1
|
Welsh FC, Eguia RT, Lee JM, Haddox HK, Galloway J, Van Vinh Chau N, Loes AN, Huddleston J, Yu TC, Quynh Le M, Nhat NTD, Thi Le Thanh N, Greninger AL, Chu HY, Englund JA, Bedford T, Matsen FA, Boni MF, Bloom JD. Age-dependent heterogeneity in the antigenic effects of mutations to influenza hemagglutinin. Cell Host Microbe 2024; 32:1397-1411.e11. [PMID: 39032493 PMCID: PMC11329357 DOI: 10.1016/j.chom.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Human influenza virus evolves to escape neutralization by polyclonal antibodies. However, we have a limited understanding of how the antigenic effects of viral mutations vary across the human population and how this heterogeneity affects virus evolution. Here, we use deep mutational scanning to map how mutations to the hemagglutinin (HA) proteins of two H3N2 strains, A/Hong Kong/45/2019 and A/Perth/16/2009, affect neutralization by serum from individuals of a variety of ages. The effects of HA mutations on serum neutralization differ across age groups in ways that can be partially rationalized in terms of exposure histories. Mutations that were fixed in influenza variants after 2020 cause greater escape from sera from younger individuals compared with adults. Overall, these results demonstrate that influenza faces distinct antigenic selection regimes from different age groups and suggest approaches to understand how this heterogeneous selection shapes viral evolution.
Collapse
MESH Headings
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Mutation
- Adult
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Influenza, Human/virology
- Influenza, Human/immunology
- Age Factors
- Middle Aged
- Young Adult
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Adolescent
- Evolution, Molecular
- Aged
- Child
Collapse
Affiliation(s)
- Frances C Welsh
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Rachel T Eguia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Juhye M Lee
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Hugh K Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jared Galloway
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nguyen Van Vinh Chau
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Andrea N Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timothy C Yu
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mai Quynh Le
- National Institutes for Hygiene and Epidemiology, Hanoi, Vietnam
| | - Nguyen T D Nhat
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nguyen Thi Le Thanh
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA; Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Janet A Englund
- Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, WA 98109, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frederick A Matsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Maciej F Boni
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
2
|
Lu X, Liu F, Tzeng WP, York IA, Tumpey TM, Levine MZ. Antibody-Mediated Suppression Regulates the Humoral Immune Response to Influenza Vaccination in Humans. J Infect Dis 2024; 229:310-321. [PMID: 37981659 DOI: 10.1093/infdis/jiad493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Preexisting immunity, including memory B cells and preexisting antibodies, can modulate antibody responses to influenza in vivo to antigenically related antigens. We investigated whether preexisting hemagglutination inhibition (HAI) antibodies targeting the K163 epitope on the hemagglutinin (K163 antibodies) could affect antibody responses following vaccination with A/California/07/2009-like A(H1N1)pdm09 influenza viruses in humans. METHODS Pre- and postvaccination sera collected from 300 adults (birth years, 1961-1998) in 6 seasons (2010-2016) were analyzed by HAI assays with 2 reverse genetics viruses and A(H1N1) viruses circulated from 1977 to 2018. Antibody adsorption assays were used to verify the preexisting K163 antibody-mediated suppression effect. RESULTS Preexisting K163 antibody titers ≥80 affected HAI antibody responses following influenza vaccination containing A/California/07/2009-like antigens. At high K163 antibody concentrations (HAI antibody titers ≥160), all HAI antibody responses were suppressed. However, at moderate K163 antibody concentrations (HAI antibody titer, 80), only K163 epitope-specific antibody responses were suppressed, and novel HAI antibody responses targeting the non-K163 epitopes were induced by vaccination. Novel antibodies targeting non-K163 epitopes cross-reacted with newly emerging A(H1N1)pdm09 strains with a K163Q mutation rather than historic 1977-2007 A(H1N1) viruses. CONCLUSIONS K163 antibody-mediated suppression shapes antibody responses to A(H1N1)pdm09 vaccination. Understanding how preexisting antibodies suppress and redirect vaccine-induced antibody responses is of great importance to improve vaccine effectiveness.
Collapse
Affiliation(s)
- Xiuhua Lu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Feng Liu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Wen-Ping Tzeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ian A York
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Min Z Levine
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
3
|
Welsh FC, Eguia RT, Lee JM, Haddox HK, Galloway J, Chau NVV, Loes AN, Huddleston J, Yu TC, Le MQ, Nhat NTD, Thanh NTL, Greninger AL, Chu HY, Englund JA, Bedford T, Matsen FA, Boni MF, Bloom JD. Age-dependent heterogeneity in the antigenic effects of mutations to influenza hemagglutinin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571235. [PMID: 38168237 PMCID: PMC10760046 DOI: 10.1101/2023.12.12.571235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Human influenza virus evolves to escape neutralization by polyclonal antibodies. However, we have a limited understanding of how the antigenic effects of viral mutations vary across the human population, and how this heterogeneity affects virus evolution. Here we use deep mutational scanning to map how mutations to the hemagglutinin (HA) proteins of the A/Hong Kong/45/2019 (H3N2) and A/Perth/16/2009 (H3N2) strains affect neutralization by serum from individuals of a variety of ages. The effects of HA mutations on serum neutralization differ across age groups in ways that can be partially rationalized in terms of exposure histories. Mutations that fixed in influenza variants after 2020 cause the greatest escape from sera from younger individuals. Overall, these results demonstrate that influenza faces distinct antigenic selection regimes from different age groups, and suggest approaches to understand how this heterogeneous selection shapes viral evolution.
Collapse
Affiliation(s)
- Frances C Welsh
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Rachel T Eguia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Juhye M Lee
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Hugh K Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jared Galloway
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Nguyen Van Vinh Chau
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Andrea N Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Timothy C Yu
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Mai Quynh Le
- National Institutes for Hygiene and Epidemiology, Hanoi, Vietnam
| | - Nguyen T D Nhat
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Nguyen Thi Le Thanh
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Janet A Englund
- Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Frederick A Matsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Maciej F Boni
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| |
Collapse
|
4
|
Radford CE, Schommers P, Gieselmann L, Crawford KHD, Dadonaite B, Yu TC, Dingens AS, Overbaugh J, Klein F, Bloom JD. Mapping the neutralizing specificity of human anti-HIV serum by deep mutational scanning. Cell Host Microbe 2023; 31:1200-1215.e9. [PMID: 37327779 PMCID: PMC10351223 DOI: 10.1016/j.chom.2023.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/18/2023]
Abstract
Understanding the specificities of human serum antibodies that broadly neutralize HIV can inform prevention and treatment strategies. Here, we describe a deep mutational scanning system that can measure the effects of combinations of mutations to HIV envelope (Env) on neutralization by antibodies and polyclonal serum. We first show that this system can accurately map how all functionally tolerated mutations to Env affect neutralization by monoclonal antibodies. We then comprehensively map Env mutations that affect neutralization by a set of human polyclonal sera that neutralize diverse strains of HIV and target the site engaging the host receptor CD4. The neutralizing activities of these sera target different epitopes, with most sera having specificities reminiscent of individual characterized monoclonal antibodies, but one serum targeting two epitopes within the CD4-binding site. Mapping the specificity of the neutralizing activity in polyclonal human serum will aid in assessing anti-HIV immune responses to inform prevention strategies.
Collapse
Affiliation(s)
- Caelan E Radford
- Molecular and Cellular Biology Graduate Program, University of Washington and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timothy C Yu
- Molecular and Cellular Biology Graduate Program, University of Washington and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
5
|
Lu X, Guo Z, Li ZN, Holiday C, Liu F, Jefferson S, Gross FL, Tzeng WP, Kumar A, York IA, Uyeki TM, Tumpey T, Stevens J, Levine MZ. Low quality antibody responses in critically ill patients hospitalized with pandemic influenza A(H1N1)pdm09 virus infection. Sci Rep 2022; 12:14971. [PMID: 36056075 PMCID: PMC9440095 DOI: 10.1038/s41598-022-18977-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Although some adults infected with influenza 2009 A(H1N1)pdm09 viruses mounted high hemagglutination inhibition (HAI) antibody response, they still suffered from severe disease, or even death. Here, we analyzed antibody profiles in patients (n = 31, 17-65 years) admitted to intensive care units (ICUs) with lung failure and invasive mechanical ventilation use due to infection with A(H1N1)pdm09 viruses during 2009-2011. We performed a comprehensive analysis of the quality and quantity of antibody responses using HAI, virus neutralization, biolayer interferometry, enzyme-linked-lectin and enzyme-linked immunosorbent assays. At time of the ICU admission, 45% (14/31) of the patients had HAI antibody titers ≥ 80 in the first serum (S1), most (13/14) exhibited narrowly-focused HAI and/or anti-HA-head binding antibodies targeting single epitopes in or around the receptor binding site. In contrast, 42% (13/31) of the patients with HAI titers ≤ 10 in S1 had non-neutralizing anti-HA-stem antibodies against A(H1N1)pdm09 viruses. Only 19% (6/31) of the patients showed HA-specific IgG1-dominant antibody responses. Three of 5 fatal patients possessed highly focused cross-type HAI antibodies targeting the (K130 + Q223)-epitopes with extremely low avidity. Our findings suggest that narrowly-focused low-quality antibody responses targeting specific HA-epitopes may have contributed to severe infection of the lower respiratory tract.
Collapse
Affiliation(s)
- Xiuhua Lu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Zhu Guo
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Zhu-Nan Li
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Crystal Holiday
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Feng Liu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Stacie Jefferson
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - F Liaini Gross
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Wen-Ping Tzeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Anand Kumar
- Section of Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Ian A York
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Terrence Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Min Z Levine
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| |
Collapse
|
6
|
Abstract
Antigenic drift refers to the evolutionary accumulation of amino acid substitutions in viral proteins selected by host adaptive immune systems as the virus circulates in a population. Antigenic drift can substantially limit the duration of immunity conferred by infection and vaccination. Here, I explain the factors contributing to the rapid antigenic drift of the SARS-CoV-2 spike protein and receptor proteins of other viruses and discuss the implications for SARS-CoV-2 evolution and immunity.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| |
Collapse
|
7
|
Muñoz-Alía MÁ, Nace RA, Zhang L, Russell SJ. Serotypic evolution of measles virus is constrained by multiple co-dominant B cell epitopes on its surface glycoproteins. Cell Rep Med 2021; 2:100225. [PMID: 33948566 PMCID: PMC8080110 DOI: 10.1016/j.xcrm.2021.100225] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Accepted: 03/04/2021] [Indexed: 11/27/2022]
Abstract
After centuries of pestilence and decades of global vaccination, measles virus (MeV) genotypes capable of evading vaccine-induced immunity have not emerged. Here, by systematically building mutations into the hemagglutinin (H) glycoprotein of an attenuated measles virus strain and assaying for serum neutralization, we show that virus evolution is severely constrained by the existence of numerous co-dominant H glycoprotein antigenic sites, some critical for binding to the pathogenicity receptors SLAMF1 and nectin-4. We further demonstrate the existence in serum of protective neutralizing antibodies targeting co-dominant fusion (F) glycoprotein epitopes. Lack of a substantial reduction in serum neutralization of mutant measles viruses that retain even one of the co-dominant antigenic sites makes evolution of pathogenic measles viruses capable of escaping serum neutralization in vaccinated individuals extremely unlikely.
Collapse
Affiliation(s)
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine and Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Walls AC, Fiala B, Schäfer A, Wrenn S, Pham MN, Murphy M, Tse LV, Shehata L, O'Connor MA, Chen C, Navarro MJ, Miranda MC, Pettie D, Ravichandran R, Kraft JC, Ogohara C, Palser A, Chalk S, Lee EC, Guerriero K, Kepl E, Chow CM, Sydeman C, Hodge EA, Brown B, Fuller JT, Dinnon KH, Gralinski LE, Leist SR, Gully KL, Lewis TB, Guttman M, Chu HY, Lee KK, Fuller DH, Baric RS, Kellam P, Carter L, Pepper M, Sheahan TP, Veesler D, King NP. Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell 2020. [PMID: 33160446 DOI: 10.1016/j.cell.2020.https:/doi.org/10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A safe, effective, and scalable vaccine is needed to halt the ongoing SARS-CoV-2 pandemic. We describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 SARS-CoV-2 spike receptor-binding domains (RBDs) in a highly immunogenic array and induce neutralizing antibody titers 10-fold higher than the prefusion-stabilized spike despite a 5-fold lower dose. Antibodies elicited by the RBD nanoparticles target multiple distinct epitopes, suggesting they may not be easily susceptible to escape mutations, and exhibit a lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the assembled nanoparticles suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms and have launched cGMP manufacturing efforts to advance the SARS-CoV-2-RBD nanoparticle vaccine into the clinic.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Laila Shehata
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Megan A O'Connor
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics Structure and Design Program, University of Washington, Seattle, WA 91895, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - John C Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Anne Palser
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - Sara Chalk
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - E-Chiang Lee
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - Kathryn Guerriero
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cameron M Chow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Claire Sydeman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Edgar A Hodge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Brieann Brown
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Jim T Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Thomas B Lewis
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics Structure and Design Program, University of Washington, Seattle, WA 91895, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Paul Kellam
- Kymab Ltd., Babraham Research Campus, Cambridge, UK; Department of Infectious Disease, Imperial College, London, UK
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
9
|
Walls AC, Fiala B, Schäfer A, Wrenn S, Pham MN, Murphy M, Tse LV, Shehata L, O'Connor MA, Chen C, Navarro MJ, Miranda MC, Pettie D, Ravichandran R, Kraft JC, Ogohara C, Palser A, Chalk S, Lee EC, Guerriero K, Kepl E, Chow CM, Sydeman C, Hodge EA, Brown B, Fuller JT, Dinnon KH, Gralinski LE, Leist SR, Gully KL, Lewis TB, Guttman M, Chu HY, Lee KK, Fuller DH, Baric RS, Kellam P, Carter L, Pepper M, Sheahan TP, Veesler D, King NP. Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell 2020; 183:1367-1382.e17. [PMID: 33160446 PMCID: PMC7604136 DOI: 10.1016/j.cell.2020.10.043] [Citation(s) in RCA: 395] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/10/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
A safe, effective, and scalable vaccine is needed to halt the ongoing SARS-CoV-2 pandemic. We describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 SARS-CoV-2 spike receptor-binding domains (RBDs) in a highly immunogenic array and induce neutralizing antibody titers 10-fold higher than the prefusion-stabilized spike despite a 5-fold lower dose. Antibodies elicited by the RBD nanoparticles target multiple distinct epitopes, suggesting they may not be easily susceptible to escape mutations, and exhibit a lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the assembled nanoparticles suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms and have launched cGMP manufacturing efforts to advance the SARS-CoV-2-RBD nanoparticle vaccine into the clinic.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Laila Shehata
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Megan A O'Connor
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics Structure and Design Program, University of Washington, Seattle, WA 91895, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - John C Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Anne Palser
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - Sara Chalk
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - E-Chiang Lee
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - Kathryn Guerriero
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cameron M Chow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Claire Sydeman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Edgar A Hodge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Brieann Brown
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Jim T Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Thomas B Lewis
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics Structure and Design Program, University of Washington, Seattle, WA 91895, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Paul Kellam
- Kymab Ltd., Babraham Research Campus, Cambridge, UK; Department of Infectious Disease, Imperial College, London, UK
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
10
|
Morris DH, Petrova VN, Rossine FW, Parker E, Grenfell BT, Neher RA, Levin SA, Russell CA. Asynchrony between virus diversity and antibody selection limits influenza virus evolution. eLife 2020; 9:e62105. [PMID: 33174838 PMCID: PMC7748417 DOI: 10.7554/elife.62105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Seasonal influenza viruses create a persistent global disease burden by evolving to escape immunity induced by prior infections and vaccinations. New antigenic variants have a substantial selective advantage at the population level, but these variants are rarely selected within-host, even in previously immune individuals. Using a mathematical model, we show that the temporal asynchrony between within-host virus exponential growth and antibody-mediated selection could limit within-host antigenic evolution. If selection for new antigenic variants acts principally at the point of initial virus inoculation, where small virus populations encounter well-matched mucosal antibodies in previously-infected individuals, there can exist protection against reinfection that does not regularly produce observable new antigenic variants within individual infected hosts. Our results provide a theoretical explanation for how virus antigenic evolution can be highly selective at the global level but nearly neutral within-host. They also suggest new avenues for improving influenza control.
Collapse
MESH Headings
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Biological Evolution
- Genetic Variation/genetics
- Humans
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza, Human/immunology
- Influenza, Human/transmission
- Influenza, Human/virology
- Models, Statistical
- Selection, Genetic/genetics
- Selection, Genetic/immunology
- Virion/genetics
- Virion/immunology
Collapse
Affiliation(s)
- Dylan H Morris
- Department of Ecology & Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Velislava N Petrova
- Department of Human Genetics, Wellcome Trust Sanger InstituteCambridgeUnited Kingdom
| | - Fernando W Rossine
- Department of Ecology & Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Edyth Parker
- Department of Veterinary Medicine, University of CambridgeCambridgeUnited Kingdom
- Department of Medical Microbiology, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Bryan T Grenfell
- Department of Ecology & Evolutionary Biology, Princeton UniversityPrincetonUnited States
- Fogarty International Center, National Institutes of HealthBethesdaUnited States
| | | | - Simon A Levin
- Department of Ecology & Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Colin A Russell
- Department of Medical Microbiology, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
11
|
Walls AC, Fiala B, Schäfer A, Wrenn S, Pham MN, Murphy M, Tse LV, Shehata L, O’Connor MA, Chen C, Navarro MJ, Miranda MC, Pettie D, Ravichandran R, Kraft JC, Ogohara C, Palser A, Chalk S, Lee EC, Kepl E, Chow CM, Sydeman C, Hodge EA, Brown B, Fuller JT, Dinnon KH, Gralinski LE, Leist SR, Gully KL, Lewis TB, Guttman M, Chu HY, Lee KK, Fuller DH, Baric RS, Kellam P, Carter L, Pepper M, Sheahan TP, Veesler D, King NP. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.11.247395. [PMID: 32817941 PMCID: PMC7430571 DOI: 10.1101/2020.08.11.247395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A safe, effective, and scalable vaccine is urgently needed to halt the ongoing SARS-CoV-2 pandemic. Here, we describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 copies of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain (RBD) in a highly immunogenic array and induce neutralizing antibody titers roughly ten-fold higher than the prefusion-stabilized S ectodomain trimer despite a more than five-fold lower dose. Antibodies elicited by the nanoparticle immunogens target multiple distinct epitopes on the RBD, suggesting that they may not be easily susceptible to escape mutations, and exhibit a significantly lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the protein components and assembled nanoparticles, especially compared to the SARS-CoV-2 prefusion-stabilized S trimer, suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms for inducing potent neutralizing antibody responses and have launched cGMP manufacturing efforts to advance the lead RBD nanoparticle vaccine into the clinic.
Collapse
Affiliation(s)
- Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N. Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Longping V. Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Laila Shehata
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Megan A. O’Connor
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
- Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA 91895, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C. Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - John C. Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Anne Palser
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Sara Chalk
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - E-Chiang Lee
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cameron M. Chow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Claire Sydeman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Edgar A. Hodge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Brieann Brown
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
- Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Jim T. Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Kenneth H. Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Lisa E. Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kendra L. Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Thomas B. Lewis
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
- Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Helen Y. Chu
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA 91895, USA
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
- Washington National Primate Research Center, Seattle, WA 98121, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Paul Kellam
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Arevalo P, McLean HQ, Belongia EA, Cobey S. Earliest infections predict the age distribution of seasonal influenza A cases. eLife 2020; 9:e50060. [PMID: 32633233 PMCID: PMC7367686 DOI: 10.7554/elife.50060] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 06/29/2020] [Indexed: 12/02/2022] Open
Abstract
Seasonal variation in the age distribution of influenza A cases suggests that factors other than age shape susceptibility to medically attended infection. We ask whether these differences can be partly explained by protection conferred by childhood influenza infection, which has lasting impacts on immune responses to influenza and protection against new influenza A subtypes (phenomena known as original antigenic sin and immune imprinting). Fitting a statistical model to data from studies of influenza vaccine effectiveness (VE), we find that primary infection appears to reduce the risk of medically attended infection with that subtype throughout life. This effect is stronger for H1N1 compared to H3N2. Additionally, we find evidence that VE varies with both age and birth year, suggesting that VE is sensitive to early exposures. Our findings may improve estimates of age-specific risk and VE in similarly vaccinated populations and thus improve forecasting and vaccination strategies to combat seasonal influenza.
Collapse
Affiliation(s)
- Philip Arevalo
- Department of Ecology and Evolutionary Biology, University of ChicagoChicagoUnited States
| | - Huong Q McLean
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research InstituteMarshfieldUnited States
| | - Edward A Belongia
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research InstituteMarshfieldUnited States
| | - Sarah Cobey
- Department of Ecology and Evolutionary Biology, University of ChicagoChicagoUnited States
| |
Collapse
|
13
|
Wong J, Tai CM, Hurt AC, Tan HX, Kent SJ, Wheatley AK. Sequencing B cell receptors from ferrets (Mustela putorius furo). PLoS One 2020; 15:e0233794. [PMID: 32470013 PMCID: PMC7259655 DOI: 10.1371/journal.pone.0233794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
The domestic ferret (Mustela putorius furo) provides a critical animal model to study human respiratory diseases. However immunological insights are restricted due to a lack of ferret-specific reagents and limited genetic information about ferret B and T cell receptors. Here, variable, diversity and joining genes within the ferret kappa, lambda and heavy chain immunoglobulin loci were annotated using available genomic information. A multiplex PCR approach was derived that facilitated the recovery of paired heavy and light chain immunoglobulin sequences from single sorted ferret B cells, allowing validation of predicted germline gene sequences and the identification of putative novel germlines. Eukaryotic expression vectors were developed that enabled the generation of recombinant ferret monoclonal antibodies. This work advances the ferret as an informative immunological model for viral diseases by allowing the in-depth interrogation of antibody-based immunity.
Collapse
Affiliation(s)
- Julius Wong
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Celeste M. Tai
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Aeron C. Hurt
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AKW); (SJK)
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AKW); (SJK)
| |
Collapse
|
14
|
Lafont BAP, Bennink JR. Slowing Influenza Virus Evolution: A Role for Multiple Synergistic Antiviral Specificities in Vaccination Strategies. Viral Immunol 2020; 33:197-200. [PMID: 32286176 PMCID: PMC7185310 DOI: 10.1089/vim.2019.0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Jack R Bennink
- Viral Immunology Section, NIAID, NIH, Bethesda, Maryland
| |
Collapse
|
15
|
Plant EP, Manukyan H, Sanchez JL, Laassri M, Ye Z. Immune Pressure on Polymorphous Influenza B Populations Results in Diverse Hemagglutinin Escape Mutants and Lineage Switching. Vaccines (Basel) 2020; 8:vaccines8010125. [PMID: 32168968 PMCID: PMC7157493 DOI: 10.3390/vaccines8010125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mutations arise in the genomes of progeny viruses during infection. Mutations that occur in epitopes targeted by host antibodies allow the progeny virus to escape the host adaptive, B-cell mediated antibody immune response. Major epitopes have been identified in influenza B virus (IBV) hemagglutinin (HA) protein. However, IBV strains maintain a seasonal presence in the human population and changes in IBV genomes in response to immune pressure are not well characterized. There are two lineages of IBV that have circulated in the human population since the 1980s, B-Victoria and B-Yamagata. It is hypothesized that early exposure to one influenza subtype leads to immunodominance. Subsequent seasonal vaccination or exposure to new subtypes may modify subsequent immune responses, which, in turn, results in selection of escape mutations in the viral genome. Here we show that while some mutations do occur in known epitopes suggesting antibody escape, many mutations occur in other parts of the HA protein. Analysis of mutations outside of the known epitopes revealed that these mutations occurred at the same amino acid position in viruses from each of the two IBV lineages. Interestingly, where the amino acid sequence differed between viruses from each lineage, reciprocal amino acid changes were observed. That is, the virus from the Yamagata lineage become more like the Victoria lineage virus and vice versa. Our results suggest that some IBV HA sequences are constrained to specific amino acid codons when viruses are cultured in the presence of antibodies. Some changes to the known antigenic regions may also be restricted in a lineage-dependent manner. Questions remain regarding the mechanisms underlying these results. The presence of amino acid residues that are constrained within the HA may provide a new target for universal vaccines for IBV.
Collapse
Affiliation(s)
- Ewan P. Plant
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (H.M.); (M.L.); (Z.Y.)
- Correspondence: ; Tel.: +1-240-402-7319
| | - Hasmik Manukyan
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (H.M.); (M.L.); (Z.Y.)
| | - Jose L. Sanchez
- Armed Forces Health Surveillance Branch, Public Health Division, Assistant Director for Combat Support (AD-CS), Defense Health Agency, Silver Spring, MD 20904, USA;
| | - Majid Laassri
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (H.M.); (M.L.); (Z.Y.)
| | - Zhiping Ye
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (H.M.); (M.L.); (Z.Y.)
| |
Collapse
|
16
|
Huang KYA, Huang YC, Chiu CH, Tsao KC, Lin TY. Impaired Vaccine-Induced Antibody Response Against Clade 6B H1N1 Viruses in Individuals Before Viral Emergence. Open Forum Infect Dis 2020; 7:ofz513. [PMID: 31950072 PMCID: PMC6954487 DOI: 10.1093/ofid/ofz513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/06/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Clade 6B H1N1 pdm09 influenza viruses cause substantial morbidity and mortality worldwide. Human antibody profiles elicited upon vaccination against the clade 6B virus are largely unclear before viral emergence. METHODS Healthy volunteers, including children aged 3-8 years, adolescents aged 9-17 years, and adults, were enrolled before the clade 6B H1N1 outbreak and received the 2013-2014 inactivated influenza vaccine. We determined antibody responses before and after vaccination. Vaccine-induced plasmablast-derived antibodies were tested against H1N1 pdm09 reference and clade 6B viruses. RESULTS The majority of the subjects generated robust hemagglutination inhibition and neutralizing antibody responses upon vaccination across the different age groups. Nevertheless, a subset of young adults preferentially produced antibodies that failed to neutralize clade 6B viruses that emerged and circulated in 2014-2016. The hemagglutinin K163Q change at the Sa antigenic site, one of the substitutions that define clade 6B viruses, was responsible for resistance to neutralization by both postvaccination sera and vaccine-induced plasmablast-derived antibodies. CONCLUSIONS Vaccine-induced antibody immunity is compromised by the antigenic change of H1N1 pdm09 virus in a subset of adults, and this may warrant the incorporation of human serology in the antigenic characterization of virus and vaccine strain selection.
Collapse
Affiliation(s)
- Kuan-Ying A Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yhu-Chering Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chien Tsao
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzou-Yien Lin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
17
|
Lee JM, Eguia R, Zost SJ, Choudhary S, Wilson PC, Bedford T, Stevens-Ayers T, Boeckh M, Hurt AC, Lakdawala SS, Hensley SE, Bloom JD. Mapping person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin. eLife 2019; 8:e49324. [PMID: 31452511 PMCID: PMC6711711 DOI: 10.7554/elife.49324] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/27/2019] [Indexed: 12/11/2022] Open
Abstract
A longstanding question is how influenza virus evolves to escape human immunity, which is polyclonal and can target many distinct epitopes. Here, we map how all amino-acid mutations to influenza's major surface protein affect viral neutralization by polyclonal human sera. The serum of some individuals is so focused that it selects single mutations that reduce viral neutralization by over an order of magnitude. However, different viral mutations escape the sera of different individuals. This individual-to-individual variation in viral escape mutations is not present among ferrets that have been infected just once with a defined viral strain. Our results show how different single mutations help influenza virus escape the immunity of different members of the human population, a phenomenon that could shape viral evolution and disease susceptibility.
Collapse
Affiliation(s)
- Juhye M Lee
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Rachel Eguia
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Seth J Zost
- Department of MicrobiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Saket Choudhary
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesUnited States
| | - Patrick C Wilson
- Department of MedicineSection of Rheumatology, University of ChicagoChicagoUnited States
| | - Trevor Bedford
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Terry Stevens-Ayers
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Michael Boeckh
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Seema S Lakdawala
- Department of Microbiology and Molecular GeneticsSchool of Medicine, University of PittsburghPittsburghUnited States
| | - Scott E Hensley
- Department of MicrobiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jesse D Bloom
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Howard Hughes Medical InstituteSeattleUnited States
| |
Collapse
|
18
|
Braun KM, Friedrich TC. Influenza evolution with little host selection. Nat Ecol Evol 2019; 3:159-160. [PMID: 30617345 DOI: 10.1038/s41559-018-0782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Katarina M Braun
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, USA. .,Wisconsin National Primate Research Center, Madison, WI, USA.
| |
Collapse
|
19
|
Han AX, Maurer-Stroh S, Russell CA. Individual immune selection pressure has limited impact on seasonal influenza virus evolution. Nat Ecol Evol 2018; 3:302-311. [DOI: 10.1038/s41559-018-0741-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/01/2018] [Indexed: 01/10/2023]
|
20
|
Sera from Individuals with Narrowly Focused Influenza Virus Antibodies Rapidly Select Viral Escape Mutations In Ovo. J Virol 2018; 92:JVI.00859-18. [PMID: 30045982 DOI: 10.1128/jvi.00859-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/19/2018] [Indexed: 02/05/2023] Open
Abstract
Influenza viruses use distinct antibody escape mechanisms depending on the overall complexity of the antibody response that is encountered. When grown in the presence of a hemagglutinin (HA) monoclonal antibody, influenza viruses typically acquire a single HA mutation that reduces the binding of that specific monoclonal antibody. In contrast, when confronted with mixtures of HA monoclonal antibodies or polyclonal sera that have antibodies that bind several HA epitopes, influenza viruses acquire mutations that increase HA binding to host cells. Recent data from our laboratory and others suggest that some humans possess antibodies that are narrowly focused on HA epitopes that were present in influenza virus strains that they were likely exposed to in childhood. Here, we completed a series of experiments to determine if humans with narrowly focused HA antibody responses are able to select for influenza virus antigenic escape variants in ovo We identified three human donors that possessed HA antibody responses that were heavily focused on a single HA antigenic site. Sera from all three of these donors selected single HA escape mutations during in ovo passage experiments, similar to what has been previously reported for single monoclonal antibodies. These single HA mutations directly reduced binding of serum antibodies used for selection. We propose that new antigenic variants of influenza viruses might originate in individuals who produce antibodies that are narrowly focused on HA epitopes that were present in viral strains that they encountered in childhood.IMPORTANCE Influenza vaccine strains must be updated frequently since circulating viral strains continuously change in antigenically important epitopes. Our previous studies have demonstrated that some individuals possess antibody responses that are narrowly focused on epitopes that were present in viral strains that they encountered during childhood. Here, we show that influenza viruses rapidly escape this type of polyclonal antibody response when grown in ovo by acquiring single mutations that directly prevent antibody binding. These studies improve our understanding of how influenza viruses evolve when confronted with narrowly focused polyclonal human antibodies.
Collapse
|