompatible packaging signals of M genes from bat and conventional IAVs and impaired bat M2 functions are the major reasons to hinder their reassortment. Recombinant PR8 viruses with bat influenza M open reading frames were generated but showed attenuation, which correlated with the functions of the bat M2 protein. Our studies provide novel insights into the molecular mechanisms that restrict reassortment between bat and conventional IAVs.
Collapse
Affiliation(s)
- Liping Wang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| | - Lei Shi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| | - Heidi Liu
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Jialin Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Wenyu Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Tony Schountz
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Center for Vector-borne Infectious Diseases, Colorado State University, Fort Collins, Colorado, USA
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
3
|
Ng QY, Mahendran V, Lim ZQ, Tan JHY, Wong JJF, Chu JJH, Chow VTK, Sze NSK, Alonso S. Enterovirus-A71 exploits RAB11 to recruit chaperones for virus morphogenesis. J Biomed Sci 2024; 31:65. [PMID: 38943128 PMCID: PMC11212238 DOI: 10.1186/s12929-024-01053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Enterovirus 71 (EV-A71) causes Hand, Foot and Mouth Disease (HFMD) in children and has been associated with neurological complications. The molecular mechanisms involved in EV-A71 pathogenesis have remained elusive. METHODS A siRNA screen in EV-A71 infected-motor neurons was performed targeting 112 genes involved in intracellular membrane trafficking, followed by validation of the top four hits using deconvoluted siRNA. Downstream approaches including viral entry by-pass, intracellular viral genome quantification by qPCR, Western blot analyses, and Luciferase reporter assays allowed determine the stage of the infection cycle the top candidate, RAB11A was involved in. Proximity ligation assay, co-immunoprecipitation and multiplex confocal imaging were employed to study interactions between viral components and RAB11A. Dominant negative and constitutively active RAB11A constructs were used to determine the importance of the protein's GTPase activity during EV-A71 infection. Mass spectrometry and protein interaction analyses were employed for the identification of RAB11A's host interacting partners during infection. RESULTS Small GTPase RAB11A was identified as a novel pro-viral host factor during EV-A71 infection. RAB11A and RAB11B isoforms were interchangeably exploited by strains from major EV-A71 genogroups and by Coxsackievirus A16, another major causative agent of HFMD. We showed that RAB11A was not involved in viral entry, IRES-mediated protein translation, viral genome replication, and virus exit. RAB11A co-localized with replication organelles where it interacted with structural and non-structural viral components. Over-expression of dominant negative (S25N; GDP-bound) and constitutively active (Q70L; GTP-bound) RAB11A mutants had no effect on EV-A71 infection outcome, ruling out RAB11A's involvement in intracellular trafficking of viral or host components. Instead, decreased ratio of intracellular mature viral particles to viral RNA copies and increased VP0:VP2 ratio in siRAB11-treated cells supported a role in provirion maturation hallmarked by VP0 cleavage into VP2 and VP4. Finally, chaperones, not trafficking and transporter proteins, were found to be RAB11A's top interacting partners during EV-A71 infection. Among which, CCT8 subunit from the chaperone complex TRiC/CCT was further validated and shown to interact with viral structural proteins specifically, representing yet another novel pro-viral host factor during EV-A71 infection. CONCLUSIONS This study describes a novel, unconventional role for RAB11A during viral infection where it participates in the complex process of virus morphogenesis by recruiting essential chaperone proteins.
Collapse
Affiliation(s)
- Qing Yong Ng
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Vikneswari Mahendran
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Ze Qin Lim
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Jasmine Hwee Yee Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Joel Jie Feng Wong
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Justin Jang Hann Chu
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vincent T K Chow
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Newman Siu Kwan Sze
- Proteomics and Mass Spectrometry Services Core Facility, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Li YJ, Chen CY, Kuo YS, Huang YW, Kuo RL, Chang LK, Yang JH, Lai CH, Shih SR, Chiu YF. OTUB1 contributes to the stability and function of Influenza A virus NS2. PLoS Pathog 2024; 20:e1012279. [PMID: 38814988 PMCID: PMC11166342 DOI: 10.1371/journal.ppat.1012279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/11/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
The influenza A virus (IAV) consists of 8 single-stranded, negative-sense viral RNA (vRNA) segments. After infection, vRNA is transcribed, replicated, and wrapped by viral nucleoprotein (NP) to form viral ribonucleoprotein (vRNP). The transcription, replication, and nuclear export of the viral genome are regulated by the IAV protein, NS2, which is translated from spliced mRNA transcribed from viral NS vRNA. This splicing is inefficient, explaining why NS2 is present in low abundance after IAV infection. The levels of NS2 and its subsequent accumulation are thought to influence viral RNA replication and vRNP nuclear export. Here we show that NS2 is ubiquitinated at the K64 and K88 residues by K48-linked and K63-linked polyubiquitin (polyUb) chains, leading to the degradation of NS2 by the proteasome. Additionally, we show that a host deubiquitinase, OTUB1, can remove polyUb chains conjugated to NS2, thereby stabilizing NS2. Accordingly, knock down of OTUB1 by siRNA reduces the nuclear export of vRNP, and reduces the overall production of IAV. These results collectively demonstrate that the levels of NS2 in IAV-infected cells are regulated by a ubiquitination-deubiquitination system involving OTUB1 that is necessary for optimal IAV replication.
Collapse
Affiliation(s)
- Yu-Jyun Li
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Yuan Chen
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Shen Kuo
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Wen Huang
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Rei-Lin Kuo
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jeng-How Yang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, New Taipei, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, New Taipei, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
5
|
Marques M, Ramos B, Albuquerque H, Pereira M, Ribeiro DR, Nunes A, Sarabando J, Brás D, Ferreira AR, Vitorino R, Amorim MJ, Silva AM, Soares AR, Ribeiro D. Influenza A virus propagation requires the activation of the unfolded protein response and the accumulation of insoluble protein aggregates. iScience 2024; 27:109100. [PMID: 38405606 PMCID: PMC10884513 DOI: 10.1016/j.isci.2024.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Influenza A virus (IAV) employs multiple strategies to manipulate cellular mechanisms and support proper virion formation and propagation. In this study, we performed a detailed analysis of the interplay between IAV and the host cells' proteostasis throughout the entire infectious cycle. We reveal that IAV infection activates the inositol requiring enzyme 1 (IRE1) branch of the unfolded protein response, and that this activation is important for an efficient infection. We further observed the accumulation of virus-induced insoluble protein aggregates, containing both viral and host proteins, associated with a dysregulation of the host cell RNA metabolism. Our data indicate that this accumulation is important for IAV propagation and favors the final steps of the infection cycle, more specifically the virion assembly. These findings reveal additional mechanisms by which IAV disrupts host proteostasis and uncovers new cellular targets that can be explored for the development of host-directed antiviral strategies.
Collapse
Affiliation(s)
- Mariana Marques
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Bruno Ramos
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Hélio Albuquerque
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Marisa Pereira
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Diana Roberta Ribeiro
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Alexandre Nunes
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Jéssica Sarabando
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Daniela Brás
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Ana Rita Ferreira
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Maria João Amorim
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisboa, Portugal
| | - Artur M.S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Raquel Soares
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Daniela Ribeiro
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
Carter T, Iqbal M. The Influenza A Virus Replication Cycle: A Comprehensive Review. Viruses 2024; 16:316. [PMID: 38400091 PMCID: PMC10892522 DOI: 10.3390/v16020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza A virus (IAV) is the primary causative agent of influenza, colloquially called the flu. Each year, it infects up to a billion people, resulting in hundreds of thousands of human deaths, and causes devastating avian outbreaks with worldwide losses worth billions of dollars. Always present is the possibility that a highly pathogenic novel subtype capable of direct human-to-human transmission will spill over into humans, causing a pandemic as devastating if not more so than the 1918 influenza pandemic. While antiviral drugs for influenza do exist, they target very few aspects of IAV replication and risk becoming obsolete due to antiviral resistance. Antivirals targeting other areas of IAV replication are needed to overcome this resistance and combat the yearly epidemics, which exact a serious toll worldwide. This review aims to summarise the key steps in the IAV replication cycle, along with highlighting areas of research that need more focus.
Collapse
Affiliation(s)
- Toby Carter
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK;
| | | |
Collapse
|
7
|
Dey S, Mondal A. Unveiling the role of host kinases at different steps of influenza A virus life cycle. J Virol 2024; 98:e0119223. [PMID: 38174932 PMCID: PMC10805039 DOI: 10.1128/jvi.01192-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Influenza viruses remain a major public health concern causing contagious respiratory illnesses that result in around 290,000-650,000 global deaths every year. Their ability to constantly evolve through antigenic shifts and drifts leads to the emergence of newer strains and resistance to existing drugs and vaccines. To combat this, there is a critical need for novel antiviral drugs through the introduction of host-targeted therapeutics. Influenza viruses encode only 14 gene products that get extensively modified through phosphorylation by a diverse array of host kinases. Reversible phosphorylation at serine, threonine, or tyrosine residues dynamically regulates the structure, function, and subcellular localization of viral proteins at different stages of their life cycle. In addition, kinases influence a plethora of signaling pathways that also regulate virus propagation by modulating the host cell environment thus establishing a critical virus-host relationship that is indispensable for executing successful infection. This dependence on host kinases opens up exciting possibilities for developing kinase inhibitors as next-generation anti-influenza therapy. To fully capitalize on this potential, extensive mapping of the influenza virus-host kinase interaction network is essential. The key focus of this review is to outline the molecular mechanisms by which host kinases regulate different steps of the influenza A virus life cycle, starting from attachment-entry to assembly-budding. By assessing the contributions of different host kinases and their specific phosphorylation events during the virus life cycle, we aim to develop a holistic overview of the virus-host kinase interaction network that may shed light on potential targets for novel antiviral interventions.
Collapse
Affiliation(s)
- Soumik Dey
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Arindam Mondal
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
8
|
Liang Y. Pathogenicity and virulence of influenza. Virulence 2023; 14:2223057. [PMID: 37339323 DOI: 10.1080/21505594.2023.2223057] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
Influenza viruses, including four major types (A, B, C, and D), can cause mild-to-severe and lethal diseases in humans and animals. Influenza viruses evolve rapidly through antigenic drift (mutation) and shift (reassortment of the segmented viral genome). New variants, strains, and subtypes have emerged frequently, causing epidemic, zoonotic, and pandemic infections, despite currently available vaccines and antiviral drugs. In recent years, avian influenza viruses, such as H5 and H7 subtypes, have caused hundreds to thousands of zoonotic infections in humans with high case fatality rates. The likelihood of these animal influenza viruses acquiring airborne transmission in humans through viral evolution poses great concern for the next pandemic. Severe influenza viral disease is caused by both direct viral cytopathic effects and exacerbated host immune response against high viral loads. Studies have identified various mutations in viral genes that increase viral replication and transmission, alter tissue tropism or species specificity, and evade antivirals or pre-existing immunity. Significant progress has also been made in identifying and characterizing the host components that mediate antiviral responses, pro-viral functions, or immunopathogenesis following influenza viral infections. This review summarizes the current knowledge on viral determinants of influenza virulence and pathogenicity, protective and immunopathogenic aspects of host innate and adaptive immune responses, and antiviral and pro-viral roles of host factors and cellular signalling pathways. Understanding the molecular mechanisms of viral virulence factors and virus-host interactions is critical for the development of preventive and therapeutic measures against influenza diseases.
Collapse
Affiliation(s)
- Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
9
|
Vale-Costa S, Etibor TA, Brás D, Sousa AL, Ferreira M, Martins GG, Mello VH, Amorim MJ. ATG9A regulates the dissociation of recycling endosomes from microtubules to form liquid influenza A virus inclusions. PLoS Biol 2023; 21:e3002290. [PMID: 37983294 PMCID: PMC10695400 DOI: 10.1371/journal.pbio.3002290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/04/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023] Open
Abstract
It is now established that many viruses that threaten public health establish condensates via phase transitions to complete their lifecycles, and knowledge on such processes may offer new strategies for antiviral therapy. In the case of influenza A virus (IAV), liquid condensates known as viral inclusions, concentrate the 8 distinct viral ribonucleoproteins (vRNPs) that form IAV genome and are viewed as sites dedicated to the assembly of the 8-partite genomic complex. Despite not being delimited by host membranes, IAV liquid inclusions accumulate host membranes inside as a result of vRNP binding to the recycling endocytic marker Rab11a, a driver of the biogenesis of these structures. We lack molecular understanding on how Rab11a-recycling endosomes condensate specifically near the endoplasmic reticulum (ER) exit sites upon IAV infection. We show here that liquid viral inclusions interact with the ER to fuse, divide, and slide. We uncover that, contrary to previous indications, the reported reduction in recycling endocytic activity is a regulated process rather than a competition for cellular resources involving a novel role for the host factor ATG9A. In infection, ATG9A mediates the removal of Rab11a-recycling endosomes carrying vRNPs from microtubules. We observe that the recycling endocytic usage of microtubules is rescued when ATG9A is depleted, which prevents condensation of Rab11a endosomes near the ER. The failure to produce viral inclusions accumulates vRNPs in the cytosol and reduces genome assembly and the release of infectious virions. We propose that the ER supports the dynamics of liquid IAV inclusions, with ATG9A facilitating their formation. This work advances our understanding on how epidemic and pandemic influenza genomes are formed. It also reveals the plasticity of recycling endosomes to undergo condensation in response to infection, disclosing new roles for ATG9A beyond its classical involvement in autophagy.
Collapse
Affiliation(s)
- Sílvia Vale-Costa
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC)—Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Temitope Akhigbe Etibor
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC)—Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Daniela Brás
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC)—Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Ana Laura Sousa
- Electron Microscopy Facility (EMF), Instituto Gulbenkian de Ciência (IGC)—Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Mariana Ferreira
- Advanced Imaging Facility (AIF), Instituto Gulbenkian de Ciência (IGC)—Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Gabriel G. Martins
- Advanced Imaging Facility (AIF), Instituto Gulbenkian de Ciência (IGC)—Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Victor Hugo Mello
- Living Physics, Instituto Gulbenkian de Ciência (IGC)—Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC)—Fundação Calouste Gulbenkian, Oeiras, Portugal
- Cell Biology of Viral Infection Lab (CBV), Católica Biomedical Research Centre (CBR), Católica Medical School—Universidade Católica Portuguesa, Lisboa, Portugal
| |
Collapse
|
10
|
Etibor TA, O’Riain A, Alenquer M, Diwo C, Vale-Costa S, Amorim MJ. Challenges in Imaging Analyses of Biomolecular Condensates in Cells Infected with Influenza A Virus. Int J Mol Sci 2023; 24:15253. [PMID: 37894933 PMCID: PMC10607852 DOI: 10.3390/ijms242015253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Biomolecular condensates are crucial compartments within cells, relying on their material properties for function. They form and persist through weak, transient interactions, often undetectable by classical biochemical approaches. Hence, microscopy-based techniques have been the most reliable methods to detail the molecular mechanisms controlling their formation, material properties, and alterations, including dissolution or phase transitions due to cellular manipulation and disease, and to search for novel therapeutic strategies targeting biomolecular condensates. However, technical challenges in microscopy-based analysis persist. This paper discusses imaging, data acquisition, and analytical methodologies' advantages, challenges, and limitations in determining biophysical parameters explaining biomolecular condensate formation, dissolution, and phase transitions. In addition, we mention how machine learning is increasingly important for efficient image analysis, teaching programs what a condensate should resemble, aiding in the correlation and interpretation of information from diverse data sources. Influenza A virus forms liquid viral inclusions in the infected cell cytosol that serve as model biomolecular condensates for this study. Our previous work showcased the possibility of hardening these liquid inclusions, potentially leading to novel antiviral strategies. This was established using a framework involving live cell imaging to measure dynamics, internal rearrangement capacity, coalescence, and relaxation time. Additionally, we integrated thermodynamic characteristics by analysing fixed images through Z-projections. The aforementioned paper laid the foundation for this subsequent technical paper, which explores how different modalities in data acquisition and processing impact the robustness of results to detect bona fide phase transitions by measuring thermodynamic traits in fixed cells. Using solely this approach would greatly simplify screening pipelines. For this, we tested how single focal plane images, Z-projections, or volumetric analyses of images stained with antibodies or live tagged proteins altered the quantification of thermodynamic measurements. Customizing methodologies for different biomolecular condensates through advanced bioimaging significantly contributes to biological research and potential therapeutic advancements.
Collapse
Affiliation(s)
- Temitope Akhigbe Etibor
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC), Fundação Calouste Gulbenkian, R. Quinta Grande, 6, 2780-156 Oeiras, Portugal; (T.A.E.); (A.O.); (M.A.); (C.D.); (S.V.-C.)
| | - Aidan O’Riain
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC), Fundação Calouste Gulbenkian, R. Quinta Grande, 6, 2780-156 Oeiras, Portugal; (T.A.E.); (A.O.); (M.A.); (C.D.); (S.V.-C.)
| | - Marta Alenquer
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC), Fundação Calouste Gulbenkian, R. Quinta Grande, 6, 2780-156 Oeiras, Portugal; (T.A.E.); (A.O.); (M.A.); (C.D.); (S.V.-C.)
- Cell Biology of Viral Infection Lab (CBV), Católica Biomedical Research Centre (CBR), Católica Medical School, Universidade Católica Portuguesa, Palma de Cima, 1649-023 Lisboa, Portugal
| | - Christian Diwo
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC), Fundação Calouste Gulbenkian, R. Quinta Grande, 6, 2780-156 Oeiras, Portugal; (T.A.E.); (A.O.); (M.A.); (C.D.); (S.V.-C.)
| | - Sílvia Vale-Costa
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC), Fundação Calouste Gulbenkian, R. Quinta Grande, 6, 2780-156 Oeiras, Portugal; (T.A.E.); (A.O.); (M.A.); (C.D.); (S.V.-C.)
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC), Fundação Calouste Gulbenkian, R. Quinta Grande, 6, 2780-156 Oeiras, Portugal; (T.A.E.); (A.O.); (M.A.); (C.D.); (S.V.-C.)
- Cell Biology of Viral Infection Lab (CBV), Católica Biomedical Research Centre (CBR), Católica Medical School, Universidade Católica Portuguesa, Palma de Cima, 1649-023 Lisboa, Portugal
| |
Collapse
|
11
|
Gilbertson B, Duncan M, Subbarao K. Role of the viral polymerase during adaptation of influenza A viruses to new hosts. Curr Opin Virol 2023; 62:101363. [PMID: 37672875 DOI: 10.1016/j.coviro.2023.101363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
As a group, influenza-A viruses (IAV) infect a wide range of animal hosts, however, they are constrained to infecting selected host species by species-specific interactions between the host and virus, that are required for efficient replication of the viral RNA genome. When IAV cross the species barrier, they acquire mutations in the viral genome to enable interactions with the new host factors, or to compensate for their loss. The viral polymerase genes polymerase basic 1, polymerase basic 2, and polymerase-acidic are important sites of host adaptation. In this review, we discuss why the viral polymerase is so vital to the process of host adaptation, look at some of the known viral mutations, and host factors involved in adaptation, particularly of avian IAV to mammalian hosts.
Collapse
Affiliation(s)
- Brad Gilbertson
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Melanie Duncan
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
12
|
Xie E, Ahmad S, Smyth RP, Sieben C. Advanced fluorescence microscopy in respiratory virus cell biology. Adv Virus Res 2023; 116:123-172. [PMID: 37524480 DOI: 10.1016/bs.aivir.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.
Collapse
Affiliation(s)
- Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shazeb Ahmad
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany; Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
13
|
Kumari R, Sharma SD, Kumar A, Ende Z, Mishina M, Wang Y, Falls Z, Samudrala R, Pohl J, Knight PR, Sambhara S. Antiviral Approaches against Influenza Virus. Clin Microbiol Rev 2023; 36:e0004022. [PMID: 36645300 PMCID: PMC10035319 DOI: 10.1128/cmr.00040-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Preventing and controlling influenza virus infection remains a global public health challenge, as it causes seasonal epidemics to unexpected pandemics. These infections are responsible for high morbidity, mortality, and substantial economic impact. Vaccines are the prophylaxis mainstay in the fight against influenza. However, vaccination fails to confer complete protection due to inadequate vaccination coverages, vaccine shortages, and mismatches with circulating strains. Antivirals represent an important prophylactic and therapeutic measure to reduce influenza-associated morbidity and mortality, particularly in high-risk populations. Here, we review current FDA-approved influenza antivirals with their mechanisms of action, and different viral- and host-directed influenza antiviral approaches, including immunomodulatory interventions in clinical development. Furthermore, we also illustrate the potential utility of machine learning in developing next-generation antivirals against influenza.
Collapse
Affiliation(s)
- Rashmi Kumari
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suresh D. Sharma
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amrita Kumar
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zachary Ende
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, Tennessee, USA
| | - Margarita Mishina
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuanyuan Wang
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Association of Public Health Laboratories, Silver Spring, Maryland, USA
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul R. Knight
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Ramgoolam KH, Dolphin AC. Capsaicin-Induced Endocytosis of Endogenous Presynaptic Ca V2.2 in DRG-Spinal Cord Co-Cultures Inhibits Presynaptic Function. FUNCTION 2022; 4:zqac058. [PMID: 36540890 PMCID: PMC9761886 DOI: 10.1093/function/zqac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
The N-type calcium channel, CaV2.2 is key to neurotransmission from the primary afferent terminals of dorsal root ganglion (DRG) neurons to their postsynaptic targets in the spinal cord. In this study, we have utilized CaV2.2_HA knock-in mice, because the exofacial epitope tag in CaV2.2_HA enables accurate detection and localization of endogenous CaV2.2. CaV2.2_HA knock-in mice were used as a source of DRGs to exclusively study the presynaptic expression of N-type calcium channels in co-cultures between DRG neurons and wild-type spinal cord neurons. CaV2.2_HA is strongly expressed on the cell surface, particularly in TRPV1-positive small and medium DRG neurons. Super-resolution images of the presynaptic terminals revealed an increase in CaV2.2_HA expression and increased association with the postsynaptic marker Homer over time in vitro. Brief application of the TRPV1 agonist, capsaicin, resulted in a significant down-regulation of cell surface CaV2.2_HA expression in DRG neuron somata. At their presynaptic terminals, capsaicin caused a reduction in CaV2.2_HA proximity to and co-localization with the active zone marker RIM 1/2, as well as a lower contribution of N-type channels to single action potential-mediated Ca2+ influx. The mechanism of this down-regulation of CaV2.2_HA involves a Rab11a-dependent trafficking process, since dominant-negative Rab11a (S25N) occludes the effect of capsaicin on presynaptic CaV2.2_HA expression, and also prevents the effect of capsaicin on action potential-induced Ca2+ influx. Taken together, these data suggest that capsaicin causes a decrease in cell surface CaV2.2_HA expression in DRG terminals via a Rab11a-dependent endosomal trafficking pathway.
Collapse
Affiliation(s)
- Krishma H Ramgoolam
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
15
|
Hou W, Wang S, Wu H, Xue L, Wang B, Wang S, Wang H. Small GTPase-a Key Role in Host Cell for Coronavirus Infection and a Potential Target for Coronavirus Vaccine Adjuvant Discovery. Viruses 2022; 14:v14092044. [PMID: 36146850 PMCID: PMC9504349 DOI: 10.3390/v14092044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Small GTPases are signaling molecules in regulating key cellular processes (e.g., cell differentiation, proliferation, and motility) as well as subcellular events (e.g., vesicle trafficking), making them key participants, especially in a great array of coronavirus infection processes. In this review, we discuss the role of small GTPases in the coronavirus life cycle, especially pre-entry, endocytosis, intracellular traffic, replication, and egress from the host cell. Furthermore, we also suggest the molecules that have potent adjuvant activity by targeting small GTPases. These studies provide deep insights and references to understand the pathogenesis of coronavirus as well as to propose the potential of small GTPases as targets for adjuvant development.
Collapse
Affiliation(s)
- Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Sibei Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Heqiong Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Linli Xue
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Bin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | | | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence:
| |
Collapse
|
16
|
Cosentino G, Marougka K, Desquesnes A, Welti N, Sitterlin D, Gault E, Rameix-Welti MA. Respiratory syncytial virus ribonucleoproteins hijack microtubule Rab11 dependent transport for intracellular trafficking. PLoS Pathog 2022; 18:e1010619. [PMID: 35797399 PMCID: PMC9262236 DOI: 10.1371/journal.ppat.1010619] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/25/2022] [Indexed: 01/31/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the primary cause of severe respiratory infection in infants worldwide. Replication of RSV genomic RNA occurs in cytoplasmic inclusions generating viral ribonucleoprotein complexes (vRNPs). vRNPs then reach assembly and budding sites at the plasma membrane. However, mechanisms ensuring vRNPs transportation are unknown. We generated a recombinant RSV harboring fluorescent RNPs allowing us to visualize moving vRNPs in living infected cells and developed an automated imaging pipeline to characterize the movements of vRNPs at a high throughput. Automatic tracking of vRNPs revealed that around 10% of the RNPs exhibit fast and directed motion compatible with transport along the microtubules. Visualization of vRNPs moving along labeled microtubules and restriction of their movements by microtubule depolymerization further support microtubules involvement in vRNPs trafficking. Approximately 30% of vRNPs colocalize with Rab11a protein, a marker of the endosome recycling (ER) pathway and we observed vRNPs and Rab11-labeled vesicles moving together. Transient inhibition of Rab11a expression significantly reduces vRNPs movements demonstrating Rab11 involvement in RNPs trafficking. Finally, Rab11a is specifically immunoprecipitated with vRNPs in infected cells suggesting an interaction between Rab11 and the vRNPs. Altogether, our results strongly suggest that RSV RNPs move on microtubules by hijacking the ER pathway.
Collapse
Affiliation(s)
- Gina Cosentino
- Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Versailles, France
| | - Katherine Marougka
- Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Versailles, France
| | - Aurore Desquesnes
- Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Versailles, France
| | - Nicolas Welti
- Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Versailles, France
| | - Delphine Sitterlin
- Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Versailles, France
| | - Elyanne Gault
- Université Paris-Saclay, Université de Versailles St. Quentin; UMR 1173 (2I), INSERM; Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15; Versailles, France
| | - Marie-Anne Rameix-Welti
- Université Paris-Saclay, Université de Versailles St. Quentin; UMR 1173 (2I), INSERM; Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15; Versailles, France
- * E-mail:
| |
Collapse
|
17
|
Evidence for the role of Rab11-positive recycling endosomes as intermediates in coronavirus egress from epithelial cells. Histochem Cell Biol 2022; 158:241-251. [PMID: 35604431 PMCID: PMC9124743 DOI: 10.1007/s00418-022-02115-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2022] [Indexed: 12/19/2022]
Abstract
AbstractAfter their assembly by budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum (ER)–Golgi interface, coronaviruses (CoVs) are released from their host cells following a pathway that remains poorly understood. The traditional view that CoV exit occurs via the constitutive secretory route has recently been questioned by studies suggesting that this process involves unconventional secretion. Here, using the avian infectious bronchitis virus (IBV) as a well-established model virus, we have applied confocal microscopy to investigate the pathway of CoV egress from epithelial Vero cells. We report a novel effect of IBV infection on cellular endomembranes, namely, the compaction of the pericentrosomal endocytic recycling compartment (ERC) defined by the GTPase Rab11, which coincides with the previously described Golgi fragmentation, as well as virus release. Despite Golgi disassembly, the IC elements containing the major IBV membrane protein (M)—which mostly associates with newly formed virus particles—maintain their close spatial connection with the Rab11-positive endocytic recycling system. Moreover, partial colocalization of the M protein with Rab11 was observed, whereas M displayed negligible overlap with LAMP-1, indicating that IBV egress does not occur via late endosomes or lysosomes. Synchronization of virus release using temperature-shift protocols was accompanied by increased colocalization of M and Rab11 in vesicular and vacuolar structures in the pericentrosomal region and at the cell periphery, most likely representing IBV-containing transport carriers. In conclusion, these results add CoVs to the growing list of viruses exploiting the endocytic recycling apparatus defined by Rab11 for their assembly and/or release.
Collapse
|
18
|
Guillon A, Brea-Diakite D, Cezard A, Wacquiez A, Baranek T, Bourgeais J, Picou F, Vasseur V, Meyer L, Chevalier C, Auvet A, Carballido JM, Nadal Desbarats L, Dingli F, Turtoi A, Le Gouellec A, Fauvelle F, Donchet A, Crépin T, Hiemstra PS, Paget C, Loew D, Herault O, Naffakh N, Le Goffic R, Si-Tahar M. Host succinate inhibits influenza virus infection through succinylation and nuclear retention of the viral nucleoprotein. EMBO J 2022; 41:e108306. [PMID: 35506364 PMCID: PMC9194747 DOI: 10.15252/embj.2021108306] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism. We focused on mitochondria‐derived succinate that accumulated both in the respiratory fluids of virus‐challenged mice and of patients with influenza pneumonia. Notably, succinate displays a potent antiviral activity in vitro as it inhibits the multiplication of influenza A/H1N1 and A/H3N2 strains and strongly decreases virus‐triggered metabolic perturbations and inflammatory responses. Moreover, mice receiving succinate intranasally showed reduced viral loads in lungs and increased survival compared to control animals. The antiviral mechanism involves a succinate‐dependent posttranslational modification, that is, succinylation, of the viral nucleoprotein at the highly conserved K87 residue. Succinylation of viral nucleoprotein altered its electrostatic interactions with viral RNA and further impaired the trafficking of viral ribonucleoprotein complexes. The finding that succinate efficiently disrupts the influenza replication cycle opens up new avenues for improved treatment of influenza pneumonia.
Collapse
Affiliation(s)
- Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France.,Service de Médecine Intensive Réanimation, CHRU de Tours, Tours, France
| | - Deborah Brea-Diakite
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Adeline Cezard
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Alan Wacquiez
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Thomas Baranek
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Jérôme Bourgeais
- Université de Tours, Tours, France.,CNRS ERL 7001 LNOx "Leukemic niche and redox metabolism", Tours, France.,Service d'Hématologie Biologique, CHRU de Tours, Tours, France
| | - Frédéric Picou
- Université de Tours, Tours, France.,CNRS ERL 7001 LNOx "Leukemic niche and redox metabolism", Tours, France.,Service d'Hématologie Biologique, CHRU de Tours, Tours, France
| | - Virginie Vasseur
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Léa Meyer
- Virologie et Immunologie Moléculaires, INRAe, Université Paris-Saclay, Jouy-en-Josas, France
| | - Christophe Chevalier
- Virologie et Immunologie Moléculaires, INRAe, Université Paris-Saclay, Jouy-en-Josas, France
| | - Adrien Auvet
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France.,Service de Médecine Intensive Réanimation, CHRU de Tours, Tours, France
| | | | | | - Florent Dingli
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Andrei Turtoi
- Tumor Microenvironment Laboratory, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier, France.,Institut du Cancer de Montpellier, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Audrey Le Gouellec
- CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, University Grenoble Alpes, Grenoble, France
| | - Florence Fauvelle
- UGA/INSERM U1216, Grenoble Institute of Neurosciences, Grenoble, France.,UGA/INSERM US17, Grenoble MRI Facility IRMaGe, Grenoble, France
| | - Amélie Donchet
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France
| | - Thibaut Crépin
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Christophe Paget
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Damarys Loew
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Olivier Herault
- Université de Tours, Tours, France.,CNRS ERL 7001 LNOx "Leukemic niche and redox metabolism", Tours, France.,Service d'Hématologie Biologique, CHRU de Tours, Tours, France
| | - Nadia Naffakh
- Institut Pasteur, Unité Biologie des ARN et Virus Influenza, CNRS UMR3569, Paris, France
| | - Ronan Le Goffic
- Virologie et Immunologie Moléculaires, INRAe, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| |
Collapse
|
19
|
Inferring protein function in an emerging virus: detection of the nucleoprotein in Tilapia Lake Virus. J Virol 2022; 96:e0175721. [PMID: 35107373 DOI: 10.1128/jvi.01757-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emerging viruses impose global threats to animal and human populations and may bear novel genes with limited homology to known sequences, necessitating the development of novel approaches to infer and test protein functions. This challenge is dramatically evident in tilapia lake virus (TiLV), an emerging orthomyxo-like virus that threatens the global tilapia aquaculture and food security of millions of people. The majority of TiLV proteins have no homology to known sequences, impeding functionality assessments. Using a novel bioinformatics approach, we predicted that TiLV's Protein 4 encodes the nucleoprotein - a factor essential for viral RNA replication. Multiple methodologies revealed the expected properties of orthomyxoviral nucleoproteins. A modified yeast three-hybrid assay detected Protein 4-RNA interactions, which were independent of the RNA sequence, and identified specific positively charged residues involved. Protein 4-RNA interactions were uncovered by R-DeeP and XRNAX methodologies. Immunoelectron microscopy found that multiple Protein 4 copies localized along enriched ribonucleoproteins. TiLV RNA from cells and virions co-immunoprecipitated with Protein 4. Immunofluorescence microscopy detected Protein 4 in the cytoplasm and nuclei, and nuclear Protein 4 increased upon CRM1 inhibition, suggesting CRM1-dependent nuclear export of TiLV RNA. Together, these data reveal TiLV's nucleoprotein and highlight the ability to infer protein functionality, including novel RNA-binding proteins, in emerging pathogens. These are important in light of the expected discovery of many unknown viruses and the zoonotic potential of such pathogens. Importance Tilapia is an important source of dietary protein, especially in developing countries. Massive losses of tilapia were identified worldwide, risking the food security of millions of people. Tilapia lake virus (TiLV) is an emerging pathogen responsible for these disease outbreaks. TiLV's genome encodes ten major proteins, nine of which show no homology to other known viral or cellular proteins, hindering functionality assessment of these proteins. Here we describe a novel bioinformatics approach to infer the functionality of TiLV proteins, which predicted Protein 4 as the nucleoprotein - a factor essential for viral RNA replication. We provided experimental support for this prediction by applying multiple molecular, biochemical, and imaging approaches. Overall, we illustrate a strategy for functional analyses in viral discovery. The strategy is important in light of the expected discovery of many unknown viruses and the zoonotic potential of such pathogens.
Collapse
|
20
|
The C-terminal domains of the PB2 subunit of the influenza A virus RNA polymerase directly interact with cellular GTPase Rab11a. J Virol 2022; 96:e0197921. [PMID: 35019720 PMCID: PMC8906434 DOI: 10.1128/jvi.01979-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) contains a segmented RNA genome that is transcribed and replicated by the viral RNA polymerase in the cell nucleus. Replicated RNA segments are assembled with viral polymerase and oligomeric nucleoprotein into viral ribonucleoprotein (vRNP) complexes which are exported from the nucleus and transported across the cytoplasm to be packaged into progeny virions. Host GTPase Rab11a associated with recycling endosomes is believed to contribute to this process by mediating the cytoplasmic transport of vRNPs. However, how vRNPs interact with Rab11a remains poorly understood. In this study, we utilised a combination of biochemical, proteomic, and biophysical approaches to characterise the interaction between the viral polymerase and Rab11a. Using pull-down assays we show that vRNPs but not cRNPs from infected cell lysates bind to Rab11a. We also show that the viral polymerase directly interacts with Rab11a and that the C-terminal two thirds of the PB2 polymerase subunit (PB2-C) comprising the cap-binding, mid-link, 627 and nuclear localization signal (NLS) domains mediate this interaction. Small-angle X-ray scattering (SAXS) experiments confirmed that PB2-C associates with Rab11a in solution forming a compact folded complex with a 1:1 stoichiometry. Furthermore, we demonstrate that the switch I region of Rab11a, that has been shown to be important for binding Rab11 family interacting proteins (Rab11-FIPs), is also important for PB2-C binding suggesting that IAV polymerase and Rab11-FIPs compete for the same binding site. Our findings expand our understanding of the interaction between the IAV polymerase and Rab11a in the cytoplasmic transport of vRNPs. Importance The influenza virus RNA genome segments are replicated in the cell nucleus and are assembled into viral ribonucleoprotein (vRNP) complexes with viral RNA polymerase and nucleoprotein (NP). Replicated vRNPs need to be exported from the nucleus and trafficked across the cytoplasm to the cell membrane where virion assembly takes place. The host GTPase Rab11a plays a role in vRNP trafficking. In this study we show that the viral polymerase directly interacts with Rab11a mediating the interaction between vRNPs and Rab11a. We map this interaction to the C-terminal domains of the PB2 polymerase subunit and the switch I region of Rab11a. Identifying the exact site of Rab11a binding on the viral polymerase could uncover a novel target site for the development of an influenza antiviral drug.
Collapse
|
21
|
Staller E, Barclay WS. Host Cell Factors That Interact with Influenza Virus Ribonucleoproteins. Cold Spring Harb Perspect Med 2021; 11:a038307. [PMID: 32988980 PMCID: PMC8559542 DOI: 10.1101/cshperspect.a038307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Influenza viruses hijack host cell factors at each stage of the viral life cycle. After host cell entry and endosomal escape, the influenza viral ribonucleoproteins (vRNPs) are released into the cytoplasm where the classical cellular nuclear import pathway is usurped for nuclear translocation of the vRNPs. Transcription takes place inside the nucleus at active host transcription sites, and cellular mRNA export pathways are subverted for export of viral mRNAs. Newly synthesized RNP components cycle back into the nucleus using various cellular nuclear import pathways and host-encoded chaperones. Replication of the negative-sense viral RNA (vRNA) into complementary RNA (cRNA) and back into vRNA requires complex interplay between viral and host factors. Progeny vRNPs assemble at the host chromatin and subsequently exit from the nucleus-processes orchestrated by sets of host and viral proteins. Finally, several host pathways appear to play a role in vRNP trafficking from the nuclear envelope to the plasma membrane for egress.
Collapse
Affiliation(s)
- Ecco Staller
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1NY, United Kingdom
| | - Wendy S Barclay
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1NY, United Kingdom
| |
Collapse
|
22
|
Boonyoung G, Panrat T, Phongdara A, Wanna W. Evaluation of the relationship between the 14-3-3ε protein and LvRab11 in the shrimp Litopenaeus vannamei during WSSV infection. Sci Rep 2021; 11:19188. [PMID: 34584112 PMCID: PMC8478922 DOI: 10.1038/s41598-021-97828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
The 14-3-3 proteins interact with a wide variety of cellular proteins for many diverse functions in biological processes. In this study, a yeast two-hybrid assay revealed that two 14-3-3ε isoforms (14-3-3ES and 14-3-3EL) interacted with Rab11 in the white shrimp Litopenaeus vannamei (LvRab11). The interaction of 14-3-3ε and LvRab11 was confirmed by a GST pull-down assay. The LvRab11 open reading frame was 645 bp long, encoding a protein of 214 amino acids. Possible complexes of 14-3-3ε isoforms and LvRab11 were elucidated by in silico analysis, in which LvRab11 showed a better binding energy score with 14-3-3EL than with 14-3-3ES. In shrimp challenged with the white spot syndrome virus (WSSV), the mRNA expression levels of LvRab11 and 14-3-3ε were significantly upregulated at 48 h after challenge. To determine whether LvRab11 and binding between 14-3-3ε and LvRab11 are active against WSSV infection, an in vivo neutralization assay and RNA interference were performed. The results of in vivo neutralization showed that LvRab11 and complexes of 14-3-3ε/LvRab11 delayed mortality in shrimp challenged with WSSV. Interestingly, in the RNAi experiments, the silencing effect of LvRab11 in WSSV-infected shrimp resulted in decreased ie-1 mRNA expression and WSSV copy number. Whereas suppression of complex 14-3-3ε/LvRab11 increased WSSV replication. This study has suggested two functions of LvRab11 in shrimp innate immunity; (1) at the early stage of WSSV infection, LvRab11 might play an important role in WSSV infection processes and (2) at the late stage of infection, the 14-3-3ε/LvRab11 interaction acquires functions that are involved in immune response against WSSV invasion.
Collapse
Affiliation(s)
- Guson Boonyoung
- grid.7130.50000 0004 0470 1162Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand
| | - Tanate Panrat
- grid.7130.50000 0004 0470 1162Prince of Songkla University International College, Hat Yai Campus, Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand
| | - Amornrat Phongdara
- grid.7130.50000 0004 0470 1162Center for Genomics and Bioinformatics Research, Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand
| | - Warapond Wanna
- grid.7130.50000 0004 0470 1162Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand ,grid.7130.50000 0004 0470 1162Center for Genomics and Bioinformatics Research, Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand
| |
Collapse
|
23
|
Ganti K, Han J, Manicassamy B, Lowen AC. Rab11a mediates cell-cell spread and reassortment of influenza A virus genomes via tunneling nanotubes. PLoS Pathog 2021; 17:e1009321. [PMID: 34473799 PMCID: PMC8443049 DOI: 10.1371/journal.ppat.1009321] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/15/2021] [Accepted: 08/22/2021] [Indexed: 11/18/2022] Open
Abstract
Influenza A virus [IAV] genomes comprise eight negative strand RNAs packaged into virions in the form of viral ribonucleoproteins [vRNPs]. Rab11a plays a crucial role in the transport of vRNPs from the nucleus to the plasma membrane via microtubules, allowing assembly and virus production. Here, we identify a novel function for Rab11a in the inter-cellular transport of IAV vRNPs using tunneling nanotubes [TNTs]as molecular highways. TNTs are F-Actin rich tubules that link the cytoplasm of nearby cells. In IAV-infected cells, Rab11a was visualized together with vRNPs in these actin-rich intercellular connections. To better examine viral spread via TNTs, we devised an infection system in which conventional, virion-mediated, spread was not possible. Namely, we generated HA-deficient reporter viruses which are unable to produce progeny virions but whose genomes can be replicated and trafficked. In this system, vRNP transfer to neighboring cells was observed and this transfer was found to be dependent on both actin and Rab11a. Generation of infectious virus via TNT transfer was confirmed using donor cells infected with HA-deficient virus and recipient cells stably expressing HA protein. Mixing donor cells infected with genetically distinct IAVs furthermore revealed the potential for Rab11a and TNTs to serve as a conduit for genome mixing and reassortment in IAV infections. These data therefore reveal a novel role for Rab11a in the IAV life cycle, which could have significant implications for within-host spread, genome reassortment and immune evasion.
Collapse
Affiliation(s)
- Ketaki Ganti
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Julianna Han
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa School of Medicine, Iowa City, Iowa, United States of America
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance [CEIRS]
| |
Collapse
|
24
|
Basyuk E, Rage F, Bertrand E. RNA transport from transcription to localized translation: a single molecule perspective. RNA Biol 2021; 18:1221-1237. [PMID: 33111627 PMCID: PMC8354613 DOI: 10.1080/15476286.2020.1842631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
Transport of mRNAs is an important step of gene expression, which brings the genetic message from the DNA in the nucleus to a precise cytoplasmic location in a regulated fashion. Perturbation of this process can lead to pathologies such as developmental and neurological disorders. In this review, we discuss recent advances in the field of mRNA transport made using single molecule fluorescent imaging approaches. We present an overview of these approaches in fixed and live cells and their input in understanding the key steps of mRNA journey: transport across the nucleoplasm, export through the nuclear pores and delivery to its final cytoplasmic location. This review puts a particular emphasis on the coupling of mRNA transport with translation, such as localization-dependent translational regulation and translation-dependent mRNA localization. We also highlight the recently discovered translation factories, and how cellular and viral RNAs can hijack membrane transport systems to travel in the cytoplasm.
Collapse
Affiliation(s)
- Eugenia Basyuk
- Institut de Génétique Humaine, CNRS-UMR9002, Univ Montpellier, Montpellier, France
- Present address: Laboratoire de Microbiologie Fondamentale et Pathogénicité, CNRS-UMR 5234, Université de Bordeaux, Bordeaux, France
| | - Florence Rage
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Univ Montpellier, Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Humaine, CNRS-UMR9002, Univ Montpellier, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Univ Montpellier, Montpellier, France
- Equipe Labélisée Ligue Nationale Contre Le Cancer, Montpellier, France
| |
Collapse
|
25
|
Seshimo E, Momose F, Morikawa Y. Identification of the 5'-Terminal Packaging Signal of the H1N1 Influenza A Virus Neuraminidase Segment at Single-Nucleotide Resolution. Front Microbiol 2021; 12:709010. [PMID: 34456891 PMCID: PMC8385638 DOI: 10.3389/fmicb.2021.709010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/20/2021] [Indexed: 02/05/2023] Open
Abstract
The genome of the influenza A virus is an eight-segmented negative-strand RNA (vRNA). Progeny vRNAs replicated in the nucleus selectively assemble into a single set of eight different segments, probably in the cytoplasm, and are packaged into progeny virions at the cell membrane. In these processes, a region of approximately 100 nucleotides at both ends of each segment is thought to function as a selective assembly/packaging signal; however, the details of the mechanism, such as the required sequences, are still unknown. In this study, we focused on the 5'-terminus of the sixth neuraminidase gene segment vRNA (Seg.6) to identify the essential sequence for selective packaging. The 5'-terminal region of the A/Puerto Rico/8/34 strain Seg.6 was divided into seven regions of 15 nucleotides each from A to G, and mutations were introduced into each region by complementary base substitutions or synonymous codon substitutions. Mutant viruses were generated and compared for infectious titers, and the relative ratios of the eight segments packaged into virions were measured. We also ascertained whether mutant vRNA was eliminated by competitive packaging with wild-type vRNA. Mutations in the A-C regions reduced infectious titers and eliminated mutant vRNAs by competition with wild-type vRNA. Even under non-competitive conditions, the packaging efficiency of the A or B region mutant Seg.6 was reduced. Next, we designed an artificial vRNA with a 50-nucleotide duplication at the 5'-terminal region. Using this, a virus library was created by randomly replacing each region, which became an untranslated region (UTR), with complementary bases. After selecting proliferative viruses from the library, nine wild-type nucleotides in the A and B regions were identified as essential bases, and we found that these bases were highly conserved in Seg.6 vRNAs encoding the N1 subtype neuraminidase. From these results, we conclude that the identified bases function as the 5'-terminal packaging signal for the N1 subtype Seg.6 vRNA.
Collapse
Affiliation(s)
- Erika Seshimo
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Fumitaka Momose
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Yuko Morikawa
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| |
Collapse
|
26
|
Moreira EA, Yamauchi Y, Matthias P. How Influenza Virus Uses Host Cell Pathways during Uncoating. Cells 2021; 10:1722. [PMID: 34359892 PMCID: PMC8305448 DOI: 10.3390/cells10071722] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza is a zoonotic respiratory disease of major public health interest due to its pandemic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry.
Collapse
Affiliation(s)
| | - Yohei Yamauchi
- Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK;
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland;
- Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
27
|
Mammalian cells use the autophagy process to restrict avian influenza virus replication. Cell Rep 2021; 35:109213. [PMID: 34107256 DOI: 10.1016/j.celrep.2021.109213] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023] Open
Abstract
Host adaptive mutations in the influenza A virus (IAV) PB2 protein are critical for human infection, but their molecular action is not well understood. We observe that when IAV containing avian PB2 infects mammalian cells, viral ribonucleoprotein (vRNP) aggregates that localize to the microtubule-organizing center (MTOC) are formed. These vRNP aggregates resemble LC3B-associated autophagosome structures, with aggresome-like properties, in that they cause the re-distribution of vimentin. However, electron microscopy reveals that these aggregates represent an accumulation of autophagic vacuoles. Compared to mammalian-PB2 virus, avian-PB2 virus induces higher autophagic flux in infected cells, indicating an increased rate of autophagosomes containing avian vRNPs fusing with lysosomes. We found that p62 is essential for the formation of vRNP aggregates and that the Raptor-interacting region of p62 is required for interaction with vRNPs through the PB2 polymerase subunit. Selective autophagic sequestration during late-stage virus replication is thus an additional strategy for host restriction of avian-PB2 IAV.
Collapse
|
28
|
Meyer JO, Dolphin AC. Rab11-dependent recycling of calcium channels is mediated by auxiliary subunit α 2δ-1 but not α 2δ-3. Sci Rep 2021; 11:10256. [PMID: 33986433 PMCID: PMC8119971 DOI: 10.1038/s41598-021-89820-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
N-type voltage-gated calcium channels (CaV2.2) are predominantly expressed at presynaptic terminals, and their function is regulated by auxiliary α2δ and β subunits. All four mammalian α2δ subunits enhance calcium currents through CaV1 and CaV2 channels, and this increase is attributed, in part, to increased CaV expression at the plasma membrane. In the present study we provide evidence that α2δ-1, like α2δ-2, is recycled to the plasma membrane through a Rab11a-dependent endosomal recycling pathway. Using a dominant-negative Rab11a mutant, Rab11a(S25N), we show that α2δ-1 increases plasma membrane CaV2.2 expression by increasing the rate and extent of net forward CaV2.2 trafficking in a Rab11a-dependent manner. Dominant-negative Rab11a also reduces the ability of α2δ-1 to increase CaV2.2 expression on the cell-surface of hippocampal neurites. In contrast, α2δ-3 does not enhance rapid forward CaV2.2 trafficking, regardless of whether Rab11a(S25N) is present. In addition, whole-cell CaV2.2 currents are reduced by co-expression of Rab11a(S25N) in the presence of α2δ-1, but not α2δ-3. Taken together these data suggest that α2δ subtypes participate in distinct trafficking pathways which in turn influence the localisation and function of CaV2.2.
Collapse
Affiliation(s)
- James O Meyer
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
29
|
Host factor Rab11a is critical for efficient assembly of influenza A virus genomic segments. PLoS Pathog 2021; 17:e1009517. [PMID: 33970958 PMCID: PMC8136845 DOI: 10.1371/journal.ppat.1009517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/20/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
It is well documented that influenza A viruses selectively package 8 distinct viral ribonucleoprotein complexes (vRNPs) into each virion; however, the role of host factors in genome assembly is not completely understood. To evaluate the significance of cellular factors in genome assembly, we generated a reporter virus carrying a tetracysteine tag in the NP gene (NP-Tc virus) and assessed the dynamics of vRNP localization with cellular components by fluorescence microscopy. At early time points, vRNP complexes were preferentially exported to the MTOC; subsequently, vRNPs associated on vesicles positive for cellular factor Rab11a and formed distinct vRNP bundles that trafficked to the plasma membrane on microtubule networks. In Rab11a deficient cells, however, vRNP bundles were smaller in the cytoplasm with less co-localization between different vRNP segments. Furthermore, Rab11a deficiency increased the production of non-infectious particles with higher RNA copy number to PFU ratios, indicative of defects in specific genome assembly. These results indicate that Rab11a+ vesicles serve as hubs for the congregation of vRNP complexes and enable specific genome assembly through vRNP:vRNP interactions, revealing the importance of Rab11a as a critical host factor for influenza A virus genome assembly. The influenza A virus (IAV) genome is composed of 8 distinct RNA segments. It has remained unclear how these 8 individual RNA segments are assembled together to form infectious virus particles. Our study shows that Rab11a+ vesicles serve as platforms for the congregation and assembly of 8 individual viral RNA segments needed to form infectious virus particles. However, in cells lacking Rab11a, viral RNA segments fail to congregate together, resulting in increased production of defective virus particles, likely due to misassembling of viral RNA segments. Thus, our study reveals the important role for Rab11a in influenza virus genome assembly and production of infectious virus particles.
Collapse
|
30
|
Wu J, Gu J, Shen L, Jia X, Yin Y, Chen Y, Wang S, Mao L. The role of host cell Rab GTPases in influenza A virus infections. Future Microbiol 2021; 16:445-452. [PMID: 33847136 DOI: 10.2217/fmb-2020-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Influenza A virus (IAV) is a crucial cause of respiratory infections in humans worldwide. Therefore, studies should clarify adaptation mechanisms of IAV and critical factors of the viral pathogenesis in human hosts. GTPases of the Rab family are the largest branch of the Ras-like small GTPase superfamily, and they regulate almost every step during vesicle-mediated trafficking. Evidence has shown that Rab proteins participate in the lifecycle of IAV. In this mini-review, we outline the regulatory mechanisms of different Rab proteins in the lifecycle of IAV. Understanding the role of Rab proteins in IAV infections is important to develop broad-spectrum host-targeted antiviral strategies.
Collapse
Affiliation(s)
- Jing Wu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaqi Gu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Shen
- Clinical Laboratory, Zhenjiang Center for Disease Control & Prevention, Jiangsu, China
| | - Xiaonan Jia
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yiqian Yin
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yiwen Chen
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
31
|
Etibor TA, Yamauchi Y, Amorim MJ. Liquid Biomolecular Condensates and Viral Lifecycles: Review and Perspectives. Viruses 2021; 13:366. [PMID: 33669141 PMCID: PMC7996568 DOI: 10.3390/v13030366] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
Viruses are highly dependent on the host they infect. Their dependence triggers processes of virus-host co-adaptation, enabling viruses to explore host resources whilst escaping immunity. Scientists have tackled viral-host interplay at differing levels of complexity-in individual hosts, organs, tissues and cells-and seminal studies advanced our understanding about viral lifecycles, intra- or inter-species transmission, and means to control infections. Recently, it emerged as important to address the physical properties of the materials in biological systems; membrane-bound organelles are only one of many ways to separate molecules from the cellular milieu. By achieving a type of compartmentalization lacking membranes known as biomolecular condensates, biological systems developed alternative mechanisms of controlling reactions. The identification that many biological condensates display liquid properties led to the proposal that liquid-liquid phase separation (LLPS) drives their formation. The concept of LLPS is a paradigm shift in cellular structure and organization. There is an unprecedented momentum to revisit long-standing questions in virology and to explore novel antiviral strategies. In the first part of this review, we focus on the state-of-the-art about biomolecular condensates. In the second part, we capture what is known about RNA virus-phase biology and discuss future perspectives of this emerging field in virology.
Collapse
Affiliation(s)
- Temitope Akhigbe Etibor
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | - Yohei Yamauchi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TL, UK;
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| |
Collapse
|
32
|
Mtambo SE, Amoako DG, Somboro AM, Agoni C, Lawal MM, Gumede NS, Khan RB, Kumalo HM. Influenza Viruses: Harnessing the Crucial Role of the M2 Ion-Channel and Neuraminidase toward Inhibitor Design. Molecules 2021; 26:880. [PMID: 33562349 PMCID: PMC7916051 DOI: 10.3390/molecules26040880] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
As a member of the Orthomyxoviridae family of viruses, influenza viruses (IVs) are known causative agents of respiratory infection in vertebrates. They remain a major global threat responsible for the most virulent diseases and global pandemics in humans. The virulence of IVs and the consequential high morbidity and mortality of IV infections are primarily attributed to the high mutation rates in the IVs' genome coupled with the numerous genomic segments, which give rise to antiviral resistant and vaccine evading strains. Current therapeutic options include vaccines and small molecule inhibitors, which therapeutically target various catalytic processes in IVs. However, the periodic emergence of new IV strains necessitates the continuous development of novel anti-influenza therapeutic options. The crux of this review highlights the recent studies on the biology of influenza viruses, focusing on the structure, function, and mechanism of action of the M2 channel and neuraminidase as therapeutic targets. We further provide an update on the development of new M2 channel and neuraminidase inhibitors as an alternative to existing anti-influenza therapy. We conclude by highlighting therapeutic strategies that could be explored further towards the design of novel anti-influenza inhibitors with the ability to inhibit resistant strains.
Collapse
Affiliation(s)
- Sphamadla E. Mtambo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Daniel G. Amoako
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Anou M. Somboro
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Clement Agoni
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Monsurat M. Lawal
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Nelisiwe S. Gumede
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Rene B. Khan
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Hezekiel M. Kumalo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| |
Collapse
|
33
|
Touizer E, Sieben C, Henriques R, Marsh M, Laine RF. Application of Super-Resolution and Advanced Quantitative Microscopy to the Spatio-Temporal Analysis of Influenza Virus Replication. Viruses 2021; 13:233. [PMID: 33540739 PMCID: PMC7912985 DOI: 10.3390/v13020233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
With an estimated three to five million human cases annually and the potential to infect domestic and wild animal populations, influenza viruses are one of the greatest health and economic burdens to our society, and pose an ongoing threat of large-scale pandemics. Despite our knowledge of many important aspects of influenza virus biology, there is still much to learn about how influenza viruses replicate in infected cells, for instance, how they use entry receptors or exploit host cell trafficking pathways. These gaps in our knowledge are due, in part, to the difficulty of directly observing viruses in living cells. In recent years, advances in light microscopy, including super-resolution microscopy and single-molecule imaging, have enabled many viral replication steps to be visualised dynamically in living cells. In particular, the ability to track single virions and their components, in real time, now allows specific pathways to be interrogated, providing new insights to various aspects of the virus-host cell interaction. In this review, we discuss how state-of-the-art imaging technologies, notably quantitative live-cell and super-resolution microscopy, are providing new nanoscale and molecular insights into influenza virus replication and revealing new opportunities for developing antiviral strategies.
Collapse
Affiliation(s)
- Emma Touizer
- Division of Infection and Immunity, University College London, London WC1E 6AE, UK;
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Christian Sieben
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Romain F. Laine
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
34
|
[Functional analysis of host factors involved in mumps virus propagation]. Uirusu 2021; 71:71-78. [PMID: 35526997 DOI: 10.2222/jsv.71.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mumps virus (MuV) is the causative agent of mumps, a common childhood illness characterized by fever and swelling of the salivary glands. Like other viral infections, a number of host proteins are thought to involve in MuV infection. We have shown the function of several host factors in MuV infection. The chaperone proteins, heat shock protein 70 (Hsp70) and Hsp90, interact with the P and L proteins that form the polymerase complex and function in the protein quality control of these viral proteins, and thus they are essential host factors in MuV RNA synthesis. The R2TP complex is a host factor that contributes to effective viral propagation by precise regulation of viral RNA synthesis and evasion of host immune responses, and Rab11 is a host factor involved in viral RNP trafficking to the plasma membrane. This article summarizes the functions of host factors involved in MuV infection based on our researches.
Collapse
|
35
|
Dawson AR, Wilson GM, Coon JJ, Mehle A. Post-Translation Regulation of Influenza Virus Replication. Annu Rev Virol 2020; 7:167-187. [DOI: 10.1146/annurev-virology-010320-070410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Influenza virus exploits cellular factors to complete each step of viral replication. Yet, multiple host proteins actively block replication. Consequently, infection success depends on the relative speed and efficacy at which both the virus and host use their respective effectors. Post-translational modifications (PTMs) afford both the virus and the host means to readily adapt protein function without the need for new protein production. Here we use influenza virus to address concepts common to all viruses, reviewing how PTMs facilitate and thwart each step of the replication cycle. We also discuss advancements in proteomic methods that better characterize PTMs. Although some effectors and PTMs have clear pro- or antiviral functions, PTMs generally play regulatory roles to tune protein functions, levels, and localization. Synthesis of our current understanding reveals complex regulatory schemes where the effects of PTMs are time and context dependent as the virus and host battle to control infection.
Collapse
Affiliation(s)
- Anthony R. Dawson
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Gary M. Wilson
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
36
|
Mascheroni L, Scherer KM, Manton JD, Ward E, Dibben O, Kaminski CF. Combining sample expansion and light sheet microscopy for the volumetric imaging of virus-infected cells with super-resolution. BIOMEDICAL OPTICS EXPRESS 2020; 11:5032-5044. [PMID: 33014598 PMCID: PMC7510880 DOI: 10.1364/boe.399404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 05/25/2023]
Abstract
Expansion microscopy is a sample preparation technique that enables the optical imaging of biological specimens at super-resolution owing to their physical magnification, which is achieved through water-absorbing polymers. The technique uses readily available chemicals and does not require sophisticated equipment, thus offering super-resolution to laboratories that are not microscopy-specialised. Here we present a protocol combining sample expansion with light sheet microscopy to generate high-contrast, high-resolution 3D reconstructions of whole virus-infected cells. The results are superior to those achievable with comparable imaging modalities and reveal details of the infection cycle that are not discernible before expansion. An image resolution of approximately 95 nm could be achieved in samples labelled in 3 colours. We resolve that the viral nucleoprotein is accumulated at the membrane of vesicular structures within the cell cytoplasm and how these vesicles are positioned relative to cellular structures. We provide detailed guidance and a video protocol for the optimal application of the method and demonstrate its potential to study virus-host cell interactions.
Collapse
Affiliation(s)
- Luca Mascheroni
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- These authors contributed equally
| | - Katharina M Scherer
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- These authors contributed equally
| | | | - Edward Ward
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Oliver Dibben
- Flu-MSAT, Biopharmaceutical Development, R&D, AstraZeneca, Liverpool, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
37
|
Selective flexible packaging pathways of the segmented genome of influenza A virus. Nat Commun 2020; 11:4355. [PMID: 32859915 PMCID: PMC7455735 DOI: 10.1038/s41467-020-18108-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
The genome of influenza A viruses (IAV) is encoded in eight distinct viral ribonucleoproteins (vRNPs) that consist of negative sense viral RNA (vRNA) covered by the IAV nucleoprotein. Previous studies strongly support a selective packaging model by which vRNP segments are bundling to an octameric complex, which is integrated into budding virions. However, the pathway(s) generating a complete genome bundle is not known. We here use a multiplexed FISH assay to monitor all eight vRNAs in parallel in human lung epithelial cells. Analysis of 3.9 × 105 spots of colocalizing vRNAs provides quantitative insights into segment composition of vRNP complexes and, thus, implications for bundling routes. The complexes rarely contain multiple copies of a specific segment. The data suggest a selective packaging mechanism with limited flexibility by which vRNPs assemble into a complete IAV genome. We surmise that this flexibility forms an essential basis for the development of reassortant viruses with pandemic potential.
Collapse
|
38
|
Srivastava M, Zhang Y, Chen J, Sirohi D, Miller A, Zhang Y, Chen Z, Lu H, Xu J, Kuhn RJ, Andy Tao W. Chemical proteomics tracks virus entry and uncovers NCAM1 as Zika virus receptor. Nat Commun 2020; 11:3896. [PMID: 32753727 PMCID: PMC7403387 DOI: 10.1038/s41467-020-17638-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
The outbreak of Zika virus (ZIKV) in 2016 created worldwide health emergency which demand urgent research efforts on understanding the virus biology and developing therapeutic strategies. Here, we present a time-resolved chemical proteomic strategy to track the early-stage entry of ZIKV into host cells. ZIKV was labeled on its surface with a chemical probe, which carries a photocrosslinker to covalently link virus-interacting proteins in living cells on UV exposure at different time points, and a biotin tag for subsequent enrichment and mass spectrometric identification of the receptor or other host proteins critical for virus internalization. We identified Neural Cell Adhesion Molecule (NCAM1) as a potential ZIKV receptor and further validated it through overexpression, knockout, and inhibition of NCAM1 in Vero cells and human glioblastoma cells U-251 MG. Collectively, the strategy can serve as a universal tool to map virus entry pathways and uncover key interacting proteins.
Collapse
Affiliation(s)
- Mayank Srivastava
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ying Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China.
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jian Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
| | - Devika Sirohi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrew Miller
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China
| | - Zhilu Chen
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
| | - Haojie Lu
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China
| | - Jianqing Xu
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China.
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China.
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA.
| | - W Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
39
|
Jiang Y, Cai X, Yao J, Guo H, Yin L, Leung W, Xu C. Role of Extracellular Vesicles in Influenza Virus Infection. Front Cell Infect Microbiol 2020; 10:366. [PMID: 32850473 PMCID: PMC7396637 DOI: 10.3389/fcimb.2020.00366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Influenza virus infection is a major health care concern associated with significant morbidity and mortality worldwide, and cause annual seasonal epidemics and pandemics at irregular intervals. Recent research has highlighted that viral components can be found on the extracellular vesicles (EVs) released from infected cells, implying a functional relevance of EVs with influenza virus dissemination. Therefore, exploring the role of EVs in influenza virus infection has been attracting significant attention. In this review, we will briefly introduce the biogenesis of EVs, and focus on the role of EVs in influenza virus infection, and then discuss the EVs-based influenza vaccines and the limitations of EVs studies, to further enrich and boost the development of preventative and therapeutic strategies to combat influenza virus.
Collapse
Affiliation(s)
- Yuan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaowen Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiwen Yao
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huanhuan Guo
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liangjun Yin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wingnang Leung
- Asia-Pacific Institute of Aging Studies, Lingnan University, Tuen Mun, China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
40
|
Dissecting the mechanism of signaling-triggered nuclear export of newly synthesized influenza virus ribonucleoprotein complexes. Proc Natl Acad Sci U S A 2020; 117:16557-16566. [PMID: 32601201 PMCID: PMC7368312 DOI: 10.1073/pnas.2002828117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Influenza viruses (IV) replicate in the nucleus. Export of newly produced genomes, packaged in viral ribonucleoprotein (vRNP) complexes, relies on the nuclear CRM1 export pathway and appears to be timely controlled by virus-induced cellular signaling. However, the exact mechanism of the signaling-controlled complex assembly and export is enigmatic. Here we show that IV activates the Raf/MEK/ERK/RSK1 pathway, leading to phosphorylation at specific sites of the NP, which in turn, creates a docking site for binding of the M1 protein, an initial step in formation of vRNP export complexes. These findings are of broad relevance regarding the regulatory role of signaling pathways and posttranslational modifications in virus propagation and will strongly support ongoing development of an alternative anti-influenza therapy. Influenza viruses (IV) exploit a variety of signaling pathways. Previous studies showed that the rapidly accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway is functionally linked to nuclear export of viral ribonucleoprotein (vRNP) complexes, suggesting that vRNP export is a signaling-induced event. However, the underlying mechanism remained completely enigmatic. Here we have dissected the unknown molecular steps of signaling-driven vRNP export. We identified kinases RSK1/2 as downstream targets of virus-activated ERK signaling. While RSK2 displays an antiviral role, we demonstrate a virus-supportive function of RSK1, migrating to the nucleus to phosphorylate nucleoprotein (NP), the major constituent of vRNPs. This drives association with viral matrix protein 1 (M1) at the chromatin, important for vRNP export. Inhibition or knockdown of MEK, ERK or RSK1 caused impaired vRNP export and reduced progeny virus titers. This work not only expedites the development of anti-influenza strategies, but in addition demonstrates converse actions of different RSK isoforms.
Collapse
|
41
|
Abstract
Influenza A virus (IAV) is an enveloped virus of the Orthomyxoviridae with a negative-sense single-stranded RNA genome. During virus cell entry, viral and cellular cues are delivered in a stepwise manner within two distinct cellular compartments-the endosomes and the cytosol. Endosome maturation primes the viral core for uncoating by cytosolic host proteins and host-mediated virus disaggregation is essential for genome import and replication in the nucleus. Recent evidence shows that two well-known cellular proteins-histone deacetylase 6 (HDAC6) and karyopherin-β2 (kapβ2)-uncoat influenza virus. HDAC6 is 1 of 11 HDACs and an X-linked, cytosolic lysine deacetylase. Under normal cellular conditions HDAC6 is the tubulin deacetylase. Under proteasomal stress HDAC6 binds unanchored ubiquitin, dynein and myosin II to sequester misfolded protein aggregates for autophagy. Kapβ2 is a member of the importin β family that transports RNA-binding proteins into the nucleus by binding to disordered nuclear localization signals (NLSs) known as PY-NLS. Kapβ2 is emerging as a universal uncoating factor for IAV and human immunodeficiency virus type 1 (HIV-1). Kapβ2 can also reverse liquid-liquid phase separation (LLPS) of RNA-binding proteins by promoting their disaggregation. Thus, it is becoming evident that key players in the management of cellular condensates and membraneless organelles are potent virus uncoating factors. This emerging concept reveals implications in viral pathogenesis, as well as, the promise for cell-targeted therapeutic strategies to block universal virus uncoating pathways hijacked by enveloped RNA viruses.
Collapse
Affiliation(s)
- Yohei Yamauchi
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
42
|
Microtubules in Influenza Virus Entry and Egress. Viruses 2020; 12:v12010117. [PMID: 31963544 PMCID: PMC7020094 DOI: 10.3390/v12010117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Influenza viruses are respiratory pathogens that represent a significant threat to public health, despite the large-scale implementation of vaccination programs. It is necessary to understand the detailed and complex interactions between influenza virus and its host cells in order to identify successful strategies for therapeutic intervention. During viral entry, the cellular microenvironment presents invading pathogens with a series of obstacles that must be overcome to infect permissive cells. Influenza hijacks numerous host cell proteins and associated biological pathways during its journey into the cell, responding to environmental cues in order to successfully replicate. The cellular cytoskeleton and its constituent microtubules represent a heavily exploited network during viral infection. Cytoskeletal filaments provide a dynamic scaffold for subcellular viral trafficking, as well as virus-host interactions with cellular machineries that are essential for efficient uncoating, replication, and egress. In addition, influenza virus infection results in structural changes in the microtubule network, which itself has consequences for viral replication. Microtubules, their functional roles in normal cell biology, and their exploitation by influenza viruses will be the focus of this review.
Collapse
|
43
|
Bhagwat AR, Le Sage V, Nturibi E, Kulej K, Jones J, Guo M, Tae Kim E, Garcia BA, Weitzman MD, Shroff H, Lakdawala SS. Quantitative live cell imaging reveals influenza virus manipulation of Rab11A transport through reduced dynein association. Nat Commun 2020; 11:23. [PMID: 31911620 PMCID: PMC6946661 DOI: 10.1038/s41467-019-13838-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/20/2019] [Indexed: 11/10/2022] Open
Abstract
Assembly of infectious influenza A viruses (IAV) is a complex process involving transport from the nucleus to the plasma membrane. Rab11A-containing recycling endosomes have been identified as a platform for intracellular transport of viral RNA (vRNA). Here, using high spatiotemporal resolution light-sheet microscopy (~1.4 volumes/second, 330 nm isotropic resolution), we quantify Rab11A and vRNA movement in live cells during IAV infection and report that IAV infection decreases speed and increases arrest of Rab11A. Unexpectedly, infection with respiratory syncytial virus alters Rab11A motion in a manner opposite to IAV, suggesting that Rab11A is a common host component that is differentially manipulated by respiratory RNA viruses. Using two-color imaging we demonstrate co-transport of Rab11A and IAV vRNA in infected cells and provide direct evidence that vRNA-associated Rab11A have altered transport. The mechanism of altered Rab11A movement is likely related to a decrease in dynein motors bound to Rab11A vesicles during IAV infection.
Collapse
Affiliation(s)
- Amar R Bhagwat
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Eric Nturibi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Katarzyna Kulej
- The Children's Hospital of Philadelphia Research Institute, 3501 Civic Center Dr., Philadelphia, PA, 19104, USA
| | - Jennifer Jones
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Min Guo
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 13 South Drive, Building 13, Bethesda, MD, 20892, USA
| | - Eui Tae Kim
- The Children's Hospital of Philadelphia Research Institute, 3501 Civic Center Dr., Philadelphia, PA, 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, 3400, Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Matthew D Weitzman
- The Children's Hospital of Philadelphia Research Institute, 3501 Civic Center Dr., Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, 3400, Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 13 South Drive, Building 13, Bethesda, MD, 20892, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
44
|
Chao YK, Chang SY, Grimm C. Endo-Lysosomal Cation Channels and Infectious Diseases. Rev Physiol Biochem Pharmacol 2020; 185:259-276. [PMID: 32748124 DOI: 10.1007/112_2020_31] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Among the infectious diseases caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi, the most prevalent ones today are malaria, tuberculosis, influenza, HIV/AIDS, Ebola, dengue fever, and methicillin-resistant Staphylococcus aureus (MRSA) infection, and most recently Covid-19 (SARS-CoV2). Others with a rather devastating history and high fatality rates such as plague, cholera, or typhus seem less threatening today but have not been eradicated, and with a declining efficacy of current antibiotics they ought to be watched carefully. Another emerging issue in this context is health-care associated infection. About 100,000 hospitalized patients in the USA ( www.cdc.gov ) and 33,000 in Europe ( https://www.ecdc.europa.eu ) die each year as a direct consequence of an infection caused by bacteria resistant to antibiotics. Among viral infections, influenza is responsible for about 3-5 million cases of severe illness, and about 250,000 to 500,000 deaths annually ( www.who.int ). About 37 million people are currently living with HIV infection and about one million die from it each year. Coronaviruses such as MERS-CoV, SARS-CoV, but in particular the recent outbreak of Covid-19 (caused by SARS-CoV2) have resulted in large numbers of infections worldwide with an estimated several hundred thousand deaths (anticipated fatality rate: <5%). With a comparatively low mortality rate dengue virus causes between 50 and 100 million infections every year, leading to 50,000 deaths. In contrast, Ebola virus is the causative agent for one of the deadliest viral diseases. The Ebola outbreak in West Africa in 2014 is considered the largest outbreak in history with more than 11,000 deaths. Many of the deadliest pathogens such as Ebola virus, influenza virus, mycobacterium tuberculosis, dengue virus, and cholera exploit the endo-lysosomal trafficking system of host cells for penetration into the cytosol and replication. Defects in endo-lysosomal maturation, trafficking, fusion, or pH homeostasis can efficiently reduce the cytotoxicity caused by these pathogens. Most of these functions critically depend on endo-lysosomal membrane proteins such as transporters and ion channels. In particular, cation channels such as the mucolipins (TRPMLs) or the two-pore channels (TPCs) are involved in all of these aspects of endo-lysosomal integrity. In this review we will discuss the correlations between pathogen toxicity and endo-lysosomal cation channel function, and their potential as drug targets for infectious disease therapy.
Collapse
Affiliation(s)
- Yu-Kai Chao
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
45
|
Fred SM, Laukkanen L, Brunello CA, Vesa L, Göös H, Cardon I, Moliner R, Maritzen T, Varjosalo M, Casarotto PC, Castrén E. Pharmacologically diverse antidepressants facilitate TRKB receptor activation by disrupting its interaction with the endocytic adaptor complex AP-2. J Biol Chem 2019; 294:18150-18161. [PMID: 31631060 PMCID: PMC6885648 DOI: 10.1074/jbc.ra119.008837] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/15/2019] [Indexed: 01/19/2023] Open
Abstract
Several antidepressant drugs activate tropomyosin-related kinase B (TRKB) receptor, but it remains unclear whether these compounds employ a common mechanism for TRKB activation. Here, using MS, we found that a single intraperitoneal injection of fluoxetine disrupts the interaction of several proteins with TRKB in the hippocampus of mice. These proteins included members of adaptor protein complex-2 (AP-2) involved in vesicular endocytosis. The interaction of TRKB with the cargo-docking μ subunit of the AP-2 complex (AP2M) was confirmed to be disrupted by both acute and repeated fluoxetine treatments. Of note, fluoxetine disrupted the coupling between full-length TRKB and AP2M, but not the interaction between AP2M and the TRKB C-terminal region, indicating that the fluoxetine-binding site in TRKB lies outside the TRKB:AP2M interface. ELISA experiments revealed that in addition to fluoxetine, other chemically diverse antidepressants, such as imipramine, rolipram, phenelzine, ketamine, and its metabolite 2R,6R-hydroxynorketamine, also decreased the interaction between TRKB and AP2M in vitro Silencing the expression of AP2M in a TRKB-expressing mouse fibroblast cell line (MG87.TRKB) increased cell-surface expression of TRKB and facilitated its activation by brain-derived neurotrophic factor (BDNF), observed as levels of phosphorylated TRKB. Moreover, animals haploinsufficient for the Ap2m1 gene displayed increased levels of active TRKB, along with enhanced cell-surface expression of the receptor in cultured hippocampal neurons. Taken together, our results suggest that disruption of the TRKB:AP2M interaction is a common mechanism underlying TRKB activation by several chemically diverse antidepressants.
Collapse
Affiliation(s)
- Senem Merve Fred
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Liina Laukkanen
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Cecilia A Brunello
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Liisa Vesa
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Helka Göös
- Institute of Biotechnology-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Iseline Cardon
- Brain Master Program, Faculty of Science, Aix-Marseille Université, 13007 Marseille, France
| | - Rafael Moliner
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Markku Varjosalo
- Institute of Biotechnology-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Plinio C Casarotto
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland.
| | - Eero Castrén
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
46
|
Shafiuddin M, Boon ACM. RNA Sequence Features Are at the Core of Influenza A Virus Genome Packaging. J Mol Biol 2019; 431:4217-4228. [PMID: 30914291 PMCID: PMC6756997 DOI: 10.1016/j.jmb.2019.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/18/2019] [Accepted: 03/11/2019] [Indexed: 11/23/2022]
Abstract
The influenza A virus (IAV), a respiratory pathogen for humans, poses serious medical and economic challenges to global healthcare systems. The IAV genome, consisting of eight single-stranded viral RNA segments, is incorporated into virions by a complex process known as genome packaging. Specific RNA sequences within the viral RNA segments serve as signals that are necessary for genome packaging. Although efficient packaging is a prerequisite for viral infectivity, many of the mechanistic details about this process are still missing. In this review, we discuss the recent advances toward the understanding of IAV genome packaging and focus on the RNA features that play a role in this process.
Collapse
Affiliation(s)
- Md Shafiuddin
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Adrianus C M Boon
- Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
47
|
Nanbo A, Ohba Y. Budding of Ebola Virus Particles Requires the Rab11-Dependent Endocytic Recycling Pathway. J Infect Dis 2019; 218:S388-S396. [PMID: 30476249 PMCID: PMC6249604 DOI: 10.1093/infdis/jiy460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The Ebola virus-encoded major matrix protein VP40 traffics to the plasma membrane, which leads to the formation of filamentous viral particles and subsequent viral egress. However, the cellular machineries underlying this process are not fully understood. In the present study, we have assessed the role of host endocytic recycling in Ebola virus particle formation. We found that a small GTPase Rab11, which regulates recycling of molecules among the trans-Golgi network, recycling endosomes, and the plasma membrane, was incorporated in Ebola virus-like particles. Although Rab11 predominantly localized in the perinuclear region, it distributed diffusely in the cytoplasm and partly localized in the periphery of the cells transiently expressing VP40. In contrast, Rab11 exhibited a perinuclear distribution when 2 VP40 derivatives that lack ability to traffic to the plasma membrane were expressed. Finally, expression of a dominant-negative form of Rab11 or knockdown of Rab11 inhibited both VP40-induced clusters at the plasma membrane and release of viral-like particles. Taken together, our findings demonstrate that Ebola virus exploits host endocytic recycling machinery to facilitate the trafficking of VP40 to the cell surface and the subsequent release of viral-like particles for its establishment of efficient viral egress.
Collapse
Affiliation(s)
- Asuka Nanbo
- Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohba
- Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
48
|
Sato R, Okura T, Kawahara M, Takizawa N, Momose F, Morikawa Y. Apical Trafficking Pathways of Influenza A Virus HA and NA via Rab17- and Rab23-Positive Compartments. Front Microbiol 2019; 10:1857. [PMID: 31456775 PMCID: PMC6700264 DOI: 10.3389/fmicb.2019.01857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
The envelope proteins of influenza A virus, hemagglutinin (HA) and neuraminidase (NA), play critical roles in viral entry to host cells and release from the cells, respectively. After protein synthesis, they are transported from the trans-Golgi network (TGN) to the apical plasma membrane (PM) and assembled into virus particles. However, the post-TGN transport pathways of HA and NA have not been clarified. Temporal study by confocal microscopy revealed that HA and NA colocalized soon after their synthesis, and relocated together from the TGN to the upper side of the cell. Using the Rab family protein, we investigated the post-TGN transport pathways of HA and NA. HA partially colocalized with AcGFP-Rab15, Rab17, and Rab23, but rarely with AcGFP-Rab11. When analyzed in cells stably expressing AcGFP-Rab, HA/NA colocalized with Rab15 and Rab17, markers of apical sorting and recycling endosomes, and later colocalized with Rab23, which distributes to the apical PM and endocytic vesicles. Overexpression of the dominant-negative (DN) mutants of Rab15 and Rab17, but not Rab23, significantly delayed HA transport to the PM. However, Rab23DN impaired cell surface expression of HA. Live-cell imaging revealed that NA moved rapidly with Rab17 but not with Rab15. NA also moved with Rab23 in the cytoplasm, but this motion was confined at the upper side of the cell. A fraction of HA was localized to Rab17 and Rab23 double-positive vesicles in the cytoplasm. Coimmunoprecipitation indicated that HA was associated with Rab17 and Rab23 in lipid raft fractions. When cholesterol was depleted by methyl-β-cyclodextrin treatment, the motion of NA and Rab17 signals ceased. These results suggest that HA and NA are incorporated into lipid raft microdomains and are cotransported to the PM by Rab17-positive and followed by Rab23-positive vesicles.
Collapse
Affiliation(s)
- Ryota Sato
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Takashi Okura
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Madoka Kawahara
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Naoki Takizawa
- Laboratory of Basic Biology, Institute of Microbial Chemistry, Tokyo, Japan
| | - Fumitaka Momose
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Yuko Morikawa
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
49
|
Lakdawala SS, Lee N, Brooke CB. Teaching an Old Virus New Tricks: A Review on New Approaches to Study Age-Old Questions in Influenza Biology. J Mol Biol 2019; 431:4247-4258. [PMID: 31051174 DOI: 10.1016/j.jmb.2019.04.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 01/31/2023]
Abstract
Influenza viruses have been studied for over 80 years, yet much about the basic viral lifecycle remain unknown. However, new imaging, biochemical, and sequencing techniques have revealed significant insight into many age-old questions of influenza virus biology. In this review, we will cover the role of imaging techniques to describe unique aspects of influenza virus assembly, biochemical techniques to study viral genomic organization, and next-generation sequencing to explore influenza genomic evolution. Our goal is to provide a brief overview of how emerging techniques are being used to answer basic questions about influenza viruses. This is not a comprehensive list of emerging techniques, rather ones that we feel will continue to make significant contributions to field of influenza biology.
Collapse
Affiliation(s)
- Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine Pittsburgh, PA 15219, USA.
| | - Nara Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine Pittsburgh, PA 15219, USA.
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| |
Collapse
|
50
|
Metal-Tagging Transmission Electron Microscopy and Immunogold Labeling on Tokuyasu Cryosections to Image Influenza A Virus Ribonucleoprotein Transport and Packaging. Methods Mol Biol 2019; 1836:281-301. [PMID: 30151579 DOI: 10.1007/978-1-4939-8678-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Transmission electron microscopy (TEM) has been instrumental for studying viral infections. In particular, methods for labeling macromolecules at the ultrastructural level, by integrating biochemistry, molecular biology, and morphology, have allowed to study the functions of viral macromolecular complexes within the cellular context. Here, we describe a strategy for imaging influenza virus ribonucleoproteins in infected cells with two complementary labeling methods, metal-tagging transmission electron microscopy or METTEM, a highly sensitive technique based on the use of a metal-binding protein as a clonable tag, and immunogold labeling on thawed cryosections, a very specific labeling method that allows to study the distribution of different proteins simultaneously. The combination of both labeling methods offers new possibilities for TEM analysis of viral components in cells.
Collapse
|