1
|
An HH, Li M, Liu RL, Wu J, Meng SL, Guo J, Wang ZJ, Qian SS, Shen S. Humoral and cellular immunogenicity and efficacy of a coxsackievirus A10 vaccine in mice. Emerg Microbes Infect 2023; 12:e2147022. [PMID: 36373411 PMCID: PMC9848378 DOI: 10.1080/22221751.2022.2147022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coxsackievirus A10 (CV-A10) has become one of the major pathogens of hand, foot and mouth disease (HFMD), and studies on the vaccine and animal model of CV-A10 are still far from complete. Our study used a mouse-adapted CV-A10 strain, which was lethal for 14-day-old mice, to develop an infected mouse model. Then this model was employed to establish an actively immunized-challenged mouse model to evaluate the efficacy of a formaldehyde-inactivated CV-A10 vaccine, which was prepared from a Vero cell-adapted strain. CV-A10 vaccine at a dose of 0.5 or 2.0 μg was inoculated intraperitoneally in neonatal Kunming mice on the third and ninth day. Then the mice were challenged on day 14. The survival rate of mice immunized with 0.5 or 2.0 μg vaccine were 90% and 100%, respectively, while all Alum-inoculated mice died. Compared to those in the two vaccinated groups, the Alum-inoculated mice showed severe pathological damage, strong viral protein expression and high viral loads. The antisera from vaccinated mice showed high level of neutralizing antibodies against CV-A10. Meanwhile, three potential T cell epitopes located at the carboxyl-terminal regions of the VP1 and VP3 were identified and exhibited CV-A10 serotype-specific. The humoral and cellular immunogenicity analysis showed that immunization with two doses of the vaccine elicited CV-A10 specific neutralizing antibody and T cell response in BALB/c mice. Collectively, these findings indicated that this actively immunized-challenged mouse model will be invaluable in future studies on CV-A10 pathogenesis and evaluation of vaccine candidates.
Collapse
Affiliation(s)
- Huan-Huan An
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People’s Republic of China
| | - Meng Li
- College of Medical Laboratory Science, Guilin Medical University, Guilin, People’s Republic of China
| | - Rui-Lun Liu
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People’s Republic of China
| | - Jie Wu
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People’s Republic of China
| | - Sheng-Li Meng
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People’s Republic of China
| | - Jing Guo
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People’s Republic of China
| | - Ze-Jun Wang
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People’s Republic of China
| | - Sha-Sha Qian
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People’s Republic of China, Sha-Sha Qian Wuhan Institute of Biological Products Co. Ltd., No.1 Huangjin Industrial Park Road, Jiangxia District, Wuhan430207, People’s Republic of China
| | - Shuo Shen
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People’s Republic of China,Shuo Shen Wuhan Institute of Biological Products Co. Ltd., No.1 Huangjin Industrial Park Road, Jiangxia District, Wuhan430207, People’s Republic of China
| |
Collapse
|
2
|
Tan XH, Chong WL, Lee VS, Abdullah S, Jasni K, Suarni SQ, Perera D, Sam IC, Chan YF. Substitution of Coxsackievirus A16 VP1 BC and EF Loop Altered the Protective Immune Responses in Chimera Enterovirus A71. Vaccines (Basel) 2023; 11:1363. [PMID: 37631931 PMCID: PMC10458053 DOI: 10.3390/vaccines11081363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is a childhood disease caused by enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16). Capsid loops are important epitopes for EV-A71 and CV-A16. Seven chimeric EV-A71 (ChiE71) involving VP1 BC (45.5% similarity), DE, EF, GH and HI loops, VP2 EF loop and VP3 GH loop (91.3% similarity) were substituted with corresponding CV-A16 loops. Only ChiE71-1-BC, ChiE71-1-EF, ChiE71-1-GH and ChiE71-3-GH were viable. EV-A71 and CV-A16 antiserum neutralized ChiE71-1-BC and ChiE71-1-EF. Mice immunized with inactivated ChiE71 elicited high IgG, IFN-γ, IL-2, IL-4 and IL-10. Neonatal mice receiving passive transfer of WT EV-A71, ChiE71-1-EF and ChiE71-1-BC immune sera had 100%, 80.0% and no survival, respectively, against lethal challenges with EV-A71, suggesting that the substituted CV-A16 loops disrupted EV-A71 immunogenicity. Passive transfer of CV-A16, ChiE71-1-EF and ChiE71-1-BC immune sera provided 40.0%, 20.0% and 42.9% survival, respectively, against CV-A16. One-day-old neonatal mice immunized with WT EV-A71, ChiE71-1-BC, ChiE71-1-EF and CV-A16 achieved 62.5%, 60.0%, 57.1%, and no survival, respectively, after the EV-A71 challenge. Active immunization using CV-A16 provided full protection while WT EV-A71, ChiE71-1-BC and ChiE71-1-EF immunization showed partial cross-protection in CV-A16 lethal challenge with survival rates of 50.0%, 20.0% and 40%, respectively. Disruption of a capsid loop could affect virus immunogenicity, and future vaccine design should include conservation of the enterovirus capsid loops.
Collapse
Affiliation(s)
- Xiu Hui Tan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| | - Wei Lim Chong
- Department of Chemistry, Center of Theoretical and Computational Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Center of Theoretical and Computational Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Syahril Abdullah
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kartini Jasni
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Saiful Qushairi Suarni
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - David Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia;
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| |
Collapse
|
3
|
Sumithra M, Jone Pradeepa S, Tamilvendan D, Boobalan MS, Sundaraganesan N. Spectral (FT-IR, FT-Raman, NMR, UV–vis), electronic structure (DFT, TD-DFT), and molecular docking investigations on 1-((1H-benzo[d]imidazol-1-yl)methyl)urea – A bioactive Mannich base system. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Abstract
Echovirus 30 (E30), a member of species B enterovirus, is associated with outbreaks of aseptic meningitis and has become a global health emergency. However, the pathogenesis of E30 remains poorly understood due to the lack of appropriate animal models. In this study, we established a mouse infection model to explore the pathogenicity of E30. The 2-day-old IFNAR-/- mice infected with E30 strain WZ16 showed lethargy and paralysis, and some died. Obvious pathological changes were observed in the skeletal muscle, brain tissue, and other tissues, with the highest viral load in the skeletal muscles. Transcriptome analysis of brain and skeletal muscle tissues from infected mice showed that significant differentially expressed genes were enriched in complement response and neuropathy-related pathways. Using immunofluorescence assay, we found that the viral double-stranded RNA (dsRNA) was detected in the mouse brain region and could infect human glioma (U251) cells. These results indicated that E30 affects the nervous system, and they provide a theoretical basis for understanding its pathogenesis. IMPORTANCE Echovirus 30 (E30) infection causes a wide spectrum of diseases with mild symptoms, such as hand, foot, and mouth disease (HFMD), acute flaccid paralysis, and aseptic meningitis and other diseases, especially one of the most common pathogens causing aseptic meningitis outbreaks. We established a novel mouse model of E30 infection by inoculating neonatal mice with clinical isolates of E30 and observed the pathological changes induced by E30. Using the E30 infection model, we found complement responses and neuropathy-related genes in the mice tissues at the transcriptome level. Moreover, we found that the viral dsRNA localized in the mouse brain and could replicate in human glioma cell line U251 rather than in the neuroblastoma cell line, SK-N-SH.
Collapse
|
5
|
Löffler P. Review: Vaccine Myth-Buster - Cleaning Up With Prejudices and Dangerous Misinformation. Front Immunol 2021; 12:663280. [PMID: 34177902 PMCID: PMC8222972 DOI: 10.3389/fimmu.2021.663280] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Although vaccines have already saved and will continue to save millions of lives, they are under attack. Vaccine safety is the main target of criticism. The rapid distribution of false information, or even conspiracy theories on the internet has tremendously favored vaccine hesitancy. The World Health Organization (WHO) named vaccine hesitancy one of the top ten threats to global health in 2019. Parents and patients have several concerns about vaccine safety, of which the ubiquitous anxieties include inactivating agents, adjuvants, preservatives, or new technologies such as genetic vaccines. In general, increasing doubts concerning side effects have been observed, which may lead to an increasing mistrust of scientific results and thus, the scientific method. Hence, this review targets five topics concerning vaccines and reviews current scientific publications in order to summarize the available information refuting conspiracy theories and myths about vaccination. The topics have been selected based on the author's personal perception of the most frequently occurring safety controversies: the inactivation agent formaldehyde, the adjuvant aluminum, the preservative mercury, the mistakenly-drawn correlation between vaccines and autism and genetic vaccines. The scientific literature shows that vaccine safety is constantly studied. Furthermore, the literature does not support the allegations that vaccines may cause a serious threat to general human life. The author suggests that more researchers explaining their research ideas, methods and results publicly could strengthen the general confidence in science. In general, vaccines present one of the safest and most cost-effective medications and none of the targeted topics raised serious health concerns.
Collapse
Affiliation(s)
- Paul Löffler
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| |
Collapse
|
6
|
Ji W, Qin L, Tao L, Zhu P, Liang R, Zhou G, Chen S, Zhang W, Yang H, Duan G, Jin Y. Neonatal Murine Model of Coxsackievirus A2 Infection for the Evaluation of Antiviral Therapeutics and Vaccination. Front Microbiol 2021; 12:658093. [PMID: 34122374 PMCID: PMC8192712 DOI: 10.3389/fmicb.2021.658093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/30/2021] [Indexed: 01/08/2023] Open
Abstract
Coxsackievirus (CV) A2 has emerged as an important etiological agent in the pathogen spectrum of hand, foot, and mouth disease (HFMD). The symptoms of CVA2 infections are generally mild, but worsen rapidly in some people, posing a serious threat to children’s health. However, compared with enterovirus 71 detected frequently in fatal cases, limited attention has been paid to CVA2 infections because of its benign clinical course. In the present study, we identified three CVA2 strains from HFMD infections and used the cell-adapted CVA2 strain HN202009 to inoculate 5-day-old BALB/c mice intramuscularly. These mice developed remarkably neurological symptoms such as ataxia, hind-limb paralysis, and death. Histopathological determination showed neuronophagia, pulmonary hemorrhage, myofiberlysis and viral myocarditis. Viral replication was detected in multiple organs and tissues, and CVA2 exhibited strong tropism to muscle tissue. The severity of illness was associated with abnormally high levels of inflammatory cytokines, including interleukin (IL)-6, IL-10, tumor necrosis factor α, and monocyte chemotactic protein 1, although the blockade of these proinflammatory cytokines had no obvious protection. We also tested whether an experimental formaldehyde-inactivated CVA2 vaccine could induce protective immune response in adult mice. The CVA2 antisera from the vaccinated mice were effective against CVA2 infection. Moreover, the inactivated CVA2 vaccine could successfully generate immune protection in neonatal mice. Our results indicated that the neonatal mouse model could be a useful tool to study CVA2 infection and to develop CVA2 vaccines.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Luwei Qin
- Henan Province Center for Disease Control and Prevention, Zhengzhou, China
| | - Ling Tao
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ruonan Liang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangyuan Zhou
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Safety and Immunogenicity of a Stable, Cold-Adapted, Temperature-Sensitive/Conditional Lethal Enterovirus A71 in Monkey Study. Viruses 2021; 13:v13030438. [PMID: 33803356 PMCID: PMC8001754 DOI: 10.3390/v13030438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Abstract
Enterovirus A71 (EV-A71) and coxsackievirus A16 (CA16) are major etiological agents of hand foot and mouth disease (HFMD) in children, which may result in fatal neurological complications. The development of safe, cost effective vaccines against HFMD, especially for use in developing countries, is still a top public health priority. We have successfully generated a stable, cold-adapted, temperature sensitive/conditional lethal EV-A71 through adaptive culturing in Vero cells at incrementally lower cultivation temperatures. An additional 40 passages at an incubation temperature of 28 °C, and a temperature reversion study at an incubation temperature of 37 °C and 39.5 °C, reveals the virus’s phenotypic and genetic stability at the predefined culture conditions. Six unique mutations (two in noncoding regions and four in nonstructural protein-coding genes) in combination may have contributed to its stable phenotype and inability to fully revert to its original wild phenotype. The safety and immunogenicity of this stable, cold-adapted, temperature sensitive/conditional lethal EV-A71 was performed in six monkeys. None of the inoculated monkeys developed any obvious clinical illness except one which developed a transient spike of fever. No gross postmortem lesion or abnormal histological finding was noted for all monkeys at autopsy. No virus was reisolated although EV-A71 specific RNA was detected in serum samples collected on both day 4 and day 8 postinoculation. Only EV-A71 RNA and viral antigen were detected in the spleen homogenate and peripheral blood mononuclear cells, respectively, collected on day 4. The two remaining monkeys developed good humoral immune response on day 14 and day 30 post-inoculation.
Collapse
|
8
|
Lee MHP, Tan CW, Tee HK, Ong KC, Sam IC, Chan YF. Vaccine candidates generated by codon and codon pair deoptimization of enterovirus A71 protect against lethal challenge in mice. Vaccine 2021; 39:1708-1720. [PMID: 33640144 DOI: 10.1016/j.vaccine.2021.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
Enterovirus A71 (EV-A71) causes hand, foot and mouth disease (HFMD) in young children. It is associated with severe neurological complications and death. This study aims to develop a live-attenuated vaccine by codon deoptimization (CD) and codon-pair deoptimization (CPD) of EV-A71. CD is generated by introducing the least preferred codons for amino acids while CPD increases the presence of underrepresented codon pairs in the specific genes. CD and CPD chimeras were generated by synonymous mutations at the VP2, VP3, VP1 and 2A gene regions, designated as XYZ. All twelve deoptimized viruses were viable with similar replication kinetics, but the plaque sizes were inversely proportional to the level of deoptimization. All the deoptimized viruses showed attenuated growth in vitro with reduced viral protein expression at 48 h and lower viral RNA at 39 °C. Six-week-old ICR mice were immunized intraperitoneally with selected CD and CPD X and XY vaccine candidates covering the VP2-VP3 and VP2-VP3-VP1 genes, respectively. All vaccine candidates elicited high anti-EV-A71 IgG levels similar to wild-type (WT) EV-A71. The CD X and CPD X vaccines produced robust neutralizing antibodies but not the CD XY and CPD XY. On lethal challenge, offspring of mice immunized with WT, CD X and CPD X were fully protected, but the CD XY- and CPD XY-vaccinated mice had delayed symptoms and eventually died. Similarly, active immunization of 1-day-old suckling mice with CD X, CPD X and CD XY vaccine candidates provided complete immune protection but CPD XY only protected 40% of the challenged mice. Histology of the muscles from CD X- and CPD X-vaccinated mice showed minimal pathology compared to extensive inflammation in the post-challenged mock-vaccinated mice. Overall, we demonstrated that the CD X and CPD X elicited good neutralizing antibodies, conferred immune protection and are promising live-attenuated vaccine candidates for EV-A71.
Collapse
Affiliation(s)
- Michelle Hui Pheng Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chee Wah Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Han Kang Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Recombinant Enterovirus 71 Viral Protein 1 Fused to a Truncated Newcastle Disease Virus NP (NPt) Carrier Protein. Vaccines (Basel) 2020; 8:vaccines8040742. [PMID: 33297428 PMCID: PMC7762238 DOI: 10.3390/vaccines8040742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 01/14/2023] Open
Abstract
Enterovirus 71 (EV71) is the major causative agent in hand, foot, and mouth disease (HFMD), and it mainly infects children worldwide. Despite the risk, there is no effective vaccine available for this disease. Hence, a recombinant protein construct of truncated nucleocapsid protein viral protein 1 (NPt-VP1198–297), which is capable of inducing neutralizing antibody against EV71, was evaluated in a mouse model. Truncated nucleocapsid protein Newcastle disease virus that was used as immunological carrier fused to VP1 of EV71 as antigen. The recombinant plasmid carrying corresponding genes was constructed by recombinant DNA technology and the corresponding protein was produced in Escherichia coli expression system. The recombinant NPt-VP1198–297 protein had elicited neutralizing antibodies against EV71 with the titer of 1:16, and this result is higher than the titer that is elicited by VP1 protein alone (1:8). It was shown that NPt containing immunogenic epitope(s) of VP1 was capable of inducing a greater functional immune response when compared to full-length VP1 protein alone. It was capable to carry larger polypeptide compared to full-length NP protein. The current study also proved that NPt-VP1198–297 protein can be abundantly produced in recombinant protein form by E. coli expression system. The findings from this study support the importance of neutralizing antibodies in EV71 infection and highlight the potential of the recombinant NPt-VP1198–297 protein as EV71 vaccine.
Collapse
|
10
|
Shih HI, Wu CJ, Tu YF, Chi CY. Fighting COVID-19: A quick review of diagnoses, therapies, and vaccines. Biomed J 2020; 43:341-354. [PMID: 32532623 PMCID: PMC7260535 DOI: 10.1016/j.bj.2020.05.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by a novel coronavirus, SARS-CoV-2, has infected more than 22 million individuals and resulted in over 780,000 deaths globally. The rapid spread of the virus and the precipitously increasing numbers of cases necessitate the urgent development of accurate diagnostic methods, effective treatments, and vaccines. Here, we review the progress of developing diagnostic methods, therapies, and vaccines for SARS-CoV-2 with a focus on current clinical trials and their challenges. For diagnosis, nucleic acid amplification tests remain the mainstay diagnostics for laboratory confirmation of SARS-CoV-2 infection, while serological antibody tests are used to aid contact tracing, epidemiological, and vaccine evaluation studies. Viral isolation is not recommended for routine diagnostic procedures due to safety concerns. Currently, no single effective drug or specific vaccine is available against SARS-CoV-2. Some candidate drugs targeting different levels and stages of human responses against COVID-19 such as cell membrane fusion, RNA-dependent RNA polymerase, viral protease inhibitor, interleukin 6 blocker, and convalescent plasma may improve the clinical outcomes of critical COVID-19 patients. Other supportive care measures for critical patients are still necessary. Advances in genetic sequencing and other technological developments have sped up the establishment of a variety of vaccine platforms. Accordingly, numerous vaccines are under development. Vaccine candidates against SARS-CoV-2 are mainly based upon the viral spike protein due to its vital role in viral infectivity, and most of these candidates have recently moved into clinical trials. Before the efficacy of such vaccines in humans is demonstrated, strong international coordination and collaboration among studies, pharmaceutical companies, regulators, and governments are needed to limit further damage due the emerging SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Hsin-I Shih
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Jung Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Fang Tu
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yu Chi
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Doctoral Degree Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Hooi YT, Ong KC, Tan SH, Perera D, Wong KT. Coxsackievirus A16 in a 1-Day-Old Mouse Model of Central Nervous System Infection Shows Lower Neurovirulence than Enterovirus A71. J Comp Pathol 2020; 176:19-32. [PMID: 32359633 DOI: 10.1016/j.jcpa.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Coxsackievirus A16 (CV-A16) and enterovirus A71 (EV-A71) are the major causes of hand, foot and mouth disease in young children. Although less so with CV-A16, both viruses are associated with serious neurological syndromes, but the differences between their central nervous system infections remain unclear. We conducted a comparative infection study using clinically-isolated CV-A16 and EV-A71 strains in a 1-day-old mouse model to better understand the neuropathology and neurovirulence of the viruses. New serotype-specific probes for in situ hybridization were developed and validated to detect CV-A16 and EV-A71 RNA in infected tissues. Demonstration of CV-A16 virus antigens/RNA, mainly in the brainstem and spinal cord neurons, confirmed neurovirulence, but showed lower densities than in EV-A71 infected animals. A higher lethal dose50 for CV-A16 suggested that CV-A16 is less neurovirulent. Focal virus antigens/RNA in the anterior horn white matter and adjacent efferent motor nerves suggested that neuroinvasion is possibly via retrograde axonal transport in peripheral motor nerves.
Collapse
Affiliation(s)
- Y T Hooi
- Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia
| | - K C Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S H Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - D Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Sarawak, Malaysia
| | - K T Wong
- Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Zhang Z, Zhang X, Carr MJ, Zhou H, Li J, Liu S, Liu T, Xing W, Shi W. A neonatal murine model of coxsackievirus A4 infection for evaluation of vaccines and antiviral drugs. Emerg Microbes Infect 2020; 8:1445-1455. [PMID: 31595827 PMCID: PMC6792045 DOI: 10.1080/22221751.2019.1673135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coxsackievirus A4 (CVA4) infection can cause hand, foot and mouth disease (HFMD), an epidemic illness affecting neonatal and paediatric cohorts, which can develop to severe neurological disease with high mortality. In this study, we established the first ICR mouse model of CVA4 infection for the evaluation of inactivated vaccines and antiviral drug screening. The CVA4 YT226R strain was selected to infect the neonatal mice and three infectious factors were optimized to establish the infection model. The 3-day-old neonatal mice exhibited clinical symptoms such as hind limb paralysis and death. The severe inflammatory reactions were closely related to the abnormal expression of the acute phase response proinflammatory cytokine IL-6 and an imbalance in the IFN-γ/IL-4 ratio. Importantly, the inactivated CVA4 whole-virus vaccine induced humoral immune responses in adult females and the maternal antibodies afforded mice complete protection against lethal dose challenges of homologous or heterologous CVA4 strains. Both IFN-α2a and antiserum inhibited the replication of CVA4 and increased the survival rates of neonatal mice during the early stages of infection. This neonatal murine model of CVA4 infection will be useful for the development of prophylactic and therapeutic vaccines and for screening of antiviral drugs targeting CVA4 to decrease morbidity and mortality.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| | - Xingcheng Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China.,School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| | - Michael J Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin , Dublin , Ireland.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University , Sapporo , Japan
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| | - Shaoqiong Liu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| | - Tao Liu
- Department of Obstetrics and Gynecology, Central Hospital of Taian , Taian , People's Republic of China
| | - Weijia Xing
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| |
Collapse
|
13
|
Enterovirus 71 Infection Shapes Host T Cell Receptor Repertoire and Presumably Expands VP1-Specific TCRβ CDR3 Cluster. Pathogens 2020; 9:pathogens9020121. [PMID: 32075096 PMCID: PMC7169398 DOI: 10.3390/pathogens9020121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 11/17/2022] Open
Abstract
Enterovirus 71 (EV71) has become an important public health problem in the Asia-Pacific region in the past decades. EV71 infection might cause neurological and psychiatric complications and even death. Although an EV71 vaccine has been currently approved, there is no effective therapy for treating EV71-infected patients. Virus infections have been reported to shape host T cell receptor (TCR) repertoire. Therefore, understanding of host TCR repertoire in EV71 infection could better the knowledge in viral pathogenesis and further benefit the anti-viral therapy development. In this study, we used a mouse-adapted EV71 (mEV71) model to observe changes of host TCR repertoire in an EV71-infected central nervous system. Neonate mice were infected with mEV71 and mouse brainstem TCRβ repertoires were explored. Here, we reported that mEV71 infection impacted host brainstem TCRβ repertoire, where mEV71 infection skewed TCRβ diversity, changed VJ combination usages, and further expanded specific TCRβ CDR3 clones. Using bioinformatics analysis and ligand-binding prediction, we speculated the expanded TCRβ CDR3 clone harboring CASSLGANSDYTF sequence was capable of binding cleaved EV71 VP1 peptides in concert with major histocompatibility complex (MHC) molecules. We observed that mEV71 infection shaped host TCRβ repertoire and presumably expanded VP1-specific TCRβ CDR3 in mEV71-infected mouse brainstem that integrated EV71 pathogenesis in central nervous system.
Collapse
|
14
|
Hongzhuan Z, Ying T, Xia S, Jinsong G, Zhenhua Z, Beiyu J, Yanyan C, Lulu L, Jue Z, Bing Y, Jing F. Preparation of the inactivated Newcastle disease vaccine by plasma activated water and evaluation of its protection efficacy. Appl Microbiol Biotechnol 2020; 104:107-117. [PMID: 31734810 PMCID: PMC6942578 DOI: 10.1007/s00253-019-10106-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/06/2019] [Accepted: 08/26/2019] [Indexed: 11/21/2022]
Abstract
Vaccination has been regarded as the most effective way to reduce death and morbidity caused by infectious diseases in the livestock industry. In this study, plasma activated water (PAW) was introduced to prepare the inactivated Newcastle disease vaccine. Humoral immune response was tested by hemagglutination inhibition (HI) assay and enzyme-linked immunosorbent assay (ELISA). In addition, cell-mediated immune response was evaluated by lymphocyte proliferation assay and flow cytometry. The results demonstrated that the vaccine prepared by PAW at appropriate volume ratio could induce similar antibody titers in specific pathogen-free (SPF) chickens compared with the formaldehyde-inactivated vaccine. The challenge experiment further confirmed that the vaccine prepared by PAW conferred solid protection against virulent NDV. Moreover, it was found that the vaccine could promote the proliferation of lymphocytes and stimulate cell-mediated immunity of SPF chickens. Furthermore, analysis of electron spin resonance (ESR) spectroscopy and physicochemical properties of PAW suggested reactive oxygen and nitrogen species (RONS) played an essential role in the virus inactivation. Therefore, this study indicated that NDV treated by PAW in an appropriate ratio retained immunogenicity on the premise of virus inactivation. PAW as a promising strategy could be used to prepare inactivated vaccine for Newcastle disease.
Collapse
Affiliation(s)
- Zhou Hongzhuan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Tian Ying
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| | - Su Xia
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Guo Jinsong
- College of Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Zhang Zhenhua
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Jiang Beiyu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Chang Yanyan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Lin Lulu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Zhang Jue
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China.
- College of Engineering, Peking University, Beijing, 100871, People's Republic of China.
| | - Yang Bing
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| | - Fang Jing
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
- College of Engineering, Peking University, Beijing, 100871, People's Republic of China
| |
Collapse
|
15
|
Aw‐Yong KL, NikNadia NMN, Tan CW, Sam I, Chan YF. Immune responses against enterovirus A71 infection: Implications for vaccine success. Rev Med Virol 2019; 29:e2073. [DOI: 10.1002/rmv.2073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Kam Leng Aw‐Yong
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Nik Mohd Nasir NikNadia
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Chee Wah Tan
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - I‐Ching Sam
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
16
|
Tambyah PA, Oon J, Asli R, Kristanto W, Hwa SH, Vang F, Karwal L, Fuchs J, Santangelo JD, Gordon GS, Thomson C, Rao R, Dean H, Das SC, Stinchcomb DT. An inactivated enterovirus 71 vaccine is safe and immunogenic in healthy adults: A phase I, double blind, randomized, placebo-controlled, study of two dosages. Vaccine 2019; 37:4344-4353. [PMID: 31230881 DOI: 10.1016/j.vaccine.2019.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Hand, foot and mouth disease (HFMD), especially that caused by enterovirus 71 (EV71) infection, is a public health concern in the Asia-Pacific region. We report a phase I clinical trial of an EV71 candidate vaccine (INV21) based on a binary ethylenimine inactivated B2 sub-genotype formulated with aluminum hydroxide. METHODS In this double-blind, placebo-controlled, randomized, dose escalation study adult volunteers received two vaccinations 28 days apart of low or high dose formulations of the candidate vaccine and were then monitored for safety and reactogenicity for four weeks after each dose, and for their immune responses up to 28 weeks. RESULTS Of 36 adults enrolled, 35 completed the study as planned. Either no or mild adverse events were observed, mainly injection site pain and tiredness. Seroconversion was 100% after two vaccinations. High geometric mean neutralizing antibody titers (GMT) were observed 14 days post first dose, peaking 14 days post second dose (at Day 42) in both high and low dose groups; GMTs on days 14, 28, 42, and 56 were 128, 81, 323, 203 and 144, 100, 451, 351 in low- and high-dose groups, respectively. Titers for both doses declined gradually to Day 196 but remained higher than baseline and the placebo groups, which had low GMTs throughout the duration of the study. Cross-neutralizing antibody activity against heterologous sub-genotypes was demonstrated. CONCLUSION These data show that the EV71 candidate vaccine is safe and immunogenic in adults and supports further clinical development as a potential pediatric vaccine by initiating a dose-escalation study for determining the dose-dependent safety and immunogenicity of the vaccine in young naïve children.
Collapse
Affiliation(s)
- Paul A Tambyah
- Department of Medicine, NUH Investigational Medicine Unit, Yong Loo Lin School of Medicine, National University of Singapore, 1E, Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119228, Singapore
| | - Jolene Oon
- Department of Medicine, NUH Investigational Medicine Unit, Yong Loo Lin School of Medicine, National University of Singapore, 1E, Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119228, Singapore
| | - Rosmonaliza Asli
- Department of Medicine, NUH Investigational Medicine Unit, Yong Loo Lin School of Medicine, National University of Singapore, 1E, Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119228, Singapore
| | - William Kristanto
- Department of Medicine, NUH Investigational Medicine Unit, Yong Loo Lin School of Medicine, National University of Singapore, 1E, Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119228, Singapore
| | - Shi-Hsia Hwa
- Vaccine Business Unit, Takeda Pharmaceuticals Asia Pacific Pte Ltd, 21 Biopolis Road, Nucleos South Tower Level 4, Singapore 138567, Singapore
| | - Fue Vang
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Lovkesh Karwal
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Jeremy Fuchs
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Joseph D Santangelo
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Gilad S Gordon
- Takeda Vaccines, Inc., Takeda Pharmaceuticals USA, Fort Collins, CO, USA
| | - Cynthia Thomson
- Vaccine Business Unit, Takeda Pharmaceuticals Asia Pacific Pte Ltd, 21 Biopolis Road, Nucleos South Tower Level 4, Singapore 138567, Singapore
| | - Raman Rao
- Vaccine Business Unit, Takeda Pharmaceuticals Asia Pacific Pte Ltd, 21 Biopolis Road, Nucleos South Tower Level 4, Singapore 138567, Singapore
| | - Hansi Dean
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Subash C Das
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA.
| | - Dan T Stinchcomb
- Takeda Vaccines, Inc., Takeda Pharmaceuticals USA, Fort Collins, CO, USA
| |
Collapse
|
17
|
Yee PTI, Tan SH, Ong KC, Tan KO, Wong KT, Hassan SS, Poh CL. Development of live attenuated Enterovirus 71 vaccine strains that confer protection against lethal challenge in mice. Sci Rep 2019; 9:4805. [PMID: 30886246 PMCID: PMC6423319 DOI: 10.1038/s41598-019-41285-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Besides causing mild hand, foot and mouth infections, Enterovirus A71 (EV-A71) is associated with neurological complications and fatality. With concerns about rising EV-A71 virulence, there is an urgency for more effective vaccines. The live attenuated vaccine (LAV) is a more valuable vaccine as it can elicit both humoral and cellular immune responses. A miRNA-based vaccine strain (pIY) carrying let-7a and miR-124a target genes in the EV-A71 genome which has a partial deletion in the 5′NTR (∆11 bp) and G64R mutation (3Dp°l) was designed. The viral RNA copy number and viral titers of the pIY strain were significantly lower in SHSY-5Y cells that expressed both let-7a and miR-124a. Inhibition of the cognate miRNAs expressed in RD and SHSY-5Y cells demonstrated de-repression of viral mRNA translation. A previously constructed multiply mutated strain, MMS and the pIY vaccine strain were assessed in their ability to protect 4-week old mice from hind limb paralysis. The MMS showed higher amounts of IFN-γ ex vivo than the pIY vaccine strain. There was absence of EV-A71 antigen in the skeletal muscles and spinal cord micrographs of mice vaccinated with the MMS and pIY strains. The MMS and pIY strains are promising LAV candidates developed against severe EV-A71 infections.
Collapse
Affiliation(s)
- Pinn Tsin Isabel Yee
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Jalan University, 50603, Kuala Lumpur, Selangor, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Jalan University, 50603, Kuala Lumpur, Selangor, Malaysia
| | - Kuan Onn Tan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor, 47500, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Jalan University, 50603, Kuala Lumpur, Selangor, Malaysia
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Selangor, 47500, Malaysia.
| |
Collapse
|
18
|
Rasti M, Khanbabaei H, Teimoori A. An update on enterovirus 71 infection and interferon type I response. Rev Med Virol 2019; 29:e2016. [PMID: 30378208 PMCID: PMC7169063 DOI: 10.1002/rmv.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Enteroviruses are members of Pichornaviridae family consisting of human enterovirus group A, B, C, and D as well as nonhuman enteroviruses. Hand, foot, and mouth disease (HFMD) is a serious disease which is usually seen in the Asia-Pacific region in children. Enterovirus 71 and coxsackievirus A16 are two important viruses responsible for HFMD which are members of group A enterovirus. IFN α and β are two cytokines, which have a major activity in the innate immune system against viral infections. Most of the viruses have some weapons against these cytokines. EV71 has two main proteases called 2A and 3C, which are important for polyprotein processing and virus maturation. Several studies have indicated that they have a significant effect on different cellular pathways such as interferon production and signaling pathway. The aim of this study was to investigate the latest findings about the interaction of 2A and 3C protease of EV71 and IFN production/signaling pathway and their inhibitory effects on this pathway.
Collapse
Affiliation(s)
- Mojtaba Rasti
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hashem Khanbabaei
- Medical Physics Department, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Ali Teimoori
- Department of Virology, Faculty of MedicineHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
19
|
Immunocompetent and Immunodeficient Mouse Models for Enterovirus 71 Pathogenesis and Therapy. Viruses 2018; 10:v10120674. [PMID: 30487421 PMCID: PMC6316343 DOI: 10.3390/v10120674] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
Enterovirus 71 (EV71) is a global health threat. Children infected with EV71 could develop hand-foot-and-mouth disease (HFMD), encephalitis, paralysis, pulmonary edema, and death. At present, no effective treatment for EV71 is available. We reviewed here various mouse models for EV71 pathogenesis and therapy. Earlier studies relied on the use of mouse-adapted EV71 strains. To avoid artificial mutations arising de novo during the serial passages, recent studies used EV71 clinical isolates without adaptation. Several human receptors for EV71 were shown to facilitate viral entry in cell culture. However, in vivo infection with human SCARB2 receptor transgenic mice appeared to be more limited to certain strains and genotypes of EV71. Efficacy of oral infection in these transgenic models is extremely low. Intriguingly, despite the lack of human receptors, immunodeficient neonatal mouse models can still be infected with EV71 clinical isolates via oral or intraperitoneal routes. Crossbreeding between SCARB2 transgenic and stat1 knockout mice generated a more sensitive and user-friendly hybrid mouse model. Infected hybrid mice developed a higher incidence and earlier onset of CNS disease and death. Different pathogenesis profiles were observed in models deficient in various arms of innate or humoral immunity. These models are being actively used for antiviral research.
Collapse
|
20
|
Chang YK, Chen KH, Chen KT. Hand, foot and mouth disease and herpangina caused by enterovirus A71 infections: a review of enterovirus A71 molecular epidemiology, pathogenesis, and current vaccine development. Rev Inst Med Trop Sao Paulo 2018; 60:e70. [PMID: 30427405 PMCID: PMC6223252 DOI: 10.1590/s1678-9946201860070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/09/2018] [Indexed: 01/28/2023] Open
Abstract
Enterovirus A71 (EV-A71) infections are one of the main etiological agents of hand, foot and mouth disease (HFMD) and herpangina worldwide. EV-A71 infection is a life-threatening communicable disease and there is an urgent global need for the development of vaccines for its prevention and control. The morbidity rate of EV-A71 infection differs between countries. The pathogen’s genetic lineages are undergoing rapid evolutionary changes. An association between the occurrence of EV-A71 infection and the circulation of different genetic strains of EV-A71 virus has been identified around the world. In this review, we present and discuss the molecular epidemiology and pathogenesis of the human disease caused by EV-A71 infection, as well as current prospects for the development of an EV-A71 vaccine.
Collapse
Affiliation(s)
- Yu-Kang Chang
- Chi-Mei Medical Center, Liouying Campus, Department of Radiology, Tainan, Taiwan
| | - Kou-Huang Chen
- Sanming University, School of Mechanical & Electronic Engineering, Sanming, Fujian Province, China
| | - Kow-Tong Chen
- Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Department of Occupational Medicine, Tainan, Taiwan.,National Cheng Kung University, College of Medicine, Department of Public Health, Tainan, Taiwan
| |
Collapse
|
21
|
Chia MY, Chung WY, Wang CH, Chang WH, Lee MS. Development of a high-growth enterovirus 71 vaccine candidate inducing cross-reactive neutralizing antibody responses. Vaccine 2018; 36:1167-1173. [PMID: 29398272 DOI: 10.1016/j.vaccine.2018.01.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 02/04/2023]
Abstract
Although Enterovirus 71 (EV71) has only one serotype based on serum neutralization tests using hyperimmune animal antisera, three major genogroups (A, B and C) including eleven genotypes (A, B1-B2, and C1-C5) can be well classified based on phylogenetic analysis. Since 1997, large-scale EV71 epidemics occurred cyclically with different genotypes in the Asia-Pacific region. Therefore, development of EV71 vaccines is a national priority in several Asian countries. Currently, five vaccine candidates have been evaluated in clinical trials in China (three C4 candidates), Singapore (one B2 candidate), and Taiwan (one B4 candidate). Overall, the peak viral titers of these 5 vaccine candidates could only reach about 107 TCID50/mL. Moreover, genotypes of these 5 candidates are different from the current predominant genotype B5 in Taiwan and South-Eastern Asia. We adapted a high-growth EV71 genotype B5 (HG-B5) virus after multiple passages and plaque selections in Vero cells and the HG-B5 virus could reach high titers (>108 TCID50/mL) in a microcarrier-based cell culture system. The viral particles were further purified and formulated with alum adjuvant. After two doses of intramuscular immunization in rabbits, the HG-B5 vaccine candidate could induce cross-reactive neutralizing antibodies against the three major EV71 genogroups. In conclusion, a high-growth EV71 virus was successfully adapted in Vero cells and could induce broad spectrum neutralizing antibody titers against three (A, B5, and C4) genotypes in rabbits.
Collapse
Affiliation(s)
- Min-Yuan Chia
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan; Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Yu Chung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | | | - Wei-Hau Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
22
|
Pathinayake PS, Gayan Chathuranga WA, Lee HC, Chowdhury MYE, Sung MH, Lee JS, Kim CJ. Inactivated enterovirus 71 with poly-γ-glutamic acid/Chitosan nano particles (PC NPs) induces high cellular and humoral immune responses in BALB/c mice. Arch Virol 2018; 163:2073-2083. [DOI: 10.1007/s00705-018-3837-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/26/2018] [Indexed: 01/08/2023]
|
23
|
NikNadia NMN, Tan CW, Ong KC, Sam IC, Chan YF. Identification and characterization of neutralization epitopes at VP2 and VP1 of enterovirus A71. J Med Virol 2018; 90:1164-1167. [DOI: 10.1002/jmv.25061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/12/2018] [Indexed: 11/06/2022]
Affiliation(s)
- NMN NikNadia
- Faculty of Medicine; Department of Medical Microbiology; University of Malaya; Kuala Lumpur Malaysia
| | - Chee Wah Tan
- Faculty of Medicine; Department of Medical Microbiology; University of Malaya; Kuala Lumpur Malaysia
| | - Kien Chai Ong
- Faculty of Medicine; Department of Biomedical Science; University of Malaya; Kuala Lumpur Malaysia
| | - I-Ching Sam
- Faculty of Medicine; Department of Medical Microbiology; University of Malaya; Kuala Lumpur Malaysia
| | - Yoke Fun Chan
- Faculty of Medicine; Department of Medical Microbiology; University of Malaya; Kuala Lumpur Malaysia
| |
Collapse
|
24
|
Cox JA, Hiscox JA, Solomon T, Ooi MH, Ng LFP. Immunopathogenesis and Virus-Host Interactions of Enterovirus 71 in Patients with Hand, Foot and Mouth Disease. Front Microbiol 2017; 8:2249. [PMID: 29238324 PMCID: PMC5713468 DOI: 10.3389/fmicb.2017.02249] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Enterovirus 71 (EV71) is a global infectious disease that affects millions of people. The virus is the main etiological agent for hand, foot, and mouth disease with outbreaks and epidemics being reported globally. Infection can cause severe neurological, cardiac, and respiratory problems in children under the age of 5. Despite on-going efforts, little is known about the pathogenesis of EV71, how the host immune system responds to the virus and the molecular mechanisms behind these responses. Moreover, current animal models remain limited, because they do not recapitulate similar disease patterns and symptoms observed in humans. In this review the role of the host-viral interactions of EV71 are discussed together with the various models available to examine: how EV71 utilizes its proteins to cleave host factors and proteins, aiding virus replication; how EV71 uses its own viral proteins to disrupt host immune responses and aid in its immune evasion. These discoveries along with others, such as the EV71 crystal structure, have provided possible targets for treatment and drug interventions.
Collapse
Affiliation(s)
- Jonathan A. Cox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Julian A. Hiscox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Mong-How Ooi
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Samarahan, Malaysia
- Department of Paediatrics, Sarawak General Hospital, Kuching, Malaysia
| | - Lisa F. P. Ng
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| |
Collapse
|
25
|
Protective Efficacies of Formaldehyde-Inactivated Whole-Virus Vaccine and Antivirals in a Murine Model of Coxsackievirus A10 Infection. J Virol 2017; 91:JVI.00333-17. [PMID: 28424287 DOI: 10.1128/jvi.00333-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/13/2017] [Indexed: 01/20/2023] Open
Abstract
Coxsackievirus A10 (CVA10) is one of the major pathogens associated with hand, foot, and mouth disease (HFMD). CVA10 infection can cause herpangina and viral pneumonia, which can be complicated by severe neurological sequelae. The morbidity and mortality of CVA10-associated HFMD have been increasing in recent years, particularly in the pan-Pacific region. There are limited studies, however, on the pathogenesis and immunology of CVA10-associated HFMD infections, and few antiviral drugs or vaccines have been reported. In the present study, a cell-adapted CVA10 strain was employed to inoculate intramuscularly 5-day-old ICR mice, which developed significant clinical signs, including reduced mobility, lower weight gain, and quadriplegia, with significant pathology in the brain, hind limb skeletal muscles, and lungs of infected mice in the moribund state. The severity of illness was associated with abnormally high expression of the proinflammatory cytokine interleukin 6 (IL-6). Antiviral assays demonstrated that ribavirin and gamma interferon administration could significantly inhibit CVA10 replication both in vitro and in vivo In addition, formaldehyde-inactivated CVA10 whole-virus vaccines induced immune responses in adult mice, and maternal neutralizing antibodies could be transmitted to neonatal mice, providing protection against CVA10 clinical strains. Furthermore, high-titer antisera were effective against CVA10 and could relieve early clinical symptoms and improve the survival rates of CVA10-challenged neonatal mice. In summary, we present a novel murine model to study CVA10 pathology that will be extremely useful in developing effective antivirals and vaccines to diminish the burden of HFMD-associated disease.IMPORTANCE Hand, foot, and mouth disease cases in infancy, arising from coxsackievirus A10 (CVA10) infections, are typically benign, resolving without any significant adverse events. Severe disease and fatalities, however, can occur in some children, necessitating the development of vaccines and antiviral therapies. The present study has established a newborn-mouse model of CVA10 that, importantly, recapitulates many aspects of human disease with respect to the neuropathology and skeletal muscle pathology. We found that high levels of the proinflammatory cytokine interleukin 6 correlated with disease severity and that ribavirin and gamma interferon could decrease viral titers in vitro and in vivo Whole-virus vaccines produced immune responses in adult mice, and immunized mothers conferred protection on neonates against challenge from CVA10 clinical strains. Passive immunization with high-titer antisera could also improve survival rates in newborn animals.
Collapse
|
26
|
In HJ, Lim H, Lee JA, Kim HJ, Kim JW, Hyeon JY, Yeo SG, Lee JW, Yoo JS, Choi YK, Lee SW. An inactivated hand-foot-and-mouth disease vaccine using the enterovirus 71 (C4a) strain isolated from a Korean patient induces a strong immunogenic response in mice. PLoS One 2017; 12:e0178259. [PMID: 28542556 PMCID: PMC5443535 DOI: 10.1371/journal.pone.0178259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/26/2017] [Indexed: 01/28/2023] Open
Abstract
Enterovirus 71 (EV71) is a major causative agent of hand-foot-and-mouth disease (HFMD) frequently occurring in children. HFMD induced by EV71 can cause serious health problems and has been reported worldwide, particularly in the Asia-Pacific region. In this study, we assessed the immunogenicity of a formalin-inactivated HFMD vaccine using an EV71 strain (FI-EV71 C4a) isolated from a Korean patient. The vaccine candidate was evaluated in mice to determine the vaccination doses and vaccine schedules. BALB/c mice were intramuscularly administered 5, 10, or 20 μg FI-EV71 vaccine, followed by a booster 2 weeks later. EV71-specific antibodies and neutralizing antibodies were induced and maintained until the end of the experimental period in all vaccinated groups. To determine the effectiveness of adjuvant for the EV71 vaccine, three adjuvants, i.e., aluminium hydroxide gel, monophosphoryl lipid A, and polyinosinic-polycytidylic acid, were administered separately with the FI-EV71 vaccine to mice via the intramuscular route. Mice administered the FI-EV71 vaccine formulated with all three adjuvants induced a significantly increased antibody response compared with that of the single adjuvant groups. The vaccinated group with triple adjuvants exhibited more rapid induction of EV71-specific and neutralizing antibodies than the other groups. These results suggested that the role of adjuvant in inactivated vaccine was important for eliciting effective immune responses against EV71. In conclusion, our results showed that FI-EV71 was a potential candidate vaccine for prevention of EV71 infection.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Viral/biosynthesis
- Dose-Response Relationship, Immunologic
- Enterovirus A, Human/immunology
- Enterovirus A, Human/isolation & purification
- Female
- Hand, Foot and Mouth Disease/immunology
- Hand, Foot and Mouth Disease/prevention & control
- Hand, Foot and Mouth Disease/virology
- Humans
- Immunity, Cellular
- Immunization Schedule
- Immunoglobulin G/biosynthesis
- Mice
- Mice, Inbred BALB C
- Models, Animal
- Republic of Korea
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/pharmacology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- Viral Vaccines/pharmacology
Collapse
Affiliation(s)
- Hyun Ju In
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
- College of Medicine and Medical Research Institute, Chungbuk National University, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Heeji Lim
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
- College of Medicine and Medical Research Institute, Chungbuk National University, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Jung-Ah Lee
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Hye Jin Kim
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Jin-Won Kim
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Ji-Yeon Hyeon
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Sang-Gu Yeo
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - June-Woo Lee
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Jung Sik Yoo
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Sang-Won Lee
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, CheongJu, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
27
|
A Neonatal Murine Model of Coxsackievirus A6 Infection for Evaluation of Antiviral and Vaccine Efficacy. J Virol 2017; 91:JVI.02450-16. [PMID: 28250116 DOI: 10.1128/jvi.02450-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/21/2017] [Indexed: 12/22/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a global health concern. Family Picornaviridae members, particularly enterovirus A71 (EVA71) and coxsackievirus A16 (CVA16), are the primary etiological agents of HFMD; however, a third enterovirus A species, CVA6, has been recently associated with epidemic outbreaks. Study of the pathogenesis of CVA6 infection and development of antivirals and vaccines are hindered by a lack of appropriate animal models. We have developed and characterized a murine model of CVA6 infection that was employed to evaluate the antiviral activities of different drugs and the protective efficacies of CVA6-inactivated vaccines. Neonatal mice were susceptible to CVA6 infection via intramuscular inoculation, and the susceptibility of mice to CVA6 infection was age and dose dependent. Five-day-old mice infected with 105.5 50% tissue culture infective doses of the CVA6 WF057R strain consistently exhibited clinical signs, including reduced mobility, lower weight gain, and quadriplegia with significant pathology in the brain, hind limb skeletal muscles, and lungs of the infected mice in the moribund state. Immunohistochemical analysis and quantitative reverse transcription-PCR (qRT-PCR) analyses showed high viral loads (11 log10/mg) in skeletal muscle, and elevated levels of interleukin-6 (IL-6; >2,000 pg/ml) were associated with severe viral pneumonia and encephalitis. Ribavirin and gamma interferon administered prophylactically diminished CVA6-associated pathology in vivo, and treatment with IL-6 accelerated the death of neonatal mice. Both specific anti-CVA6 serum and maternal antibody play important roles in controlling CVA6 infection and viral replication. Collectively, these findings indicate that this neonatal murine model will be invaluable in future studies to develop CVA6-specific antivirals and vaccines.IMPORTANCE Although coxsackievirus A6 (CVA6) infections are commonly mild and self-limiting, a small proportion of children may have serious complications, such as encephalitis, acute flaccid paralysis, and neurorespiratory syndrome, leading to fatalities. We have established a mouse model of CVA6 infection by inoculation of neonatal mice with a CVA6 clinical isolate that produced consistent pathological outcomes. Here, using this model of CVA6 infection, we found that high levels of IL-6 were associated with severe viral pneumonia and encephalitis, as in an evaluation of antiviral efficacy in vivo, IL-6 had no protective effect and instead accelerated death in neonatal mice. We demonstrated that, as antiviral drugs, both gamma interferon and ribavirin played important protective roles in the early stages of infection, with increased survival in treated neonatal mice challenged with CVA6. Moreover, active and passive immunization with the inactivated vaccines and anti-CVA6 serum also protected mice against homologous challenge infections.
Collapse
|
28
|
Yi EJ, Shin YJ, Kim JH, Kim TG, Chang SY. Enterovirus 71 infection and vaccines. Clin Exp Vaccine Res 2017; 6:4-14. [PMID: 28168168 PMCID: PMC5292356 DOI: 10.7774/cevr.2017.6.1.4] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/02/2016] [Accepted: 10/30/2016] [Indexed: 01/15/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is a highly contagious viral infection affecting young children during the spring to fall seasons. Recently, serious outbreaks of HFMD were reported frequently in the Asia-Pacific region, including China and Korea. The symptoms of HFMD are usually mild, comprising fever, loss of appetite, and a rash with blisters, which do not need specific treatment. However, there are uncommon neurological or cardiac complications such as meningitis and acute flaccid paralysis that can be fatal. HFMD is most commonly caused by infection with coxsackievirus A16, and secondly by enterovirus 71 (EV71). Many other strains of coxsackievirus and enterovirus can also cause HFMD. Importantly, HFMD caused by EV71 tends to be associated with fatal complications. Therefore, there is an urgent need to protect against EV71 infection. Development of vaccines against EV71 would be the most effective approach to prevent EV71 outbreaks. Here, we summarize EV71 infection and development of vaccines, focusing on current scientific and clinical progress.
Collapse
Affiliation(s)
- Eun-Je Yi
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Yun-Ju Shin
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Jeong-Hwan Kim
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Tae-Gyun Kim
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea.; Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Korea
| |
Collapse
|
29
|
Enterovirus A71 and coxsackievirus A16 show different replication kinetics in human neuronal and non-neuronal cell lines. Arch Virol 2016; 162:727-737. [DOI: 10.1007/s00705-016-3157-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 01/15/2023]
|
30
|
Bearden D, Collett M, Quan PL, Costa-Carvalho BT, Sullivan KE. Enteroviruses in X-Linked Agammaglobulinemia: Update on Epidemiology and Therapy∗. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2016; 4:1059-1065. [DOI: 10.1016/j.jaip.2015.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/02/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
|
31
|
Coxsackievirus A16 induced neurological disorders in young gerbils which could serve as a new animal model for vaccine evaluation. Sci Rep 2016; 6:34299. [PMID: 27667023 PMCID: PMC5035925 DOI: 10.1038/srep34299] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/09/2016] [Indexed: 11/09/2022] Open
Abstract
Coxsackievirus A16 (CA16) is one of the major pathogens associated with human hand, foot, and mouth disease (HFMD) in the Asia-pacific region. Although CA16 infections are generally mild, severe neurological manifestations or even death has been reported. Studies on CA16 pathogenesis and vaccine development are severely hampered because the small animal models that are currently available show major limitations. In this study, gerbils (Meriones unguiculatus) were investigated for their suitability as an animal model to study CA16 pathogenesis and vaccine development. Our results showed that gerbils up to the age of 21 days were fully susceptible to CA16 and all died within five days post-infection. CA16 showed a tropism towards the skeletal muscle, spinal cord and brainstem of gerbils, and severe lesions, including necrosis, were observed. In addition, an inactivated CA16 whole-virus vaccine administrated to gerbils was able to provide full protection to the gerbils against lethal doses of CA16 strains. These results demonstrate that gerbils are a suitable animal model to study CA16 infection and vaccine development.
Collapse
|
32
|
Chang PC, Chen SC, Chen KT. The Current Status of the Disease Caused by Enterovirus 71 Infections: Epidemiology, Pathogenesis, Molecular Epidemiology, and Vaccine Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E890. [PMID: 27618078 PMCID: PMC5036723 DOI: 10.3390/ijerph13090890] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/16/2016] [Accepted: 09/01/2016] [Indexed: 12/22/2022]
Abstract
Enterovirus 71 (EV71) infections have a major public health impact in the Asia-Pacific region. We reviewed the epidemiology, pathogenesis, and molecular epidemiology of EV71 infection as well as EV71 vaccine development. Previous studies were found using the search terms "enterovirus 71" and "epidemiology" or "pathogenesis" or "molecular epidemiology" or "vaccine" in Medline and PubMed. Articles that were not published in the English language, manuscripts without an abstract, and opinion articles were excluded from the review. The reported epidemiology of cases caused by EV71 infection varied from country to country; seasonal variations in incidence were observed. Most cases of EV71 infection that resulted in hospitalization for complications occurred in children less than five years old. The brainstem was the most likely major target of EV71 infection. The emergence of the EV71 epidemic in the Asia-Pacific region has been associated with the circulation of different genetic lineages (genotypes B3, B4, C1, C2, and C4) that appear to be undergoing rapid evolutionary changes. The relationship between the gene structure of the EV71 virus and the factors that ensure its survival, circulation, and evasion of immunity is still unknown. EV71 infection has emerged as an important global public health problem. Vaccine development, including the development of inactivated whole-virus live attenuated, subviral particles, and DNA vaccines, has been progressing.
Collapse
Affiliation(s)
- Ping-Chin Chang
- Division of Infectious Disease, Department of Internal Medicine, Chi-Mei Medical Center, Liouying, Tainan 736, Taiwan.
| | - Shou-Chien Chen
- Department of Family Medicine, Da-Chien General Hospital, Miaoli 237, Taiwan.
- General Education Center, Ta Tung University, Taipei 104, Taiwan.
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital, Tainan 701, Taiwan.
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
33
|
Tan SH, Ong KC, Perera D, Wong KT. A monoclonal antibody to ameliorate central nervous system infection and improve survival in a murine model of human Enterovirus-A71 encephalomyelitis. Antiviral Res 2016; 132:196-203. [PMID: 27340013 DOI: 10.1016/j.antiviral.2016.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/13/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Enterovirus A71 (EV-A71) encephalomyelitis is an often fatal disease for which there is no specific treatment available. Passive immunization with a specific monoclonal antibody to EV-A71 was used on a murine model of EV-A71 encephalomyelitis to evaluate its therapeutic effectiveness before and after established central nervous system (CNS) infection. METHODS Mice were intraperitoneally-infected with a mouse-adapted EV-A71 strain and treated with a dose of monoclonal antibody (MAb) daily for 3 days on day 1, 2 and 3 post-infection or for 3 days on 3, 4 and 5 post-infection. Treatment effectiveness was evaluated by signs of infection and survival rate. Histopathology and qPCR analyses were performed on mice sacrificed a day after completing treatment. RESULTS In mock-treated mice, CNS infection was established from day 3 post-infection. All mice treated before established CNS infection, survived and recovered completely without CNS infection. All mice treated after established CNS infection survived with mild paralysis, and viral load and antigens/RNA at day 6 post-infection were significantly reduced. CONCLUSIONS Passive immunization with our MAb could prevent CNS infection in mice if given early before the establishment of CNS infection. It could also ameliorate established CNS infection if optimal and repeated doses were given.
Collapse
Affiliation(s)
- Soon Hao Tan
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - David Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
34
|
Zhou S, Liu Q, Wu X, Chen P, Wu X, Guo Y, Liu S, Liang Z, Fan C, Wang Y. A safe and sensitive enterovirus A71 infection model based on human SCARB2 knock-in mice. Vaccine 2016; 34:2729-36. [PMID: 27102822 DOI: 10.1016/j.vaccine.2016.04.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/10/2016] [Accepted: 04/08/2016] [Indexed: 11/24/2022]
Abstract
Enterovirus A71 infection has become a severe threat for global public health. Vaccines for controlling and preventing Enterovirus A71 epidemics are highly demanded, however, vaccine evaluation has been hindered by the lack of suitable Enterovirus A71 infection animal models. Here we established an hSCARB2 knockin mouse model for real-time monitoring of enterovirus A71 infection in vivo. This model was sensitive to the infection of both replication-competent virus rEV71(FY)-EGFP and single round pseudotype virus pEV71(FY)-Luc. The intensity of bioluminescence correlated well with viral loads in infected tissues (R=0.86, P<0.01). Pathological changes recapitulated human infectious and clinical features of enterovirus A71, including both general characteristics of "hand foot and mouth" and the severe symptoms in the CNS. A formalin-inactivated enterovirus A71 vaccine can elicit antibodies in R26-hSCARB2 mice, which play effective roles in protecting knockin mice against enterovirus A71 infection as indicated by bioluminescence. Therefore, this work provides a safe, sensitive and visualizing model for exploring mechanisms of enterovirus A71 infection and examining human enterovirus A71 vaccines and antiviral therapies.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Disease Models, Animal
- Enterovirus A, Human
- Female
- Gene Knock-In Techniques
- Hand, Foot and Mouth Disease/immunology
- Hand, Foot and Mouth Disease/pathology
- Humans
- Luminescent Measurements
- Lysosomal Membrane Proteins/genetics
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutagenesis, Insertional
- Receptors, Scavenger/genetics
- Vaccines, Inactivated/immunology
- Viral Load
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Shuya Zhou
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Qiang Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Xing Wu
- Division of Hepatitis Vaccine, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Pan Chen
- Division of Hepatitis Vaccine, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Xi Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Yanan Guo
- Biocytogen Co., Ltd., Beijing, 101111, China
| | - Susu Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Zhenglun Liang
- Division of Hepatitis Vaccine, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, 100050, China.
| |
Collapse
|
35
|
Chang J, Li J, Wei W, Liu X, Liu G, Yang J, Zhang W, Yu XF. Determinants of EV71 immunogenicity and protection against lethal challenge in a mouse model. Immunol Res 2016; 62:306-15. [PMID: 26025091 DOI: 10.1007/s12026-015-8661-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Circulating enterovirus 71 (EV71)-associated hand, foot, and mouth disease (HFMD) is a major public health problem in the Asian-Pacific region. An EV71 vaccine for HFMD prevention is currently being developed. However, viral determinants that could influence the vaccine's efficacy have not been well characterized. In this study, we isolated and characterized several EV71 strains that are currently circulating in northern and southern China. We determined that VP1 variation is a major determinant of EV71 immunogenicity. A single amino acid variation in VP1 can lead to significant differences in the breadth and potency of immune responses against primary EV71 isolates as well as the sensitivity of EV71 to heterologous neutralizing antibody responses. We also identified EV71 strains that could induce potent immunogenic and cross-neutralizing antibody responses against diverse EV71 strains. Furthermore, these neutralizing antibodies could protect neonatal mice from lethal dose challenge with various circulating EV71 viruses. Our study provides useful information for EV71 vaccine development and evaluation.
Collapse
Affiliation(s)
- Junliang Chang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW There are over 100 serotypes of human enteroviruses, which cause a spectrum of illnesses, including meningitis, encephalitis, paralysis, myocarditis and rash. Increasing incidence of hand-foot-and-mouth disease in the Asia-Pacific region and recent outbreaks of enterovirus-associated disease, such as severe respiratory illness in the United States in 2014, highlight the threat of these viruses to human health. RECENT FINDINGS We describe recent outbreaks of human enteroviruses and summarize knowledge gaps regarding their burden, spectrum of diseases and epidemiology. SUMMARY Reported outbreaks of respiratory, neurological, skin and eye diseases associated with human enteroviruses have increased in frequency and size in recent years. Improved molecular diagnostics and genetic sequence analysis are beginning to reveal the complex dynamics of individual serotypes and genotypes, and their contribution to these outbreaks. However, the biological mechanisms underlying their emergence and transmission dynamics remain elusive. They are likely to involve changes in the virus, such as fitness, antigenicity, virulence or tropism, and in the human population, such as levels of sanitation and of homotypic and heterotypic immunity. Improvements in surveillance, serological surveys and detailed genetic and antigenic characterization of viral populations would help to elucidate these mechanisms. This will be important for the design of outbreak control and vaccine development strategies.
Collapse
|
37
|
Jiang L, Fan R, Sun S, Fan P, Su W, Zhou Y, Gao F, Xu F, Kong W, Jiang C. A new EV71 VP3 epitope in norovirus P particle vector displays neutralizing activity and protection in vivo in mice. Vaccine 2015; 33:6596-603. [PMID: 26529072 DOI: 10.1016/j.vaccine.2015.10.104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/13/2015] [Accepted: 10/24/2015] [Indexed: 12/16/2022]
Abstract
Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16), as the main agents causing hand, foot and mouth disease (HFMD), have become a serious public health concern in the Asia-Pacific region. Recently, various neutralizing B cell epitopes of EV71 were identified as targets for promising vaccine candidates. Structural studies of Picornaviridae indicated that potent immunodominant epitopes typically lie in the hypervariable loop of capsid surfaces. However, cross-neutralizing antibodies and cross-protection between EV71 and CVA16 have not been observed. Therefore, we speculated that divergent sequences of the two viruses are key epitopes for inducing protective neutralizing responses. In this study, we selected 10 divergent epitope candidates based on alignment of the EV71 and CVA16 P1 amino acid sequences using the Multalin interface page, and these epitopes are conserved among all subgenotypes of EV71. Simultaneously, by utilizing the norovirus P particle as a novel vaccine delivery carrier, we identified the 71-6 epitope (amino acid 176-190 of VP3) as a conformational neutralizing epitope against EV71 in an in vitro micro-neutralization assay as well as an in vivo protection assay in mice. Altogether, these results indicated that the incorporation of the 71-6 epitope into the norovirus P domain can provide a promising candidate for an effective synthetic peptide-based vaccine against EV71.
Collapse
Affiliation(s)
- Liping Jiang
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China
| | - Rongjun Fan
- Harbin Center for Disease Control and Prevention, Harbin 150056, PR China
| | - Shiyang Sun
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China
| | - Peihu Fan
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China
| | - Weiheng Su
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, PR China
| | - Yan Zhou
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China
| | - Feng Gao
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China
| | - Fei Xu
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China
| | - Wei Kong
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China
| | - Chunlai Jiang
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China.
| |
Collapse
|
38
|
Kim YI, Song JH, Kwon BE, Kim HN, Seo MD, Park K, Lee S, Yeo SG, Kweon MN, Ko HJ, Chang SY. Pros and cons of VP1-specific maternal IgG for the protection of Enterovirus 71 infection. Vaccine 2015; 33:6604-10. [PMID: 26529069 DOI: 10.1016/j.vaccine.2015.10.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 10/06/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022]
Abstract
Enterovirus 71 (EV71) causes hand, foot, and mouth diseases and can result in severe neurological disorders when it infects the central nervous system. Thus, there is a need for the development of effective vaccines against EV71 infection. Here we report that viral capsid protein 1 (VP1), one of the main capsid proteins of EV71, efficiently elicited VP1-specific immunoglobulin G (IgG) in the serum of mice immunized with recombinant VP1. The VP1-specific IgG produced in female mice was efficiently transferred to their offspring, conferring protection against EV71 infection immediately after birth. VP1-specific antibody can neutralize EV71 infection and protect host cells. VP1-specific maternal IgG in offspring was maintained for over 6 months. However, the pre-existence of VP1-specific maternal IgG interfered with the production of VP1-specific IgG antibody secreting cells by active immunization in offspring. Therefore, although our results showed the potential for VP1-specific maternal IgG protection against EV71 in neonatal mice, other strategies must be developed to overcome the hindrance of maternal IgG in active immunization. In this study, we developed an effective and feasible animal model to evaluate the protective efficacy of humoral immunity against EV71 infection using a maternal immunity concept.
Collapse
Affiliation(s)
- Young-In Kim
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 443-749, Republic of Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Bo-Eun Kwon
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Ha-Neul Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Min-Duk Seo
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 443-749, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - KwiSung Park
- Department of Microbiology, Chungcheongnam-Do Institute of Health and Environment Research, Daejeon 300-801, Republic of Korea
| | - SangWon Lee
- Division of Vaccine Research, Center for Infectious Diseases, National Institute of Health, Korea Centers for Diseases Control and Prevention, Cheongju 361-951, Republic of Korea
| | - Sang-Gu Yeo
- Division of Vaccine Research, Center for Infectious Diseases, National Institute of Health, Korea Centers for Diseases Control and Prevention, Cheongju 361-951, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 443-749, Republic of Korea.
| |
Collapse
|
39
|
Zhang Y, Wang L, Liao Y, Liu L, Ma K, Yang E, Wang J, Che Y, Jiang L, Pu J, Guo L, Feng M, Liang Y, Cui W, Yang H, Li Q. Similar protective immunity induced by an inactivated enterovirus 71 (EV71) vaccine in neonatal rhesus macaques and children. Vaccine 2015; 33:6290-7. [PMID: 26419198 DOI: 10.1016/j.vaccine.2015.09.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
During the development of enterovirus 71 (EV71) inactivated vaccine for preventing human hand, foot and mouth diseases (HFMD) by EV71 infection, an effective animal model is presumed to be significant and necessary. Our previous study demonstrated that the vesicles in oral regions and limbs potentially associated with viremia, which are the typical manifestations of HFMD, and remarkable pathologic changes were identified in various tissues of neonatal rhesus macaque during EV71 infection. Although an immune response in terms of neutralizing antibody and T cell memory was observed in animals infected by the virus or stimulated by viral antigen, whether such a response could be considered as an indicator to justify the immune response in individuals vaccinated or infected in a pandemic needs to be investigated. Here, a comparative analysis of the neutralizing antibody response and IFN-γ-specific T cell response in vaccinated neonatal rhesus macaques and a human clinical trial with an EV71 inactivated vaccine was performed, and the results showed the identical tendency and increased level of neutralizing antibody and the IFN-γ-specific T cell response stimulated by the EV71 antigen peptide. Importantly, the clinical protective efficacy against virus infection by the elicited immune response in the immunized population compared with the placebo control and the up-modulated gene profile associated with immune activation were similar to those in infected macaques. Further safety verification of this vaccine in neonatal rhesus macaques and children confirmed the potential use of the macaque as a reliable model for the evaluation of an EV71 candidate vaccine.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Lichun Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Erxia Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China; Jiangsu Convac Biotechnology Co., Ltd., Taizhou, Jiangsu 225300, China
| | - Jingjing Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Yanchun Che
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Li Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China; Jiangsu Convac Biotechnology Co., Ltd., Taizhou, Jiangsu 225300, China
| | - Jing Pu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Min Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Yan Liang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Wei Cui
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China; Jiangsu Convac Biotechnology Co., Ltd., Taizhou, Jiangsu 225300, China
| | - Huai Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China.
| |
Collapse
|
40
|
Sun S, Jiang L, Liang Z, Mao Q, Su W, Zhang H, Li X, Jin J, Xu L, Zhao D, Fan P, An D, Yang P, Lu J, Lv X, Sun B, Xu F, Kong W, Jiang C. Evaluation of monovalent and bivalent vaccines against lethal Enterovirus 71 and Coxsackievirus A16 infection in newborn mice. Hum Vaccin Immunother 2015; 10:2885-95. [PMID: 25483672 DOI: 10.4161/hv.29823] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) have caused severe epidemics of hand, foot and mouth disease (HFMD) in the Asia Pacific in recent years, particularly in infants and young children. This disease has become a serious public health problem, as no vaccines or antiviral drugs have been approved for EV71 and CA16 infections. In this study, we compared four monovalent vaccines, including formalin-inactivated EV71 virus (iEV71), EV71 virus-like particles (VLPs) (vEV71), formalin-inactivated CVA16 virus (iCVA16) and CVA16 VLPs (vCVA16), along with two bivalent vaccines, including equivalent doses of formalin-inactivated EV71+CVA16 virus (iEV71+iCVA16) and EV71+CVA16 VLPs (vEV71+vCVA16). The IgG titers and neutralization antibodies titers demonstrated that there are no immune interference exists between the two immunogens of EV71 and CVA16. IgG subclass isotyping revealed that IgG1 and IgG2b were induced primarily in all vaccine groups. Furthermore, cross-neutralization antibodies were elicited in mouse sera against other sub-genotypes of EV71 and CVA16. In vivo challenge experiments showed that the immune sera from vaccinated animals could confer passive protection to newborn mice against lethal challenge with 14 LD50 of EV71 and 50 LD50 of CVA16. Our results indicated that bivalent vaccination is promising for HFMD vaccine development. With the advantage of having a better safety profile than inactivated virus vaccines, VLPs should be used to combine both EV71 and CVA16 antigens as a candidate vaccine for prevention of HFMD virus transmission.
Collapse
Affiliation(s)
- Shiyang Sun
- a School of Life Sciences ; Jilin University ; Changchun , PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ong KC, Wong KT. Understanding Enterovirus 71 Neuropathogenesis and Its Impact on Other Neurotropic Enteroviruses. Brain Pathol 2015; 25:614-24. [PMID: 26276025 PMCID: PMC8029433 DOI: 10.1111/bpa.12279] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 01/27/2023] Open
Abstract
Enterovirus A71 (EV-A71) belongs to the species group A in the Enterovirus genus within the Picornaviridae family. EV-A71 usually causes self-limiting hand, foot and mouth disease or herpangina but rarely causes severe neurological complications such as acute flaccid paralysis and encephalomyelitis. The pathology and neuropathogenesis of these neurological syndromes is beginning to be understood. EV-A71 neurotropism for motor neurons in the spinal cord and brainstem, and other neurons, is mainly responsible for central nervous system damage. This review on the general aspects, recent developments and advances of EV-A71 infection will focus on neuropathogenesis and its implications on other neurotropic enteroviruses, such as poliovirus and the newly emergent Enterovirus D68. With the imminent eradication of poliovirus, EV-A71 is likely to replace it as an important neurotropic enterovirus of worldwide importance.
Collapse
Affiliation(s)
- Kien Chai Ong
- Department of Biomedical ScienceFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Kum Thong Wong
- Department of PathologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| |
Collapse
|
42
|
Chang J, Li J, Liu X, Liu G, Yang J, Wei W, Zhang W, Yu XF. Broad protection with an inactivated vaccine against primary-isolated lethal enterovirus 71 infection in newborn mice. BMC Microbiol 2015; 15:139. [PMID: 26169371 PMCID: PMC4501189 DOI: 10.1186/s12866-015-0474-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/26/2015] [Indexed: 11/10/2022] Open
Abstract
Background Circulating enterovirus 71 (EV-A71)-associated hand, foot, and mouth disease is on the rise in the Asian-Pacific region. Although animal models have been developed using mouse-adapted EV-A71 strains, mouse models using primary EV-A71 isolates are scarce. Lethal animal models with circulating EV-A71 infection would contribute to studies of pathogenesis as well as vaccine development and evaluation. Results In this study, we established a lethal mouse model using primary EV-A71 isolates from patients infected with serotypes that are currently circulating in humans. We also characterized the dose-dependent virulence and pathologic changes of circulating EV-A71 in this mouse model. Most importantly, we have established this mouse model as a suitable system for EV-A71 vaccine evaluation. An inactivated EV-A71 vaccine candidate offered complete protection from death induced by various circulating EV-A71 viruses to neonatal mice that were born to immunized female mice. The sera of the immunized dams and their pups showed higher neutralization titers against multiple circulating EV-A71 viruses. Conclusions Thus, our newly established animal model using primary EV-A71 isolates is helpful for future studies on viral pathogenesis and vaccine and drug development.
Collapse
Affiliation(s)
- Junliang Chang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, No 519, East Minzhu Avenue, Changchun, Jilin, 130021, China
| | - Jingliang Li
- Institute of Virology and AIDS Research, First Hospital of Jilin University, No 519, East Minzhu Avenue, Changchun, Jilin, 130021, China
| | - Xin Liu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, No 519, East Minzhu Avenue, Changchun, Jilin, 130021, China
| | - Guanchen Liu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, No 519, East Minzhu Avenue, Changchun, Jilin, 130021, China
| | - Jiaxin Yang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, No 519, East Minzhu Avenue, Changchun, Jilin, 130021, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital of Jilin University, No 519, East Minzhu Avenue, Changchun, Jilin, 130021, China.,Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, No 519, East Minzhu Avenue, Changchun, Jilin, 130021, China.
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, No 519, East Minzhu Avenue, Changchun, Jilin, 130021, China. .,Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
43
|
Kok CC. Therapeutic and prevention strategies against human enterovirus 71 infection. World J Virol 2015; 4:78-95. [PMID: 25964873 PMCID: PMC4419123 DOI: 10.5501/wjv.v4.i2.78] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/21/2014] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
Human enterovirus 71 (HEV71) is the cause of hand, foot and mouth disease and associated neurological complications in children under five years of age. There has been an increase in HEV71 epidemic activity throughout the Asia-Pacific region in the past decade, and it is predicted to replace poliovirus as the extant neurotropic enterovirus of highest global public health significance. To date there is no effective antiviral treatment and no vaccine is available to prevent HEV71 infection. The increase in prevalence, virulence and geographic spread of HEV71 infection over the past decade provides increasing incentive for the development of new therapeutic and prevention strategies against this emerging viral infection. The current review focuses on the potential, advantages and disadvantages of these strategies. Since the explosion of outbreaks leading to large epidemics in China, research in natural therapeutic products has identified several groups of compounds with anti-HEV71 activities. Concurrently, the search for effective synthetic antivirals has produced promising results. Other therapeutic strategies including immunotherapy and the use of oligonucleotides have also been explored. A sound prevention strategy is crucial in order to control the spread of HEV71. To this end the ultimate goal is the rapid development, regulatory approval and widespread implementation of a safe and effective vaccine. The various forms of HEV71 vaccine designs are highlighted in this review. Given the rapid progress of research in this area, eradication of the virus is likely to be achieved.
Collapse
|
44
|
Lin YJ, Liu WT, Stark H, Huang CT. Expression of enterovirus 71 virus-like particles in transgenic enoki (Flammulina velutipes). Appl Microbiol Biotechnol 2015; 99:6765-74. [PMID: 25957149 DOI: 10.1007/s00253-015-6588-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/01/2015] [Accepted: 04/05/2015] [Indexed: 10/23/2022]
Abstract
No commercial vaccines are currently available for enterovirus 71 (EV71) infection. Oral virus-like particle (VLP) vaccines are regarded as a better choice for prevention from food-borne diseases compared with injected whole virus vaccines. Unfortunately, the application of oral VLP vaccines produced from transgenic plants was limited due to the concerns of gene contamination. Alternatively, using transgenic mushrooms retains the advantages of transgenic plants and tremendously reduce risks of gene contamination. Polycistronic expression vectors harboring the glyceraldehyde-3-phospho-dehydrogenase promoter to codrive EV71 structural protein P1 and protease 3C using the 2A peptide of porcine teschovirus-1 were constructed and introduced into Flammulina velutipes via Agrobacterium tumefaciens-mediated transformation. The analyses of the genomic PCR, Southern blotting, and RT-PCR showed that the genes of P1 and 3C were integrated into the chromosomal DNA through a single insertion, and their resulting mRNAs were transcribed. The Western blotting analysis combined with LC-MS/MS demonstrated that EV71 VLPs were composed of the four subunit proteins digested from P1 polyprotein by 3C protease. Through the use of a single particle electron microscope, images of 1705 particles with diameter similar to the EV71 viron were used for 3D reconstruction. Protrusions were observed on the surface in the 2D class averages, and a 3D reconstruction of the VLPs was obtained. In conclusion, EV71 VLPs were successfully produced in transgenic F. velutipes using a polycistronic expression strategy, which indicates that this approach is promising for the development of oral vaccines produced in mushrooms.
Collapse
Affiliation(s)
- Yu-Ju Lin
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taipei, Taiwan
| | | | | | | |
Collapse
|
45
|
Cao L, Mao F, Pang Z, Yi Y, Qiu F, Tian R, Meng Q, Jia Z, Bi S. Protective effect of enterovirus‑71 (EV71) virus‑like particle vaccine against lethal EV71 infection in a neonatal mouse model. Mol Med Rep 2015; 12:2473-80. [PMID: 25936344 PMCID: PMC4464482 DOI: 10.3892/mmr.2015.3680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 03/16/2015] [Indexed: 01/01/2023] Open
Abstract
Enterovirus-71 (EV71) is a viral pathogen that causes severe cases of hand, foot and mouth disease (HFMD) among young children, with significant mortality. Effective vaccines against HFMD are urgently required. Several EV71 virus-like particle (VLP) vaccine candidates were found to be protective in the neonatal mouse EV71 challenge model. However, to what extent the VLP vaccine protects susceptible organs against EV71 infection in vivo has remained elusive. In the present study, the comprehensive immunogenicity of a potential EV71 vaccine candidate based on VLPs was evaluated in a neonatal mouse model. Despite lower levels of neutralizing antibodies to EV71 in the sera of VLP-immunized mice compared with those in mice vaccinated with inactivated EV71, the VLP-based vaccine was shown to be able to induce immunoglobulin (Ig)G and IgA memory-associated cellular immune responses to EV71. Of note, the EV71 VLP vaccine candidate was capable of inhibiting viral proliferation in cardiac muscle, skeletal muscle, lung and intestine of immunized mice and provided effective protection against the pathological damage caused by viral attack. In particular, the VLP vaccine was able to inhibit the transportation of EV71 from the central nervous system to the muscle tissue and greatly protected muscle tissue from infection, along with recovery from the viral infection. This led to nearly 100% immunoprotective efficacy, enabling neonatal mice delivered by VLP-immunized female adult mice to survive and grow with good health. The present study provided valuable additional knowledge of the specific protective efficacy of the EV71 VLP vaccine in vivo, which also indicated that it is a promising potential candidate for being developed into an EV71 vaccine.
Collapse
Affiliation(s)
- Lei Cao
- Department of Viral Hepatitis, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Fengfeng Mao
- Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zheng Pang
- Department of Viral Hepatitis, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Yao Yi
- Department of Viral Hepatitis, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Feng Qiu
- Department of Viral Hepatitis, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Ruiguang Tian
- Department of Viral Hepatitis, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Qingling Meng
- Department of Viral Hepatitis, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Zhiyuan Jia
- Department of Viral Hepatitis, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Shengli Bi
- Department of Viral Hepatitis, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing 102206, P.R. China
| |
Collapse
|
46
|
Enterovirus 71 Can Directly Infect the Brainstem via Cranial Nerves and Infection Can Be Ameliorated by Passive Immunization. J Neuropathol Exp Neurol 2014; 73:999-1008. [DOI: 10.1097/nen.0000000000000122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
47
|
Abstract
INTRODUCTION Enterovirus 71 (EV71) is an etiological agent that causes severe neurological complications in children. EV71 outbreaks have occurred throughout the Asia-Pacific region, posing a severe global public health threat; however, no specific therapeutic strategy exists for treating EV71-infected children. AREAS COVERED Five manufacturers have produced inactivated EV71 whole virus vaccines in mainland China, Taiwan, and Singapore, which have completed Phase III (mainland China) and Phase I (Taiwan and Singapore) clinical trials. Various EV71 vaccine candidates are being researched in animal models, including live-attenuated virus vaccine, recombinant VP1 vaccine, VP1-based DNA vaccine, synthetic peptide vaccine and virus-like particle vaccine. In this review, the present situation is summarized, and feasible improvements to the EV71 vaccine are explored. EXPERT OPINION Although inactivated EV71 vaccines are safe, efficient and elicit strong immune responses to protect adults, children and infants against infection, the quality control of production is critical.
Collapse
Affiliation(s)
- Yu-An Kung
- Chang Gung University, Research Center for Emerging Viral Infections , 259 Wen-Hua 1st Road, Kwei-Shan, Taoyuan, 333 (Zip code) , Taiwan +886 3 2118800 ext. 5497 ; +886 3 2118174 ;
| | | | | | | |
Collapse
|
48
|
Kiener TK, Jia Q, Meng T, Chow VTK, Kwang J. A novel universal neutralizing monoclonal antibody against enterovirus 71 that targets the highly conserved "knob" region of VP3 protein. PLoS Negl Trop Dis 2014; 8:e2895. [PMID: 24875055 PMCID: PMC4038473 DOI: 10.1371/journal.pntd.0002895] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/11/2014] [Indexed: 12/17/2022] Open
Abstract
Hand, foot and mouth disease caused by enterovirus 71(EV71) leads to the majority of neurological complications and death in young children. While putative inactivated vaccines are only now undergoing clinical trials, no specific treatment options exist yet. Ideally, EV71 specific intravenous immunoglobulins could be developed for targeted treatment of severe cases. To date, only a single universally neutralizing monoclonal antibody against a conserved linear epitope of VP1 has been identified. Other enteroviruses have been shown to possess major conformational neutralizing epitopes on both the VP2 and VP3 capsid proteins. Hence, we attempted to isolate such neutralizing antibodies against conformational epitopes for their potential in the treatment of infection as well as differential diagnosis and vaccine optimization. Here we describe a universal neutralizing monoclonal antibody that recognizes a conserved conformational epitope of EV71 which was mapped using escape mutants. Eight escape mutants from different subgenogroups (A, B2, B4, C2, C4) were rescued; they harbored three essential mutations either at amino acid positions 59, 62 or 67 of the VP3 protein which are all situated in the “knob” region. The escape mutant phenotype could be mimicked by incorporating these mutations into reverse genetically engineered viruses showing that P59L, A62D, A62P and E67D abolish both monoclonal antibody binding and neutralization activity. This is the first conformational neutralization epitope mapped on VP3 for EV71. Over the last decade, EV71 has emerged as a major cause of severe hand, foot and mouth disease in the Asia-Pacific region, occasionally leading to fatal brain stem encephalitis in young children. The rapid progression and high mortality of severe EV71 infection makes it vital to identify neutralization epitopes and putative therapeutic monoclonal antibodies. In this study we mapped the first conformational neutralization epitope on the VP3 protein of EV71. This epitope was confirmed by introducing the mutations into reverse genetically engineered viruses which abolished neutralization with monoclonal antibody (mAb)10D3. The importance of this novel neutralization epitope lies in the optimization of putative EV71 vaccines because the VP3 knob could be incorporated together with VP1 into a bivalent subunit vaccine. Further, the universal recognition of a conserved site on EV71 VP3 and not CVA16 makes mAb 10D3 a valuable tool for differential diagnosis of hand, foot and mouth disease. An additional hope is that mAb 10D3 could be used as a therapeutic intravenous immunoglobulin (IVIG).
Collapse
Affiliation(s)
- Tanja K. Kiener
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore, Republic of Singapore
| | - Qiang Jia
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore, Republic of Singapore
| | - Tao Meng
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore, Republic of Singapore
| | - Vincent Tak Kwong Chow
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore, Republic of Singapore
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
49
|
Li YX, Zhao H, Cao RY, Deng YQ, Han JF, Zhu SY, Ma J, Liu L, Qin ED, Qin CF. Recombinant tandem multi-linear neutralizing epitopes of human enterovirus 71 elicited protective immunity in mice. Virol J 2014; 11:79. [PMID: 24885030 PMCID: PMC4030048 DOI: 10.1186/1743-422x-11-79] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Human Enterovirus 71 (EV71) has emerged as the leading cause of viral encephalitis in children, especially in the Asia-Pacific regions. EV71 vaccine development is of high priority at present, and neutralization antibodies have been documented to play critical roles during in vitro and in vivo protection against EV71 infection. RESULTS In this study, a novel strategy to produce EV71 vaccine candidate based on recombinant multiple tandem linear neutralizing epitopes (mTLNE) was proposed. The three well identified EV71 linear neutralizing epitopes in capsid proteins, VP1-SP55, VP1-SP70 and VP2-SP28, were sequentially linked by a Gly-Ser linker ((G4S)3), and expressed in E.coli in fusion with the Trx and His tag at either terminal. The recombinant protein mTLNE was soluble and could be purified by standard affinity chromatography. Following three dosage of immunization in adult mice, EV71-specific IgG and neutralization antibodies were readily induced by recombinant mTLNE. IgG subtyping demonstrated that lgG1 antibodies dominated the mTLNE-induced humoral immune response. Especially, cytokine profiling in spleen cells from the mTLNE-immunized mice revealed high production of IL-4 and IL-6. Finally, in vivo challenge experiments showed that passive transfer with anti-mTLNE sera conferred full protection against lethal EV71 challenge in neonatal mice. CONCLUSION Our results demonstrated that this rational designed recombinant mTLNE might have the potential to be further developed as an EV71 vaccine in the future.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Chromatography, Affinity
- Cytokines/analysis
- Disease Models, Animal
- Enterovirus A, Human/immunology
- Enterovirus Infections/immunology
- Enterovirus Infections/prevention & control
- Epitopes, B-Lymphocyte/immunology
- Escherichia coli/genetics
- Female
- Gene Expression
- Immunization, Passive
- Immunoglobulin G/blood
- Leukocytes, Mononuclear/immunology
- Mice, Inbred BALB C
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Survival Analysis
- Vaccination/methods
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Yue-Xiang Li
- Graduate School, Anhui Medical University, Hefei 230032, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hui Zhao
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rui-Yuan Cao
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yong-Qiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jian-Feng Han
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shun-Ya Zhu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jie Ma
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Long Liu
- Graduate School, Anhui Medical University, Hefei 230032, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - E-De Qin
- Graduate School, Anhui Medical University, Hefei 230032, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cheng-Feng Qin
- Graduate School, Anhui Medical University, Hefei 230032, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
50
|
Oral immunization with recombinant enterovirus 71 VP1 formulated with chitosan protects mice against lethal challenge. Virol J 2014; 11:80. [PMID: 24885121 PMCID: PMC4022980 DOI: 10.1186/1743-422x-11-80] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 04/14/2014] [Indexed: 11/10/2022] Open
Abstract
Background Enterovirus 71 (EV71) is the etiologic agent of hand-foot-and-mouth disease (HFMD) in the Asia-Pacific region, Many strategies have been applied to develop EV71 vaccines but no vaccines are currently available. Mucosal immunization of the VP1, a major immunogenic capsid protein of EV71, may be an alternative way to prevent EV71 infection. Results In this study, mucosal immunogenicity and protect function of recombinant VP1 protein (rVP1) in formulation with chitosan were tested and assessed in female ICR mouse model. The results showed that the oral immunization with rVP1 induced VP1-specific IgA antibodies in intestine, feces, vagina, and the respiratory tract and serum-specific IgG and neutralization antibodies in vaccinated mice. Splenocytes from rVP1-immunized mice induced high levels of Th1 (cytokine IFN-γ), Th2 (cytokine IL-4) and Th3 (cytokine TGF-β) type immune responses after stimulation. Moreover, rVP1-immunized mother mice conferred protection (survival rate up to 30%) on neonatal mice against a lethal challenge of 103 plaque-forming units (PFU) EV71. Conclusions These data indicated that oral immunization with rVP1 in formulation with chitosan was effective in inducing broad-spectrum immune responses and might be a promising subunit vaccine candidate for preventing EV71 infection.
Collapse
|