1
|
Milighetti M, Peng Y, Tan C, Mark M, Nageswaran G, Byrne S, Ronel T, Peacock T, Mayer A, Chandran A, Rosenheim J, Whelan M, Yao X, Liu G, Felce SL, Dong T, Mentzer AJ, Knight JC, Balloux F, Greenstein E, Reich-Zeliger S, Pade C, Gibbons JM, Semper A, Brooks T, Otter A, Altmann DM, Boyton RJ, Maini MK, McKnight A, Manisty C, Treibel TA, Moon JC, Noursadeghi M, Chain B. Large clones of pre-existing T cells drive early immunity against SARS-COV-2 and LCMV infection. iScience 2023; 26:106937. [PMID: 37275518 PMCID: PMC10201888 DOI: 10.1016/j.isci.2023.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023] Open
Abstract
T cell responses precede antibody and may provide early control of infection. We analyzed the clonal basis of this rapid response following SARS-COV-2 infection. We applied T cell receptor (TCR) sequencing to define the trajectories of individual T cell clones immediately. In SARS-COV-2 PCR+ individuals, a wave of TCRs strongly but transiently expand, frequently peaking the same week as the first positive PCR test. These expanding TCR CDR3s were enriched for sequences functionally annotated as SARS-COV-2 specific. Epitopes recognized by the expanding TCRs were highly conserved between SARS-COV-2 strains but not with circulating human coronaviruses. Many expanding CDR3s were present at high frequency in pre-pandemic repertoires. Early response TCRs specific for lymphocytic choriomeningitis virus epitopes were also found at high frequency in the preinfection naive repertoire. High-frequency naive precursors may allow the T cell response to respond rapidly during the crucial early phases of acute viral infection.
Collapse
Affiliation(s)
- Martina Milighetti
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Cedric Tan
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Michal Mark
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gayathri Nageswaran
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Suzanne Byrne
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Tahel Ronel
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Tom Peacock
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Andreas Mayer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Aneesh Chandran
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Joshua Rosenheim
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Matthew Whelan
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Xuan Yao
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Guihai Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Suet Ling Felce
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | | | - Julian C Knight
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Francois Balloux
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Erez Greenstein
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shlomit Reich-Zeliger
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Corinna Pade
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Joseph M Gibbons
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Amanda Semper
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Tim Brooks
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Ashley Otter
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Imperial College London, London SW7 2BX, UK
| | - Rosemary J Boyton
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
- Lung Division, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Aine McKnight
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Charlotte Manisty
- Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
| | - Thomas A Treibel
- Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
| | - James C Moon
- Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Benny Chain
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
2
|
Mark M, Reich-Zeliger S, Greenstein E, Biram A, Chain B, Friedman N, Madi A. Viral infection reveals hidden sharing of TCR CDR3 sequences between individuals. Front Immunol 2023; 14:1199064. [PMID: 37325645 PMCID: PMC10266217 DOI: 10.3389/fimmu.2023.1199064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
The T cell receptor is generated by a process of random and imprecise somatic recombination. The number of possible T cell receptors which this process can produce is enormous, greatly exceeding the number of T cells in an individual. Thus, the likelihood of identical TCRs being observed in multiple individuals (public TCRs) might be expected to be very low. Nevertheless such public TCRs have often been reported. In this study we explore the extent of TCR publicity in the context of acute resolving Lymphocytic choriomeningitis virus (LCMV) infection in mice. We show that the repertoire of effector T cells following LCMV infection contains a population of highly shared TCR sequences. This subset of TCRs has a distribution of naive precursor frequencies, generation probabilities, and physico-chemical CDR3 properties which lie between those of classic public TCRs, which are observed in uninfected repertoires, and the dominant private TCR repertoire. We have named this set of sequences "hidden public" TCRs, since they are only revealed following infection. A similar repertoire of hidden public TCRs can be observed in humans after a first exposure to SARS-COV-2. The presence of hidden public TCRs which rapidly expand following viral infection may therefore be a general feature of adaptive immunity, identifying an additional level of inter-individual sharing in the TCR repertoire which may form an important component of the effector and memory response.
Collapse
Affiliation(s)
- Michal Mark
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Erez Greenstein
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Biram
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Benny Chain
- Division of Infection and Immunity, Department of Computer Science, University College London, London, United Kingdom
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Madi
- Department of Pathology, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
3
|
CD4 expression in effector T cells depends on DNA demethylation over a developmentally established stimulus-responsive element. Nat Commun 2022; 13:1477. [PMID: 35304452 PMCID: PMC8933563 DOI: 10.1038/s41467-022-28914-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 02/16/2022] [Indexed: 12/17/2022] Open
Abstract
The epigenetic patterns that are established during early thymic development might determine mature T cell physiology and function, but the molecular basis and topography of the genetic elements involved are not fully known. Here we show, using the Cd4 locus as a paradigm for early developmental programming, that DNA demethylation during thymic development licenses a novel stimulus-responsive element that is critical for the maintenance of Cd4 gene expression in effector T cells. We document the importance of maintaining high CD4 expression during parasitic infection and show that by driving transcription, this stimulus-responsive element allows for the maintenance of histone H3K4me3 levels during T cell replication, which is critical for preventing de novo DNA methylation at the Cd4 promoter. A failure to undergo epigenetic programming during development leads to gene silencing during effector T cell replication. Our study thus provides evidence of early developmental events shaping the functional fitness of mature effector T cells.
Collapse
|
4
|
Arroyo EN, Pepper M. B cells are sufficient to prime the dominant CD4+ Tfh response to Plasmodium infection. J Exp Med 2020; 217:jem.20190849. [PMID: 31748243 PMCID: PMC7041722 DOI: 10.1084/jem.20190849] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/19/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Arroyo and Pepper demonstrate that interactions with B cells, not dendritic cells, are required for the priming of the CD4+ T cell response during Plasmodium infection. This results in a Tfh-biased response as reported by others in both mice and humans. CD4+ T follicular helper (Tfh) cells dominate the acute response to a blood-stage Plasmodium infection and provide signals to direct B cell differentiation and protective antibody expression. We studied antigen-specific CD4+ Tfh cells responding to Plasmodium infection in order to understand the generation and maintenance of the Tfh response. We discovered that a dominant, phenotypically stable, CXCR5+ Tfh population emerges within the first 4 d of infection and results in a CXCR5+ CCR7+ Tfh/central memory T cell response that persists well after parasite clearance. We also found that CD4+ T cell priming by B cells was both necessary and sufficient to generate this Tfh-dominant response, whereas priming by conventional dendritic cells was dispensable. This study provides important insights into the development of CD4+ Tfh cells during Plasmodium infection and highlights the heterogeneity of antigen-presenting cells involved in CD4+ T cell priming.
Collapse
Affiliation(s)
- E Nicole Arroyo
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
5
|
Halpert MM, Konduri V, Liang D, Vazquez-Perez J, Hofferek CJ, Weldon SA, Baig Y, Vedula I, Levitt JM, Decker WK. MHC class I and II peptide homology regulates the cellular immune response. FASEB J 2020; 34:8082-8101. [PMID: 32298026 DOI: 10.1096/fj.201903002r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022]
Abstract
Mammalian immune responses are initiated by "danger" signals--immutable molecular structures known as PAMPs. When detected by fixed, germline encoded receptors, pathogen-associated molecular pattern (PAMPs) subsequently inform the polarization of downstream adaptive responses depending upon identity and localization of the PAMP. Here, we report the existence of a completely novel "PAMP" that is not a molecular structure but an antigenic pattern. This pattern--the incidence of peptide epitopes with stretches of 100% sequence identity bound to both dendritic cell (DC) major histocompatibility (MHC) class I and MHC class II--strongly induces TH 1 immune polarization and activation of the cellular immune response. Inherent in the existence of this PAMP is the concomitant existence of a molecular sensor complex with the ability to scan and compare amino acid sequence identities of bound class I and II peptides. We provide substantial evidence implicating the multienzyme aminoacyl-tRNA synthetase (mARS) complex and its AIMp1 structural component as the key constituents of this complex. The results demonstrate a wholly novel mechanism by which T-helper (TH ) polarization is governed and provide critical information for the design of vaccination strategies intended to provoke cell-mediated immunity.
Collapse
Affiliation(s)
- Matthew M Halpert
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Vanaja Konduri
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Dan Liang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | | | - Colby J Hofferek
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Scott A Weldon
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Yunyu Baig
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Indira Vedula
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan M Levitt
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - William K Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Kisielow J, Obermair FJ, Kopf M. Deciphering CD4 + T cell specificity using novel MHC-TCR chimeric receptors. Nat Immunol 2019; 20:652-662. [PMID: 30858620 DOI: 10.1038/s41590-019-0335-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 01/25/2019] [Indexed: 01/25/2023]
Abstract
αβ T cell antigen receptors (TCRs) bind complexes of peptide and major histocompatibility complex (pMHC) with low affinity, which poses a considerable challenge for the direct identification of αβ T cell cognate peptides. Here we describe a platform for the discovery of MHC class II epitopes based on the screening of engineered reporter cells expressing novel pMHC-TCR (MCR) hybrid molecules carrying cDNA-derived peptides. This technology identifies natural epitopes of CD4+ T cells in an unbiased and efficient manner and allows detailed analysis of TCR cross-reactivity that provides recognition patterns beyond discrete peptides. We determine the cognate peptides of virus- and tumor-specific T cells in mouse disease models and present a proof of concept for human T cells. Furthermore, we use MCR to identify immunogenic tumor neo-antigens and show that vaccination with a peptide naturally recognized by tumor-infiltrating lymphocytes efficiently protects mice from tumor challenge. Thus, the MCR technology holds promise for basic research and clinical applications, allowing the personalized identification of T cell-specific neo-antigens in patients.
Collapse
Affiliation(s)
- Jan Kisielow
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland.
| | | | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
7
|
Schweier O, Aichele U, Marx A, Straub T, Verbeek JS, Pinschewer DD, Pircher H. Residual LCMV antigen in transiently CD4+T cell‐depleted mice induces high levels of virus‐specific antibodies but only limited B‐cell memory. Eur J Immunol 2019; 49:626-637. [DOI: 10.1002/eji.201847772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Oliver Schweier
- Institute for ImmunologyMedical Center ‐ University of FreiburgFaculty of MedicineUniversity of Freiburg Germany
| | - Ulrike Aichele
- Institute for ImmunologyMedical Center ‐ University of FreiburgFaculty of MedicineUniversity of Freiburg Germany
| | - Anna‐Friederike Marx
- Institute for ImmunologyMedical Center ‐ University of FreiburgFaculty of MedicineUniversity of Freiburg Germany
- Division of Experimental VirologyDepartment of BiomedicineUniversity of Basel Switzerland
| | - Tobias Straub
- Institute for ImmunologyMedical Center ‐ University of FreiburgFaculty of MedicineUniversity of Freiburg Germany
| | - J. Sjef Verbeek
- Department of Human GeneticsLeiden University Medical Center Leiden the Netherlands
| | - Daniel D. Pinschewer
- Division of Experimental VirologyDepartment of BiomedicineUniversity of Basel Switzerland
| | - Hanspeter Pircher
- Institute for ImmunologyMedical Center ‐ University of FreiburgFaculty of MedicineUniversity of Freiburg Germany
| |
Collapse
|
8
|
Andargachew R, Martinez RJ, Kolawole EM, Evavold BD. CD4 T Cell Affinity Diversity Is Equally Maintained during Acute and Chronic Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:19-30. [PMID: 29777029 DOI: 10.4049/jimmunol.1800295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
TCR affinity for peptide MHC dictates the functional efficiency of T cells and their propensity to differentiate into effectors and form memory. However, in the context of chronic infections, it is unclear what the overall profile of TCR affinity for Ag is and if it differs from acute infections. Using the comprehensive affinity analysis provided by the two-dimensional micropipette adhesion frequency assay and the common indirect affinity evaluation methods of MHC class II tetramer and functional avidity, we tracked IAb GP61-80-specific cells in the mouse model of acute (Armstrong) and chronic (clone 13) lymphocytic choriomeningitis virus infection. In each response, we show CD4 T cell population affinity peaks at the effector phase and declines with memory. Of interest, the range and average relative two-dimensional affinity was equivalent between acute and chronic infection, indicating chronic Ag exposure did not skew TCR affinity. In contrast, functional and tetramer avidity measurements revealed divergent results and lacked a consistent correlation with TCR affinity. Our findings highlight that the immune system maintains a diverse range in TCR affinity even under the pressures of chronic Ag stimulation.
Collapse
Affiliation(s)
- Rakieb Andargachew
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Ryan J Martinez
- School of Medicine, Emory University, Atlanta, GA 30322; and
| | - Elizabeth M Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
9
|
Bhattacharyya M, Madden P, Henning N, Gregory S, Aid M, Martinot AJ, Barouch DH, Penaloza-MacMaster P. Regulation of CD4 T cells and their effects on immunopathological inflammation following viral infection. Immunology 2017; 152:328-343. [PMID: 28582800 DOI: 10.1111/imm.12771] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/09/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022] Open
Abstract
CD4 T cells help immune responses, but knowledge of how memory CD4 T cells are regulated and how they regulate adaptive immune responses and induce immunopathology is limited. Using adoptive transfer of virus-specific CD4 T cells, we show that naive CD4 T cells undergo substantial expansion following infection, but can induce lethal T helper type 1-driven inflammation. In contrast, memory CD4 T cells exhibit a biased proliferation of T follicular helper cell subsets and were able to improve adaptive immune responses in the context of minimal tissue damage. Our analyses revealed that type I interferon regulates the expansion of primary CD4 T cells, but does not seem to play a critical role in regulating the expansion of secondary CD4 T cells. Strikingly, blockade of type I interferon abrogated lethal inflammation by primary CD4 T cells following viral infection, despite that this treatment increased the numbers of primary CD4 T-cell responses. Altogether, these data demonstrate important aspects of how primary and secondary CD4 T cells are regulated in vivo, and how they contribute to immune protection and immunopathology. These findings are important for rational vaccine design and for improving adoptive T-cell therapies against persistent antigens.
Collapse
Affiliation(s)
- Mitra Bhattacharyya
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Patrick Madden
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Nathan Henning
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Shana Gregory
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA
| | - Amanda J Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA.,Ragon Institute of MGH, MIT, and Harvard, Boston, MA, USA
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
10
|
CD11a and CD49d enhance the detection of antigen-specific T cells following human vaccination. Vaccine 2017; 35:4255-4261. [PMID: 28662951 DOI: 10.1016/j.vaccine.2017.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/12/2017] [Accepted: 06/05/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Determining the efficacy of human vaccines that induce antigen-specific protective CD4 T cell responses against pathogens can be particularly challenging to evaluate. Surface expression of CD11a and CD49d has been shown to identify antigen-specific CD4 T cells against viral pathogens in mice. We hypothesized that CD11a and CD49d would also serve as markers of human antigen-specific T cells responding to vaccination. METHODS A phase I vaccine trial enabled us to evaluate a novel gating strategy based on surface expression of CD11a and CD49d as a means of detecting antigen-specific, cytokine producing CD4 and CD8 T cells induced after vaccination of naïve individuals against leishmaniasis. Three study groups received LEISH-F3 recombinant protein combined with either squalene oil-in-water emulsion (SE) alone, SE with the synthetic TLR-4 ligand glucopyranosyl lipid adjuvant (GLA-SE), or SE with Salmonella minnesota-derived monophosphoryl lipid A (MPL-SE). Individuals were given 3 vaccine doses, on days 0, 28 and 168. RESULTS Starting after the first vaccine dose, the frequency of both CD11ahiCD49d+ CD4 and CD11ahiCD49d+ CD8 T cells significantly increased over time throughout the 24-week trial. To confirm the role of CD11ahiCD49d+ expression in the identification of the antigen-specific T cells, cytokine production was measured following LEISH-F3 stimulation. All of the IFN-γ, TNF-α, and IL-2 producing cells were found within the CD11ahiCD49d+ population. CONCLUSIONS Our results suggest that the change in the frequency of CD11ahiCD49d+ T cells can be used to track antigen-specific CD4 and CD8 T cell responses following T cell-targeted vaccination.
Collapse
|
11
|
Abstract
Prostate cancer is the second most diagnosed cancer in men and current treatment of advanced prostate cancer is ineffective. Immunotherapy has emerged as a promising treatment option for metastatic prostate cancer but its clinical application is still in the early stages of development. In order to treat metastatic prostate tumors, new directions must be taken to improve current immunotherapeutic strategies. These include the identification of effective tumor antigens (Ags), the induction of the HLA class II pathway for Ag processing and CD4+ T cell activation, and the ability of tumor cells to act like Ag presenting cells. In this review, we suggest a model for tumor Ag selection, epitope modification and self-processing for presentation by class II proteins as a means of restoring immune activation and tumor clearance. We also outline the importance of a Gamma-IFN-inducible Lysosomal Thiol reductase (GILT) in Ag and modified peptide processing by tumor cells, generation of functional epitopes for T cell recognition, and inclusion of immune checkpoint blockers in cancer immunotherapy. Taken together, this review provides a framework for the future development of novel cancer vaccines and the improvement of existing immunotherapeutics in prostate cancer.
Collapse
Affiliation(s)
- Bently P Doonan
- Department of Microbiology and Immunology, and Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, and Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
12
|
Herz J, Johnson KR, McGavern DB. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. ACTA ACUST UNITED AC 2015; 212:1153-69. [PMID: 26122661 PMCID: PMC4516789 DOI: 10.1084/jem.20142047] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 06/04/2015] [Indexed: 01/12/2023]
Abstract
Clearance of neurotropic infections is challenging because the CNS is relatively intolerant of immunopathological reactions. Herz et al. use a model of persistent viral infection in mice to demonstrate therapeutic antiviral T cells can purge the CNS infection without causing tissue damage resulting from limited recruitment of inflammatory innate immune cells and conversion of microglia into APCs. Several viruses can infect the mammalian nervous system and induce neurological dysfunction. Adoptive immunotherapy is an approach that involves administration of antiviral T cells and has shown promise in clinical studies for the treatment of peripheral virus infections in humans such as cytomegalovirus (CMV), Epstein-Barr virus (EBV), and adenovirus, among others. In contrast, clearance of neurotropic infections is particularly challenging because the central nervous system (CNS) is relatively intolerant of immunopathological reactions. Therefore, it is essential to develop and mechanistically understand therapies that noncytopathically eradicate pathogens from the CNS. Here, we used mice persistently infected from birth with lymphocytic choriomeningitis virus (LCMV) to demonstrate that therapeutic antiviral T cells can completely purge the persistently infected brain without causing blood–brain barrier breakdown or tissue damage. Mechanistically, this is accomplished through a tailored release of chemoattractants that recruit antiviral T cells, but few pathogenic innate immune cells such as neutrophils and inflammatory monocytes. Upon arrival, T cells enlisted the support of nearly all brain-resident myeloid cells (microglia) by inducing proliferation and converting them into CD11c+ antigen-presenting cells (APCs). Two-photon imaging experiments revealed that antiviral CD8+ and CD4+ T cells interacted directly with CD11c+ microglia and induced STAT1 signaling but did not initiate programmed cell death. We propose that noncytopathic CNS viral clearance can be achieved by therapeutic antiviral T cells reliant on restricted chemoattractant production and interactions with apoptosis-resistant microglia.
Collapse
Affiliation(s)
- Jasmin Herz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Kory R Johnson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
13
|
Nance JP, Bélanger S, Johnston RJ, Takemori T, Crotty S. Cutting edge: T follicular helper cell differentiation is defective in the absence of Bcl6 BTB repressor domain function. THE JOURNAL OF IMMUNOLOGY 2015; 194:5599-603. [PMID: 25957170 DOI: 10.4049/jimmunol.1500200] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/10/2015] [Indexed: 01/29/2023]
Abstract
T follicular helper (Tfh) cells are essential for germinal centers (GCs) and most long-term humoral immunity. Differentiation of Tfh cells depends on the transcriptional repressor B cell CLL/lymphoma 6 (Bcl6). Bcl6 mediates gene repression via the recruitment of corepressors. Currently, it is unknown how Bcl6 recruits corepressors to regulate gene expression of Tfh cells. In this article, we demonstrate, using a mutant form of Bcl6 with two BTB (bric-a-brac, tramtrack, broad-complex) mutations that abrogate corepressor binding, that the Bcl6 BTB domain is required for proper differentiation of Tfh and GC-Tfh cells in vivo. Importantly, we also observe a significant defect in GC B cell development. These results are consistent in multiple contexts, including a novel lymphocytic choriomeningitis virus nucleoprotein-specific TCR-transgenic mouse model. Taken together, these data suggest that the Bcl6 BTB domain is a key mediator of the differentiation of Tfh cells.
Collapse
Affiliation(s)
- J Philip Nance
- Division of Vaccine Discovery, La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037
| | - Simon Bélanger
- Division of Vaccine Discovery, La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037
| | | | - Toshitada Takemori
- RIKEN Research Center for Allergy and Immunology, Yokohama City, Kanagawa 230-0045, Japan
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037;
| |
Collapse
|
14
|
Epitope Prediction Assays Combined with Validation Assays Strongly Narrows down Putative Cytotoxic T Lymphocyte Epitopes. Vaccines (Basel) 2015; 3:203-20. [PMID: 26343185 PMCID: PMC4494349 DOI: 10.3390/vaccines3020203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023] Open
Abstract
Tumor vaccine design requires prediction and validation of immunogenic MHC class I epitopes expressed by target cells as well as MHC class II epitopes expressed by antigen-presenting cells essential for the induction of optimal immune responses. Epitope prediction methods are based on different algorithms and are instrumental for a first screening of possible epitopes. However, their results do not reflect a one-to-one correlation with experimental data. We combined several in silico prediction methods to unravel the most promising C57BL/6 mouse-restricted Hepatitis C virus (HCV) MHC class I epitopes and validated these epitopes in vitro and in vivo. Cytotoxic T lymphocyte (CTL) epitopes within the HCV non-structural proteins were identified, and proteasomal cleavage sites and helper T cell (Th) epitopes at close proximity to these CTL epitopes were analyzed using multiple prediction algorithms. This combined in silico analysis enhances the precision of identification of functional HCV-specific CTL epitopes. This approach will be applicable to the design of human vaccines not only for HCV, but also for other antigens in which T-cell responses play a crucial role.
Collapse
|
15
|
Penaloza-MacMaster P, Barber DL, Wherry EJ, Provine NM, Teigler JE, Parenteau L, Blackmore S, Borducchi EN, Larocca RA, Yates KB, Shen H, Haining WN, Sommerstein R, Pinschewer DD, Ahmed R, Barouch DH. Vaccine-elicited CD4 T cells induce immunopathology after chronic LCMV infection. Science 2015; 347:278-82. [PMID: 25593185 DOI: 10.1126/science.aaa2148] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CD4 T cells promote innate and adaptive immune responses, but how vaccine-elicited CD4 T cells contribute to immune protection remains unclear. We evaluated whether induction of virus-specific CD4 T cells by vaccination would protect mice against infection with chronic lymphocytic choriomeningitis virus (LCMV). Immunization with vaccines that selectively induced CD4 T cell responses resulted in catastrophic inflammation and mortality after challenge with a persistent strain of LCMV. Immunopathology required antigen-specific CD4 T cells and was associated with a cytokine storm, generalized inflammation, and multi-organ system failure. Virus-specific CD8 T cells or antibodies abrogated the pathology. These data demonstrate that vaccine-elicited CD4 T cells in the absence of effective antiviral immune responses can trigger lethal immunopathology.
Collapse
Affiliation(s)
- Pablo Penaloza-MacMaster
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Daniel L Barber
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - E John Wherry
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas M Provine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jeffrey E Teigler
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Lily Parenteau
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Stephen Blackmore
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Rafael A Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Kathleen B Yates
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Shen
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Rami Sommerstein
- Department of Pathology and Immunology, WHO Collaborating Centre for Vaccine Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Daniel D Pinschewer
- Department of Pathology and Immunology, WHO Collaborating Centre for Vaccine Immunology, University of Geneva, 1211 Geneva, Switzerland. Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. Ragon Institute of MGH, MIT, and Harvard, Boston, MA 02114, USA.
| |
Collapse
|
16
|
Ni PP, Wang Y, Allen PM. Both positive and negative effects on immune responses by expression of a second class II MHC molecule. Mol Immunol 2014; 62:199-208. [PMID: 25016574 PMCID: PMC4157116 DOI: 10.1016/j.molimm.2014.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 12/24/2022]
Abstract
It is perplexing why vertebrates express a limited number of major histocompatibility complex (MHC) molecules when theoretically, having a greater repertoire of MHC molecules would increase the number of epitopes presented, thereby enhancing thymic selection and T cell response to pathogens. It is possible that any positive effects would either be neutralized or outweighed by negative selection restricting the T cell repertoire. We hypothesize that the limit on MHC number is due to negative consequences arising from expressing additional MHC. We compared T cell responses between B6 mice (I-A(+)) and B6.E(+) mice (I-A(+), I-E(+)), the latter expressing a second class II MHC molecule, I-E(b), due to a monomorphic Eα(k) transgene that pairs with the endogenous I-Eβ(b) chain. First, the naive T cell Vβ repertoire was altered in B6.E(+) thymi and spleens, potentially mediating different outcomes in T cell reactivity. Although the B6 and B6.E(+) responses to hen egg-white lysozyme (HEL) protein immunization remained similar, other immune models yielded differences. For viral infection, the quality of the T cell response was subtly altered, with diminished production of certain cytokines by B6.E(+) CD4(+) T cells. In alloreactivity, the B6.E(+) T cell response was significantly dampened. Finally, we observed markedly enhanced susceptibility to experimental autoimmune encephalomyelitis (EAE) in B6.E(+) mice. This correlated with decreased percentages of nTreg cells, supporting the concept of Tregs exhibiting differential susceptibility to negative selection. Altogether, our data suggest that expressing an additional class II MHC can produce diverse effects, with more severe autoimmunity providing a compelling explanation for limiting the expression of MHC molecules.
Collapse
Affiliation(s)
- Peggy P Ni
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid, Box 8118, St. Louis, MO 63110, United States
| | - Yaming Wang
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid, Box 8118, St. Louis, MO 63110, United States
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid, Box 8118, St. Louis, MO 63110, United States.
| |
Collapse
|
17
|
Messer RJ, Lavender KJ, Hasenkrug KJ. Mice of the resistant H-2(b) haplotype mount broad CD4(+) T cell responses against 9 distinct Friend virus epitopes. Virology 2014; 456-457:139-44. [PMID: 24889233 DOI: 10.1016/j.virol.2014.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 12/16/2022]
Abstract
To date, only a single Friend virus (FV) peptide recognized by CD4(+) T cells in FV-infected mice of the resistant H-2(b) haplotype has been described. To more thoroughly examine the repertoire of CD4(+) T cell responses in H-2(b) mice infected with this retrovirus, 18mer peptides spanning the FV gag, pol, and env coding regions with 11mer overlaps were synthesized. The peptides were then used to stimulate whole splenocytes and purified CD4(+) T cells from FV-infected mice in an IFNγ ELISPOT assay. Nine new CD4(+) T cell epitopes were identified, 3 encoded by gag, 1 by pol, and 5 by env. The high resistance of H-2(b) mice could be related to this very broad CD4(+) T cell response against multiple peptides during FV infection.
Collapse
Affiliation(s)
- Ronald J Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | - Kerry J Lavender
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| |
Collapse
|
18
|
Determining the breadth of the respiratory syncytial virus-specific T cell response. J Virol 2013; 88:3135-43. [PMID: 24371055 DOI: 10.1128/jvi.02139-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV) is the most common cause of viral lower respiratory tract infections in infants and children under the age of 5. Studies examining RSV infection in susceptible BALB/c mice indicate that both CD4 and CD8 T cells not only contribute to viral clearance but also facilitate RSV-induced disease. However, efforts to understand the mechanisms by which RSV-specific T cells mediate disease following acute RSV infection have been hampered by the lack of defined RSV-specific T cell epitopes. Using an overlapping peptide library spanning each of the RSV-derived proteins, intracellular cytokine staining for gamma interferon was utilized to identify novel RSV-specific CD4 and CD8 T cell epitopes. Five novel CD8 T cell epitopes were revealed within the RSV fusion (F) protein and glycoprotein (G). In addition, five previously unidentified CD4 T cell epitopes were discovered, including epitopes in the phosphoprotein (P), polymerase protein (L), M2-1 protein, and nucleoprotein (N). Though the initial CD4 T cell epitopes were 15 amino acids in length, synthesis of longer peptides increased the frequency of responding CD4 T cells. Our results indicate that CD4 T cell epitopes that are 17 amino acids in length result in more optimal CD4 T cell stimulation than the commonly used 15-mer peptides. IMPORTANCE Respiratory syncytial virus (RSV) is the leading cause of hospitalization for lower respiratory tract infection in children. T cells play a critical role in clearing an acute RSV infection, as well as contributing to RSV-induced disease. Here we examined the breadth of the RSV-specific T cell response, using for the first time an overlapping peptide library spanning the entire viral genome. We identified 5 new CD4 and 5 new CD8 T cell epitopes, including a CD8 T cell epitope within the G protein that was previously believed not to elicit a CD8 T cell response. Importantly, we also demonstrated that the use of longer, 17-mer peptides elicits a higher frequency of responding CD4 T cells than the more commonly used 15-mer peptides. Our results demonstrate the breadth of the CD4 and CD8 T cell response to RSV and demonstrate the importance of using longer peptides when stimulating CD4 T cell responses.
Collapse
|
19
|
Dow C, Henderson R, Sette A, Mothé BR. CD4(+) T-cell inhibitory ligands: a tool for characterizing dysfunctional CD4(+) T cells during chronic infection. Immunology 2013; 140:61-9. [PMID: 23566283 DOI: 10.1111/imm.12109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 01/02/2023] Open
Abstract
Activation of CD4(+) T cells helps to establish and maintain immune responses. During infection with lymphocytic choriomeningitis virus (LCMV) clone 13, the CD4(+) T-cell responses are lost. In this study, we were interested in the nature of the CD4(+) T-cell responses following infection with LCMV clone 13. To pursue this question, we infected C57BL/6 mice with LCMV clone 13. We used a GP66-80 MHC Class II tetramer to determine whether the CD4(+) T cells were present following infection with LCMV clone 13. We determined that the cells were present and antigen specific, but not functional. We attributed their dysfunction to the presence of CD4(+) T-cell inhibitory ligands. We further stained for the presence of CD4(+) T-cell inhibitory ligands. We found that the during chronic infection the number of CD4(+) T cells expressing programmed death-1 and CD160 were greater over the time-course study than the other CD4(+) T-cell inhibitory ligands. These data show that using CD4(+) T-cell inhibitory ligands as a reagent for characterization can help in understanding the complex immune responses associated with persistent infections.
Collapse
Affiliation(s)
- Courtney Dow
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | | | | | | |
Collapse
|
20
|
Misumi I, Alirezaei M, Eam B, Su MA, Whitton JL, Whitmire JK. Differential T cell responses to residual viral antigen prolong CD4+ T cell contraction following the resolution of infection. THE JOURNAL OF IMMUNOLOGY 2013; 191:5655-68. [PMID: 24146043 DOI: 10.4049/jimmunol.1301215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The contraction phase of the T cell response is a poorly understood period after the resolution of infection when virus-specific effector cells decline in number and memory cells emerge with increased frequencies. CD8(+) T cells plummet in number and quickly reach stable levels of memory following acute lymphocytic choriomeningitis virus infection in mice. In contrast, virus-specific CD4(+) T cells gradually decrease in number and reach homeostatic levels only after many weeks. In this study, we provide evidence that MHCII-restricted viral Ag persists during the contraction phase following this prototypical acute virus infection. We evaluated whether the residual Ag affected the cell division and number of virus-specific naive and memory CD4(+) T cells and CD8(+) T cells. We found that naive CD4(+) T cells underwent cell division and accumulated in response to residual viral Ag for >2 mo after the eradication of infectious virus. Surprisingly, memory CD4(+) T cells did not undergo cell division in response to the lingering Ag, despite their heightened capacity to recognize Ag and make cytokine. In contrast to CD4(+) T cells, CD8(+) T cells did not undergo cell division in response to the residual Ag. Thus, CD8(+) T cells ceased division within days after the infection was resolved, indicating that CD8(+) T cell responses are tightly linked to endogenous processing of de novo synthesized virus protein. Our data suggest that residual viral Ag delays the contraction of CD4(+) T cell responses by recruiting new populations of CD4(+) T cells.
Collapse
Affiliation(s)
- Ichiro Misumi
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | | | | | | | | | | |
Collapse
|
21
|
Characterization of CD8+ T cell function and immunodominance generated with an H2O2-inactivated whole-virus vaccine. J Virol 2012; 86:13735-44. [PMID: 23055558 DOI: 10.1128/jvi.02178-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD8(+) T cells play an important role in protection against both acute and persistent viral infections, and new vaccines that induce CD8(+) T cell immunity are currently needed. Here, we show that lymphocytic choriomeningitis virus (LCMV)-specific CD8(+) T cells can be generated in response to a nonreplicating H(2)O(2)-inactivated whole-virus vaccine (H(2)O(2)-LCMV). Vaccine-induced CD8(+) T cell responses exhibited an increased ability to produce multiple cytokines at early time points following immunization compared to infection-induced responses. Vaccination with H(2)O(2)-LCMV induced the expansion of a narrow subset of the antigen-specific CD8(+) T cells induced by LCMV strain Arm infection, resulting in a distinct immunodominance hierarchy. Acute LCMV infection stimulated immunodominance patterns that shifted over time or after secondary infection, whereas vaccine-generated immunodominance profiles remained remarkably stable even following subsequent viral infection. Vaccine-induced CD8(+) T cell populations expanded sharply in response to challenge and were then maintained at high levels, with responses to individual epitopes occupying up to 40% of the CD8(+) T cell compartment at 35 days after challenge. H(2)O(2)-LCMV vaccination protected animals against challenge with chronic LCMV clone 13, and protection was mediated by CD8(+) T cells. These results indicate that vaccination with an H(2)O(2)-inactivated whole-virus vaccine induces LCMV-specific CD8(+) T cells with unique functional characteristics and provides a useful model for studying CD8(+) T cells elicited in the absence of active viral infection.
Collapse
|
22
|
Parida R, Choi IS, Peterson DA, Pattnaik AK, Laegreid W, Zuckermann FA, Osorio FA. Location of T-cell epitopes in nonstructural proteins 9 and 10 of type-II porcine reproductive and respiratory syndrome virus. Virus Res 2012; 169:13-21. [PMID: 22771938 DOI: 10.1016/j.virusres.2012.06.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 12/22/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant swine pathogen which exhibits considerable sequence diversity. In an attempt to identify highly conserved T-cell epitopes contained in proteins of this virus, we examined heptadecamer peptides spanning the sequence of the PRRSV nonstructural proteins (NSPs) 9 and 10, both of which are highly conserved, for their ability to elicit a recall proliferative and interferon-gamma response in peripheral blood mononuclear cells obtained from pigs immunized against the type-II PRRSV strain FL-12. These studies led to the identification of four peptides, two from each NSP9 and NSP10 that appear to contain T-cell epitopes. Comparison of the amino acid sequence of these four peptide sequences to the analogous sequences from a diverse sample of type-II PRRSV strains indicated that these sequences are highly conserved and thus contain highly conserved T-cell epitopes. The identified epitopes may be important in the formulation of immunogens to provide broad cross-protection against diverse PRRSV strains.
Collapse
Affiliation(s)
- Rajeshwari Parida
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, United States
| | | | | | | | | | | | | |
Collapse
|
23
|
McDermott DS, Varga SM. Quantifying antigen-specific CD4 T cells during a viral infection: CD4 T cell responses are larger than we think. THE JOURNAL OF IMMUNOLOGY 2011; 187:5568-76. [PMID: 22043009 DOI: 10.4049/jimmunol.1102104] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The number of virus-specific CD8 T cells increases substantially during an acute infection. Up to 90% of CD8 T cells are virus specific following lymphocytic choriomeningitis virus (LCMV) infection. In contrast, studies identifying virus-specific CD4 T cell epitopes have indicated that CD4 T cells often recognize a broader array of Ags than CD8 T cells, consequently making it difficult to accurately quantify the total magnitude of pathogen-specific CD4 T cell responses. In this study, we show that CD4 T cells become CD11a(hi)CD49d(+) after LCMV infection and retain this expression pattern into memory. During the effector phase, all the LCMV-specific IFN-γ(+) CD4 T cells display a CD11a(hi)CD49d(+) cell surface expression phenotype. In addition, only memory CD11a(hi)CD49d(+) CD4 T cells make IFN-γ after stimulation. Furthermore, upon secondary LCMV challenge, only CD11a(hi)CD49d(+) memory CD4 T cells from LCMV-immune mice undergo proliferative expansion, demonstrating that CD11a(hi)CD49d(+) CD4 T cells are truly Ag specific. Using the combination of CD11a and CD49d, we demonstrate that up to 50% of the CD4 T cells are virus specific during the peak of the LCMV response. Our results indicate that the magnitude of the virus-specific CD4 T cell response is much greater than previously recognized.
Collapse
Affiliation(s)
- Daniel S McDermott
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
24
|
Human CD8⁺ and CD4⁺ T cell memory to lymphocytic choriomeningitis virus infection. J Virol 2011; 85:11770-80. [PMID: 21900169 DOI: 10.1128/jvi.05477-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although cellular immunity to acute lymphocytic choriomeningitis virus (LCMV) infection has been well characterized in experimental studies in mice, the T cell response to this virus in humans is incompletely understood. Thus, we analyzed the breadths, magnitudes, and differentiation phenotypes of memory LCMV-specific CD8(+) and CD4(+) T cells in three human donors displaying a variety of disease outcomes after accidental needle stick injury or exposure to LCMV. Although only a small cohort of donors was analyzed at a single time point postinfection, several interesting observations were made. First, we were able to detect LCMV-specific CD8(+) and CD4(+) T cell responses directly ex vivo at 4 to 8 years after exposure, demonstrating the longevity of T cell memory in humans. Second, unlike in murine models of LCMV infection, we found that the breadths of memory CD8(+) and CD4(+) T cell responses were not significantly different from one another. Third, it seemed that the overall CD8(+) T cell response was augmented with increasing severity of disease, while the LCMV-specific CD4(+) T cell response magnitude was highly variable between the three different donors. Next, we found that LCMV-specific CD8(+) T cells in the three donors analyzed seemed to undergo an effector memory differentiation program distinct from that of CD4(+) T cells. Finally, the levels of expression of memory, costimulatory, and inhibitory receptors on CD8(+) and CD4(+) T cell subsets, in some instances, correlated with disease outcome. These data demonstrate for the first time LCMV-specific CD8(+) and CD4(+) T cells in infected humans and begin to provide new insights into memory T cell responses following an acute virus infection.
Collapse
|
25
|
Reiser M, Wieland A, Plachter B, Mertens T, Greiner J, Schirmbeck R. The Immunodominant CD8 T Cell Response to the Human Cytomegalovirus Tegument Phosphoprotein pp65495–503Epitope Critically Depends on CD4 T Cell Help in Vaccinated HLA-A*0201 Transgenic Mice. THE JOURNAL OF IMMUNOLOGY 2011; 187:2172-80. [DOI: 10.4049/jimmunol.1002512] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Yauch LE, Prestwood TR, May MM, Morar MM, Zellweger RM, Peters B, Sette A, Shresta S. CD4+ T cells are not required for the induction of dengue virus-specific CD8+ T cell or antibody responses but contribute to protection after vaccination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:5405-16. [PMID: 20870934 PMCID: PMC2962919 DOI: 10.4049/jimmunol.1001709] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The contribution of T cells to the host response to dengue virus (DENV) infection is not well understood. We previously demonstrated a protective role for CD8(+) T cells during primary DENV infection using a mouse-passaged DENV strain and IFN-α/βR(-/-) C57BL/6 mice, which are susceptible to DENV infection. In this study, we examine the role of CD4(+) T cells during primary DENV infection. Four I-A(b)-restricted epitopes derived from three of the nonstructural DENV proteins were identified. CD4(+) T cells expanded and were activated after DENV infection, with peak activation occurring on day 7. The DENV-specific CD4(+) T cells expressed intracellular IFN-γ, TNF, IL-2, and CD40L, and killed peptide-pulsed target cells in vivo. Surprisingly, depletion of CD4(+) T cells before DENV infection had no effect on viral loads. Consistent with this observation, CD4(+) T cell depletion did not affect the DENV-specific IgG or IgM Ab titers or their neutralizing activity, or the DENV-specific CD8(+) T cell response. However, immunization with the CD4(+) T cell epitopes before infection resulted in significantly lower viral loads. Thus, we conclude that whereas CD4(+) T cells are not required for controlling primary DENV infection, their induction by immunization can contribute to viral clearance. These findings suggest inducing anti-DENV CD4(+) T cell responses by vaccination may be beneficial.
Collapse
Affiliation(s)
- Lauren E. Yauch
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037
| | - Tyler R. Prestwood
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037
| | - Monica M. May
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037
| | - Malika M. Morar
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037
| | - Raphaël M. Zellweger
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037
| | - Sujan Shresta
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037
| |
Collapse
|
27
|
Induction of a cross-reactive CD8(+) T cell response following foot-and-mouth disease virus vaccination. J Virol 2010; 84:12375-84. [PMID: 20861264 DOI: 10.1128/jvi.01545-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes a highly contagious infection in cloven-hoofed animals. Current inactivated FMDV vaccines generate short-term, serotype-specific protection, mainly through neutralizing antibody. An improved understanding of the mechanisms of protective immunity would aid design of more effective vaccines. We have previously reported the presence of virus-specific CD8(+) T cells in FMDV-vaccinated and -infected cattle. In the current study, we aimed to identify CD8(+) T cell epitopes in FMDV recognized by cattle vaccinated with inactivated FMDV serotype O. Analysis of gamma interferon (IFN-γ)-producing CD8(+) T cells responding to stimulation with FMDV-derived peptides revealed one putative CD8(+) T cell epitope present within the structural protein P1D, comprising residues 795 to 803 of FMDV serotype O UKG/2001. The restricting major histocompatibility complex (MHC) class I allele was N*02201, expressed by the A31 haplotype. This epitope induced IFN-γ release, proliferation, and target cell killing by αβ CD8(+) T cells, but not CD4(+) T cells. A protein alignment of representative samples from each of the 7 FMDV serotypes showed that the putative epitope is highly conserved. CD8(+) T cells from FMDV serotype O-vaccinated A31(+) cattle recognized antigen-presenting cells (APCs) loaded with peptides derived from all 7 FMDV serotypes, suggesting that CD8(+) T cells recognizing the defined epitope are cross-reactive to equivalent peptides derived from all of the other FMDV serotypes.
Collapse
|
28
|
Coverage of related pathogenic species by multivalent and cross-protective vaccine design: arenaviruses as a model system. Microbiol Mol Biol Rev 2010; 74:157-70. [PMID: 20508245 DOI: 10.1128/mmbr.00045-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The arenaviruses are a family of negative-sense RNA viruses that cause severe human disease ranging from aseptic meningitis to hemorrhagic fever syndromes. There are currently no FDA-approved vaccines for the prevention of arenavirus disease, and therapeutic treatment is limited to the use of ribavirin and/or immune plasma for a subset of the pathogenic arenaviruses. The considerable genetic variability observed among the seven arenaviruses that are pathogenic for humans illustrates one of the major challenges for vaccine development today, namely, to overcome pathogen heterogeneity. Over the past 5 years, our group has tested several strategies to overcome pathogen heterogeneity, utilizing the pathogenic arenaviruses as a model system. Because T cells play a prominent role in protective immunity following arenavirus infection, we specifically focused on the development of human vaccines that would induce multivalent and cross-protective cell-mediated immune responses. To facilitate our vaccine development and testing, we conducted large-scale major histocompatibility complex (MHC) class I and class II epitope discovery on murine, nonhuman primate, and human backgrounds for each of the pathogenic arenaviruses, including the identification of protective HLA-restricted epitopes. Finally, using the murine model of lymphocytic choriomeningitis virus infection, we studied the phenotypic characteristics associated with immunodominant and protective T cell epitopes. This review summarizes the findings from our studies and discusses their application to future vaccine design.
Collapse
|
29
|
Tripathi P, Kurtulus S, Wojciechowski S, Sholl A, Hoebe K, Morris SC, Finkelman FD, Grimes HL, Hildeman DA. STAT5 is critical to maintain effector CD8+ T cell responses. THE JOURNAL OF IMMUNOLOGY 2010; 185:2116-24. [PMID: 20644163 DOI: 10.4049/jimmunol.1000842] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During an immune response, most effector T cells die, whereas some are maintained and become memory T cells. Factors controlling the survival of effector CD4(+) and CD8(+) T cells remain unclear. In this study, we assessed the role of IL-7, IL-15, and their common signal transducer, STAT5, in maintaining effector CD4(+) and CD8(+) T cell responses. Following viral infection, IL-15 was required to maintain a subpopulation of effector CD8(+) T cells expressing high levels of killer cell lectin-like receptor subfamily G, member 1 (KLRG1), and lower levels of CD127, whereas IL-7 and IL-15 acted together to maintain KLRG1(low)CD127(high) CD8(+) effector T cells. In contrast, effector CD4(+) T cell numbers were not affected by the individual or combined loss of IL-15 and IL-7. Both IL-7 and IL-15 drove phosphorylation of STAT5 within effector CD4(+) and CD8(+) T cells. When STAT5 was deleted during the course of infection, both KLRG1(high)CD127(low) and KLRG1(low)CD127(high) CD8(+) T cells were lost, although effector CD4(+) T cell populations were maintained. Furthermore, STAT5 was required to maintain expression of Bcl-2 in effector CD8(+), but not CD4(+), T cells. Finally, IL-7 and IL-15 required STAT5 to induce Bcl-2 expression and to maintain effector CD8(+) T cells. Together, these data demonstrate that IL-7 and IL-15 signaling converge on STAT5 to maintain effector CD8(+) T cell responses.
Collapse
Affiliation(s)
- Pulak Tripathi
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Polyfunctional CD4+ T cell responses to a set of pathogenic arenaviruses provide broad population coverage. Immunome Res 2010; 6:4. [PMID: 20478058 PMCID: PMC2880318 DOI: 10.1186/1745-7580-6-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 05/17/2010] [Indexed: 02/02/2023] Open
Abstract
Background Several arenaviruses cause severe hemorrhagic fever and aseptic meningitis in humans for which no licensed vaccines are available. A major obstacle for vaccine development is pathogen heterogeneity within the Arenaviridae family. Evidence in animal models and humans indicate that T cell and antibody-mediated immunity play important roles in controlling arenavirus infection and replication. Because CD4+ T cells are needed for optimal CD8+ T cell responses and to provide cognate help for B cells, knowledge of epitopes recognized by CD4+ T cells is critical to the development of an effective vaccine strategy against arenaviruses. Thus, the goal of the present study was to define and characterize CD4+ T cell responses from a broad repertoire of pathogenic arenaviruses (including lymphocytic choriomeningitis, Lassa, Guanarito, Junin, Machupo, Sabia, and Whitewater Arroyo viruses) and to provide determinants with the potential to be incorporated into a multivalent vaccine strategy. Results By inoculating HLA-DRB1*0101 transgenic mice with a panel of recombinant vaccinia viruses, each expressing a single arenavirus antigen, we identified 37 human HLA-DRB1*0101-restricted CD4+ T cell epitopes from the 7 antigenically distinct arenaviruses. We showed that the arenavirus-specific CD4+ T cell epitopes are capable of eliciting T cells with a propensity to provide help and protection through CD40L and polyfunctional cytokine expression. Importantly, we demonstrated that the set of identified CD4+ T cell epitopes provides broad, non-ethnically biased population coverage of all 7 arenavirus species targeted by our studies. Conclusions The identification of CD4+ T cell epitopes, with promiscuous binding properties, derived from 7 different arenavirus species will aid in the development of a T cell-based vaccine strategy with the potential to target a broad range of ethnicities within the general population and to protect against both Old and New World arenavirus infection.
Collapse
|
31
|
Doonan BP, Haque A. HLA Class II Antigen Presentation in Prostate Cancer Cells: A Novel Approach to Prostate Tumor Immunotherapy. ACTA ACUST UNITED AC 2010; 3:1-7. [PMID: 24163711 DOI: 10.2174/1876401001003010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostate cancer is a deadly disease that is in drastic need of new treatment strategies for late stage and metastatic prostate cancer. Immunotherapy has emerged as a viable option to fill this void. Clinical trials have been conducted that induce tumor clearance through cytotoxic T lymphocyte (CTL) activation, these studies have had mixed outcomes with the overlying problem being the lack of a complete immune response with sustained killing and the formation of tumor specific memory cells. To overcome this, we have outlined the need for activating the HLA class II pathway in inducing a sustained CD8+ T cell response and the development of effective memory. We have also discussed the ability of prostate cancer cells to express stable HLA class II molecules that can be manipulated for tumor antigen (Ag) processing and presentation. This review also sets to outline new directions that exist for the use of class II-restricted Ags/peptides in devising cancer vaccines as well as combined chemoimmunotherapy. A better understanding of these concepts will improve future cancer vaccine studies and further the field of cancer immunobiology.
Collapse
Affiliation(s)
- Bently Patrick Doonan
- Department of Microbiology and Immunology, Charles Darby Children's Research Institute, and Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | | |
Collapse
|
32
|
Sorensen MR, Holst PJ, Pircher H, Christensen JP, Thomsen AR. Vaccination with an adenoviral vector encoding the tumor antigen directly linked to invariant chain induces potent CD4+T-cell-independent CD8+T-cell-mediated tumor control. Eur J Immunol 2009; 39:2725-36. [DOI: 10.1002/eji.200939543] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|