1
|
Nur A, Lai JY, Ch'ng ACW, Choong YS, Wan Isa WYH, Lim TS. A review of in vitro stochastic and non-stochastic affinity maturation strategies for phage display derived monoclonal antibodies. Int J Biol Macromol 2024; 277:134217. [PMID: 39069045 DOI: 10.1016/j.ijbiomac.2024.134217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Monoclonal antibodies identified using display technologies like phage display occasionally suffers from a lack of affinity making it unsuitable for application. This drawback is circumvented with the application of affinity maturation. Affinity maturation is an essential step in the natural evolution of antibodies in the immune system. The evolution of molecular based methods has seen the development of various mutagenesis approaches. This allows for the natural evolutionary process during somatic hypermutation to be replicated in the laboratories for affinity maturation to fine-tune the affinity and selectivity of antibodies. In this review, we will discuss affinity maturation strategies for mAbs generated through phage display systems. The review will highlight various in vitro stochastic and non-stochastic affinity maturation approaches that includes but are not limited to random mutagenesis, site-directed mutagenesis, and gene synthesis.
Collapse
Affiliation(s)
- Alia Nur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Wan Yus Haniff Wan Isa
- School of Medical Sciences, Department of Medicine, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
2
|
Dowd KA, Schroeder M, Sanchez E, Brumbaugh B, Foreman BM, Burgomaster KE, Shi W, Wang L, Caputo N, Gordon DN, Schwartz CL, Hansen BT, Aleshnick M, Kong WP, Morabito KM, Hickman HD, Graham BS, Fischer ER, Pierson TC. pr-independent biogenesis of infectious mature Zika virus particles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612520. [PMID: 39372759 PMCID: PMC11452192 DOI: 10.1101/2024.09.12.612520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Flavivirus assembly at the endoplasmic reticulum is driven by the structural proteins envelope (E) and premembrane (prM). Here, contrary to the established paradigm for flavivirus assembly, we demonstrate that the biogenesis of flavivirus particles does not require an intact prM nor proteolytic activation. The expression of E preceded by a truncated version of prM (M-E) was sufficient for the formation of non-infectious Zika virus subviral particles and pseudo-infectious reporter virions. Subviral particles encoded by a ZIKV M-E DNA vaccine elicited a neutralizing antibody response that was insensitive to the virion maturation state, a feature of flavivirus humoral immunity shown to correlate with protection. M-E vaccines that uniformly present structural features shared with mature virions offer a higher quality and broadly applicable approach to flavivirus vaccination.
Collapse
Affiliation(s)
- Kimberly A. Dowd
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Michelle Schroeder
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Egan Sanchez
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Beniah Brumbaugh
- Research Technologies Branch, Microscopy Unit, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH; Hamilton, 59840, USA
| | - Bryant M. Foreman
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | | | - Wei Shi
- Virology Core, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Lingshu Wang
- Virology Core, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Natalie Caputo
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - David N. Gordon
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Cindi L. Schwartz
- Research Technologies Branch, Microscopy Unit, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH; Hamilton, 59840, USA
| | - Bryan T. Hansen
- Research Technologies Branch, Microscopy Unit, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH; Hamilton, 59840, USA
| | - Maya Aleshnick
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Wing-Pui Kong
- Virology Core, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Kaitlyn M. Morabito
- Viral Pathogenesis Laboratory, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Viral Diseases, Division of Intramural Research, NIAID, NIH; Bethesda, 20892, USA
| | - Barney S. Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| | - Elizabeth R. Fischer
- Research Technologies Branch, Microscopy Unit, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH; Hamilton, 59840, USA
| | - Theodore C. Pierson
- Arbovirus Immunity Section, Vaccine Research Center, NIAID, NIH; Bethesda, 20892, USA
| |
Collapse
|
3
|
Weiß R, Issmail L, Rockstroh A, Grunwald T, Fertey J, Ulbert S. Immunization with different recombinant West Nile virus envelope proteins induces varying levels of serological cross-reactivity and protection from infection. Front Cell Infect Microbiol 2023; 13:1279147. [PMID: 38035335 PMCID: PMC10684968 DOI: 10.3389/fcimb.2023.1279147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction West Nile Virus (WNV) is a zoonotic flavivirus transmitted by mosquitoes. Especially in the elderly or in immunocompromised individuals an infection with WNV can lead to severe neurological symptoms. To date, no human vaccine against WNV is available. The Envelope (E) protein, located at the surface of flaviviruses, is involved in the invasion into host cells and is the major target for neutralizing antibodies and therefore central to vaccine development. Due to their close genetic and structural relationship, flaviviruses share highly conserved epitopes, such as the fusion loop domain (FL) in the E protein, that are recognized by cross-reactive antibodies. These antibodies can lead to enhancement of infection with heterologous flaviviruses, which is a major concern for potential vaccines in areas with co-circulation of different flaviviruses, e.g. Dengue or Zika viruses. Material To reduce the potential of inducing cross-reactive antibodies, we performed an immunization study in mice using WNV E proteins with either wild type sequence or a mutated FL, and WNV E domain III which does not contain the FL at all. Results and discussion Our data show that all antigens induce high levels of WNV-binding antibodies. However, the level of protection against WNV varied, with the wildtype E protein inducing full, the other antigens only partial protection. On the other hand, serological cross-reactivity to heterologous flaviviruses was significantly reduced after immunization with the mutated E protein or domain III as compared to the wild type version. These results have indications for choosing antigens with the optimal specificity and efficacy in WNV vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Vaccines and Infection Models, Leipzig, Germany
| |
Collapse
|
4
|
Ormundo LF, Barreto CT, Tsuruta LR. Development of Therapeutic Monoclonal Antibodies for Emerging Arbovirus Infections. Viruses 2023; 15:2177. [PMID: 38005854 PMCID: PMC10675117 DOI: 10.3390/v15112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Antibody-based passive immunotherapy has been used effectively in the treatment and prophylaxis of infectious diseases. Outbreaks of emerging viral infections from arthropod-borne viruses (arboviruses) represent a global public health problem due to their rapid spread, urging measures and the treatment of infected individuals to combat them. Preparedness in advances in developing antivirals and relevant epidemiological studies protect us from damage and losses. Immunotherapy based on monoclonal antibodies (mAbs) has been shown to be very specific in combating infectious diseases and various other illnesses. Recent advances in mAb discovery techniques have allowed the development and approval of a wide number of therapeutic mAbs. This review focuses on the technological approaches available to select neutralizing mAbs for emerging arbovirus infections and the next-generation strategies to obtain highly effective and potent mAbs. The characteristics of mAbs developed as prophylactic and therapeutic antiviral agents for dengue, Zika, chikungunya, West Nile and tick-borne encephalitis virus are presented, as well as the protective effect demonstrated in animal model studies.
Collapse
Affiliation(s)
- Leonardo F. Ormundo
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
- The Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05503-900, Brazil
| | - Carolina T. Barreto
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
- The Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05503-900, Brazil
| | - Lilian R. Tsuruta
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
| |
Collapse
|
5
|
Fowler A, Ye C, Clarke EC, Pascale JM, Peabody DS, Bradfute SB, Frietze KM, Chackerian B. A method for mapping the linear epitopes targeted by the natural antibody response to Zika virus infection using a VLP platform technology. Virology 2023; 579:101-110. [PMID: 36623351 PMCID: PMC9904412 DOI: 10.1016/j.virol.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Zika virus (ZIKV), a mosquito-borne pathogen, is associated with neurological complications in adults and congenital abnormalities in newborns. There are no vaccines or treatments for ZIKV infection. Understanding the specificity of natural antibody responses to ZIKV could help inform vaccine efforts. Here, we used a technology called Deep Sequence-Coupled Biopanning to map the targets of the human antibody responses to ZIKV infection. A bacteriophage virus-like particle (VLP) library displaying overlapping linear peptides derived from the ZIKV polyprotein was generated. The library was panned using IgG from 23 ZIKV-infected patients from Panama and deep sequencing identified common targets of anti-ZIKV antibodies within the ZIKV envelope glycoprotein. These included epitopes within the fusion loop within domain II and four epitopes within domain III. Additionally, we showed that VLPs displaying selected epitopes elicited antibodies that bound to native ZIKV envelope protein but failed to prevent infection in a mouse challenge model.
Collapse
Affiliation(s)
- Alexandra Fowler
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| | - Chunyan Ye
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Elizabeth C Clarke
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | | | - David S Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Kathryn M Frietze
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| |
Collapse
|
6
|
Abstract
Since its discovery in 1937 in the West Nile district of Uganda, West Nile virus (WNV) has been one of the leading causes of mosquito-transmitted infectious diseases (Smithburn, Burke, Am J Trop Med 20:22, 1940). Subsequently, it spread to Europe, Asia, Australia, and finally North America in 1999 (Sejvar, Ochsner 5(3):6-10, 2003). Worldwide outbreaks have continued to increase since the 1990s (Chancey et al, Biomed Res Int 2015:376230, 2015). According to the Center for Disease Control and Prevention, more than 51,000 cases of WNV infection and nearly 2400 cases of WNV-related death were reported in the USA from 1999 to 2019. The estimated economic impact of WNV infections is close to 800 million dollars in the USA from 1999 to 2012 (Barrett, Am J Trop Med Hyg 90:389, 2014).
Collapse
Affiliation(s)
- Haiyan Sun
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Josh Lesio
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Qiang Chen
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
7
|
Chan KR, Ismail AA, Thergarajan G, Raju CS, Yam HC, Rishya M, Sekaran SD. Serological cross-reactivity among common flaviviruses. Front Cell Infect Microbiol 2022; 12:975398. [PMID: 36189346 PMCID: PMC9519894 DOI: 10.3389/fcimb.2022.975398] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
The Flavivirus genus is made up of viruses that are either mosquito-borne or tick-borne and other viruses transmitted by unknown vectors. Flaviviruses present a significant threat to global health and infect up to 400 million of people annually. As the climate continues to change throughout the world, these viruses have become prominent infections, with increasing number of infections being detected beyond tropical borders. These include dengue virus (DENV), West Nile virus (WNV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV). Several highly conserved epitopes of flaviviruses had been identified and reported to interact with antibodies, which lead to cross-reactivity results. The major interest of this review paper is mainly focused on the serological cross-reactivity between DENV serotypes, ZIKV, WNV, and JEV. Direct and molecular techniques are required in the diagnosis of Flavivirus-associated human disease. In this review, the serological assays such as neutralization tests, enzyme-linked immunosorbent assay, hemagglutination-inhibition test, Western blot test, and immunofluorescence test will be discussed. Serological assays that have been developed are able to detect different immunoglobulin isotypes (IgM, IgG, and IgA); however, it is challenging when interpreting the serological results due to the broad antigenic cross-reactivity of antibodies to these viruses. However, the neutralization tests are still considered as the gold standard to differentiate these flaviviruses.
Collapse
Affiliation(s)
- Kai Rol Chan
- Faculty of Medical and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Amni Adilah Ismail
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gaythri Thergarajan
- Faculty of Medical and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Shamala Devi Sekaran, ; Chandramathi Samudi Raju,
| | - Hock Chai Yam
- Faculty of Medical and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Manikam Rishya
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Shamala Devi Sekaran
- Faculty of Medical and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
- *Correspondence: Shamala Devi Sekaran, ; Chandramathi Samudi Raju,
| |
Collapse
|
8
|
Hruškovicová J, Bhide K, Petroušková P, Tkáčová Z, Mochnáčová E, Čurlík J, Bhide M, Kulkarni A. Engineering the Single Domain Antibodies Targeting Receptor Binding Motifs Within the Domain III of West Nile Virus Envelope Glycoprotein. Front Microbiol 2022; 13:801466. [PMID: 35432292 PMCID: PMC9012491 DOI: 10.3389/fmicb.2022.801466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne neurotrophic flavivirus causing mild febrile illness to severe encephalitis and acute flaccid paralysis with long-term or permanent neurological disorders. Due to the absence of targeted therapy or vaccines, there is a growing need to develop effective anti-WNV therapy. In this study, single-domain antibodies (sdAbs) were developed against the domain III (DIII) of WNV’s envelope glycoprotein to interrupt the interaction between DIII and the human brain microvascular endothelial cells (hBMEC). The peripheral blood mononuclear cells of the llama immunized with recombinant DIIIL297–S403 (rDIII) were used to generate a variable heavy chain only (VHH)-Escherichia coli library, and phage display was performed using the M13K07ΔpIII Hyperphages system. Phages displaying sdAbs against rDIII were panned with the synthetic analogs of the DIII receptor binding motifs, DIII-1G299–K307 and DIII-2V371–R388, and the VHH gene from the eluted phages was subcloned into E. coli SHuffle. Soluble sdAbs purified from 96 E. coli SHuffle clones were screened to identify 20 candidates strongly binding to the synthetic analogs of DIII-1G299–K307 and DIII-2V371–R388 on a dot blot assay. Among them, sdAbA1, sdAbA6, sdAbA9, and sdAbA10 blocked the interaction between rDIII and human brain microvascular endothelial cells (hBMECs) on Western blot and cell ELISA. However, optimum stability during the overexpression was noticed only for sdAbA10 and it also neutralized the WNV–like particles (WNV-VLP) in the Luciferase assay with an half maximal effective concentration (EC50) of 1.48 nm. Furthermore, the hemocompatibility and cytotoxicity of sdAbA10 were assessed by a hemolytic assay and XTT-based hBMEC proliferation assay resulting in 0.1% of hemolytic activity and 82% hBMEC viability, respectively. Therefore, the sdAbA10 targeting DIII-2V371–R388 of the WNV envelope glycoprotein is observed to be suitable for in vivo trials as a specific therapy for WNV–induced neuropathogenesis.
Collapse
Affiliation(s)
- Jana Hruškovicová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Patrícia Petroušková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Ján Čurlík
- Department of Breeding and Diseases of Game, Fish and Bees, Ecology and Cynology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Amod Kulkarni,
| |
Collapse
|
9
|
Georgiev GI, Malonis RJ, Wirchnianski AS, Wessel AW, Jung HS, Cahill SM, Nyakatura EK, Vergnolle O, Dowd KA, Cowburn D, Pierson TC, Diamond MS, Lai JR. Resurfaced ZIKV EDIII nanoparticle immunogens elicit neutralizing and protective responses in vivo. Cell Chem Biol 2022; 29:811-823.e7. [PMID: 35231399 DOI: 10.1016/j.chembiol.2022.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/10/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
Abstract
Zika virus (ZIKV) is a flavivirus that can cause severe disease, but there are no approved treatments or vaccines. A complication for flavivirus vaccine development is the potential of immunogens to enhance infection via antibody-dependent enhancement (ADE), a process mediated by poorly neutralizing and cross-reactive antibodies. Thus, there is a great need to develop immunogens that minimize the potential to elicit enhancing antibodies. Here we utilized structure-based protein engineering to develop "resurfaced" (rs) ZIKV immunogens based on E glycoprotein domain III (ZDIIIs), in which epitopes bound by variably neutralizing antibodies were masked by combinatorial mutagenesis. We identified one resurfaced ZDIII immunogen (rsZDIII-2.39) that elicited a protective but immune-focused response. Compared to wild type ZDIII, immunization with resurfaced rsZDIII-2.39 protein nanoparticles produced fewer numbers of ZIKV EDIII antigen-reactive B cells and elicited serum that had a lower magnitude of induced ADE against dengue virus serotype 1 (DENV1) Our findings enhance our understanding of the structural and functional determinants of antibody protection against ZIKV.
Collapse
Affiliation(s)
- George I Georgiev
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ryan J Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ariel S Wirchnianski
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alex W Wessel
- Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Helen S Jung
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sean M Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Elisabeth K Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kimberly A Dowd
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Theodore C Pierson
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael S Diamond
- Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
10
|
Byrne AB, Talarico LB. Role of the complement system in antibody-dependent enhancement of flavivirus infections. Int J Infect Dis 2020; 103:404-411. [PMID: 33352325 DOI: 10.1016/j.ijid.2020.12.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 11/26/2022] Open
Abstract
Flavivirus infections have increased dramatically in the last decades in tropical and subtropical regions of the world. Antibody-dependent enhancement of dengue virus infections has been one of the main hypotheses to explain severity of disease and one of the major challenges to safe and effective vaccine development. In the presence of cross-reactive sub-neutralizing concentrations of anti-dengue antibodies, immune complexes can amplify viral infection in mononuclear phagocytic cells, triggering a cytokine cascade and activating the complement system that leads to severe disease. The complement system comprises a family of plasma and cellular surface proteins that recognize pathogen associated molecular patterns, modified ligands and immune complexes, interacting in a regulated manner and forming an enzymatic cascade. Pathogenic as well as protective effects of complement have been reported in flavivirus infections. This review provides updated knowledge on complement activation during flavivirus infection, including antiviral effects of complement and its regulation, as well as mechanisms of complement evasion and dysregulation of complement activity during viral infection leading to pathogenesis. Particularly, insights into classical pathway activation and its protective role on antibody-dependent enhancement of flavivirus infections are highlighted.
Collapse
Affiliation(s)
- Alana B Byrne
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Unidad de Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires 1425, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina.
| | - Laura B Talarico
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Unidad de Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires 1425, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina.
| |
Collapse
|
11
|
Post-Vaccination Yellow Fever Antiserum Reduces Zika Virus in Embryoid Bodies When Placental Cells are Present. Vaccines (Basel) 2020; 8:vaccines8040752. [PMID: 33322247 PMCID: PMC7768546 DOI: 10.3390/vaccines8040752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 11/18/2022] Open
Abstract
Zika virus (ZIKV) is a flavivirus that originated in Africa but emerged in Latin America in 2015. In this region, other flaviviruses such as Dengue (DENV), West Nile, and Yellow Fever virus (YFV) also circulate, allowing for possible antigenic cross-reactivity to impact viral infections and immune responses. Studies have found antibody-mediated enhancement between DENV and ZIKV, but the impact of YFV antibodies on ZIKV infection has not been fully explored. ZIKV infections cause congenital syndromes, such as microcephaly, necessitating further research into ZIKV vertical transmission through the placental barrier. Recent advancements in biomedical engineering have generated co-culture methods that allow for the in vitro recapitulation of the maternal–fetal interface. This study utilized a transwell assay, which was a co-culture model utilizing human placental syncytiotrophoblasts, fetal umbilical cells, and a differentiating embryoid body, to replicate the maternal–fetal axis. To determine if cross-reactive YFV vaccine antibodies impacted the pathogenesis of ZIKV across the maternal–fetal axis, syncytiotrophoblasts were inoculated with ZIKV or ZIKV incubated with YFV vaccine antisera, and the viral load was measured 72 h post-inoculation. Here, we report that BeWo and HUVEC cells were permissive to ZIKV and that the impact of YFV post-vaccination antibodies on ZIKV replication was cell line-dependent. Embryoid bodies were also permissive to ZIKV, and the presence of YFV antibodies collected 4–14 months post-vaccination reduced ZIKV infection when placental cells were present. However, when directly infected with ZIKV, the embryoid bodies displayed significantly increased viral loads in the presence of YFV antiserum taken 30 days post-vaccination. The data show that each of the cell lines and EBs have a unique response to ZIKV complexed with post-vaccination serum, suggesting there may be cell-specific mechanisms that impact congenital ZIKV infections. Since ZIKV infections can cause severe congenital syndromes, it is crucial to understand any potential enhancement or protection offered from cross-reactive, post-vaccination antibodies.
Collapse
|
12
|
Lai JY, Lim TS. Infectious disease antibodies for biomedical applications: A mini review of immune antibody phage library repertoire. Int J Biol Macromol 2020; 163:640-648. [PMID: 32650013 PMCID: PMC7340592 DOI: 10.1016/j.ijbiomac.2020.06.268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Antibody phage display is regarded as a critical tool for the development of monoclonal antibodies for infectious diseases. The different classes of antibody libraries are classified based on the source of repertoire used to generate the libraries. Immune antibody libraries are generated from disease infected host or immunization against an infectious agent. Antibodies derived from immune libraries are distinct from those derived from naïve libraries as the host's in vivo immune mechanisms shape the antibody repertoire to yield high affinity antibodies. As the immune system is constantly evolving in accordance to the health state of an individual, immune libraries can offer more than just infection-specific antibodies but also antibodies derived from the memory B-cells much like naïve libraries. The combinatorial nature of the gene cloning process would give rise to a combination of natural and un-natural antibody gene pairings in the immune library. These factors have a profound impact on the coverage of immune antibody libraries to target both disease-specific and non-disease specific antigens. This review looks at the diverse nature of antibody responses for immune library generation and discusses the extended potential of a disease-specified immune library in the context of phage display.
Collapse
Affiliation(s)
- Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
13
|
Huang KYA, Zhou D, Fry EE, Kotecha A, Huang PN, Yang SL, Tsao KC, Huang YC, Lin TY, Ren J, Stuart DI. Structural and functional analysis of protective antibodies targeting the threefold plateau of enterovirus 71. Nat Commun 2020; 11:5253. [PMID: 33067459 PMCID: PMC7567869 DOI: 10.1038/s41467-020-19013-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Enterovirus 71 (EV71)-neutralizing antibodies correlate with protection and have potential as therapeutic agents. We isolate and characterize a panel of plasmablast-derived monoclonal antibodies from an infected child whose antibody response focuses on the plateau epitope near the icosahedral 3-fold axes. Eight of a total of 19 antibodies target this epitope and three of these potently neutralize the virus. Representative neutralizing antibodies 38-1-10A and 38-3-11A both confer effective protection against lethal EV71 challenge in hSCARB2-transgenic mice. The cryo-electron microscopy structures of the EV71 virion in complex with Fab fragments of these potent and protective antibodies reveal the details of a conserved epitope formed by residues in the BC and HI loops of VP2 and the BC and HI loops of VP3 spanning the region around the 3-fold axis. Remarkably, the two antibodies interact with the epitope in quite distinct ways. These plateau-binding antibodies provide templates for promising candidate therapeutics.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Capsid Proteins/chemistry
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Enterovirus A, Human/chemistry
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Enterovirus Infections/immunology
- Enterovirus Infections/virology
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Female
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Neutralization Tests
Collapse
Affiliation(s)
- Kuan-Ying A Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Daming Zhou
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Elizabeth E Fry
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Abhay Kotecha
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Li Yang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chien Tsao
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yhu-Chering Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzou-Yien Lin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jingshan Ren
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - David I Stuart
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK.
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
14
|
Tyagi A, Ahmed T, Shi J, Bhushan S. A complex between the Zika virion and the Fab of a broadly cross-reactive neutralizing monoclonal antibody revealed by cryo-EM and single particle analysis at 4.1 Å resolution. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100028. [PMID: 32647830 PMCID: PMC7337043 DOI: 10.1016/j.yjsbx.2020.100028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
Zika virus (ZIKV) recently emerged as a major public health concern because it can cause fetal microcephaly and neurological disease such as the Guillain-Barré syndrome. A particularly potent class of broadly neutralizing antibodies (nAbs) targets a quaternary epitope located at the interface of two envelope proteins monomers, exposed at the surface of the mature virion. This “E-dimer-dependent epitope” (EDE), comprises the fusion loop of one monomer at the tip of domain II of E and a portion of the domains I and III of the adjacent monomer. Since this epitope largely overlaps with the binding site of the precursor membrane protein (prM) during Zika virion maturation, its molecular surface is evolutionary conserved in flaviviruses such as Dengue and Zika viruses, and can elicit antibodies that broadly neutralize various ZIKV strains. Here, we present a cryo-EM reconstruction at 4.1 Å resolution of the virion bound to the antigen binding fragment (Fab) of an antibody that targets this mutationally-constrained quaternary epitope. The Fab incompletely covers the surface of the virion as it does not bind next to its 5-fold icosahedral axes. The structure reveals details of the binding mode of this potent neutralizing class of antibodies and can inform the design of immunogens and vaccines targeting this conserved epitope.
Collapse
Affiliation(s)
- Anu Tyagi
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Tofayel Ahmed
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jian Shi
- Center for Bio-Imaging Sciences, National University of Singapore, Singapore
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, Singapore
- Nanyang Institute of Structural Biology, Experimental Medicine Building, 59 Nanyang Drive, 636921, Singapore
- Corresponding author at: School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
15
|
Immunogenicity and Efficacy of Zika Virus Envelope Domain III in DNA, Protein, and ChAdOx1 Adenoviral-Vectored Vaccines. Vaccines (Basel) 2020; 8:vaccines8020307. [PMID: 32560145 PMCID: PMC7350260 DOI: 10.3390/vaccines8020307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The flavivirus envelope protein domain III (EDIII) was an effective immunogen against dengue virus (DENV) and other related flaviviruses. Whether this can be applied to the Zika virus (ZIKV) vaccinology remains an open question. Here, we tested the efficacy of ZIKV-EDIII against ZIKV infection, using several vaccine platforms that present the antigen in various ways. We provide data demonstrating that mice vaccinated with a ZIKV-EDIII as DNA or protein-based vaccines failed to raise fully neutralizing antibodies and did not control viremia, following a ZIKV challenge, despite eliciting robust antibody responses. Furthermore, we showed that ZIKV-EDIII encoded in replication-deficient Chimpanzee adenovirus (ChAdOx1-EDIII) elicited anti-ZIKV envelope antibodies in vaccinated mice but also provided limited protection against ZIKV in two physiologically different mouse challenge models. Taken together, our data indicate that contrary to what was shown for other flaviviruses like the dengue virus, which has close similarities with ZIKV-EDIII, this antigen might not be a suitable vaccine candidate for the correct induction of protective immune responses against ZIKV.
Collapse
|
16
|
A Molecular Determinant of West Nile Virus Secretion and Morphology as a Target for Viral Attenuation. J Virol 2020; 94:JVI.00086-20. [PMID: 32269117 PMCID: PMC7307099 DOI: 10.1128/jvi.00086-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/29/2020] [Indexed: 12/22/2022] Open
Abstract
West Nile virus (WNV) is a worldwide (re)emerging mosquito-transmitted Flavivirus causing fatal neurological diseases in humans. However, no human vaccine has been yet approved. One of the most effective live-attenuated vaccines was empirically obtained by serial passaging of wild-type yellow fever Flavivirus. However, such an approach is not acceptable nowadays, and the development of a rationally designed vaccine is necessary. Generating molecular infectious clones and mutating specific residues known to be involved in Flavivirus virulence constitute a powerful tool to promote viral attenuation. WNV membrane glycoprotein is thought to carry such essential determinants. Here, we identified two residues of this protein whose substitutions are key to the full and stable attenuation of WNV in vivo, most likely through inhibition of secretion and possible alteration of morphology. Applied to other flaviviruses, this approach should help in designing new vaccines against these viruses, which are an increasing threat to global human health. West Nile virus (WNV), a member of the Flavivirus genus and currently one of the most common arboviruses worldwide, is associated with severe neurological disease in humans. Its high potential to reemerge and rapidly disseminate makes it a bona fide global public health problem. The surface membrane glycoprotein (M) has been associated with Flavivirus-induced pathogenesis. Here, we identified a key amino acid residue at position 36 of the M protein whose mutation impacts WNV secretion and promotes viral attenuation. We also identified a compensatory site at position M-43 whose mutation stabilizes M-36 substitution both in vitro and in vivo. Moreover, we found that introduction of the two mutations together confers a full attenuation phenotype and protection against wild-type WNV lethal challenge, eliciting potent neutralizing-antibody production in mice. Our study thus establishes the M protein as a new viral target for rational design of attenuated WNV strains. IMPORTANCE West Nile virus (WNV) is a worldwide (re)emerging mosquito-transmitted Flavivirus causing fatal neurological diseases in humans. However, no human vaccine has been yet approved. One of the most effective live-attenuated vaccines was empirically obtained by serial passaging of wild-type yellow fever Flavivirus. However, such an approach is not acceptable nowadays, and the development of a rationally designed vaccine is necessary. Generating molecular infectious clones and mutating specific residues known to be involved in Flavivirus virulence constitute a powerful tool to promote viral attenuation. WNV membrane glycoprotein is thought to carry such essential determinants. Here, we identified two residues of this protein whose substitutions are key to the full and stable attenuation of WNV in vivo, most likely through inhibition of secretion and possible alteration of morphology. Applied to other flaviviruses, this approach should help in designing new vaccines against these viruses, which are an increasing threat to global human health.
Collapse
|
17
|
Gnann JW, Agrawal A, Hart J, Buitrago M, Carson P, Hanfelt-Goade D, Tyler K, Spotkov J, Freifeld A, Moore T, Reyno J, Masur H, Jester P, Dale I, Li Y, Aban I, Lakeman FD, Whitley RJ. Lack of Efficacy of High-Titered Immunoglobulin in Patients with West Nile Virus Central Nervous System Disease. Emerg Infect Dis 2020; 25:2064-2073. [PMID: 31625835 PMCID: PMC6810207 DOI: 10.3201/eid2511.190537] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Immunoglobulin administered to adults with neuroinvasive disease appeared to be safe but was not demonstrated to improve clinical outcomes. West Nile Virus (WNV) can result in clinically severe neurologic disease. There is no treatment for WNV infection, but administration of anti-WNV polyclonal human antibody has demonstrated efficacy in animal models. We compared Omr-IgG-am, an immunoglobulin product with high titers of anti-WNV antibody, with intravenous immunoglobulin (IVIG) and normal saline to assess safety and efficacy in patients with WNV neuroinvasive disease as part of a phase I/II, randomized, double-blind, multicenter study in North America. During 2003–2006, a total of 62 hospitalized patients were randomized to receive Omr-IgG-am, standard IVIG, or normal saline (3:1:1). The primary endpoint was medication safety. Secondary endpoints were morbidity and mortality, measured using 4 standardized assessments of cognitive and functional status. The death rate in the study population was 12.9%. No significant differences were found between groups receiving Omr-IgG-am compared with IVIG or saline for either the safety or efficacy endpoints.
Collapse
|
18
|
Rizzo S, Imperato P, Mora-Cárdenas E, Konstantinidou S, Marcello A, Sblattero D. Selection and characterization of highly specific recombinant antibodies against West Nile Virus E protein. J Biotechnol 2020; 311:35-43. [DOI: 10.1016/j.jbiotec.2020.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022]
|
19
|
Hurtado-Monzón AM, Cordero-Rivera CD, Farfan-Morales CN, Osuna-Ramos JF, De Jesús-González LA, Reyes-Ruiz JM, Del Ángel RM. The role of anti-flavivirus humoral immune response in protection and pathogenesis. Rev Med Virol 2020; 30:e2100. [PMID: 32101633 DOI: 10.1002/rmv.2100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Flavivirus infections are a public health threat in the world that requires the development of safe and effective vaccines. Therefore, the understanding of the anti-flavivirus humoral immune response is fundamental to future studies on flavivirus pathogenesis and the design of anti-flavivirus therapeutics. This review aims to provide an overview of the current understanding of the function and involvement of flavivirus proteins in the humoral immune response as well as the ability of the anti-envelope (anti-E) antibodies to interfere (neutralizing antibodies) or not (non-neutralizing antibodies) with viral infection, and how they can, in some circumstances enhance dengue virus infection on Fc gamma receptor (FcγR) bearing cells through a mechanism known as antibody-dependent enhancement (ADE). Thus, the dual role of the antibodies against E protein poses a formidable challenge for vaccine development. Also, we discuss the roles of antibody binding stoichiometry (the concentration, affinity, or epitope recognition) in the neutralization of flaviviruses and the "breathing" of flavivirus virions in the humoral immune response. Finally, the relevance of some specific antibodies in the design and improvement of effective vaccines is addressed.
Collapse
Affiliation(s)
- Arianna Mahely Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - José Manuel Reyes-Ruiz
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| |
Collapse
|
20
|
Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV. Nat Med 2019; 25:1589-1600. [PMID: 31591605 DOI: 10.1038/s41591-019-0602-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/04/2019] [Indexed: 11/08/2022]
Abstract
Recombinant vesicular stomatitis virus-Zaire Ebola virus (rVSV-ZEBOV) is the most advanced Ebola virus vaccine candidate and is currently being used to combat the outbreak of Ebola virus disease (EVD) in the Democratic Republic of the Congo (DRC). Here we examine the humoral immune response in a subset of human volunteers enrolled in a phase 1 rVSV-ZEBOV vaccination trial by performing comprehensive single B cell and electron microscopy structure analyses. Four studied vaccinees show polyclonal, yet reproducible and convergent B cell responses with shared sequence characteristics. EBOV-targeting antibodies cross-react with other Ebolavirus species, and detailed epitope mapping revealed overlapping target epitopes with antibodies isolated from EVD survivors. Moreover, in all vaccinees, we detected highly potent EBOV-neutralizing antibodies with activities comparable or superior to the monoclonal antibodies currently used in clinical trials. These include antibodies combining the IGHV3-15/IGLV1-40 immunoglobulin gene segments that were identified in all investigated individuals. Our findings will help to evaluate and direct current and future vaccination strategies and offer opportunities for novel EVD therapies.
Collapse
|
21
|
Kumar R, Parray HA, Shrivastava T, Sinha S, Luthra K. Phage display antibody libraries: A robust approach for generation of recombinant human monoclonal antibodies. Int J Biol Macromol 2019; 135:907-918. [PMID: 31170490 DOI: 10.1016/j.ijbiomac.2019.06.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 12/29/2022]
Abstract
Monoclonal antibodies (mAbs) and their derivatives have achieved remarkable success as medicine, targeting both diagnostic and therapeutic applications associated with communicable and non-communicable diseases. In the last 3 to 4 decades, tremendous success has been manifested in the field of cancer therapy, autoimmune diseases, cardiovascular and infectious diseases. MAbs are the fastest growing class of biopharmaceuticals, with more than 25 derivatives are in clinical use and 7 of these have been isolated through phage display technology. Phage display technology has gained impetus in the field of medical and health sciences, as a large repertoire of diverse recombinant antibodies, targeting various antigens have been generated in a short span of time. A prominent number of phage display derived antibodies are already approved for therapy and significant numbers are currently in clinical trials. In this review we have discussed the various strategies employed for generation of monoclonal antibodies; their advantages, limitations and potential therapeutic applications. We also discuss the potential of phage display antibody libraries in isolation of monoclonal antibodies.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India; Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| | - Hilal Ahmed Parray
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
22
|
Wong R, Bhattacharya D. Basics of memory B-cell responses: lessons from and for the real world. Immunology 2019; 156:120-129. [PMID: 30488482 PMCID: PMC6328991 DOI: 10.1111/imm.13019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
The production of pathogen-specific B cells and antibodies underlies protective immunity elicited by most vaccines and many infections. Humoral immunity follows a regulated process by which high-affinity antibody-secreting plasma cells and memory B cells are generated. Yet for certain pathogens, protective immunity is inefficiently generated and/or maintained. For example, Dengue virus infections lead to lasting immunity against re-infection by the same serotype. However, if infected with a different Dengue serotype, the individual is predisposed to more severe disease than if he/she was completely naive. As another example, both natural infections with or vaccination against malaria do not necessarily lead to lasting immunity, as the same individual can be re-infected many times over the course of a lifetime. In this review, we discuss how these real-world problems can both instruct and be informed by recent basic studies using model organisms and antigens. An emphasis is placed on protective epitopes and functional distinctions between memory B-cell subsets in both mice and humans. Using flavivirus and Plasmodium infections as examples, we also speculate on the differences between ineffective B-cell responses that actually occur in the real world, and perfect-world responses that would generate lasting immunity.
Collapse
Affiliation(s)
- Rachel Wong
- Division of Biological and Biomedical SciencesWashington UniversitySt LouisMOUSA
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonAZUSA
| | - Deepta Bhattacharya
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonAZUSA
| |
Collapse
|
23
|
Goo L, Debbink K, Kose N, Sapparapu G, Doyle MP, Wessel AW, Richner JM, Burgomaster KE, Larman BC, Dowd KA, Diamond MS, Crowe JE, Pierson TC. A protective human monoclonal antibody targeting the West Nile virus E protein preferentially recognizes mature virions. Nat Microbiol 2018; 4:71-77. [PMID: 30455471 PMCID: PMC6435290 DOI: 10.1038/s41564-018-0283-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/04/2018] [Indexed: 12/12/2022]
Abstract
West Nile virus (WNV), a member of the Flavivirus genus, is a leading cause of viral encephalitis in the United States1. The development of neutralizing antibodies against the flavivirus envelope (E) protein is critical for immunity and vaccine protection2. Previously identified candidate therapeutic mouse and human neutralizing monoclonal antibodies (mAbs) target epitopes within the E domain III lateral ridge and the domain I-II hinge region, respectively3. To explore the neutralizing antibody repertoire elicited by WNV infection for potential therapeutic application, we isolated 10 mAbs from WNV-infected individuals. MAb WNV-86 neutralized WNV with a 50% inhibitory concentration (IC50) of 2 ng/mL, one of the most potently neutralizing flavivirus-specific antibodies ever isolated. WNV-86 targets an epitope in E domain II, and preferentially recognizes mature virions lacking an uncleaved form of the chaperone protein prM, unlike most flavivirus-specific antibodies4. In vitro selection experiments revealed a neutralization escape mechanism involving a glycan addition to E domain II. Finally, a single dose of WNV-86 administered two days post-infection protected mice from lethal WNV challenge. This study identifies a highly potent human neutralizing mAb with therapeutic potential that targets an epitope preferentially displayed on mature virions.
Collapse
Affiliation(s)
- Leslie Goo
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Kari Debbink
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gopal Sapparapu
- Department of Pediatrics, and the Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael P Doyle
- Department of Pathobiology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alex W Wessel
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Justin M Richner
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Katherine E Burgomaster
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bridget C Larman
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly A Dowd
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - James E Crowe
- Departments of Pediatrics, Pathobiology, Microbiology and Immunology, and the Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Theodore C Pierson
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Abstract
Arthropod-borne flaviviruses are important human pathogens that cause a diverse range of clinical conditions, including severe hemorrhagic syndromes, neurological complications and congenital malformations. Consequently, there is an urgent need to develop safe and effective vaccines, a process requiring better understanding of the immunological mechanisms involved during infection. Decades of research suggest a paradoxical role of the immune response against flaviviruses: although the immune response is crucial for the control, clearance and prevention of infection, poor clinical outcomes are commonly associated with virus-specific immunity and immunopathogenesis. This relationship is further complicated by the high homology among viruses and the implication of cross-reactive immune responses in protection and pathogenesis. This Review examines the dual role of the adaptive immune response against flaviviruses, particularly emphasizing the most recent findings regarding cross-reactive T cell and antibody responses, and the effects that these concepts have on vaccine-development endeavors.
Collapse
|
25
|
Fuchs T, Hahn M, Ries L, Giesler S, Busch S, Wang C, Han J, Schulze TJ, Puellmann K, Beham AW, Kaminski WE, Neumaier M. Expression of combinatorial immunoglobulins in macrophages in the tumor microenvironment. PLoS One 2018; 13:e0204108. [PMID: 30240437 PMCID: PMC6150476 DOI: 10.1371/journal.pone.0204108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
Recent evidence indicates the presence of macrophage subpopulations that express the TCRαβ in chronic inflammatory diseases such as tuberculosis and atherosclerosis and in the tumor microenvironment. Here, we demonstrate that a second subpopulation of macrophages expresses rearranged heavy and light chain immunoglobulins. We identify immunoglobulin expression in human and murine monocytes, in ex vivo differentiated macrophages and macrophages from the tumor microenvironment of five randomly selected distinct human tumor entities. The immunoglobulin heavy and light chains are expressed in a small macrophage subfraction (~3-5%) as combinatorial and individual-specific immune receptors. Using Sanger sequencing and deep sequencing, we routinely find markedly restricted Ig repertoires in monocytes/macrophages compared to normal B cells. Furthermore, we report the complete Ig heavy and light chain sequences of a fully functional immunoglobulin from a single tumor-associated macrophage. These results demonstrate that Ig expression is a defining feature of monocytes and also macrophages in the tumor microenvironment and thus reveal an as yet unrecognized modus operandi of host defense in professional phagocytes.
Collapse
Affiliation(s)
- Tina Fuchs
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martin Hahn
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lukas Ries
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sophie Giesler
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Svenja Busch
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chunlin Wang
- iRepertoire inc. Huntsville, AL, United States of America
| | - Jian Han
- iRepertoire inc. Huntsville, AL, United States of America
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Torsten J. Schulze
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | - Wolfgang E. Kaminski
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Bioscientia Institute for Medical Diagnostics, Ingelheim, Germany
| | - Michael Neumaier
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
26
|
Human monoclonal antibodies against West Nile virus from Japanese encephalitis-vaccinated volunteers. Antiviral Res 2018; 154:58-65. [DOI: 10.1016/j.antiviral.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/25/2023]
|
27
|
Fernandez E, Kose N, Edeling MA, Adhikari J, Sapparapu G, Lazarte SM, Nelson CA, Govero J, Gross ML, Fremont DH, Crowe JE, Diamond MS. Mouse and Human Monoclonal Antibodies Protect against Infection by Multiple Genotypes of Japanese Encephalitis Virus. mBio 2018; 9:e00008-18. [PMID: 29487230 PMCID: PMC5829823 DOI: 10.1128/mbio.00008-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/26/2018] [Indexed: 12/22/2022] Open
Abstract
Japanese encephalitis virus (JEV) remains a leading cause of viral encephalitis worldwide. Although JEV-specific antibodies have been described, an assessment of their ability to neutralize multiple genotypes of JEV has been limited. Here, we describe the development of a panel of mouse and human neutralizing monoclonal antibodies (MAbs) that inhibit infection in cell culture of four different JEV genotypes tested. Mechanism-of-action studies showed that many of these MAbs inhibited infection at a postattachment step, including blockade of virus fusion. Mapping studies using site-directed mutagenesis and hydrogen-deuterium exchange with mass spectrometry revealed that the lateral ridge on domain III of the envelope protein was a primary recognition epitope for our panel of strongly neutralizing MAbs. Therapeutic studies in mice demonstrated protection against lethality caused by genotype I and III strains when MAbs were administered as a single dose even 5 days after infection. This information may inform the development of vaccines and therapeutic antibodies as emerging strains and genotypic shifts become more prevalent.IMPORTANCE Although Japanese encephalitis virus (JEV) is a vaccine-preventable cause of viral encephalitis, the inactivated and live attenuated platforms available are derived from strains belonging to a single genotype (GIII) due to its historical prevalence in areas of JEV epidemics. Related to this, studies with vaccines and antibodies have focused on assessing the in vitro and in vivo protective responses to homologous or heterologous GIII strains. An epidemiological shift in JEV genotype distribution warrants the induction of broadly neutralizing antibody responses that inhibit infection of multiple JEV genotypes. Here, we generated a panel of mouse and human neutralizing monoclonal antibodies and evaluated their inhibitory activity, epitope location, and capacity for protection against multiple JEV genotypes in mice.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/immunology
- Chlorocebus aethiops
- Disease Models, Animal
- Encephalitis Virus, Japanese/classification
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis, Japanese/prevention & control
- Epitopes/immunology
- Genotype
- Humans
- Mice
- Models, Biological
- Treatment Outcome
- Vero Cells
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Estefania Fernandez
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Nurgun Kose
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Melissa A Edeling
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Jagat Adhikari
- Department of Chemistry, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Gopal Sapparapu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Susana M Lazarte
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Medicine, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Christopher A Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Jennifer Govero
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - James E Crowe
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
28
|
Development of Antibody Therapeutics against Flaviviruses. Int J Mol Sci 2017; 19:ijms19010054. [PMID: 29295568 PMCID: PMC5796004 DOI: 10.3390/ijms19010054] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/28/2022] Open
Abstract
Recent outbreaks of Zika virus (ZIKV) highlight the urgent need to develop efficacious interventions against flaviviruses, many of which cause devastating epidemics around the world. Monoclonal antibodies (mAb) have been at the forefront of treatment for cancer and a wide array of other diseases due to their specificity and potency. While mammalian cell-produced mAbs have shown promise as therapeutic candidates against several flaviviruses, their eventual approval for human application still faces several challenges including their potential risk of predisposing treated patients to more severe secondary infection by a heterologous flavivirus through antibody-dependent enhancement (ADE). The high cost associated with mAb production in mammalian cell cultures also poses a challenge for the feasible application of these drugs to the developing world where the majority of flavivirus infection occurs. Here, we review the current therapeutic mAb candidates against various flaviviruses including West Nile (WNV), Dengue virus (DENV), and ZIKV. The progress of using plants for developing safer and more economical mAb therapeutics against flaviviruses is discussed within the context of their expression, characterization, downstream processing, neutralization, and in vivo efficacy. The progress of using plant glycoengineering to address ADE, the major impediment of flavivirus therapeutic development, is highlighted. These advancements suggest that plant-based systems are excellent alternatives for addressing the remaining challenges of mAb therapeutic development against flavivirus and may facilitate the eventual commercialization of these drug candidates.
Collapse
|
29
|
Wu Y, Li S, Du L, Wang C, Zou P, Hong B, Yuan M, Ren X, Tai W, Kong Y, Zhou C, Lu L, Zhou X, Jiang S, Ying T. Neutralization of Zika virus by germline-like human monoclonal antibodies targeting cryptic epitopes on envelope domain III. Emerg Microbes Infect 2017; 6:e89. [PMID: 29018252 PMCID: PMC5658772 DOI: 10.1038/emi.2017.79] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/01/2017] [Accepted: 08/06/2017] [Indexed: 12/11/2022]
Abstract
The Zika virus (ZIKV), a flavivirus transmitted by Aedes mosquitoes, has emerged as a global public health concern. Pre-existing cross-reactive antibodies against other flaviviruses could modulate immune responses to ZIKV infection by antibody-dependent enhancement, highlighting the importance of understanding the immunogenicity of the ZIKV envelope protein. In this study, we identified a panel of human monoclonal antibodies (mAbs) that target domain III (DIII) of the ZIKV envelope protein from a very large phage-display naive antibody library. These germline-like antibodies, sharing 98%-100% hoLogy with their corresponding germline IGHV genes, bound ZIKV DIII specifically with high affinities. One mAb, m301, broadly neutralized the currently circulating ZIKV strains and showed a synergistic effect with another mAb, m302, in neutralizing ZIKV in vitro and in a mouse model of ZIKV infection. Interestingly, epitope mapping and competitive binding studies suggest that m301 and m302 bind adjacent regions of the DIII C-C' loop, which represents a recently identified cryptic epitope that is intermittently exposed in an uncharacterized virus conformation. This study extended our understanding of antigenic epitopes of ZIKV antibodies and has direct implications for the design of ZIKV vaccines.
Collapse
Affiliation(s)
- Yanling Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shun Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lanying Du
- Lindsley F Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Chunyu Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Peng Zou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Binbin Hong
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mengjiao Yuan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaonan Ren
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Wanbo Tai
- Lindsley F Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Yu Kong
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chen Zhou
- Biomissile Corporation, Shanghai 201203, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaohui Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Lindsley F Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
30
|
Fernandez E, Diamond MS. Vaccination strategies against Zika virus. Curr Opin Virol 2017; 23:59-67. [PMID: 28432975 PMCID: PMC5576498 DOI: 10.1016/j.coviro.2017.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/09/2017] [Accepted: 03/18/2017] [Indexed: 10/19/2022]
Abstract
The epidemic emergence of Zika virus (ZIKV) in 2015-2016 has been associated with congenital malformations and neurological sequela. Current efforts to develop a ZIKV vaccine build on technologies that successfully reduced infection or disease burden against closely related flaviviruses or other RNA viruses. Subunit-based (DNA plasmid and modified mRNA), viral vectored (adeno- and measles viruses) and inactivated viral vaccines are already advancing to clinical trials in humans after successful mouse and non-human primate studies. Among the greatest challenges for the rapid implementation of immunogenic and protective ZIKV vaccines will be addressing the potential for exacerbating Dengue virus infection or causing Guillain-Barré syndrome through production of cross-reactive immunity targeting related viral or host proteins. Here, we review vaccine strategies under development for ZIKV and the issues surrounding their usage.
Collapse
MESH Headings
- Animals
- Clinical Trials as Topic
- Dengue/epidemiology
- Drug Evaluation, Preclinical
- Drug-Related Side Effects and Adverse Reactions/epidemiology
- Guillain-Barre Syndrome/epidemiology
- Humans
- Mice
- Vaccines, DNA/adverse effects
- Vaccines, DNA/immunology
- Vaccines, DNA/isolation & purification
- Vaccines, Inactivated/adverse effects
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/isolation & purification
- Vaccines, Subunit/adverse effects
- Vaccines, Subunit/immunology
- Vaccines, Subunit/isolation & purification
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
- Viral Vaccines/adverse effects
- Viral Vaccines/immunology
- Viral Vaccines/isolation & purification
- Zika Virus/immunology
- Zika Virus Infection/prevention & control
Collapse
Affiliation(s)
- Estefania Fernandez
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
31
|
Goo L, VanBlargan LA, Dowd KA, Diamond MS, Pierson TC. A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis. PLoS Pathog 2017; 13:e1006178. [PMID: 28207910 PMCID: PMC5312798 DOI: 10.1371/journal.ppat.1006178] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/11/2017] [Indexed: 01/23/2023] Open
Abstract
The structural flexibility or 'breathing' of the envelope (E) protein of flaviviruses allows virions to sample an ensemble of conformations at equilibrium. The molecular basis and functional consequences of virus conformational dynamics are poorly understood. Here, we identified a single mutation at residue 198 (T198F) of the West Nile virus (WNV) E protein domain I-II hinge that regulates virus breathing. The T198F mutation resulted in a ~70-fold increase in sensitivity to neutralization by a monoclonal antibody targeting a cryptic epitope in the fusion loop. Increased exposure of this otherwise poorly accessible fusion loop epitope was accompanied by reduced virus stability in solution at physiological temperatures. Introduction of a mutation at the analogous residue of dengue virus (DENV), but not Zika virus (ZIKV), E protein also increased accessibility of the cryptic fusion loop epitope and decreased virus stability in solution, suggesting that this residue modulates the structural ensembles sampled by distinct flaviviruses at equilibrium in a context dependent manner. Although the T198F mutation did not substantially impair WNV growth kinetics in vitro, studies in mice revealed attenuation of WNV T198F infection. Overall, our study provides insight into the molecular basis and the in vitro and in vivo consequences of flavivirus breathing.
Collapse
Affiliation(s)
- Leslie Goo
- Viral Pathogenesis Section, National Institutes of Health, Bethesda, MD, United States of America
| | - Laura A. VanBlargan
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, National Institutes of Health, Bethesda, MD, United States of America
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Theodore C. Pierson
- Viral Pathogenesis Section, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
32
|
Vanderven HA, Jegaskanda S, Wheatley AK, Kent SJ. Antibody-dependent cellular cytotoxicity and influenza virus. Curr Opin Virol 2017; 22:89-96. [PMID: 28088123 DOI: 10.1016/j.coviro.2016.12.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Antibodies are a key defence against influenza infection and disease, but neutralizing antibodies are often strain-specific and of limited utility against divergent or pandemic viruses. There is now considerable evidence that influenza-specific antibodies with Fc-mediated effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), can assist in the clearance of influenza infection in vitro and in animal models. Further, ADCC-mediating antibodies that recognize a broad array of influenza strains are common in humans, likely as a result of being regularly exposed to influenza infections. The concept that influenza-specific ADCC can assist in the partial control of influenza infections in humans is gaining momentum. This review examines the utility of influenza-specific ADCC antibodies.
Collapse
Affiliation(s)
- Hillary A Vanderven
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia; Melbourne Sexual Health Clinic and Infectious Diseases Department, Alfred Hospital, Monash University Central Clinical School, Carlton, Victoria, Australia; ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
33
|
Poore EA, Slifka DK, Raué HP, Thomas A, Hammarlund E, Quintel BK, Torrey LL, Slifka AM, Richner JM, Dubois ME, Johnson LP, Diamond MS, Slifka MK, Amanna IJ. Pre-clinical development of a hydrogen peroxide-inactivated West Nile virus vaccine. Vaccine 2016; 35:283-292. [PMID: 27919629 DOI: 10.1016/j.vaccine.2016.11.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 02/08/2023]
Abstract
West Nile virus (WNV) is a mosquito-transmitted pathogen with a wide geographical range that can lead to long-term disability and death in some cases. Despite the public health risk posed by WNV, including an estimated 3 million infections in the United States alone, no vaccine is available for use in humans. Here, we present a scaled manufacturing approach for production of a hydrogen peroxide-inactivated whole virion WNV vaccine, termed HydroVax-001WNV. Vaccination resulted in robust virus-specific neutralizing antibody responses and protection against WNV-associated mortality in mice or viremia in rhesus macaques (RM). A GLP-compliant toxicology study performed in rats demonstrated an excellent safety profile with clinical findings limited to minor and transient irritation at the injection site. An in vitro relative potency (IVRP) assay was developed and shown to correlate with in vivo responses following forced degradation studies. Long-term in vivo potency comparisons between the intended storage condition (2-8°C) and a thermally stressed condition (40±2°C) demonstrated no loss in vaccine efficacy or protective immunity over a 6-month span of time. Together, the positive pre-clinical findings regarding immunogenicity, safety, and stability indicate that HydroVax-001WNV is a promising vaccine candidate.
Collapse
Affiliation(s)
| | | | - Hans-Peter Raué
- Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | - Archana Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | - Erika Hammarlund
- Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | | | | | | | - Justin M Richner
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Michael S Diamond
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark K Slifka
- Najít Technologies, Inc, Beaverton, OR, USA; Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | | |
Collapse
|
34
|
Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity. Microbiol Mol Biol Rev 2016; 80:989-1010. [PMID: 27784796 DOI: 10.1128/mmbr.00024-15] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The antibody response plays a key role in protection against viral infections. While antiviral antibodies may reduce the viral burden via several mechanisms, the ability to directly inhibit (neutralize) infection of cells has been extensively studied. Eliciting a neutralizing-antibody response is a goal of many vaccine development programs and commonly correlates with protection from disease. Considerable insights into the mechanisms of neutralization have been gained from studies of monoclonal antibodies, yet the individual contributions and dynamics of the repertoire of circulating antibody specificities elicited by infection and vaccination are poorly understood on the functional and molecular levels. Neutralizing antibodies with the most protective functionalities may be a rare component of a polyclonal, pathogen-specific antibody response, further complicating efforts to identify the elements of a protective immune response. This review discusses advances in deconstructing polyclonal antibody responses to flavivirus infection or vaccination. Our discussions draw comparisons to HIV-1, a virus with a distinct structure and replication cycle for which the antibody response has been extensively investigated. Progress toward deconstructing and understanding the components of polyclonal antibody responses identifies new targets and challenges for vaccination strategies.
Collapse
|
35
|
A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 2016; 535:164-8. [PMID: 27383988 PMCID: PMC4945490 DOI: 10.1038/nature18625] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/06/2016] [Indexed: 12/17/2022]
Abstract
Flaviviruses infect hundreds of millions of people annually, and no antiviral therapy is available. We performed a genome-wide CRISPR/Cas9-based screen to identify host genes that, when edited, resulted in reduced flavivirus infection. Here, we validated nine human genes required for flavivirus infectivity, and these were associated with endoplasmic reticulum functions including translocation, protein degradation, and N-linked glycosylation. In particular, a subset of endoplasmic reticulum-associated signal peptidase complex (SPCS) proteins was necessary for proper cleavage of the flavivirus structural proteins (prM and E) and secretion of viral particles. Loss of SPCS1 expression resulted in markedly reduced yield of all Flaviviridae family members tested (West Nile, Dengue, Zika, yellow fever, Japanese encephalitis, and hepatitis C viruses), but had little impact on alphavirus, bunyavirus, or rhabdovirus infection or the surface expression or secretion of diverse host proteins. We found that SPCS1 dependence could be bypassed by replacing the native prM protein leader sequences with a class I major histocompatibility complex (MHC) antigen leader sequence. Thus, SPCS1, either directly or indirectly via its interactions with unknown host proteins, preferentially promotes the processing of specific protein cargo, and Flaviviridae have a unique dependence on this signal peptide processing pathway. SPCS1 and other signal processing pathway members could represent pharmacological targets for inhibiting infection by the expanding number of flaviviruses of medical concern.
Collapse
|
36
|
Plante JA, Torres M, Huang CYH, Beasley DWC. Plasticity of a critical antigenic determinant in the West Nile virus NY99 envelope protein domain III. Virology 2016; 496:97-105. [PMID: 27284640 DOI: 10.1016/j.virol.2016.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 01/23/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that causes febrile illness, encephalitis, and occasionally death in humans. The envelope protein is the main component of the WNV virion surface, and domain III of the envelope protein (EIII) is both a putative receptor binding domain and a target of highly specific, potently neutralizing antibodies. Envelope E-332 (E-332) is known to have naturally occurring variation and to be a key determinant of neutralization for anti-EIII antibodies. A panel of viruses containing all possible amino acid substitutions at E-332 was constructed. E-332 was found to be highly tolerant of mutation, and almost all of these changes had large impacts on antigenicity of EIII but only limited effects on growth or virulence phenotypes.
Collapse
Affiliation(s)
- Jessica A Plante
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Maricela Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Claire Y-H Huang
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - David W C Beasley
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
37
|
Jiang Z, Gera L, Mant CT, Hirsch B, Yan Z, Shortt JA, Pollock DD, Qian Z, Holmes KV, Hodges RS. Platform technology to generate broadly cross-reactive antibodies to α-helical epitopes in hemagglutinin proteins from influenza A viruses. Biopolymers 2016; 106:144-159. [PMID: 26799790 PMCID: PMC7159342 DOI: 10.1002/bip.22808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/29/2015] [Accepted: 01/10/2016] [Indexed: 12/13/2022]
Abstract
We have utilized a de novo designed two‐stranded α‐helical coiled‐coil template to display conserved α‐helical epitopes from the stem region of hemagglutinin (HA) glycoproteins of influenza A. The immunogens have all the surface‐exposed residues of the native α‐helix in the native HA protein of interest displayed on the surface of the two‐stranded α‐helical coiled‐coil template. This template when used as an immunogen elicits polyclonal antibodies which bind to the α‐helix in the native protein. We investigated the highly conserved sequence region 421–476 of HA by inserting 21 or 28 residue sequences from this region into our template. The cross‐reactivity of the resulting rabbit polyclonal antibodies prepared to these immunogens was determined using a series of HA proteins from H1N1, H2N2, H3N2, H5N1, H7N7, and H7N9 virus strains which are representative of Group 1 and Group 2 virus subtypes of influenza A. Antibodies from region 449–476 were Group 1 specific. Antibodies to region 421–448 showed the greatest degree of cross‐reactivity to Group 1 and Group 2 and suggested that this region has a great potential as a “universal” synthetic peptide vaccine for influenza A. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 144–159, 2016.
Collapse
Affiliation(s)
- Ziqing Jiang
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045
| | - Lajos Gera
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045
| | - Colin T Mant
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045
| | - Brooke Hirsch
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045.,Flagship Biosciences, Westminster, CO, 80021
| | - Zhe Yan
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045.,Molecular Cloning Laboratories (MCLAB), San Francisco, CA, 94080
| | - Jonathan A Shortt
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045
| | - David D Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045
| | - Zhaohui Qian
- Institute of Pathogen Biology at Chinese Academy of Medical Sciences, Yi Zhuang DiShengBeiLu, BeiGongDa RuanJianYuan, Bldg#7, Beijing, 100176, China.,Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045
| | - Kathryn V Holmes
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045
| | - Robert S Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045
| |
Collapse
|
38
|
Abstract
Despite the availability of antimicrobial drugs, the continued development of microbial resistance--established through escape mutations and the emergence of resistant strains--limits their clinical utility. The discovery of novel, therapeutic, monoclonal antibodies (mAbs) offers viable clinical alternatives in the treatment and prophylaxis of infectious diseases. Human mAb-based therapies are typically nontoxic in patients and demonstrate high specificity for the intended microbial target. This specificity prevents negative impacts on the patient microbiome and avoids driving the resistance of nontarget species. The in vitro selection of human antibody fragment libraries displayed on phage or yeast surfaces represents a group of well-established technologies capable of generating human mAbs. The advantage of these forms of microbial display is the large repertoire of human antibody fragments present during a single selection campaign. Furthermore, the in vitro selection environments of microbial surface display allow for the rapid isolation of antibodies--and their encoding genes--against infectious pathogens and their toxins that are impractical within in vivo systems, such as murine hybridomas. This article focuses on the technologies of phage display and yeast display, as these strategies relate to the discovery of human mAbs for the treatment and vaccine development of infectious diseases.
Collapse
|
39
|
Tsioris K, Gupta NT, Ogunniyi AO, Zimnisky RM, Qian F, Yao Y, Wang X, Stern JNH, Chari R, Briggs AW, Clouser CR, Vigneault F, Church GM, Garcia MN, Murray KO, Montgomery RR, Kleinstein SH, Love JC. Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing. Integr Biol (Camb) 2015; 7:1587-97. [PMID: 26481611 PMCID: PMC4754972 DOI: 10.1039/c5ib00169b] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
West Nile virus (WNV) infection is an emerging mosquito-borne disease that can lead to severe neurological illness and currently has no available treatment or vaccine. Using microengraving, an integrated single-cell analysis method, we analyzed a cohort of subjects infected with WNV - recently infected and post-convalescent subjects - and efficiently identified four novel WNV neutralizing antibodies. We also assessed the humoral response to WNV on a single-cell and repertoire level by integrating next generation sequencing (NGS) into our analysis. The results from single-cell analysis indicate persistence of WNV-specific memory B cells and antibody-secreting cells in post-convalescent subjects. These cells exhibited class-switched antibody isotypes. Furthermore, the results suggest that the antibody response itself does not predict the clinical severity of the disease (asymptomatic or symptomatic). Using the nucleotide coding sequences for WNV-specific antibodies derived from single cells, we revealed the ontogeny of expanded WNV-specific clones in the repertoires of recently infected subjects through NGS and bioinformatic analysis. This analysis also indicated that the humoral response to WNV did not depend on an anamnestic response, due to an unlikely previous exposure to the virus. The innovative and integrative approach presented here to analyze the evolution of neutralizing antibodies from natural infection on a single-cell and repertoire level can also be applied to vaccine studies, and could potentially aid the development of therapeutic antibodies and our basic understanding of other infectious diseases.
Collapse
Affiliation(s)
- Konstantinos Tsioris
- Department of Chemical Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Bldg. 76-253, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ulbert S, Magnusson SE. Technologies for the development of West Nile virus vaccines. Future Microbiol 2015; 9:1221-32. [PMID: 25405890 DOI: 10.2217/fmb.14.67] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
West Nile virus (WNV), an emerging mosquito-borne and zoonotic flavivirus, continues to spread worldwide and represents a major problem for human and veterinary medicine. In recent years, severe outbreaks were observed in the USA and Europe with neighboring countries, and the virus is considered to be endemic in an increasing number of areas. Although most infections remain asymptomatic, WNV can cause severe, even fatal, neurological disease, which affects mostly the elderly and immunocompromised individuals. Several vaccines have been licensed in the veterinary sector, but no human vaccine is available today. This review summarizes recent strategies that are being followed to develop WNV vaccines with emphasis on technologies suitable for the use in humans.
Collapse
Affiliation(s)
- Sebastian Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy & Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| | | |
Collapse
|
41
|
Lin Y, Li B, Ye J, Wang M, Wang J, Zhang Y, Zhu J. Neutralization Analysis of a Chicken Single-Chain Variable Fragment Derived from an Immune Antibody Library Against Infectious Bronchitis Virus. Viral Immunol 2015; 28:397-404. [PMID: 26090700 DOI: 10.1089/vim.2014.0104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Avian infectious bronchitis virus (IBV), which is prevalent in many countries causing severe economic loss to the poultry industry, causes infectious bronchitis (IB) in birds. Recombinant single-chain variable fragments (scFvs) have been proven to effectively inhibit many viruses, both in vitro and in vivo, and they could be a potential diagnostic and therapeutic reagent to control IB. In this study, six anti-IBV chicken scFvs, ZL.10, ZL.64, ZL.78, ZL.80, ZL.138, and ZL.256, were obtained by screening random clones from an immune antibody library. An analysis of nucleotide sequences revealed that they represented distinctive genetic sequences and greatly varied in complementarity-determining region three of the heavy chain. Neutralization tests showed that ZL.10, which bound the S1 protein in western blots, inhibited the formation of syncytia in Vero cells 48 h post IBV infection and decreased the transcriptional level of nucleoprotein mRNA to 17.2%, while the other five scFvs, including ZL.78 and ZL.256, that bound the N protein did not. In conclusion, the results suggested that specific and neutralizing chicken scFvs against IBV, which can be safe and economical antibody reagents, can be produced in vitro through prokaryotic expression.
Collapse
Affiliation(s)
- Yuan Lin
- 1 School of Agriculture and Biology, Shanghai Key Lab of Veterinary Biology, Shanghai Jiaotong University , Shanghai, People's Republic of China .,2 School of Basic Medical Sciences, Ningxia Medical University , Yinchuan, People's Republic of China .,3 Department of Internal Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University , Yangling, People's Republic of China
| | - Benqiang Li
- 1 School of Agriculture and Biology, Shanghai Key Lab of Veterinary Biology, Shanghai Jiaotong University , Shanghai, People's Republic of China
| | - Jiaxin Ye
- 1 School of Agriculture and Biology, Shanghai Key Lab of Veterinary Biology, Shanghai Jiaotong University , Shanghai, People's Republic of China
| | - Man Wang
- 1 School of Agriculture and Biology, Shanghai Key Lab of Veterinary Biology, Shanghai Jiaotong University , Shanghai, People's Republic of China
| | - Jianhua Wang
- 3 Department of Internal Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University , Yangling, People's Republic of China
| | | | - Jianguo Zhu
- 1 School of Agriculture and Biology, Shanghai Key Lab of Veterinary Biology, Shanghai Jiaotong University , Shanghai, People's Republic of China
| |
Collapse
|
42
|
Kuhn RJ, Dowd KA, Beth Post C, Pierson TC. Shake, rattle, and roll: Impact of the dynamics of flavivirus particles on their interactions with the host. Virology 2015; 479-480:508-17. [PMID: 25835729 DOI: 10.1016/j.virol.2015.03.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/29/2015] [Accepted: 03/08/2015] [Indexed: 12/20/2022]
Abstract
Remarkable progress in structural biology has equipped virologists with insight into structures of viral proteins and virions at increasingly high resolution. Structural information has been used extensively to address fundamental questions about virtually all aspects of how viruses replicate in cells, interact with the host, and in the design of antiviral compounds. However, many critical aspects of virology exist outside the snapshots captured by traditional methods used to generate high-resolution structures. Like all proteins, viral proteins are not static structures. The conformational flexibility and dynamics of proteins play a significant role in protein-protein interactions, and in the structure and biology of virus particles. This review will discuss the implications of the dynamics of viral proteins on the biology, antigenicity, and immunogenicity of flaviviruses.
Collapse
Affiliation(s)
- Richard J Kuhn
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Kimberly A Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Carol Beth Post
- Departments of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Theodore C Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Barton AJ, Prow NA, Hall RA, Kidd L, Bielefeldt-Ohmann H. A case of Murray Valley encephalitis in a 2-year-old Australian Stock Horse in south-east Queensland. Aust Vet J 2015; 93:53-7. [DOI: 10.1111/avj.12294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2014] [Indexed: 10/23/2022]
Affiliation(s)
- AJ Barton
- School of Veterinary Science; The University of Queensland; Gatton Queensland 4343 Australia
| | - NA Prow
- Australian Infectious Diseases Research Centre; University of Queensland; St Lucia Queensland Australia
| | - RA Hall
- Australian Infectious Diseases Research Centre; University of Queensland; St Lucia Queensland Australia
| | - L Kidd
- School of Veterinary Science; The University of Queensland; Gatton Queensland 4343 Australia
| | - H Bielefeldt-Ohmann
- School of Veterinary Science; The University of Queensland; Gatton Queensland 4343 Australia
- Australian Infectious Diseases Research Centre; University of Queensland; St Lucia Queensland Australia
| |
Collapse
|
44
|
Barzon L, Pacenti M, Ulbert S, Palù G. Latest developments and challenges in the diagnosis of human West Nile virus infection. Expert Rev Anti Infect Ther 2015; 13:327-42. [PMID: 25641365 DOI: 10.1586/14787210.2015.1007044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus responsible for an increasing number of human outbreaks of neuroinvasive disease in Europe and in North America. Notwithstanding the improvements in the knowledge of virus epidemiology and clinical course of infection and the development of new laboratory tests, the diagnosis of WNV infection remains challenging and many cases still remain unrecognized. WNV genome diversity, transient viremia with low viral load and cross-reactivity with other flaviviruses of the antibodies induced by WNV infection are important hurdles that require the diagnosis to be performed by experienced laboratories. Herein, we present and discuss the novel findings on the molecular epidemiology and clinical features of WNV infection in humans with special focus on Europe, the performance of diagnostic tests and the novel methods that have been developed for the diagnosis of WNV infection. A view on how the field might evolve in the future is also presented.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | | | | | | |
Collapse
|
45
|
Variation of the specificity of the human antibody responses after tick-borne encephalitis virus infection and vaccination. J Virol 2014; 88:13845-57. [PMID: 25253341 DOI: 10.1128/jvi.02086-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Tick-borne encephalitis (TBE) virus is an important human-pathogenic flavivirus endemic in large parts of Europe and Central and Eastern Asia. Neutralizing antibodies specific for the viral envelope protein E are believed to mediate long-lasting protection after natural infection and vaccination. To study the specificity and individual variation of human antibody responses, we developed immunoassays with recombinant antigens representing viral surface protein domains and domain combinations. These allowed us to dissect and quantify antibody populations of different fine specificities in sera of TBE patients and vaccinees. Postinfection and postvaccination sera both displayed strong individual variation of antibody titers as well as the relative proportions of antibodies to different domains of E, indicating that the immunodominance patterns observed were strongly influenced by individual-specific factors. The contributions of these antibody populations to virus neutralization were quantified by serum depletion analyses and revealed a significantly biased pattern. Antibodies to domain III, in contrast to what was found in mouse immunization studies with TBE and other flaviviruses, did not play any role in the human neutralizing antibody response, which was dominated by antibodies to domains I and II. Importantly, most of the neutralizing activity could be depleted from sera by a dimeric soluble form of the E protein, which is the building block of the icosahedral herringbone-like shell of flaviviruses, suggesting that antibodies to more complex quaternary epitopes involving residues from adjacent dimers play only a minor role in the total response to natural infection and vaccination in humans. IMPORTANCE Tick-borne encephalitis (TBE) virus is a close relative of yellow fever, dengue, Japanese encephalitis, and West Nile viruses and distributed in large parts of Europe and Central and Eastern Asia. Antibodies to the viral envelope protein E prevent viral attachment and entry into cells and thus mediate virus neutralization and protection from disease. However, the fine specificity and individual variation of neutralizing antibody responses are currently not known. We have therefore developed new in vitro assays for dissecting the antibody populations present in blood serum and determining their contribution to virus neutralization. In our analysis of human postinfection and postvaccination sera, we found an extensive variation of the antibody populations present in sera, indicating substantial influences of individual-specific factors that control the specificity of the antibody response. Our study provides new insights into the immune response to an important human pathogen that is of relevance for the design of novel vaccines.
Collapse
|
46
|
Berxholi K, Ziegler U, Rexhepi A, Schmidt K, Mertens M, Korro K, Cuko A, Angenvoort J, Groschup MH. Indigenous West Nile virus infections in horses in Albania. Transbound Emerg Dis 2014; 60 Suppl 2:45-50. [PMID: 24589101 DOI: 10.1111/tbed.12141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Indexed: 11/30/2022]
Abstract
Serum samples collected from 167 equines of 12 districts in Albania were tested for West Nile virus-specific antibodies by enzyme-linked immunosorbent assay and virus neutralization assay, using WNV lineage 1 and 2. In addition, 95 bird serum samples from Albania and 29 horse samples from Kosovo were tested in ELISA. An overall seroprevalence rate of 22% was found in horses from Albania, whereas no specific antibodies were found in the equine samples from Kosovo and the bird samples. This is the first report indicating WNV infections in animals in Albania, and the first reported seroprevalence study conducted for Kosovo. These results provide evidence for widespread infections of WNV in Albania.
Collapse
Affiliation(s)
- K Berxholi
- Faculty of Veterinary Medicine in Tirana, Tirana, Albania
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Combined effects of the structural heterogeneity and dynamics of flaviviruses on antibody recognition. J Virol 2014; 88:11726-37. [PMID: 25078693 DOI: 10.1128/jvi.01140-14] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Flaviviruses are thought to sample an ensemble of structures at equilibrium. One consequence of a structurally dynamic virion is the observed time-dependent increases in neutralization sensitivity that can occur after prolonged incubation with antibody. Differences in how virus strains "breathe" may affect epitope exposure and contribute to the underlying mechanisms of strain-dependent neutralization sensitivity. Beyond the contribution of structural dynamics, flaviviruses exist as a structurally heterogeneous population due to an inefficient virion maturation process. Here, we investigate the interplay between virion maturation and structural dynamics that contributes to antibody-mediated neutralization. Using West Nile (WNV) and dengue (DENV) viruses produced under conditions that modify the extent of virion maturation, we investigated time-dependent changes in neutralization sensitivity associated with structural dynamics. Our results identify distinct patterns of neutralization against viruses that vary markedly with respect to the extent of virion maturation. Reducing the efficiency of virion maturation resulted in greater time-dependent changes in neutralization potency and a marked reduction in the stability of the particle at 37°C compared to more mature virus. The fact that the neutralization sensitivity of WNV and DENV did not increase after prolonged incubation in the absence of antibody, regardless of virion maturation, suggests that the dynamic processes that govern epitope accessibility on infectious viruses are reversible. Against the backdrop of heterogeneous flavivirus structures, differences in the pathways by which viruses "breathe" represent an additional layer of complexity in understanding maturation state-dependent patterns of antibody recognition. Importance: Flaviviruses exist as a group of related structures at equilibrium that arise from the dynamic motion of E proteins that comprise the antigenic surface of the mature virion. This process has been characterized for numerous viruses and is referred to as viral "breathing." Additionally, flaviviruses are structurally heterogeneous due to an inefficient maturation process responsible for cleaving prM on the virion surface. Both of these mechanisms vary the exposure of antigenic sites available for antibody binding and impact the ability of antibodies to neutralize infection. We demonstrate that virions with inefficient prM cleavage "breathe" differently than their more mature counterparts, resulting in distinct patterns of neutralization sensitivity. Additionally, the maturation state was found to impact virus stability in solution. Our findings provide insight into the complex flavivirus structures that contribute to infection with the potential to impact antibody recognition.
Collapse
|
48
|
Nikolay B, Fall G, Boye CSB, Sall AA, Skern T. Validation of a structural comparison of the antigenic characteristics of Usutu virus and West Nile virus envelope proteins. Virus Res 2014; 189:87-91. [PMID: 24874193 DOI: 10.1016/j.virusres.2014.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
Cross-reactions observed in serological assays between Usutu virus (USUV), the USUV outlier subtype strain CAR_1969 and West Nile virus (WNV) suggest that they share antigenic features amongst their structural outer proteins especially envelope (E) proteins. To investigate the molecular background of this observation, we compared the E protein sequences of seven USUV strains, USUV subtype strain CAR_1969 and WNV strain 2471, focusing on the binding site defined by the WNV neutralizing antibody E16. USUV SouthAfrica_1959 differs from WNV 2741 in three of four residues critical for E16 antibody binding and five of the 12 additionally involved residues. In contrast, USUV subtype CAR_1969 differs from WNV 2741 in two critical residues and five additional residues. Furthermore, USUV subtype CAR_1969 differs from other USUV strains in two critical residues. E16 antibody binding has previously been shown to be highly specific for WNV; thus, the observed variation in amino acid residues suggests that the region corresponding to the WNV E16 epitope is probably not responsible for the observed cross-reactions between WNV and USUV. Seroneutralisation assays confirmed these findings for WNV and USUV, however, showed occurring cross-reactivity between WNV and USUV subtype CAR_1969 at high antibody titers. The sequence diversity in this region might also explain some of the observed different antigenic characteristics of USUV strains and USUV subtype CAR_1969. A therapeutic effect of E16 antibody has been described in WNV infected mice; therefore, a USUV specific antibody generated against the region corresponding to the WNV E16 binding site might represent an approach for treating USUV infections.
Collapse
Affiliation(s)
- Birgit Nikolay
- Unité des arbovirus et virus de fièvres hémorragiques, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220 Dakar, Senegal; Faculty of Life Sciences, University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria; Faculté de Médecine, Pharmacie, Odonto-stomatologie, Université Cheikh Anta Diop Dakar, 24 Avenue Cheikh Anta Diop, Dakar, Senegal.
| | - Gamou Fall
- Unité des arbovirus et virus de fièvres hémorragiques, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220 Dakar, Senegal.
| | - Cheikh Saad Bouh Boye
- Faculté de Médecine, Pharmacie, Odonto-stomatologie, Université Cheikh Anta Diop Dakar, 24 Avenue Cheikh Anta Diop, Dakar, Senegal.
| | - Amadou Alpha Sall
- Unité des arbovirus et virus de fièvres hémorragiques, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220 Dakar, Senegal.
| | - Tim Skern
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria.
| |
Collapse
|
49
|
Chabierski S, Barzon L, Papa A, Niedrig M, Bramson JL, Richner JM, Palù G, Diamond MS, Ulbert S. Distinguishing West Nile virus infection using a recombinant envelope protein with mutations in the conserved fusion-loop. BMC Infect Dis 2014; 14:246. [PMID: 24884467 PMCID: PMC4028281 DOI: 10.1186/1471-2334-14-246] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND West Nile Virus (WNV) is an emerging mosquito-transmitted flavivirus that continues to spread and cause disease throughout several parts of the world, including Europe and the Americas. Specific diagnosis of WNV infections using current serological testing is complicated by the high degree of cross-reactivity between antibodies against other clinically relevant flaviviruses, including dengue, tick-borne encephalitis (TBEV), Japanese encephalitis (JEV), and yellow fever (YFV) viruses. Cross-reactivity is particularly problematic in areas where different flaviviruses co-circulate or in populations that have been immunized with vaccines against TBEV, JEV, or YFV. The majority of cross-reactive antibodies against the immunodominant flavivirus envelope (E) protein target a conserved epitope in the fusion loop at the distal end of domain II. METHODS We tested a loss-of-function bacterially expressed recombinant WNV E protein containing mutations in the fusion loop and an adjacent loop domain as a possible diagnostic reagent. By comparing the binding of sera from humans infected with WNV or other flaviviruses to the wild type and the mutant E proteins, we analyzed the potential of this technology to specifically detect WNV antibodies. RESULTS Using this system, we could reliably determine WNV infections. Antibodies from WNV-infected individuals bound equally well to the wild type and the mutant protein. In contrast, sera from persons infected with other flaviviruses showed significantly decreased binding to the mutant protein. By calculating the mean differences between antibody signals detected using the wild type and the mutant proteins, a value could be assigned for each of the flaviviruses, which distinguished their pattern of reactivity. CONCLUSIONS Recombinant mutant E proteins can be used to discriminate infections with WNV from those with other flaviviruses. The data have important implications for the development of improved, specific serological assays for the detection of WNV antibodies in regions where other flaviviruses co-circulate or in populations that are immunized with other flavivirus vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sebastian Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany.
| |
Collapse
|
50
|
Amanna IJ, Slifka MK. Current trends in West Nile virus vaccine development. Expert Rev Vaccines 2014; 13:589-608. [PMID: 24689659 DOI: 10.1586/14760584.2014.906309] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that has become endemic in the United States. From 1999-2012, there have been 37088 reported cases of WNV and 1549 deaths, resulting in a 4.2% case-fatality rate. Despite development of effective WNV vaccines for horses, there is no vaccine to prevent human WNV infection. Several vaccines have been tested in preclinical studies and to date there have been eight clinical trials, with promising results in terms of safety and induction of antiviral immunity. Although mass vaccination is unlikely to be cost effective, implementation of a targeted vaccine program may be feasible if a safe and effective vaccine can be brought to market. Further evaluation of new and advanced vaccine candidates is strongly encouraged.
Collapse
Affiliation(s)
- Ian J Amanna
- Najít Technologies, Inc., 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | |
Collapse
|