1
|
Cao Z, Yang Y, Zhang S, Zhang T, Lü P, Chen K. Liquid-liquid phase separation in viral infection: From the occurrence and function to treatment potentials. Colloids Surf B Biointerfaces 2025; 246:114385. [PMID: 39561518 DOI: 10.1016/j.colsurfb.2024.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Liquid-liquid phase separation (LLPS) of biomacromolecules, as a widespread cellular functional mechanism, is closely related to life processes, and is also commonly present in the lifecycle of viruses. Viral infection often leads to the recombination and redistribution of intracellular components to form biomacromolecule condensates assembled from viral replication-related proteins and intracellular components, which plays an important role in the process of viral infection. In this review, the key and influencing factors of LLPS are generalized, which mainly depend on various molecular interactions and environmental conditions in solution. Meanwhile, some examples of viruses utilizing LLPS are summarized, which are conducive to further understanding the subtle and complex biological regulatory processes between phase condensation and viruses. Finally, some representative antiviral drugs targeting phase separation that have been discovered are also outlined. In conclusion, in-depth study of the role of LLPS in viral infection is helpful to understand the mechanisms of virus-related diseases from a new perspective, and also provide a new therapeutic strategy for future treatments.
Collapse
Affiliation(s)
- Zhaoxiao Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Simeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Tiancheng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Shin D, Urbanek ME, Larson HH, Moussa AJ, Lee KY, Baker DL, Standen-Bloom E, Ramachandran S, Bogdanoff D, Cadwell CR, Nowakowski TJ. High-Complexity Barcoded Rabies Virus for Scalable Circuit Mapping Using Single-Cell and Single-Nucleus Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.01.616167. [PMID: 39713304 PMCID: PMC11661106 DOI: 10.1101/2024.10.01.616167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Single cell genomics has revolutionized our understanding of neuronal cell types. However, scalable technologies for probing single-cell connectivity are lacking, and we are just beginning to understand how molecularly defined cell types are organized into functional circuits. Here, we describe a protocol to generate high-complexity barcoded rabies virus (RV) for scalable circuit mapping from tens of thousands of individual starter cells in parallel. In addition, we introduce a strategy for targeting RV-encoded barcode transcripts to the nucleus so that they can be read out using single-nucleus RNA sequencing (snRNA-seq). We apply this tool in organotypic slice cultures of the developing human cerebral cortex, which reveals the emergence of cell type- specific circuit motifs in midgestation. By leveraging the power and throughput of single cell genomics for mapping synaptic connectivity, we chart a path forward for scalable circuit mapping of molecularly-defined cell types in healthy and disease states.
Collapse
|
3
|
Katoh H, Kimura R, Sekizuka T, Matsuoka K, Hosogi M, Kitai Y, Akahori Y, Kato F, Kataoka M, Kobayashi H, Nagata N, Suzuki T, Ohkawa Y, Oki S, Takeda M. Structural and molecular properties of mumps virus inclusion bodies. SCIENCE ADVANCES 2024; 10:eadr0359. [PMID: 39642233 PMCID: PMC11623304 DOI: 10.1126/sciadv.adr0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/31/2024] [Indexed: 12/08/2024]
Abstract
Viral RNA synthesis of mononegaviruses occurs in cytoplasmic membraneless organelles called inclusion bodies (IBs). Here, we report that IBs of mumps virus (MuV), which is the causative agent of mumps and belongs to the family Paramyxoviridae, displayed liquid organelle properties formed by liquid-liquid phase separation. Super-resolution microscopic analysis of MuV IBs demonstrated that nucleocapsid and phospho (P)-proteins formed a cage-like structure and that the viral polymerase adopted a reticular pattern and colocalized with viral RNAs. In addition, we characterized host RNAs localized in MuV IBs by a spatial transcriptome analysis, and found that RNAs containing G-quadruplex motif sequences (G4-RNAs) were concentrated. An in vitro phase separation assay showed that the G4-RNAs interacted with the P protein and enhanced condensation in P droplets. Together, our data show that MuV generates IBs with a characteristic cage-like structure and host G4-RNAs play an important role in forming MuV IBs.
Collapse
Affiliation(s)
- Hiroshi Katoh
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryuichi Kimura
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kohei Matsuoka
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mika Hosogi
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Kitai
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukiko Akahori
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Fumihiro Kato
- Department of Virology III, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hirotaka Kobayashi
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-0054, Japan
| | - Shinya Oki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Makoto Takeda
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Bouchama F, Mubashira K, Mas C, Le Roy A, Ebel C, Bourhis JM, Zemb T, Prevost S, Jamin M. Rabies Virus Phosphoprotein Exhibits Thermoresponsive Phase Separation with a Lower Critical Solution Temperature. J Mol Biol 2024; 437:168889. [PMID: 39645030 DOI: 10.1016/j.jmb.2024.168889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/06/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Rabies virus (RABV) generates membrane-less liquid organelles (Negri bodies) in the cytoplasm of its host cell, where genome transcription and replication and nucleocapsid assembly take place, but the mechanisms of their assembly and maturation remain to be explained. An essential component of the viral RNA synthesizing machine, the phosphoprotein (P), acts as a scaffold protein for the assembly of these condensates. This intrinsically disordered protein forms star-shaped dimers with N-terminal negatively charged flexible arms and C-terminal globular domains exhibiting a large dipole moment. Our study shows that in vitro self-association of RABV P drives a complex thermoresponsive phase separation with a lower critical solution temperature. Protein dimers assemble already below the saturation concentration, and condensation is driven by attractive conformation-specific interactions leading to reentrant liquid phase separation over a narrow range of salt concentration. We propose a minimal molecular model in which P can adopt three limit conformational states and the disordered N-terminal arms control the interactions between giant dipoles that is consistent with our observations.
Collapse
Affiliation(s)
- Fella Bouchama
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Khadeeja Mubashira
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Caroline Mas
- Université Grenoble Alpes, CNRS, CEA, EMBL, ISBG, 38000, Grenoble, France
| | - Aline Le Roy
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Christine Ebel
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Jean-Marie Bourhis
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Thomas Zemb
- Institut de Chimie Séparatives de Marcoule, CEA-CEA/CNRS/UM, 30290 Bagnols-sur-cèze, France
| | | | - Marc Jamin
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000, Grenoble, France.
| |
Collapse
|
5
|
MARKBORDEE B, CABIC AGB, IAMOHBHARS N, SHIWA-SUDO N, KIMITSUKI K, ESPINO MJM, NACION LB, MANALO DL, INOUE S, PARK CH. Histopathological and immunohistochemical examination of the brains of rabid dogs in the Philippines. J Vet Med Sci 2024; 86:1243-1251. [PMID: 39384379 PMCID: PMC11612245 DOI: 10.1292/jvms.24-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024] Open
Abstract
Dogs are the primary transmitters of the rabies virus in the Philippines; however, to the best of our knowledge, no published studies have examined its detailed neuropathology. The present study analyzed the neuropathology in the cerebrum, hippocampus, thalamus, and brainstem of 70 rabid dogs with confirmed rabies infection in the Philippines. Histopathologically, inclusion bodies (Negri bodies) were detected in the hippocampus (87.14%), cerebrum (70%), and thalamus (2.86%) of the dogs. The inclusion bodies in the cytoplasm of the hippocampal and cerebral cortical pyramidal cells were large and round to oval in shape. Whereas the inclusion bodies in the neurons of the thalamus and brainstem were small, fine, and granular. In contrast to the high prevalence of inclusion bodies in the hippocampus and cerebrum, perivascular cuffing and glial nodules were more prominent in the thalamus and brainstem. Immunohistochemically using the anti-phosphoprotein (anti-P), the sensitivity of viral antigen detection was 100% in the hippocampus, thalamus, and brainstem and 97.14% in the cerebrum. Our findings confirmed that observing the inclusion bodies in the hippocampus and cerebral cortex by histopathology could facilitate rabies diagnosis in the dogs in the Philippines, and furthermore, using immunohistochemistry on the brainstem could also be useful to detect rabies virus antigens with high sensitivity.
Collapse
Affiliation(s)
- Boonkanit MARKBORDEE
- Department of Veterinary Pathology, School of Veterinary
Medicine, Kitasato University, Aomori, Japan
| | - Alpha Grace B CABIC
- Research Institute for Tropical Medicine, Department of
Health, Muntinlupa City, Philippines
| | - Nuttipa IAMOHBHARS
- Department of Veterinary Pathology, School of Veterinary
Medicine, Kitasato University, Aomori, Japan
| | - Nozomi SHIWA-SUDO
- Department of Pathology, National Institute of Infectious
Diseases, Tokyo, Japan
| | - Kazunori KIMITSUKI
- Department of Microbiology, Faculty of Medicine, Oita
University, Oita, Japan
| | - Mark Joseph M ESPINO
- Research Institute for Tropical Medicine, Department of
Health, Muntinlupa City, Philippines
| | - Leilanie B NACION
- Research Institute for Tropical Medicine, Department of
Health, Muntinlupa City, Philippines
| | | | - Satoshi INOUE
- Department of Veterinary Pathology, School of Veterinary
Medicine, Kitasato University, Aomori, Japan
- Department of Veterinary Science, National Institute of
Infectious Diseases, Tokyo, Japan
| | - Chun-Ho PARK
- Department of Veterinary Pathology, School of Veterinary
Medicine, Kitasato University, Aomori, Japan
| |
Collapse
|
6
|
Kiflu AB. The Immune Escape Strategy of Rabies Virus and Its Pathogenicity Mechanisms. Viruses 2024; 16:1774. [PMID: 39599888 PMCID: PMC11598914 DOI: 10.3390/v16111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
In contrast to most other rhabdoviruses, which spread by insect vectors, the rabies virus (RABV) is a very unusual member of the Rhabdoviridae family, since it has evolved to be fully adapted to warm-blooded hosts and spread directly between them. There are differences in the immune responses to laboratory-attenuated RABV and wild-type rabies virus infections. Various investigations showed that whilst laboratory-attenuated RABV elicits an innate immune response, wild-type RABV evades detection. Pathogenic RABV infection bypasses immune response by antagonizing interferon induction, which prevents downstream signal activation and impairs antiviral proteins and inflammatory cytokines production that could eliminate the virus. On the contrary, non-pathogenic RABV infection leads to immune activation and suppresses the disease. Apart from that, through recruiting leukocytes into the central nervous system (CNS) and enhancing the blood-brain barrier (BBB) permeability, which are vital factors for viral clearance and protection, cytokines/chemokines released during RABV infection play a critical role in suppressing the disease. Furthermore, early apoptosis of neural cells limit replication and spread of avirulent RABV infection, but street RABV strains infection cause delayed apoptosis that help them spread further to healthy cells and circumvent early immune exposure. Similarly, a cellular regulation mechanism called autophagy eliminates unused or damaged cytoplasmic materials and destroy microbes by delivering them to the lysosomes as part of a nonspecific immune defense mechanism. Infection with laboratory fixed RABV strains lead to complete autophagy and the viruses are eliminated. But incomplete autophagy during pathogenic RABV infection failed to destroy the viruses and might aid the virus in dodging detection by antigen-presenting cells, which could otherwise elicit adaptive immune activation. Pathogenic RABV P and M proteins, as well as high concentration of nitric oxide, which is produced during rabies virus infection, inhibits activities of mitochondrial proteins, which triggers the generation of reactive oxygen species, resulting in oxidative stress, contributing to mitochondrial malfunction and, finally, neuron process degeneration.
Collapse
Affiliation(s)
- Abraha Bahlbi Kiflu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China;
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Ribeiro EDA, Leyrat C, Gérard FCA, Jamin M. Dimerization of Rabies Virus Phosphoprotein and Phosphorylation of Its Nucleoprotein Enhance Their Binding Affinity. Viruses 2024; 16:1735. [PMID: 39599850 PMCID: PMC11599015 DOI: 10.3390/v16111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
The dynamic interplay between a multimeric phosphoprotein (P) and polymeric nucleoprotein (N) in complex with the viral RNA is at the heart of the functioning of the RNA-synthesizing machine of negative-sense RNA viruses of the order Mononegavirales. P multimerization and N phosphorylation are often cited as key factors in regulating these interactions, but a detailed understanding of the molecular mechanisms is not yet available. Working with recombinant rabies virus (RABV) N and P proteins and using mainly surface plasmon resonance, we measured the binding interactions of full-length P dimers and of two monomeric fragments of either circular or linear N-RNA complexes, and we analyzed the equilibrium binding isotherms using different models. We found that RABV P binds with nanomolar affinity to both circular and linear N-RNA complexes and that the dimerization of P protein enhances the binding affinity by 15-30-fold as compared to the monomeric fragments, but less than expected for a bivalent ligand, in which the binding domains are connected by a flexible linker. We also showed that the phosphorylation of N at Ser389 creates high-affinity sites on the polymeric N-RNA complex that enhance the binding affinity of P by a factor of about 360.
Collapse
Affiliation(s)
| | | | | | - Marc Jamin
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France; (E.d.A.R.J.); (C.L.); (F.C.A.G.)
| |
Collapse
|
8
|
Biligiri KK, Sharma NR, Mohanty A, Sarkar DP, Vemula PK, Rampalli S. A cytoplasmic form of EHMT1N methylates viral proteins to enable inclusion body maturation and efficient viral replication. PLoS Biol 2024; 22:e3002871. [PMID: 39509467 PMCID: PMC11575796 DOI: 10.1371/journal.pbio.3002871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 11/19/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024] Open
Abstract
Protein lysine methyltransferases (PKMTs) methylate histone and non-histone proteins to regulate biological outcomes such as development and disease including viral infection. While PKMTs have been extensively studied for modulating the antiviral responses via host gene regulation, their role in methylation of proteins encoded by viruses and its impact on host-pathogen interactions remain poorly understood. In this study, we discovered distinct nucleo-cytoplasmic form of euchromatic histone methyltransferase 1 (EHMT1N/C), a PKMT, that phase separates into viral inclusion bodies (IBs) upon cytoplasmic RNA-virus infection (Sendai Virus). EHMT1N/C interacts with cytoplasmic EHMT2 and methylates SeV-Nucleoprotein upon infection. Elevated nucleoprotein methylation during infection correlated with coalescence of small IBs into large mature platforms for efficient replication. Inhibition of EHMT activity by pharmacological inhibitors or genetic depletion of EHMT1N/C reduced the size of IBs with a concomitant reduction in replication. Additionally, we also found that EHMT1 condensation is not restricted to SeV alone but was also seen upon pathogenic RNA viral infections caused by Chandipura and Dengue virus. Collectively, our work elucidates a new mechanism by which cytoplasmic EHMT1 acts as proviral host factor to regulate host-pathogen interaction.
Collapse
Affiliation(s)
- Kriti Kestur Biligiri
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad; India
| | - Nishi Raj Sharma
- Department of Education and Research, AERF, Artemis Hospitals, Gurugram, India
| | - Abhishek Mohanty
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore, India
| | - Debi Prasad Sarkar
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Palaj, Gujarat, India
| | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore, India
| | - Shravanti Rampalli
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad; India
| |
Collapse
|
9
|
Glon D, Léonardon B, Guillemot A, Albertini A, Lagaudrière-Gesbert C, Gaudin Y. Biomolecular condensates with liquid properties formed during viral infections. Microbes Infect 2024; 26:105402. [PMID: 39127089 DOI: 10.1016/j.micinf.2024.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
During a viral infection, several membraneless compartments with liquid properties are formed. They can be of viral origin concentrating viral proteins and nucleic acids, and harboring essential stages of the viral cycle, or of cellular origin containing components involved in innate immunity. This is a paradigm shift in our understanding of viral replication and the interaction between viruses and innate cellular immunity.
Collapse
Affiliation(s)
- Damien Glon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Benjamin Léonardon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Ariane Guillemot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Aurélie Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Wang PH, Xing L. The roles of rabies virus structural proteins in immune evasion and implications for vaccine development. Can J Microbiol 2024; 70:461-469. [PMID: 39297428 DOI: 10.1139/cjm-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Rabies is a zoonotic infectious disease that targets the nervous system of human and animals and has about 100% fatality rate without treatment. Rabies virus is a bullet-like viral particle composed of five structural proteins, including nucleoprotein (N), phosphorylated protein (P), matrix protein (M), glycoprotein (G), and large subunit (L) of RNA-dependent RNA polymerase. These multifunctional viral proteins also play critical roles in the immune escape by inhibiting specific immune responses in the host, resulting in massive replication of the virus in the nervous system and abnormal behaviors of patients such as brain dysfunction and hydrophobia, which ultimately lead to the death of patients. Herein, the role of five structural proteins of rabies virus in the viral replication and immune escape and its implication for the development of vaccines were systemically reviewed, so as to shed light on the understanding of pathogenic mechanism of rabies virus.
Collapse
Affiliation(s)
- Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| |
Collapse
|
11
|
BenDavid E, Yang C, Zhou Y, Pfaller CK, Samuel CE, Ma D. Host WD repeat-containing protein 5 inhibits protein kinase R-mediated integrated stress response during measles virus infection. J Virol 2024; 98:e0102024. [PMID: 39194235 PMCID: PMC11406981 DOI: 10.1128/jvi.01020-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Some negative-sense RNA viruses, including measles virus (MeV), share the characteristic that during their infection cycle, cytoplasmic inclusion bodies (IBs) are formed where components of the viral replication machinery are concentrated. As a foci of viral replication, how IBs act to enhance the efficiency of infection by affecting virus-host interactions remains an important topic of investigation. We previously established that upon MeV infection, the epigenetic host protein, WD repeat-containing protein 5 (WDR5), translocates to cytoplasmic viral IBs and facilitates MeV replication. We now show that WDR5 is recruited to IBs by forming a complex with IB-associated MeV phosphoprotein via a conserved binding motif located on the surface of WDR5. Furthermore, we provide evidence that WDR5 promotes viral replication by suppressing a major innate immune response pathway, the double-stranded RNA-mediated activation of protein kinase R and integrated stress response. IMPORTANCE MeV is a pathogen that remains a global concern, with an estimated 9 million measles cases and 128,000 measles deaths in 2022 according to the World Health Organization. A large population of the world still has inadequate access to the effective vaccine against the exceptionally transmissible MeV. Measles disease is characterized by a high morbidity in children and in immunocompromised individuals. An important area of research for negative-sense RNA viruses, including MeV, is the characterization of the complex interactome between virus and host occurring at cytoplasmic IBs where viral replication occurs. Despite the progress made in understanding IB structures, little is known regarding the virus-host interactions within IBs and the role of these interactions in promoting viral replication and antagonizing host innate immunity. Herein we provide evidence suggesting a model by which MeV IBs utilize the host protein WDR5 to suppress the protein kinase R-integrated stress response pathway.
Collapse
Affiliation(s)
- Ethan BenDavid
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Chuyuan Yang
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Yuqin Zhou
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Christian K Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| | - Dzwokai Ma
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| |
Collapse
|
12
|
Wignall-Fleming EB, Carlos TS, Randall RE. Liquid-liquid phase inclusion bodies in acute and persistent parainfluenaza virus type 5 infections. J Gen Virol 2024; 105. [PMID: 39264707 PMCID: PMC11392044 DOI: 10.1099/jgv.0.002021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Cytoplasmic inclusion bodies (IBs) are a common feature of single-stranded, non-segmented, negative-strand RNA virus (Mononegavirales) infections and are thought to be regions of active virus transcription and replication. Here we followed the dynamics of IB formation and maintenance in cells infected with persistent and lytic/acute variants of the paramyxovirus, parainfluenza virus type 5 (PIV5). We show that there is a rapid increase in the number of small inclusions bodies up until approximately 12 h post-infection. Thereafter the number of inclusion bodies decreases but they increase in size, presumably due to the fusion of these liquid organelles that can be disrupted by osmotically shocking cells. No obvious differences were observed at these times between inclusion body formation in cells infected with lytic/acute and persistent viruses. IBs are also readily detected in cells persistently infected with PIV5, including in cells in which there is little or no ongoing virus transcription or replication. In situ hybridization shows that genomic RNA is primarily located in IBs, whilst viral mRNA is more diffusely distributed throughout the cytoplasm. Some, but not all, IBs show incorporation of 5-ethynyl-uridine (5EU), which is integrated into newly synthesized RNA, at early times post-infection. These results strongly suggest that, although genomic RNA is present in all IBs, IBs are not continuously active sites of virus transcription and replication. Disruption of IBs by osmotically shocking persistently infected cells does not increase virus protein synthesis, suggesting that in persistently infected cells most of the virus genomes are in a repressed state. The role of IBs in PIV5 replication and the establishment and maintenance of persistence is discussed.
Collapse
Affiliation(s)
- E B Wignall-Fleming
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| | - T S Carlos
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
- Present address: Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - R E Randall
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
13
|
Roden CA, Gladfelter AS. Experimental Considerations for the Evaluation of Viral Biomolecular Condensates. Annu Rev Virol 2024; 11:105-124. [PMID: 39326881 DOI: 10.1146/annurev-virology-093022-010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Biomolecular condensates are nonmembrane-bound assemblies of biological polymers such as protein and nucleic acids. An increasingly accepted paradigm across the viral tree of life is (a) that viruses form biomolecular condensates and (b) that the formation is required for the virus. Condensates can promote viral replication by promoting packaging, genome compaction, membrane bending, and co-opting of host translation. This review is primarily concerned with exploring methodologies for assessing virally encoded biomolecular condensates. The goal of this review is to provide an experimental framework for virologists to consider when designing experiments to (a) identify viral condensates and their components, (b) reconstitute condensation cell free from minimal components, (c) ask questions about what conditions lead to condensation, (d) map these questions back to the viral life cycle, and (e) design and test inhibitors/modulators of condensation as potential therapeutics. This experimental framework attempts to integrate virology, cell biology, and biochemistry approaches.
Collapse
Affiliation(s)
- Christine A Roden
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Amy S Gladfelter
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA;
| |
Collapse
|
14
|
Kawaguchi N, Itakura Y, Intaruck K, Ariizumi T, Harada M, Inoue S, Maeda K, Ito N, Hall WW, Sawa H, Orba Y, Sasaki M. Reverse genetic approaches allowing the characterization of the rabies virus street strain belonging to the SEA4 subclade. Sci Rep 2024; 14:18509. [PMID: 39122768 PMCID: PMC11316049 DOI: 10.1038/s41598-024-69613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024] Open
Abstract
Rabies virus (RABV) is the causative agent of rabies, a lethal neurological disease in mammals. RABV strains can be classified into fixed strains (laboratory strains) and street strains (field/clinical strains), which have different properties including cell tropism and neuroinvasiveness. RABV Toyohashi strain is a street strain isolated in Japan from an imported case which had been bitten by rabid dog in the Philippines. In order to facilitate molecular studies of RABV, we established a reverse genetics (RG) system for the study of the Toyohashi strain. The recombinant virus was obtained from a cDNA clone of Toyohashi strain and exhibited similar growth efficiency as the original virus in cultured cell lines. Both the original and recombinant strains showed similar pathogenicity with high neuroinvasiveness in mice, and the infected mice developed a long and inconsistent incubation period, which is characteristic of street strains. We also generated a recombinant Toyohashi strain expressing viral phosphoprotein (P protein) fused with the fluorescent protein mCherry, and tracked the intracellular dynamics of the viral P protein using live-cell imaging. The presented reverse genetics system for Toyohashi strain will be a useful tool to explore the fundamental molecular mechanisms of the replication of RABV street strains.
Collapse
Affiliation(s)
- Nijiho Kawaguchi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yukari Itakura
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takuma Ariizumi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michiko Harada
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - William W Hall
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- National Virus Reference Laboratory, School of Medicine, University College of Dublin, Dublin, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
15
|
Ashraf HN, Uversky VN. Intrinsic Disorder in the Host Proteins Entrapped in Rabies Virus Particles. Viruses 2024; 16:916. [PMID: 38932209 PMCID: PMC11209445 DOI: 10.3390/v16060916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
A proteomics analysis of purified rabies virus (RABV) revealed 47 entrapped host proteins within the viral particles. Out of these, 11 proteins were highly disordered. Our study was particularly focused on five of the RABV-entrapped mouse proteins with the highest levels of disorder: Neuromodulin, Chmp4b, DnaJB6, Vps37B, and Wasl. We extensively utilized bioinformatics tools, such as FuzDrop, D2P2, UniProt, RIDAO, STRING, AlphaFold, and ELM, for a comprehensive analysis of the intrinsic disorder propensity of these proteins. Our analysis suggested that these disordered host proteins might play a significant role in facilitating the rabies virus pathogenicity, immune system evasion, and the development of antiviral drug resistance. Our study highlighted the complex interaction of the virus with its host, with a focus on how the intrinsic disorder can play a crucial role in virus pathogenic processes, and suggested that these intrinsically disordered proteins (IDPs) and disorder-related host interactions can also be a potential target for therapeutic strategies.
Collapse
Affiliation(s)
- Hafiza Nimra Ashraf
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
16
|
Vetter J, Lee M, Eichwald C. The Role of the Host Cytoskeleton in the Formation and Dynamics of Rotavirus Viroplasms. Viruses 2024; 16:668. [PMID: 38793550 PMCID: PMC11125917 DOI: 10.3390/v16050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Rotavirus (RV) replicates within viroplasms, membraneless electron-dense globular cytosolic inclusions with liquid-liquid phase properties. In these structures occur the virus transcription, replication, and packaging of the virus genome in newly assembled double-layered particles. The viroplasms are composed of virus proteins (NSP2, NSP5, NSP4, VP1, VP2, VP3, and VP6), single- and double-stranded virus RNAs, and host components such as microtubules, perilipin-1, and chaperonins. The formation, coalescence, maintenance, and perinuclear localization of viroplasms rely on their association with the cytoskeleton. A stabilized microtubule network involving microtubules and kinesin Eg5 and dynein molecular motors is associated with NSP5, NSP2, and VP2, facilitating dynamic processes such as viroplasm coalescence and perinuclear localization. Key post-translation modifications, particularly phosphorylation events of RV proteins NSP5 and NSP2, play pivotal roles in orchestrating these interactions. Actin filaments also contribute, triggering the formation of the viroplasms through the association of soluble cytosolic VP4 with actin and the molecular motor myosin. This review explores the evolving understanding of RV replication, emphasizing the host requirements essential for viroplasm formation and highlighting their dynamic interplay within the host cell.
Collapse
Affiliation(s)
| | | | - Catherine Eichwald
- Institute of Virology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.L.)
| |
Collapse
|
17
|
Khalfi P, Denis Z, McKellar J, Merolla G, Chavey C, Ursic-Bedoya J, Soppa L, Szirovicza L, Hetzel U, Dufourt J, Leyrat C, Goldmann N, Goto K, Verrier E, Baumert TF, Glebe D, Courgnaud V, Gregoire D, Hepojoki J, Majzoub K. Comparative analysis of human, rodent and snake deltavirus replication. PLoS Pathog 2024; 20:e1012060. [PMID: 38442126 PMCID: PMC10942263 DOI: 10.1371/journal.ppat.1012060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/15/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
The recent discovery of Hepatitis D (HDV)-like viruses across a wide range of taxa led to the establishment of the Kolmioviridae family. Recent studies suggest that kolmiovirids can be satellites of viruses other than Hepatitis B virus (HBV), challenging the strict HBV/HDV-association dogma. Studying whether kolmiovirids are able to replicate in any animal cell they enter is essential to assess their zoonotic potential. Here, we compared replication of three kolmiovirids: HDV, rodent (RDeV) and snake (SDeV) deltavirus in vitro and in vivo. We show that SDeV has the narrowest and RDeV the broadest host cell range. High resolution imaging of cells persistently replicating these viruses revealed nuclear viral hubs with a peculiar RNA-protein organization. Finally, in vivo hydrodynamic delivery of viral replicons showed that both HDV and RDeV, but not SDeV, efficiently replicate in mouse liver, forming massive nuclear viral hubs. Our comparative analysis lays the foundation for the discovery of specific host factors controlling Kolmioviridae host-shifting.
Collapse
Affiliation(s)
- Pierre Khalfi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Zoé Denis
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Joe McKellar
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Giovanni Merolla
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Carine Chavey
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - José Ursic-Bedoya
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Department of hepato-gastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi University Hospital, Montpellier, France
| | - Lena Soppa
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Leonora Szirovicza
- Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Jeremy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, Montpellier, France
| | - Cedric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Kaku Goto
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Eloi Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Valérie Courgnaud
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Damien Gregoire
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Jussi Hepojoki
- Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
18
|
Zhang C, Wu H, Feng H, Zhang YA, Tu J. Grass carp reovirus VP56 and VP35 induce formation of viral inclusion bodies for replication. iScience 2024; 27:108684. [PMID: 38188516 PMCID: PMC10767200 DOI: 10.1016/j.isci.2023.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Viral inclusion bodies (VIBs) are subcellular structures required for efficient viral replication. How type II grass carp reovirus (GCRV-II), the mainly prevalent strain, forms VIBs is unknown. In this study, we found that GCRV-II infection induced punctate VIBs in grass carp ovary (GCO) cells and that non-structural protein 38 (NS38) functioned as a participant in VIB formation. Furthermore, VP56 and VP35 induced VIBs and recruited other viral proteins via the N-terminal of VP56 and the middle domain of VP35. Additionally, we found that the newly synthesized viral RNAs co-localized with VP56 and VP35 in VIBs during infection. Taken together, VP56 and VP35 induce VIB formation and recruit other viral proteins and viral RNAs to the VIBs for viral replication, which helps identify new targets for developing anti-GCRV-II drugs to disrupt viral replication.
Collapse
Affiliation(s)
- Chu Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jiagang Tu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Sabsay KR, te Velthuis AJW. Negative and ambisense RNA virus ribonucleocapsids: more than protective armor. Microbiol Mol Biol Rev 2023; 87:e0008223. [PMID: 37750733 PMCID: PMC10732063 DOI: 10.1128/mmbr.00082-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
SUMMARYNegative and ambisense RNA viruses are the causative agents of important human diseases such as influenza, measles, Lassa fever, and Ebola hemorrhagic fever. The viral genome of these RNA viruses consists of one or more single-stranded RNA molecules that are encapsidated by viral nucleocapsid proteins to form a ribonucleoprotein complex (RNP). This RNP acts as protection, as a scaffold for RNA folding, and as the context for viral replication and transcription by a viral RNA polymerase. However, the roles of the viral nucleoproteins extend beyond these functions during the viral infection cycle. Recent advances in structural biology techniques and analysis methods have provided new insights into the formation, function, dynamics, and evolution of negative sense virus nucleocapsid proteins, as well as the role that they play in host innate immune responses against viral infection. In this review, we discuss the various roles of nucleocapsid proteins, both in the context of RNPs and in RNA-free states, as well as the open questions that remain.
Collapse
Affiliation(s)
- Kimberly R. Sabsay
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Aartjan J. W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
20
|
Bodmer BS, Vallbracht M, Ushakov DS, Wendt L, Chlanda P, Hoenen T. Ebola virus inclusion bodies are liquid organelles whose formation is facilitated by nucleoprotein oligomerization. Emerg Microbes Infect 2023; 12:2223727. [PMID: 37306660 PMCID: PMC10288931 DOI: 10.1080/22221751.2023.2223727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Viral RNA synthesis of several non-segmented, negative-sense RNA viruses (NNSVs) takes place in inclusion bodies (IBs) that show properties of liquid organelles, which are formed by liquid-liquid phase separation of scaffold proteins. It is believed that this is driven by intrinsically disordered regions (IDRs) and/or multiple copies of interaction domains, which for NNSVs are usually located in their nucleo - and phosphoproteins. In contrast to other NNSVs, the Ebola virus (EBOV) nucleoprotein NP alone is sufficient to form IBs without the need for a phosphoprotein, and to facilitate the recruitment of other viral proteins into these structures. While it has been proposed that also EBOV IBs are liquid organelles, this has so far not been formally demonstrated. Here we used a combination of live cell microscopy, fluorescence recovery after photobleaching assays, and mutagenesis approaches together with reverse genetics-based generation of recombinant viruses to study the formation of EBOV IBs. Our results demonstrate that EBOV IBs are indeed liquid organelles, and that oligomerization but not IDRs of the EBOV nucleoprotein plays a key role in their formation. Additionally, VP35 (often considered the phosphoprotein-equivalent of EBOV) is not essential for IB formation, but alters their liquid behaviour. These findings define the molecular mechanism for the formation of EBOV IBs, which play a central role in the life cycle of this deadly virus.
Collapse
Affiliation(s)
- Bianca S. Bodmer
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Melina Vallbracht
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dmitry S. Ushakov
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Lisa Wendt
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Petr Chlanda
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Hoenen
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
21
|
Wu C, Wagner ND, Moyle AB, Feng A, Sharma N, Stubbs SH, Donahue C, Davey RA, Gross ML, Leung DW, Amarasinghe GK. Disruption of Ebola NP 0VP35 Inclusion Body-like Structures reduce Viral Infection. J Mol Biol 2023; 435:168241. [PMID: 37598728 PMCID: PMC11312838 DOI: 10.1016/j.jmb.2023.168241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Viral inclusion bodies (IBs) are potential sites of viral replication and assembly. How viral IBs form remains poorly defined. Here we describe a combined biophysical and cellular approach to identify the components necessary for IB formation during Ebola virus (EBOV) infection. We find that the eNP0VP35 complex containing Ebola nucleoprotein (eNP) and viral protein 35 (eVP35), the functional equivalents of nucleoprotein (N) and phosphoprotein (P) in non-segmented negative strand viruses (NNSVs), phase separates to form inclusion bodies. Phase separation of eNP0VP35 is reversible and modulated by ionic strength. The multivalency of eVP35, and not eNP, is also critical for phase separation. Furthermore, overexpression of an eVP35 peptide disrupts eNP0VP35 complex formation, leading to reduced frequency of IB formation and limited viral infection. Together, our results show that upon EBOV infection, the eNP0VP35 complex forms the minimum unit to drive IB formation and viral replication.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Nicole D Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Austin B Moyle
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Annie Feng
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Nitin Sharma
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Sarah H Stubbs
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Callie Donahue
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Robert A Davey
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
22
|
Zhang X, Zheng R, Li Z, Ma J. Liquid-liquid Phase Separation in Viral Function. J Mol Biol 2023; 435:167955. [PMID: 36642156 DOI: 10.1016/j.jmb.2023.167955] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
An emerging set of results suggests that liquid-liquid phase separation (LLPS) is the basis for the formation of membrane-less compartments in cells. Evidence is now mounting that various types of virus-induced membrane-less compartments and organelles are also assembled via LLPS. Specifically, viruses appear to use intracellular phase transitions to form subcellular microenvironments known as viral factories, inclusion bodies, or viroplasms. These compartments - collectively referred to as viral biomolecular condensates - can be used to concentrate replicase proteins, viral genomes, and host proteins that are required for virus replication. They can also be used to subvert or avoid the intracellular immune response. This review examines how certain DNA or RNA viruses drive the formation of viral condensates, the possible biological functions of those condensates, and the biophysical and biochemical basis for their assembly.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Run Zheng
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Zhengshuo Li
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China.
| |
Collapse
|
23
|
Salgueiro M, Camporeale G, Visentin A, Aran M, Pellizza L, Esperante SA, Corbat A, Grecco H, Sousa B, Esperón R, Borkosky SS, de Prat-Gay G. Molten Globule Driven and Self-downmodulated Phase Separation of a Viral Factory Scaffold. J Mol Biol 2023; 435:168153. [PMID: 37210029 DOI: 10.1016/j.jmb.2023.168153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Viral factories of liquid-like nature serve as sites for transcription and replication in most viruses. The respiratory syncytial virus factories include replication proteins, brought together by the phosphoprotein (P) RNA polymerase cofactor, present across non-segmented negative stranded RNA viruses. Homotypic liquid-liquid phase separation of RSV-P is governed by an α-helical molten globule domain, and strongly self-downmodulated by adjacent sequences. Condensation of P with the nucleoprotein N is stoichiometrically tuned, defining aggregate-droplet and droplet-dissolution boundaries. Time course analysis show small N-P nuclei gradually coalescing into large granules in transfected cells. This behavior is recapitulated in infection, with small puncta evolving to large viral factories, strongly suggesting that P-N nucleation-condensation sequentially drives viral factories. Thus, the tendency of P to undergo phase separation is moderate and latent in the full-length protein but unleashed in the presence of N or when neighboring disordered sequences are deleted. This, together with its capacity to rescue nucleoprotein-RNA aggregates suggests a role as a "solvent-protein".
Collapse
Affiliation(s)
- Mariano Salgueiro
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina
| | - Gabriela Camporeale
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina
| | - Araceli Visentin
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina
| | - Martin Aran
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina
| | - Leonardo Pellizza
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina
| | | | - Agustín Corbat
- Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, and IFIBA, CONICET, Buenos Aires, Argentina
| | - Hernán Grecco
- Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, and IFIBA, CONICET, Buenos Aires, Argentina
| | - Belén Sousa
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina
| | - Ramiro Esperón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina
| | - Silvia S Borkosky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina
| | - Gonzalo de Prat-Gay
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Alston JJ, Soranno A. Condensation Goes Viral: A Polymer Physics Perspective. J Mol Biol 2023; 435:167988. [PMID: 36709795 PMCID: PMC10368797 DOI: 10.1016/j.jmb.2023.167988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
The past decade has seen a revolution in our understanding of how the cellular environment is organized, where an incredible body of work has provided new insights into the role played by membraneless organelles. These rapid advancements have been made possible by an increasing awareness of the peculiar physical properties that give rise to such bodies and the complex biology that enables their function. Viral infections are not extraneous to this. Indeed, in host cells, viruses can harness existing membraneless compartments or, even, induce the formation of new ones. By hijacking the cellular machinery, these intracellular bodies can assist in the replication, assembly, and packaging of the viral genome as well as in the escape of the cellular immune response. Here, we provide a perspective on the fundamental polymer physics concepts that may help connect and interpret the different observed phenomena, ranging from the condensation of viral genomes to the phase separation of multicomponent solutions. We complement the discussion of the physical basis with a description of biophysical methods that can provide quantitative insights for testing and developing theoretical and computational models.
Collapse
Affiliation(s)
- Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA.
| |
Collapse
|
25
|
Zhang S, Pei G, Li B, Li P, Lin Y. Abnormal phase separation of biomacromolecules in human diseases. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1133-1152. [PMID: 37475546 PMCID: PMC10423695 DOI: 10.3724/abbs.2023139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Membrane-less organelles (MLOs) formed through liquid-liquid phase separation (LLPS) are associated with numerous important biological functions, but the abnormal phase separation will also dysregulate the physiological processes. Emerging evidence points to the importance of LLPS in human health and diseases. Nevertheless, despite recent advancements, our knowledge of the molecular relationship between LLPS and diseases is frequently incomplete. In this review, we outline our current understanding about how aberrant LLPS affects developmental disorders, tandem repeat disorders, cancers and viral infection. We also examine disease mechanisms driven by aberrant condensates, and highlight potential treatment approaches. This study seeks to expand our understanding of LLPS by providing a valuable new paradigm for understanding phase separation and human disorders, as well as to further translate our current knowledge regarding LLPS into therapeutic discoveries.
Collapse
Affiliation(s)
- Songhao Zhang
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| | - Gaofeng Pei
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Frontier Research Center for Biological StructureTsinghua UniversityBeijing100084China
| | - Boya Li
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| | - Pilong Li
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Frontier Research Center for Biological StructureTsinghua UniversityBeijing100084China
| | - Yi Lin
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| |
Collapse
|
26
|
Risso-Ballester J, Rameix-Welti MA. Spatial resolution of virus replication: RSV and cytoplasmic inclusion bodies. Adv Virus Res 2023; 116:1-43. [PMID: 37524479 DOI: 10.1016/bs.aivir.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory Syncytial Virus (RSV) is a major cause of respiratory illness in young children, elderly and immunocompromised individuals worldwide representing a severe burden for health systems. The urgent development of vaccines or specific antivirals against RSV is impaired by the lack of knowledge regarding its replication mechanisms. RSV is a negative-sense single-stranded RNA (ssRNA) virus belonging to the Mononegavirales order (MNV) which includes other viruses pathogenic to humans as Rabies (RabV), Ebola (EBOV), or measles (MeV) viruses. Transcription and replication of viral genomes occur within cytoplasmatic virus-induced spherical inclusions, commonly referred as inclusion bodies (IBs). Recently IBs were shown to exhibit properties of membrane-less organelles (MLO) arising by liquid-liquid phase separation (LLPS). Compartmentalization of viral RNA synthesis steps in viral-induced MLO is indeed a common feature of MNV. Strikingly these key compartments still remain mysterious. Most of our current knowledge on IBs relies on the use of fluorescence microscopy. The ability to fluorescently label IBs in cells has been key to uncover their dynamics and nature. The generation of recombinant viruses expressing a fluorescently-labeled viral protein and the immunolabeling or the expression of viral fusion proteins known to be recruited in IBs are some of the tools used to visualize IBs in infected cells. In this chapter, microscope techniques and the most relevant studies that have shed light on RSV IBs fundamental aspects, including biogenesis, organization and dynamics are being discussed and brought to light with the investigations carried out on other MNV.
Collapse
Affiliation(s)
| | - Marie-Anne Rameix-Welti
- Institut Pasteur, Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Paris, France; Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15, Paris, France.
| |
Collapse
|
27
|
Fang J, Castillon G, Phan S, McArdle S, Hariharan C, Adams A, Ellisman MH, Deniz AA, Saphire EO. Spatial and functional arrangement of Ebola virus polymerase inside phase-separated viral factories. Nat Commun 2023; 14:4159. [PMID: 37443171 PMCID: PMC10345124 DOI: 10.1038/s41467-023-39821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Ebola virus (EBOV) infection induces the formation of membrane-less, cytoplasmic compartments termed viral factories, in which multiple viral proteins gather and coordinate viral transcription, replication, and assembly. Key to viral factory function is the recruitment of EBOV polymerase, a multifunctional machine that mediates transcription and replication of the viral RNA genome. We show that intracellularly reconstituted EBOV viral factories are biomolecular condensates, with composition-dependent internal exchange dynamics that likely facilitates viral replication. Within the viral factory, we found the EBOV polymerase clusters into foci. The distance between these foci increases when viral replication is enabled. In addition to the typical droplet-like viral factories, we report the formation of network-like viral factories during EBOV infection. Unlike droplet-like viral factories, network-like factories are inactive for EBOV nucleocapsid assembly. This unique view of EBOV propagation suggests a form-to-function relationship that describes how physical properties and internal structures of biomolecular condensates influence viral biogenesis.
Collapse
Affiliation(s)
- Jingru Fang
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Scripps Research, La Jolla, CA, USA
| | - Guillaume Castillon
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Sara McArdle
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Aiyana Adams
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | | | | |
Collapse
|
28
|
Liu Y, Yao Z, Lian G, Yang P. Biomolecular phase separation in stress granule assembly and virus infection. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1099-1118. [PMID: 37401177 PMCID: PMC10415189 DOI: 10.3724/abbs.2023117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/06/2023] [Indexed: 07/05/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a crucial mechanism for cellular compartmentalization. One prominent example of this is the stress granule. Found in various types of cells, stress granule is a biomolecular condensate formed through phase separation. It comprises numerous RNA and RNA-binding proteins. Over the past decades, substantial knowledge has been gained about the composition and dynamics of stress granules. SGs can regulate various signaling pathways and have been associated with numerous human diseases, such as neurodegenerative diseases, cancer, and infectious diseases. The threat of viral infections continues to loom over society. Both DNA and RNA viruses depend on host cells for replication. Intriguingly, many stages of the viral life cycle are closely tied to RNA metabolism in human cells. The field of biomolecular condensates has rapidly advanced in recent times. In this context, we aim to summarize research on stress granules and their link to viral infections. Notably, stress granules triggered by viral infections behave differently from the canonical stress granules triggered by sodium arsenite (SA) and heat shock. Studying stress granules in the context of viral infections could offer a valuable platform to link viral replication processes and host anti-viral responses. A deeper understanding of these biological processes could pave the way for innovative interventions and treatments for viral infectious diseases. They could potentially bridge the gap between basic biological processes and interactions between viruses and their hosts.
Collapse
Affiliation(s)
- Yi Liu
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Zhiying Yao
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Guiwei Lian
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Peiguo Yang
- />Westlake Laboratory of Life Sciences and BiomedicineSchool of Life SciencesWestlake UniversityHangzhou310030China
| |
Collapse
|
29
|
Webb MJ, Kottke T, Kendall BL, Swanson J, Uzendu C, Tonne J, Thompson J, Metko M, Moore M, Borad M, Roberts L, Diaz RM, Olin M, Borgatti A, Vile R. Trap and ambush therapy using sequential primary and tumor escape-selective oncolytic viruses. Mol Ther Oncolytics 2023; 29:129-142. [PMID: 37313455 PMCID: PMC10258242 DOI: 10.1016/j.omto.2023.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
In multiple models of oncolytic virotherapy, it is common to see an early anti-tumor response followed by recurrence. We have previously shown that frontline treatment with oncolytic VSV-IFN-β induces APOBEC proteins, promoting the selection of specific mutations that allow tumor escape. Of these mutations in B16 melanoma escape (ESC) cells, a C-T point mutation in the cold shock domain-containing E1 (CSDE1) gene was present at the highest frequency, which could be used to ambush ESC cells by vaccination with the mutant CSDE1 expressed within the virus. Here, we show that the evolution of viral ESC tumor cells harboring the escape-promoting CSDE1C-T mutation can also be exploited by a virological ambush. By sequential delivery of two oncolytic VSVs in vivo, tumors which would otherwise escape VSV-IFN-β oncolytic virotherapy could be cured. This also facilitated the priming of anti-tumor T cell responses, which could be further exploited using immune checkpoint blockade with the CD200 activation receptor ligand (CD200AR-L) peptide. Our findings here are significant in that they offer the possibility to develop oncolytic viruses as highly specific, escape-targeting viro-immunotherapeutic agents to be used in conjunction with recurrence of tumors following multiple different types of frontline cancer therapies.
Collapse
Affiliation(s)
- Mason J. Webb
- Division of Hematology/Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Jack Swanson
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chisom Uzendu
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Muriel Metko
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Madelyn Moore
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mitesh Borad
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Lewis Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rosa M. Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael Olin
- Division of Pediatric Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Antonella Borgatti
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN 55108, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Clinical Investigation Center, University of Minnesota, St. Paul, MN 55108, USA
| | - Richard Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
30
|
Visentin A, Demitroff N, Salgueiro M, Borkosky SS, Uversky VN, Camporeale G, de Prat-Gay G. Assembly of the Tripartite and RNA Condensates of the Respiratory Syncytial Virus Factory Proteins In Vitro: Role of the Transcription Antiterminator M 2-1. Viruses 2023; 15:1329. [PMID: 37376628 DOI: 10.3390/v15061329] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
A wide variety of viruses replicate in liquid-like viral factories. Non-segmented negative stranded RNA viruses share a nucleoprotein (N) and a phosphoprotein (P) that together emerge as the main drivers of liquid-liquid phase separation. The respiratory syncytial virus includes the transcription antiterminator M2-1, which binds RNA and maximizes RNA transcriptase processivity. We recapitulate the assembly mechanism of condensates of the three proteins and the role played by RNA. M2-1 displays a strong propensity for condensation by itself and with RNA through the formation of electrostatically driven protein-RNA coacervates based on the amphiphilic behavior of M2-1 and finely tuned by stoichiometry. M2-1 incorporates into tripartite condensates with N and P, modulating their size through an interplay with P, where M2-1 is both client and modulator. RNA is incorporated into the tripartite condensates adopting a heterogeneous distribution, reminiscent of the M2-1-RNA IBAG granules within the viral factories. Ionic strength dependence indicates that M2-1 behaves differently in the protein phase as opposed to the protein-RNA phase, in line with the subcompartmentalization observed in viral factories. This work dissects the biochemical grounds for the formation and fate of the RSV condensates in vitro and provides clues to interrogate the mechanism under the highly complex infection context.
Collapse
Affiliation(s)
- Araceli Visentin
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Nicolás Demitroff
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Mariano Salgueiro
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Silvia Susana Borkosky
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Gabriela Camporeale
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Gonzalo de Prat-Gay
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| |
Collapse
|
31
|
Li Z, Zheng M, He Z, Qin Y, Chen M. Morphogenesis and functional organization of viral inclusion bodies. CELL INSIGHT 2023; 2:100103. [PMID: 37193093 PMCID: PMC10164783 DOI: 10.1016/j.cellin.2023.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/18/2023]
Abstract
Eukaryotic viruses are obligate intracellular parasites that rely on the host cell machinery to carry out their replication cycle. This complex process involves a series of steps, starting with virus entry, followed by genome replication, and ending with virion assembly and release. Negative strand RNA and some DNA viruses have evolved to alter the organization of the host cell interior to create a specialized environment for genome replication, known as IBs, which are precisely orchestrated to ensure efficient viral replication. The biogenesis of IBs requires the cooperation of both viral and host factors. These structures serve multiple functions during infection, including sequestering viral nucleic acids and proteins from innate immune responses, increasing the local concentration of viral and host factors, and spatially coordinating consecutive replication cycle steps. While ultrastructural and functional studies have improved our understanding of IBs, much remains to be learned about the precise mechanisms of IB formation and function. This review aims to summarize the current understanding of how IBs are formed, describe the morphology of these structures, and highlight the mechanism of their functions. Given that the formation of IBs involves complex interactions between the virus and the host cell, the role of both viral and cellular organelles in this process is also discussed.
Collapse
Affiliation(s)
- Zhifei Li
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Miaomiao Zheng
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Zhicheng He
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| |
Collapse
|
32
|
Yang S, Shen W, Hu J, Cai S, Zhang C, Jin S, Guan X, Wu J, Wu Y, Cui J. Molecular mechanisms and cellular functions of liquid-liquid phase separation during antiviral immune responses. Front Immunol 2023; 14:1162211. [PMID: 37251408 PMCID: PMC10210139 DOI: 10.3389/fimmu.2023.1162211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.
Collapse
Affiliation(s)
- Shuai Yang
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weishan Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sihui Cai
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chenqiu Zhang
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Hirai Y, Horie M. Nyamanini Virus Nucleoprotein and Phosphoprotein Organize Viral Inclusion Bodies That Associate with Host Biomolecular Condensates in the Nucleus. Int J Mol Sci 2023; 24:6550. [PMID: 37047525 PMCID: PMC10095084 DOI: 10.3390/ijms24076550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Many mononegaviruses form inclusion bodies (IBs) in infected cells. However, little is known about nuclear IBs formed by mononegaviruses, since only a few lineages of animal-derived mononegaviruses replicate in the nucleus. In this study, we characterized the IBs formed by Nyamanini virus (NYMV), a unique tick-borne mononegavirus undergoing replication in the nucleus. We discovered that NYMV forms IBs, consisting of condensates and puncta of various sizes and morphologies, in the host nucleus. Likewise, we found that the expressions of NYMV nucleoprotein (N) and phosphoprotein (P) alone induce the formation of condensates and puncta in the nucleus, respectively, even though their morphologies are somewhat different from the IBs observed in the actual NYMV-infected cells. In addition, IB-like structures can be reconstructed by co-expressions of NYMV N and P, and localization analyses using a series of truncated mutants of P revealed that the C-terminal 27 amino acid residues of P are important for recruiting P to the condensates formed by N. Furthermore, we found that nuclear speckles, cellular biomolecular condensates, are reorganized and recruited to the IB-like structures formed by the co-expressions of N and P, as well as IBs formed in NYMV-infected cells. These features are unique among mononegaviruses, and our study has contributed to elucidating the replication mechanisms of nuclear-replicating mononegaviruses and the virus-host interactions.
Collapse
Affiliation(s)
- Yuya Hirai
- Department of Biology, Osaka Dental University, 8-1 Kuzuha Hanazono-Cho, Hirakata 573-1121, Osaka, Japan
| | - Masayuki Horie
- Laboratory of Veterinary Microbiology, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-Oraikita, Izumisano 598-8531, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Izumisano 598-8531, Osaka, Japan
| |
Collapse
|
34
|
Sagan SM, Weber SC. Let's phase it: viruses are master architects of biomolecular condensates. Trends Biochem Sci 2023; 48:229-243. [PMID: 36272892 DOI: 10.1016/j.tibs.2022.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022]
Abstract
Viruses compartmentalize their replication and assembly machinery to both evade detection and concentrate the viral proteins and nucleic acids necessary for genome replication and virion production. Accumulating evidence suggests that diverse RNA and DNA viruses form replication organelles and nucleocapsid assembly sites using phase separation. In general, the biogenesis of these compartments is regulated by two types of viral protein, collectively known as antiterminators and nucleocapsid proteins, respectively. Herein, we discuss how RNA viruses establish replication organelles and nucleocapsid assembly sites, and the evidence that these compartments form through phase separation. While this review focuses on RNA viruses, accumulating evidence suggests that all viruses rely on phase separation and form biomolecular condensates important for completing the infectious cycle.
Collapse
Affiliation(s)
- Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada.
| | - Stephanie C Weber
- Department of Biology, McGill University, Montreal, QC, Canada; Department of Physics, McGill University, Montreal, QC, Canada
| |
Collapse
|
35
|
Scrima N, Le Bars R, Nevers Q, Glon D, Chevreux G, Civas A, Blondel D, Lagaudrière-Gesbert C, Gaudin Y. Rabies virus P protein binds to TBK1 and interferes with the formation of innate immunity-related liquid condensates. Cell Rep 2023; 42:111949. [PMID: 36640307 DOI: 10.1016/j.celrep.2022.111949] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/27/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Viruses must overcome the interferon-mediated antiviral response to replicate and propagate into their host. Rabies virus (RABV) phosphoprotein P is known to inhibit interferon induction. Here, using a global mass spectrometry approach, we show that RABV P binds to TBK1, a kinase located at the crossroads of many interferon induction pathways, resulting in innate immunity inhibition. Mutations of TBK1 phosphorylation sites abolish P binding. Importantly, we demonstrate that upon RABV infection or detection of dsRNA by innate immunity sensors, TBK1 and its adaptor proteins NAP1 and SINTBAD form dynamic cytoplasmic condensates that have liquid properties. These condensates can form larger aggregates having ring-like structures in which NAP1 and TBK1 exhibit locally restricted movement. P binding to TBK1 interferes with the formation of these structures. This work demonstrates that proteins of the signaling pathway leading to interferon induction transiently form liquid organelles that can be targeted by viruses.
Collapse
Affiliation(s)
- Nathalie Scrima
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Romain Le Bars
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Quentin Nevers
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Damien Glon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | | | - Ahmet Civas
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Danielle Blondel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
36
|
Liaisons dangereuses: Intrinsic Disorder in Cellular Proteins Recruited to Viral Infection-Related Biocondensates. Int J Mol Sci 2023; 24:ijms24032151. [PMID: 36768473 PMCID: PMC9917183 DOI: 10.3390/ijms24032151] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the formation of so-called membrane-less organelles (MLOs) that are essential for the spatio-temporal organization of the cell. Intrinsically disordered proteins (IDPs) or regions (IDRs), either alone or in conjunction with nucleic acids, are involved in the formation of these intracellular condensates. Notably, viruses exploit LLPS at their own benefit to form viral replication compartments. Beyond giving rise to biomolecular condensates, viral proteins are also known to partition into cellular MLOs, thus raising the question as to whether these cellular phase-separating proteins are drivers of LLPS or behave as clients/regulators. Here, we focus on a set of eukaryotic proteins that are either sequestered in viral factories or colocalize with viral proteins within cellular MLOs, with the primary goal of gathering organized, predicted, and experimental information on these proteins, which constitute promising targets for innovative antiviral strategies. Using various computational approaches, we thoroughly investigated their disorder content and inherent propensity to undergo LLPS, along with their biological functions and interactivity networks. Results show that these proteins are on average, though to varying degrees, enriched in disorder, with their propensity for phase separation being correlated, as expected, with their disorder content. A trend, which awaits further validation, tends to emerge whereby the most disordered proteins serve as drivers, while more ordered cellular proteins tend instead to be clients of viral factories. In light of their high disorder content and their annotated LLPS behavior, most proteins in our data set are drivers or co-drivers of molecular condensation, foreshadowing a key role of these cellular proteins in the scaffolding of viral infection-related MLOs.
Collapse
|
37
|
Brownsword MJ, Locker N. A little less aggregation a little more replication: Viral manipulation of stress granules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1741. [PMID: 35709333 PMCID: PMC10078398 DOI: 10.1002/wrna.1741] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 01/31/2023]
Abstract
Recent exciting studies have uncovered how membrane-less organelles, also known as biocondensates, are providing cells with rapid response pathways, allowing them to re-organize their cellular contents and adapt to stressful conditions. Their assembly is driven by the phase separation of their RNAs and intrinsically disordered protein components into condensed foci. Among these, stress granules (SGs) are dynamic cytoplasmic biocondensates that form in response to many stresses, including activation of the integrated stress response or viral infections. SGs sit at the crossroads between antiviral signaling and translation because they concentrate signaling proteins and components of the innate immune response, in addition to translation machinery and stalled mRNAs. Consequently, they have been proposed to contribute to antiviral activities, and therefore are targeted by viral countermeasures. Equally, SGs components can be commandeered by viruses for their own efficient replication. Phase separation processes are an important component of the viral life cycle, for example, driving the assembly of replication factories or inclusion bodies. Therefore, in this review, we will outline the recent understanding of this complex interplay and tug of war between viruses, SGs, and their components. This article is categorized under: RNA in Disease and Development > RNA in Disease Translation > Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Matthew J. Brownsword
- Faculty of Health and Medical Sciences, School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyUK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyUK
| |
Collapse
|
38
|
Insights from the Infection Cycle of VSV-ΔG-Spike Virus. Viruses 2022; 14:v14122828. [PMID: 36560832 PMCID: PMC9788095 DOI: 10.3390/v14122828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Fundamental key processes in viral infection cycles generally occur in distinct cellular sites where both viral and host factors accumulate and interact. These sites are usually termed viral replication organelles, or viral factories (VF). The generation of VF is accompanied by the synthesis of viral proteins and genomes and involves the reorganization of cellular structure. Recently, rVSV-ΔG-spike (VSV-S), a recombinant VSV expressing the SARS-CoV-2 spike protein, was developed as a vaccine candidate against SARS-CoV-2. By combining transmission electron microscopy (TEM) tomography studies and immuno-labeling techniques, we investigated the infection cycle of VSV-S in Vero E6 cells. RT-real-time-PCR results show that viral RNA synthesis occurs 3-4 h post infection (PI), and accumulates as the infection proceeds. By 10-24 h PI, TEM electron tomography results show that VSV-S generates VF in multi-lamellar bodies located in the cytoplasm. The VF consists of virus particles with various morphologies. We demonstrate that VSV-S infection is associated with accumulation of cytoplasmatic viral proteins co-localized with dsRNA (marker for RNA replication) but not with ER membranes. Newly formed virus particles released from the multi-lamellar bodies containing VF, concentrate in a vacuole membrane, and the infection ends with the budding of particles after the fusion of the vacuole membrane with the plasma membrane. In summary, the current study describes detailed 3D imaging of key processes during the VSV-S infection cycle.
Collapse
|
39
|
Nevers Q, Scrima N, Glon D, Le Bars R, Decombe A, Garnier N, Ouldali M, Lagaudrière-Gesbert C, Blondel D, Albertini A, Gaudin Y. Properties of rabies virus phosphoprotein and nucleoprotein biocondensates formed in vitro and in cellulo. PLoS Pathog 2022; 18:e1011022. [PMID: 36480574 PMCID: PMC9767369 DOI: 10.1371/journal.ppat.1011022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 12/20/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Rabies virus (RABV) transcription and replication take place within viral factories having liquid properties, called Negri bodies (NBs), that are formed by liquid-liquid phase separation (LLPS). The co-expression of RABV nucleoprotein (N) and phosphoprotein (P) in mammalian cells is sufficient to induce the formation of cytoplasmic biocondensates having properties that are like those of NBs. This cellular minimal system was previously used to identify P domains that are essential for biocondensates formation. Here, we constructed fluorescent versions of N and analyzed by FRAP their dynamics inside the biocondensates formed in this minimal system as well as in NBs of RABV-infected cells using FRAP. The behavior of N appears to be different of P as there was no fluorescence recovery of N proteins after photobleaching. We also identified arginine residues as well as two exposed loops of N involved in condensates formation. Corresponding N mutants exhibited distinct phenotypes in infected cells ranging from co-localization with NBs to exclusion from them associated with a dominant-negative effect on infection. We also demonstrated that in vitro, in crowded environments, purified P as well as purified N0-P complex (in which N is RNA-free) form liquid condensates. We identified P domains required for LLPS in this acellular system. P condensates were shown to associate with liposomes, concentrate RNA, and undergo a liquid-gel transition upon ageing. Conversely, N0-P droplets were disrupted upon incubation with RNA. Taken together, our data emphasize the central role of P in NBs formation and reveal some physicochemical features of P and N0-P droplets relevant for explaining NBs properties such as their envelopment by cellular membranes at late stages of infection and nucleocapsids ejections from the viral factories.
Collapse
Affiliation(s)
- Quentin Nevers
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nathalie Scrima
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Damien Glon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Romain Le Bars
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alice Decombe
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nathalie Garnier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Malika Ouldali
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Danielle Blondel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélie Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
40
|
BenDavid E, Pfaller CK, Pan Y, Samuel CE, Ma D. Host 5'-3' Exoribonuclease XRN1 Acts as a Proviral Factor for Measles Virus Replication by Downregulating the dsRNA-Activated Kinase PKR. J Virol 2022; 96:e0131922. [PMID: 36300942 PMCID: PMC9683022 DOI: 10.1128/jvi.01319-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/22/2022] [Indexed: 11/20/2022] Open
Abstract
Many negative-sense RNA viruses, including measles virus (MeV), are thought to carry out much of their viral replication in cytoplasmic membraneless foci known as inclusion bodies (IBs). The mechanisms by which IBs facilitate efficient viral replication remain largely unknown but may involve an intricate network of regulation at the host-virus interface. Viruses are able to modulate such interactions by a variety of strategies including adaptation of their genomes and "hijacking" of host proteins. The latter possibility broadens the molecular reservoir available for a virus to enhance its replication and/or antagonize host antiviral responses. Here, we show that the cellular 5'-3' exoribonuclease, XRN1, is a host protein hijacked by MeV. We found that upon MeV infection, XRN1 is translocated to cytoplasmic IBs where it acts in a proviral manner by preventing the accumulation of double-stranded RNA (dsRNA) within the IBs. This leads to the suppression of the dsRNA-induced innate immune responses mediated via the protein kinase R (PKR)-integrated stress response (ISR) pathway. IMPORTANCE Measles virus remains a major global health threat due to its high transmissibility and significant morbidity in children and immunocompromised individuals. Although there is an effective vaccine against MeV, a large population in the world remains without access to the vaccine, contributing to more than 7,000,000 measles cases and 60,000 measles deaths in 2020 (CDC). For negative-sense RNA viruses including MeV, one active research area is the exploration of virus-host interactions occurring at cytoplasmic IBs where viral replication takes place. In this study we present evidence suggesting a model in which MeV IBs antagonize host innate immunity by recruiting XRN1 to reduce dsRNA accumulation and subsequent PKR kinase activation/ISR induction. In the absence of XRN1, the increased dsRNA level acts as a potent activator of the antiviral PKR/ISR pathway leading to suppression of global cap-dependent mRNA translation and inhibition of viral replication.
Collapse
Affiliation(s)
- Ethan BenDavid
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, USA
| | | | - Yue Pan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Charles E. Samuel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| | - Dzwokai Ma
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| |
Collapse
|
41
|
Substitution of S179P in the Lyssavirus Phosphoprotein Impairs Its Interferon Antagonistic Function. J Virol 2022; 96:e0112522. [PMID: 36326274 PMCID: PMC9683011 DOI: 10.1128/jvi.01125-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon (IFN) and the IFN-induced cellular antiviral response constitute the first line of defense against viral invasion. Evading host innate immunity, especially IFN signaling, is the key step required for lyssaviruses to establish infection.
Collapse
|
42
|
Brice AM, Rozario AM, Rawlinson SM, David CT, Wiltzer-Bach L, Jans DA, Ito N, Bell TDM, Moseley GW. Lyssavirus P Protein Isoforms Diverge Significantly in Subcellular Interactions Underlying Mechanisms of Interferon Antagonism. J Virol 2022; 96:e0139622. [PMID: 36222519 PMCID: PMC9599249 DOI: 10.1128/jvi.01396-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Viral hijacking of microtubule (MT)-dependent transport is well understood, but several viruses also express discrete MT-associated proteins (vMAPs), potentially to modulate MT-dependent processes in the host cell. Specific roles for vMAP-MT interactions include subversion of antiviral responses by P3, an isoform of the P protein of rabies virus (RABV; genus Lyssavirus), which mediates MT-dependent antagonism of interferon (IFN)-dependent signal transducers and activators of transcription 1 (STAT1) signaling. P3 also undergoes nucleocytoplasmic trafficking and inhibits STAT1-DNA binding, indicative of intranuclear roles in a multipronged antagonistic strategy. MT association/STAT1 antagonist functions of P3 correlate with pathogenesis, indicating potential as therapeutic targets. However, key questions remain, including whether other P protein isoforms interact with MTs, the relationship of these interactions with pathogenesis, and the extent of conservation of P3-MT interactions between diverse pathogenic lyssaviruses. Using super-resolution microscopy, live-cell imaging, and immune signaling analyses, we find that multiple P protein isoforms associate with MTs and that association correlates with pathogenesis. Furthermore, P3 proteins from different lyssaviruses exhibit variation in intracellular localization phenotypes that are associated with STAT1 antagonist function, whereby P3-MT association is conserved among lyssaviruses of phylogroup I but not phylogroup II, while nucleocytoplasmic localization varies between P3 proteins of the same phylogroup within both phylogroup I and II. Nevertheless, the divergent P3 proteins retain significant IFN antagonist function, indicative of adaptation to favor different inhibitory mechanisms, with MT interaction important to phylogroup I viruses. IMPORTANCE Lyssaviruses, including rabies virus, cause rabies, a progressive encephalomyelitis that is almost invariably fatal. There are no effective antivirals for symptomatic infection, and effective application of current vaccines is limited in areas of endemicity, such that rabies causes ~59,000 deaths per year. Viral subversion of host cell functions, including antiviral immunity, is critical to disease, and isoforms of the lyssavirus P protein are central to the virus-host interface underpinning immune evasion. Here, we show that specific cellular interactions of P protein isoforms involved in immune evasion vary significantly between different lyssaviruses, indicative of distinct strategies to evade immune responses. These findings highlight the diversity of the virus-host interface, an important consideration in the development of pan-lyssavirus therapeutic approaches.
Collapse
Affiliation(s)
- Aaron M. Brice
- Viral Pathogenesis Laboratory, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ashley M. Rozario
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Stephen M. Rawlinson
- Viral Pathogenesis Laboratory, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Cassandra T. David
- Viral Pathogenesis Laboratory, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Linda Wiltzer-Bach
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - David A. Jans
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Toby D. M. Bell
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Gregory W. Moseley
- Viral Pathogenesis Laboratory, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
43
|
Yuan Y, Fang A, Wang Z, Tian B, Zhang Y, Sui B, Luo Z, Li Y, Zhou M, Chen H, Fu ZF, Zhao L. Trim25 restricts rabies virus replication by destabilizing phosphoprotein. CELL INSIGHT 2022; 1:100057. [PMID: 37193556 PMCID: PMC10120326 DOI: 10.1016/j.cellin.2022.100057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 05/18/2023]
Abstract
Tripartite motif-containing protein 25 (Trim25) is an E3 ubiquitin ligase that activates retinoid acid-inducible gene I (RIG-I) and promotes the antiviral interferon response. Recent studies have shown that Trim25 can bind and degrade viral proteins, suggesting a different mechanism of Trim25 on its antiviral effects. In this study, Trim25 expression was upregulated in cells and mouse brains after rabies virus (RABV) infection. Moreover, expression of Trim25 limited RABV replication in cultured cells. Overexpression of Trim25 caused attenuated viral pathogenicity in a mouse model that was intramuscularly injected with RABV. Further experiments confirmed that Trim25 inhibited RABV replication via two different mechanisms: an E3 ubiquitin ligase-dependent mechanism and an E3 ubiquitin ligase-independent mechanism. Specifically, the CCD domain of Trim25 interacted with RABV phosphoprotein (RABV-P) at amino acid (AA) position at 72 and impaired the stability of RABV-P via complete autophagy. This study reveals a novel mechanism by which Trim25 restricts RABV replication by destabilizing RABV-P, which is independent of its E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
- Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongmei Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaochen Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingying Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
44
|
Wu C, Holehouse AS, Leung DW, Amarasinghe GK, Dutch RE. Liquid Phase Partitioning in Virus Replication: Observations and Opportunities. Annu Rev Virol 2022; 9:285-306. [PMID: 35709511 PMCID: PMC11331907 DOI: 10.1146/annurev-virology-093020-013659] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses frequently carry out replication in specialized compartments within cells. The effect of these structures on virus replication is poorly understood. Recent research supports phase separation as a foundational principle for organization of cellular components with the potential to influence viral replication. In this review, phase separation is described in the context of formation of viral replication centers, with an emphasis on the nonsegmented negative-strand RNA viruses. Consideration is given to the interplay between phase separation and the critical processes of viral transcription and genome replication, and the role of these regions in pathogen-host interactions is discussed. Finally, critical questions that must be addressed to fully understand how phase separation influences viral replication and the viral life cycle are presented, along with information about new approaches that could be used to make important breakthroughs in this emerging field.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Science and Engineering Living Systems, Washington University, St. Louis, Missouri, USA
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA;
| |
Collapse
|
45
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
46
|
Sardana S, Singh KP, Saminathan M, Vineetha S, Panda S, Dinesh M, Maity M, Varshney R, Sulabh S, Sahoo M, Dutt T. Effect of inhibition of Toll-like receptor 3 signaling on pathogenesis of rabies virus in mouse model. Acta Trop 2022; 234:106589. [PMID: 35809612 DOI: 10.1016/j.actatropica.2022.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/01/2022]
Abstract
Rabies is a zoonotic viral disease with inevitably fatal outcome. Toll-like receptor 3 (TLR3) could sense dsRNA viral infections, and implicated in pathogenesis of rabies and Negri bodies (NBs) formation. Present study was undertaken to elucidate the role of TLR3 in pathogenesis, NBs formation, and therapeutic potential of blocking TLR3/dsRNA interaction in rabies infection. Young Swiss albino mice were infected with 100 LD50 of street rabies virus (SRABV) intracerebrally (i/c) on day 0 and treated with 30 μg of CU CPT 4a (selective TLR3 inhibitor) i/c on 0, 3 and 5 days post-infection (DPI). Three mice each were sacrificed at 1, 3, 5, 7, 9, 11, and 13 DPI to study sequential pathological consequences through histopathology, Seller's staining, immunofluorescence, immunohistochemistry, TUNEL assay, flow cytometry, and viral and cytokine genes quantification by real-time PCR. CU CPT 4a inhibited TLR3 expression resulted in delayed development and decreased intensity of clinical signs and pathological lesions, low viral load, significantly reduced NBs formation, and increased survival time in SRABV-infected mice. These parameters suggested that TLR3 did influence the SRABV replication and NBs formation. Inhibition of TLR3 led to decreased expression of pro-inflammatory cytokines and interferons indicated an anti-inflammatory effect of CU CPT 4a during SRABV infection. Further, TLR3-inhibited group revealed normal CD4+/CD8+ T-cells ratio with less TUNEL-positive apoptotic cells indicated that immune cell kinetics are not affected during TLR3-inhibition. SRABV-infected and mock-treated mice were developed severe clinical signs and histopathological lesions, more NBs formation, high viral load, increased pro-inflammatory cytokines expression in brain, which were correlated with higher expression levels of TLR3. In conclusion, these data suggested that TLR3/dsRNA signaling pathway could play critical role in pathogenesis of SRABV infection in vivo and opens up new avenues of therapeutics.
Collapse
Affiliation(s)
- Sumit Sardana
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - Mani Saminathan
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - Sobharani Vineetha
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Shibani Panda
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Murali Dinesh
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Madhulina Maity
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rajat Varshney
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, Institute of Agricultural Sciences, Banaras Hindu University, Barkachha, Mirzapur, Uttar Pradesh, India
| | - Sourabh Sulabh
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Monalisa Sahoo
- ICAR- International Centre for Foot and Mouth Disease, Khordha, Bhubaneswar, Odisha, India
| | - Triveni Dutt
- Director, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
47
|
Boggs KB, Edmonds K, Cifuentes-Munoz N, El Najjar F, Ossandón C, Roe M, Wu C, Moncman CL, Creamer TP, Amarasinghe GK, Leung DW, Dutch RE. Human Metapneumovirus Phosphoprotein Independently Drives Phase Separation and Recruits Nucleoprotein to Liquid-Like Bodies. mBio 2022; 13:e0109922. [PMID: 35536005 PMCID: PMC9239117 DOI: 10.1128/mbio.01099-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Human metapneumovirus (HMPV) inclusion bodies (IBs) are dynamic structures required for efficient viral replication and transcription. The minimum components needed to form IB-like structures in cells are the nucleoprotein (N) and the tetrameric phosphoprotein (P). HMPV P binds to the following two versions of the N protein in infected cells: N-terminal P residues interact with monomeric N (N0) to maintain a pool of protein to encapsidate new RNA and C-terminal P residues interact with oligomeric, RNA-bound N (N-RNA). Recent work on other negative-strand viruses has suggested that IBs are, at least in part, liquid-like phase-separated membraneless organelles. Here, HMPV IBs in infected or transfected cells were shown to possess liquid organelle properties, such as fusion and fission. Recombinant versions of HMPV N and P proteins were purified to analyze the interactions required to drive phase separation in vitro. Purified HMPV P was shown to form liquid droplets in isolation. This observation is distinct from other viral systems that also form IBs. Partial removal of nucleic acid from purified P altered phase-separation dynamics, suggesting that nucleic acid interactions play a role in IB formation. HMPV P also recruits monomeric N (N0-P) and N-RNA to droplets in vitro. These findings suggest that HMPV P may also act as a scaffold protein to mediate multivalent interactions with monomeric and oligomeric N, as well as RNA, to promote phase separation of IBs. Together, these findings highlight an additional layer of regulation in HMPV replication by the viral P and N proteins. IMPORTANCE Human metapneumovirus (HMPV) is a leading cause of respiratory disease among children, immunocompromised individuals, and the elderly. Currently, no vaccines or antivirals are available for the treatment of HMPV infections. Cytoplasmic inclusion bodies (IBs), where HMPV replication and transcription occur, represent a promising target for the development of novel antivirals. The HMPV nucleoprotein (N) and phosphoprotein (P) are the minimal components needed for IB formation in eukaryotic cells. However, interactions that regulate the formation of these dynamic structures are poorly understood. Here, we showed that HMPV IBs possess the properties of liquid organelles and that purified HMPV P phase separates independently in vitro. Our work suggests that HMPV P phase-separation dynamics are altered by nucleic acid. We provide strong evidence that, unlike results reported from other viral systems, HMPV P alone can serve as a scaffold for multivalent interactions with monomeric (N0) and oligomeric (N-RNA) HMPV N for IB formation.
Collapse
Affiliation(s)
- Kerri Beth Boggs
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Kearstin Edmonds
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Nicolas Cifuentes-Munoz
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Farah El Najjar
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Conny Ossandón
- Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - McKenna Roe
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carole L. Moncman
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Trevor P. Creamer
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daisy W. Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
48
|
Phase-Separated Subcellular Compartmentation and Related Human Diseases. Int J Mol Sci 2022; 23:ijms23105491. [PMID: 35628304 PMCID: PMC9141834 DOI: 10.3390/ijms23105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
In live cells, proteins and nucleic acids can associate together through multivalent interactions, and form relatively isolated phases that undertake designated biological functions and activities. In the past decade, liquid–liquid phase separation (LLPS) has gradually been recognized as a general mechanism for the intracellular organization of biomolecules. LLPS regulates the assembly and composition of dozens of membraneless organelles and condensates in cells. Due to the altered physiological conditions or genetic mutations, phase-separated condensates may undergo aberrant formation, maturation or gelation that contributes to the onset and progression of various diseases, including neurodegenerative disorders and cancers. In this review, we summarize the properties of different membraneless organelles and condensates, and discuss multiple phase separation-regulated biological processes. Based on the dysregulation and mutations of several key regulatory proteins and signaling pathways, we also exemplify how aberrantly regulated LLPS may contribute to human diseases.
Collapse
|
49
|
Li S, Pan Y, Teng H, Shan Y, Yang G, Wang H. Revealing the Cell Entry Dynamic Mechanism of Single Rabies Virus Particle. Chem Res Chin Univ 2022; 38:838-842. [PMID: 35530119 PMCID: PMC9059680 DOI: 10.1007/s40242-022-2069-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022]
Abstract
The rabies virus is a neurotropic virus that causes fatal diseases in humans and animals. Although studying the interactions between a single rabies virus and the cell membrane is necessary for understanding the pathogenesis, the internalization dynamic mechanism of single rabies virus in living cells remains largely elusive. Here, we utilized a novel force tracing technique based on atomic force microscopy(AFM) to record the process of single viral entry into host cell. We revealed that the force of the rabies virus internalization distributed at (65±25) pN, and the time was identified by two peaks with spacings of (237.2±59.1) and (790.3±134.4) ms with the corresponding speed of 0.12 and 0.04 µm/s, respectively. Our results provide insight into the effects of viral shape during the endocytosis process. This report will be meaningful for understanding the dynamic mechanism of rabies virus early infection. Electronic Supplementary Material Supplementary material is available in the online version of this article at 10.1007/s40242-022-2069-y.
Collapse
Affiliation(s)
- Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012 P. R. China
| | - Yangang Pan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
| | - Honggang Teng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012 P. R. China
| | - Guocheng Yang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012 P. R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
| |
Collapse
|
50
|
Fang XD, Gao Q, Zang Y, Qiao JH, Gao DM, Xu WY, Wang Y, Li D, Wang XB. Host casein kinase 1-mediated phosphorylation modulates phase separation of a rhabdovirus phosphoprotein and virus infection. eLife 2022; 11:74884. [PMID: 35191833 PMCID: PMC8887900 DOI: 10.7554/elife.74884] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) plays important roles in forming cellular membraneless organelles. However, how host factors regulate LLPS of viral proteins during negative-sense RNA (NSR) virus infection is largely unknown. Here, we used barley yellow striate mosaic virus (BYSMV) as a model to demonstrate regulation of host casein kinase 1 (CK1) in phase separation and infection of NSR viruses. We first found that the BYSMV phosphoprotein (P) formed spherical granules with liquid properties and recruited viral nucleotide (N) and polymerase (L) proteins in vivo. Moreover, the P-formed granules were tethered to the ER/actin network for trafficking and fusion. BYSMV P alone formed droplets and incorporated the N protein and the 5′ trailer of genomic RNA in vitro. Interestingly, phase separation of BYSMV P was inhibited by host CK1-dependent phosphorylation of an intrinsically disordered P protein region. Genetic assays demonstrated that the unphosphorylated mutant of BYSMV P exhibited condensed phase, which promoted viroplasm formation and virus replication. Whereas, the phosphorylation-mimic mutant existed in diffuse phase state for virus transcription. Collectively, our results demonstrate that host CK1 modulates phase separation of the viral P protein and virus infection.
Collapse
Affiliation(s)
- Xiao-Dong Fang
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Gao
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Zang
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ji-Hui Qiao
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dong-Min Gao
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen-Ya Xu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Xian-Bing Wang
- College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|