1
|
Han S, Ye X, Yang J, Peng X, Jiang X, Li J, Zheng X, Zhang X, Zhang Y, Zhang L, Wang W, Li J, Xin W, Zhang X, Xiao G, Peng K, Zhang L, Du X, Zhou L, Liu W, Li H. Host specific sphingomyelin is critical for replication of diverse RNA viruses. Cell Chem Biol 2024; 31:2052-2068.e11. [PMID: 39566509 DOI: 10.1016/j.chembiol.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/28/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024]
Abstract
Lipids and lipid metabolism play an important role in RNA virus replication, which typically occurs on host cell endomembrane structures in the cytoplasm through mechanisms that are not yet fully identified. We conducted genome-scale CRISPR screening and identified sphingomyelin synthase 1 (SMS1; encoded by SGMS1) as a critical host factor for infection by severe fever with thrombocytopenia syndrome virus (SFTSV). SGMS1 knockout reduced sphingomyelin (SM) (d18:1/16:1) levels, inhibiting SFTSV replication. A helix-turn-helix motif in SFTSV RNA-dependent RNA polymerase (RdRp) directly binds to SM(d18:1/16:1) in Golgi apparatus, which was also observed in SARS-CoV-2 and lymphocytic choriomeningitis virus (LCMV), both showing inhibited replication in SGMS1-KO cells. SM metabolic disturbance is associated with disease severity of viral infections. We designed a novel SMS1 inhibitor that protects mice against lethal SFTSV infection and reduce SARS-CoV-2 replication and pathogenesis. These findings highlight the critical role of SMS1 and SM(d18:1/16:1) in RNA virus replication, suggesting a broad-spectrum antiviral strategy.
Collapse
Affiliation(s)
- Shuo Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaolei Ye
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jintong Yang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xuefang Peng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaming Jiang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Jin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaojie Zheng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xinchen Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yumin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Lingyu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wei Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiaxin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaoai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Xuguang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lu Zhou
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.
| |
Collapse
|
2
|
Das PK, Kielian M. Rubella virus assembly requirements and evolutionary relationships with novel rubiviruses. mBio 2024; 15:e0196524. [PMID: 39207105 PMCID: PMC11481484 DOI: 10.1128/mbio.01965-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Rubella virus (RuV) is an enveloped virus that usually causes mild disease in children, but can produce miscarriage or severe congenital birth defects. While in nature RuV only infects humans, the discovery of the related Ruhugu (RuhV) and Rustrela (RusV) viruses highlights the spillover potential of mammalian rubiviruses to humans. RuV buds into the Golgi, but its assembly and exit are not well understood. We identified a potential late domain motif 278PPAY281 at the C-terminus of the RuV E2 envelope protein. Such late domain motifs can promote virus budding by recruiting the cellular ESCRT machinery. An E2 Y281A mutation reduced infectious virus production by >3 logs and inhibited virus particle production. However, RuV was insensitive to inhibition by dominant-negative VPS4, and thus appeared ESCRT-independent. The E2 Y281A mutation did not significantly inhibit the production of the viral structural proteins capsid (Cp), E2, and E1, or dimerization, glycosylation, Golgi transport, and colocalization of E2 and E1. However, E2 Y281A significantly reduced glycoprotein-Cp colocalization and interaction, and inhibited Cp localization to the Golgi. Revertants of the E2 Y281A mutant contained an E2 281V substitution or the second site mutations [E2 N277I + Cp D215A]. These mutations promoted virus growth, particle production, E2/Cp colocalization and Cp-Golgi localization. Both the E2 substitutions 281V and 277I were found at the corresponding positions in the RuhV E2 protein. Taken together, our data identify a key interaction of the RuV E2 endodomain with the Cp during RuV biogenesis, and support the close evolutionary relationship between human and animal rubiviruses. IMPORTANCE Rubella virus (RuV) is an enveloped virus that only infects humans, where transplacental infection can cause miscarriage or congenital birth defects. We identified a potential late domain, 278PPAY281, at the C terminus of the E2 envelope protein. However, rather than this domain recruiting the cellular ESCRT machinery as predicted, our data indicate that E2 Y281 promotes a critical interaction of the E2 endodomain with the capsid protein, leading to capsid's localization to the Golgi where virus budding occurs. Revertant analysis demonstrated that two substitutions on the E2 protein could partially rescue virus growth and Cp-Golgi localization. Both residues were found at the corresponding positions in Ruhugu virus E2, supporting the close evolutionary relationship between RuV and Ruhugu virus, a recently discovered rubivirus from bats.
Collapse
Affiliation(s)
- Pratyush Kumar Das
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
3
|
Dai J, Feng Y, Liao Y, Tan L, Sun Y, Song C, Qiu X, Ding C. Virus infection and sphingolipid metabolism. Antiviral Res 2024; 228:105942. [PMID: 38908521 DOI: 10.1016/j.antiviral.2024.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Cellular sphingolipids have vital roles in human virus replication and spread as they are exploited by viruses for cell entry, membrane fusion, genome replication, assembly, budding, and propagation. Intracellular sphingolipid biosynthesis triggers conformational changes in viral receptors and facilitates endosomal escape. However, our current understanding of how sphingolipids precisely regulate viral replication is limited, and further research is required to comprehensively understand the relationships between viral replication and endogenous sphingolipid species. Emerging evidence now suggests that targeting and manipulating sphingolipid metabolism enzymes in host cells is a promising strategy to effectively combat viral infections. Additionally, serum sphingolipid species and concentrations could function as potential serum biomarkers to help monitor viral infection status in different patients. In this work, we comprehensively review the literature to clarify how viruses exploit host sphingolipid metabolism to accommodate viral replication and disrupt host innate immune responses. We also provide valuable insights on the development and use of antiviral drugs in this area.
Collapse
Affiliation(s)
- Jun Dai
- Experimental Animal Center, Zunyi Medical University, Zunyi, 563099, China
| | - Yiyi Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Thomas S, Samuel SV, Hoch A, Syphurs C, Diray-Arce J. The Implication of Sphingolipids in Viral Infections. Int J Mol Sci 2023; 24:17303. [PMID: 38139132 PMCID: PMC10743733 DOI: 10.3390/ijms242417303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Sphingolipids are involved in cell signaling and metabolic pathways, and their metabolites play a critical role in host defense against intracellular pathogens. Here, we review the known mechanisms of sphingolipids in viral infections and discuss the potential implication of the study of sphingolipid metabolism in vaccine and therapeutic development.
Collapse
Affiliation(s)
- Sanya Thomas
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Stephen Varghese Samuel
- Harvard Medical School, Boston, MA 02115, USA;
- Department of Emergency Medicine, Christian Medical College and Hospital, Vellore 632004, India
| | - Annmarie Hoch
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Caitlin Syphurs
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
5
|
Yagi M, Hama M, Ichii S, Nakashima Y, Kanbayashi D, Kurata T, Yusa K, Komano J. S phingomyelin synthase 1 supports two steps of rubella virus life cycle. iScience 2023; 26:108267. [PMID: 38026182 PMCID: PMC10654604 DOI: 10.1016/j.isci.2023.108267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Our knowledge of the regulatory mechanisms that govern the replication of the rubella virus (RV) in human cells is limited. To gain insight into the host-pathogen interaction, we conducted a loss-of-function screening using the CRISPR-Cas9 system in the human placenta-derived JAR cells. We identified sphingomyelin synthase 1 (SGMS1 or SMS1) as a susceptibility factor for RV infection. Genetic knockout of SGMS1 rendered JAR cells resistant to infection by RV. The re-introduction of SGMS1 restored cellular susceptibility to RV infection. The restricted step of RV infection was post-endocytosis processes associated with the endosomal acidification. In the late phase of the RV replication cycle, the maintenance of viral persistence was disrupted, partly due to the attenuated viral gene expression. Our results shed light on the unique regulation of RV replication by a host factor during the early and late phases of viral life cycle.
Collapse
Affiliation(s)
- Mayuko Yagi
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki City, Osaka 569-1041, Japan
| | - Minami Hama
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki City, Osaka 569-1041, Japan
| | - Sayaka Ichii
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki City, Osaka 569-1041, Japan
| | - Yurie Nakashima
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki City, Osaka 569-1041, Japan
| | - Daiki Kanbayashi
- Osaka Institute of Public Health, Morinomiya Center, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Takako Kurata
- Osaka Institute of Public Health, Morinomiya Center, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Kosuke Yusa
- Stem Cell Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Jun Komano
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki City, Osaka 569-1041, Japan
| |
Collapse
|
6
|
Popova G, Retallack H, Kim CN, Wang A, Shin D, DeRisi JL, Nowakowski T. Rubella virus tropism and single-cell responses in human primary tissue and microglia-containing organoids. eLife 2023; 12:RP87696. [PMID: 37470786 PMCID: PMC10370260 DOI: 10.7554/elife.87696] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
Rubella virus is an important human pathogen that can cause neurological deficits in a developing fetus when contracted during pregnancy. Despite successful vaccination programs in the Americas and many developed countries, rubella remains endemic in many regions worldwide and outbreaks occur wherever population immunity is insufficient. Intense interest since rubella virus was first isolated in 1962 has advanced our understanding of clinical outcomes after infection disrupts key processes of fetal neurodevelopment. Yet it is still largely unknown which cell types in the developing brain are targeted. We show that in human brain slices, rubella virus predominantly infects microglia. This infection occurs in a heterogeneous population but not in a highly microglia-enriched monoculture in the absence of other cell types. By using an organoid-microglia model, we further demonstrate that rubella virus infection leads to a profound interferon response in non-microglial cells, including neurons and neural progenitor cells, and this response is attenuated by the presence of microglia.
Collapse
Affiliation(s)
- Galina Popova
- Department of Neurological Surgery, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
- Department of Anatomy, University of California, San FranciscoSan FranciscoUnited States
- Department of Psychiatry and Behavioral Sciences, University of California, San FranciscoSan FranciscoUnited States
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Hanna Retallack
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Chang N Kim
- Department of Neurological Surgery, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
- Department of Anatomy, University of California, San FranciscoSan FranciscoUnited States
- Department of Psychiatry and Behavioral Sciences, University of California, San FranciscoSan FranciscoUnited States
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Albert Wang
- Department of Neurological Surgery, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
- Department of Anatomy, University of California, San FranciscoSan FranciscoUnited States
- Department of Psychiatry and Behavioral Sciences, University of California, San FranciscoSan FranciscoUnited States
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - David Shin
- Department of Neurological Surgery, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
- Department of Anatomy, University of California, San FranciscoSan FranciscoUnited States
- Department of Psychiatry and Behavioral Sciences, University of California, San FranciscoSan FranciscoUnited States
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Tomasz Nowakowski
- Department of Neurological Surgery, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
- Department of Anatomy, University of California, San FranciscoSan FranciscoUnited States
- Department of Psychiatry and Behavioral Sciences, University of California, San FranciscoSan FranciscoUnited States
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
7
|
Membrane Sphingomyelin in Host Cells Is Essential for Nucleocapsid Penetration into the Cytoplasm after Hemifusion during Rubella Virus Entry. mBio 2022; 13:e0169822. [PMID: 36346228 PMCID: PMC9765692 DOI: 10.1128/mbio.01698-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The lipid composition of the host cell membrane is one of the key determinants of the entry of enveloped viruses into cells. To elucidate the detailed mechanisms behind the cell entry of rubella virus (RuV), one of the enveloped viruses, we searched for host factors involved in such entry by using CRISPR/Cas9 genome-wide knockout screening, and we found sphingomyelin synthase 1 (SMS1), encoded by the SGMS1 gene, as a candidate. RuV growth was strictly suppressed in SGMS1-knockout cells and was completely recovered by the overexpression of enzymatically active SMS1 and partially recovered by that of SMS2, another member of the SMS family, but not by that of enzymatically inactive SMS1. An entry assay using pseudotyped vesicular stomatitis virus possessing RuV envelope proteins revealed that sphingomyelin generated by SMSs is crucial for at least RuV entry. In SGMS1-knockout cells, lipid mixing between the RuV envelope membrane and the membrane of host cells occurred, but entry of the RuV genome from the viral particles into the cytoplasm was strongly inhibited. This indicates that sphingomyelin produced by SMSs is essential for the formation of membrane pores after hemifusion occurs during RuV entry. IMPORTANCE Infection with rubella virus during pregnancy causes congenital rubella syndrome in infants. Despite its importance in public health, the detailed mechanisms of rubella virus cell entry have only recently become somewhat clearer. The E1 protein of rubella virus is classified as a class II fusion protein based on its structural similarity, but it has the unique feature that its activity is dependent on calcium ion binding in the fusion loops. In this study, we found another unique feature, as cellular sphingomyelin plays a critical role in the penetration of the nucleocapsid into the cytoplasm after hemifusion by rubella virus. This provides important insight into the entry mechanism of rubella virus. This study also presents a model of hemifusion arrest during cell entry by an intact virus, providing a useful tool for analyzing membrane fusion, a biologically important phenomenon.
Collapse
|
8
|
Kurano M, Okamoto K, Jubishi D, Hashimoto H, Sakai E, Saigusa D, Kano K, Aoki J, Harada S, Okugawa S, Doi K, Moriya K, Yatomi Y. Dynamic modulations of sphingolipids and glycerophospholipids in COVID-19. Clin Transl Med 2022; 12:e1069. [PMID: 36214754 PMCID: PMC9549873 DOI: 10.1002/ctm2.1069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND A heterogeneous clinical phenotype is a characteristic of coronavirus disease 2019 (COVID-19). Therefore, investigating biomarkers associated with disease severity is important for understanding the mechanisms responsible for this heterogeneity and for developing novel agents to prevent critical conditions. This study aimed to elucidate the modulations of sphingolipids and glycerophospholipids, which have been shown to possess potent biological properties. METHODS We measured the serum sphingolipid and glycerophospholipid levels in a total of 887 samples from 215 COVID-19 subjects, plus 115 control subjects without infectious diseases and 109 subjects with infectious diseases other than COVID-19. RESULTS We observed the dynamic modulations of sphingolipids and glycerophospholipids in the serum of COVID-19 subjects, depending on the time course and severity. The elevation of C16:0 ceramide and lysophosphatidylinositol and decreases in C18:1 ceramide, dihydrosphingosine, lysophosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol were specific to COVID-19. Regarding the association with maximum severity, phosphatidylinositol and phosphatidylcholine species with long unsaturated acyl chains were negatively associated, while lysophosphatidylethanolamine and phosphatidylethanolamine were positively associated with maximum severity during the early phase. Lysophosphatidylcholine and phosphatidylcholine had strong negative correlations with CRP, while phosphatidylethanolamine had strong positive ones. C16:0 ceramide, lysophosphatidylcholine, phosphatidylcholine and phosphatidylethanolamine species with long unsaturated acyl chains had negative correlations with D-dimer, while phosphatidylethanolamine species with short acyl chains and phosphatidylinositol had positive ones. Several species of phosphatidylcholine, phosphatidylethanolamine and sphingomyelin might serve as better biomarkers for predicting severe COVID-19 during the early phase than CRP and D-dimer. Compared with the lipid modulations seen in mice treated with lipopolysaccharide, tissue factor, or histone, the lipid modulations observed in severe COVID-19 were most akin to those in mice administered lipopolysaccharide. CONCLUSION A better understanding of the disturbances in sphingolipids and glycerophospholipids observed in this study will prompt further investigation to develop laboratory testing for predicting maximum severity and/or novel agents to suppress the aggravation of COVID-19.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory MedicineGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Koh Okamoto
- Department of Infectious DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Daisuke Jubishi
- Department of Infectious DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Hideki Hashimoto
- Department of Infectious DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Eri Sakai
- Department of Clinical Laboratory MedicineGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical SciencesFaculty of Pharma‐ScienceTeikyo UniversityTokyoJapan
| | - Kuniyuki Kano
- Department of Health ChemistryGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Junken Aoki
- Department of Health ChemistryGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Sohei Harada
- Department of Infection Control and PreventionThe University of TokyoTokyoJapan
| | - Shu Okugawa
- Department of Infectious DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Kent Doi
- Department of Emergency and Critical Care MedicineThe University of Tokyo Hospital, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infectious DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan,Department of Infection Control and PreventionThe University of TokyoTokyoJapan
| | - Yutaka Yatomi
- Department of Clinical Laboratory MedicineGraduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
9
|
Trinh QD, Takada K, Pham NTK, Takano C, Namiki T, Ikuta R, Hayashida S, Okitsu S, Ushijima H, Komine-Aizawa S, Hayakawa S. Enhancement of Rubella Virus Infection in Immortalized Human First-Trimester Trophoblasts Under Low-Glucose Stress Conditions. Front Microbiol 2022; 13:904189. [PMID: 35875557 PMCID: PMC9304883 DOI: 10.3389/fmicb.2022.904189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/21/2022] [Indexed: 12/25/2022] Open
Abstract
Rubella virus (RuV) infections in pregnant women, especially first-trimester infections, can lead to congenital rubella syndrome (CRS). However, the mechanisms of fetal RuV infection are not completely understood, and it is not observed in every pregnant woman infected with RuV. As gestational diabetes mellitus is a risk factor for congenital viral infections, we investigated the possible roles of hypoglycemia-related endoplasmic reticulum (ER) stress as a key factor for vertical RuV infection using immortalized human first-trimester trophoblasts. Low-glucose stress was induced prior to RuV infection by culturing HTR-8/SVneo and Swan.71 cells in low-glucose (LG) medium for 24 h or high-glucose medium for 6 h and then LG medium for an additional 18 h. Clinically isolated RuV was inoculated at a multiplicity of infection of 5 to 10. The intracellular localization of the RuV capsid protein was investigated 24 to 48 h post-infection (pi) with flow cytometry (FCM) analysis and fluorescence microscopy. Viral progeny production was monitored by FCM analysis. Increases in RuV infection in LG-induced ER-stressed trophoblasts were observed. No significant increase in apoptosis of RuV-infected cells was noted at days 2 and 5 pi, and substantial viral progeny production was observed until day 5 pi. An approximate fivefold increase in viral binding was noted for the LG-stressed cells. Although the detailed mechanisms underlying viral entry into LG-stressed cells are not known and require further investigation, these findings suggest that a certain degree of LG stress in early pregnancy may facilitate infection and cause CRS.
Collapse
Affiliation(s)
- Quang Duy Trinh
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Chika Takano
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | | | - Ryo Ikuta
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | | | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- *Correspondence: Shihoko Komine-Aizawa,
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Satoshi Hayakawa,
| |
Collapse
|
10
|
Hanada K, Sakai S, Kumagai K. Natural Ligand-Mimetic and Nonmimetic Inhibitors of the Ceramide Transport Protein CERT. Int J Mol Sci 2022; 23:ijms23042098. [PMID: 35216212 PMCID: PMC8875512 DOI: 10.3390/ijms23042098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Lipid transfer proteins (LTPs) are recognized as key players in the inter-organelle trafficking of lipids and are rapidly gaining attention as a novel molecular target for medicinal products. In mammalian cells, ceramide is newly synthesized in the endoplasmic reticulum (ER) and converted to sphingomyelin in the trans-Golgi regions. The ceramide transport protein CERT, a typical LTP, mediates the ER-to-Golgi transport of ceramide at an ER-distal Golgi membrane contact zone. About 20 years ago, a potent inhibitor of CERT, named (1R,3S)-HPA-12, was found by coincidence among ceramide analogs. Since then, various ceramide-resembling compounds have been found to act as CERT inhibitors. Nevertheless, the inevitable issue remains that natural ligand-mimetic compounds might directly bind both to the desired target and to various undesired targets that share the same natural ligand. To resolve this issue, a ceramide-unrelated compound named E16A, or (1S,2R)-HPCB-5, that potently inhibits the function of CERT has recently been developed, employing a series of in silico docking simulations, efficient chemical synthesis, quantitative affinity analysis, protein-ligand co-crystallography, and various in vivo assays. (1R,3S)-HPA-12 and E16A together provide a robust tool to discriminate on-target effects on CERT from off-target effects. This short review article will describe the history of the development of (1R,3S)-HPA-12 and E16A, summarize other CERT inhibitors, and discuss their possible applications.
Collapse
Affiliation(s)
- Kentaro Hanada
- Department of Quality Assurance, Radiation Safety and Information Management, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan; (S.S.); (K.K.)
- Correspondence:
| | - Shota Sakai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan; (S.S.); (K.K.)
| | - Keigo Kumagai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan; (S.S.); (K.K.)
| |
Collapse
|
11
|
Nieto-Garai JA, Contreras FX, Arboleya A, Lorizate M. Role of Protein-Lipid Interactions in Viral Entry. Adv Biol (Weinh) 2022; 6:e2101264. [PMID: 35119227 DOI: 10.1002/adbi.202101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Indexed: 12/25/2022]
Abstract
The viral entry consists of several sequential events that ensure the attachment of the virus to the host cell and the introduction of its genetic material for the continuation of the replication cycle. Both cellular and viral lipids have gained a wider focus in recent years in the field of viral entry, as they are found to play key roles in different steps of the process. The specific role is summarized that lipids and lipid membrane nanostructures play in viral attachment, fusion, and immune evasion and how they can be targeted with antiviral therapies. Finally, some of the limitations of techniques commonly used for protein-lipid interactions studies are discussed, and new emerging tools are reviewed that can be applied to this field.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain
| | - Francesc-Xabier Contreras
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Aroa Arboleya
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, E-48940, Spain
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| |
Collapse
|
12
|
Avota E, Bodem J, Chithelen J, Mandasari P, Beyersdorf N, Schneider-Schaulies J. The Manifold Roles of Sphingolipids in Viral Infections. Front Physiol 2021; 12:715527. [PMID: 34658908 PMCID: PMC8511394 DOI: 10.3389/fphys.2021.715527] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Sphingolipids are essential components of eukaryotic cells. In this review, we want to exemplarily illustrate what is known about the interactions of sphingolipids with various viruses at different steps of their replication cycles. This includes structural interactions during entry at the plasma membrane or endosomal membranes, early interactions leading to sphingolipid-mediated signal transduction, interactions with internal membranes and lipids during replication, and interactions during virus assembly and budding. Targeted interventions in sphingolipid metabolism - as far as they can be tolerated by cells and organisms - may open novel possibilities to support antiviral therapies. Human immunodeficiency virus type 1 (HIV-1) infections have intensively been studied, but for other viral infections, such as influenza A virus (IAV), measles virus (MV), hepatitis C virus (HCV), dengue virus, Ebola virus, and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), investigations are still in their beginnings. As many inhibitors of sphingolipid metabolism are already in clinical use against other diseases, repurposing studies for applications in some viral infections appear to be a promising approach.
Collapse
Affiliation(s)
- Elita Avota
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Jochen Bodem
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Janice Chithelen
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Putri Mandasari
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
13
|
Hao Y, Zhang Z, Feng G, Chen M, Wan Q, Lin J, Wu L, Nie W, Chen S. Distinct lipid metabolic dysregulation in asymptomatic COVID-19. iScience 2021; 24:102974. [PMID: 34396083 PMCID: PMC8356725 DOI: 10.1016/j.isci.2021.102974] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/31/2021] [Accepted: 08/08/2021] [Indexed: 12/15/2022] Open
Abstract
Asymptomatic infection is a big challenge in curbing the spread of COVID-19. However, its identification and pathogenesis elucidation remain issues. Here, by performing comprehensive lipidomic characterization of serum samples from 89 asymptomatic COVID-19 patients and 178 healthy controls, we screened out a panel of 15 key lipids that could accurately identify asymptomatic patients using a new ensemble learning model based on stacking strategy with a voting algorithm. This strategy provided a high accuracy of 96.0% with only 3.6% false positive rate and 4.8% false negative rate. More importantly, the unique lipid metabolic dysregulation was revealed, especially the enhanced synthesis of membrane phospholipids, altered sphingolipids homeostasis, and differential fatty acids metabolic pattern, implicating the specific host immune, inflammatory, and antiviral responses in asymptomatic COVID-19. This study provides a potential prediagnostic method for asymptomatic COVID-19 and molecular clues for the pathogenesis and therapy of this disease.
Collapse
Affiliation(s)
- Yanhong Hao
- Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Zheng Zhang
- School of Life Sciences, Central China Normal University, Wuhan, Hubei 430072, China
| | - Guifang Feng
- Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Moran Chen
- Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Qiongqiong Wan
- Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Jie Lin
- Community Health Service Center of Shuiguohu Street, Wuhan, Hubei 430071, China
| | - Liang Wu
- Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Wenjing Nie
- Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Suming Chen
- Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
14
|
Zaga-Clavellina V, Diaz L, Olmos-Ortiz A, Godínez-Rubí M, Rojas-Mayorquín AE, Ortuño-Sahagún D. Central role of the placenta during viral infection: Immuno-competences and miRNA defensive responses. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166182. [PMID: 34058350 DOI: 10.1016/j.bbadis.2021.166182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Pregnancy is a unique immunological condition in which an "immune-diplomatic" dialogue between trophoblasts and maternal immune cells is established to protect the fetus from rejection, to create a privileged environment in the uterus and to simultaneously be alert to any infectious challenge. The maternal-placental-fetal interface (MPFI) performs an essential role in this immunological defense. In this review, we will address the MPFI as an active immuno-mechanical barrier that protects against viral infections. We will describe the main viral infections affecting the placenta and trophoblasts and present their structure, mechanisms of immunocompetence and defensive responses to viral infections in pregnancy. In particular, we will analyze infection routes in the placenta and trophoblasts and the maternal-fetal outcomes in both. Finally, we will focus on the cellular targets of the antiviral microRNAs from the C19MC cluster, and their effects at both the intra- and extracellular level.
Collapse
Affiliation(s)
- Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México C.P. 11000, Mexico
| | - Lorenza Diaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México C.P. 14080, Mexico
| | - Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, INPer, Ciudad de México C.P. 11000, Mexico
| | - Marisol Godínez-Rubí
- Laboratorio de Investigación en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Argelia E Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Guadalajara 45200, Mexico
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Guadalajara, Jalisco 44340, Mexico.
| |
Collapse
|
15
|
Ceramide and Related Molecules in Viral Infections. Int J Mol Sci 2021; 22:ijms22115676. [PMID: 34073578 PMCID: PMC8197834 DOI: 10.3390/ijms22115676] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023] Open
Abstract
Ceramide is a lipid messenger at the heart of sphingolipid metabolism. In concert with its metabolizing enzymes, particularly sphingomyelinases, it has key roles in regulating the physical properties of biological membranes, including the formation of membrane microdomains. Thus, ceramide and its related molecules have been attributed significant roles in nearly all steps of the viral life cycle: they may serve directly as receptors or co-receptors for viral entry, form microdomains that cluster entry receptors and/or enable them to adopt the required conformation or regulate their cell surface expression. Sphingolipids can regulate all forms of viral uptake, often through sphingomyelinase activation, and mediate endosomal escape and intracellular trafficking. Ceramide can be key for the formation of viral replication sites. Sphingomyelinases often mediate the release of new virions from infected cells. Moreover, sphingolipids can contribute to viral-induced apoptosis and morbidity in viral diseases, as well as virus immune evasion. Alpha-galactosylceramide, in particular, also plays a significant role in immune modulation in response to viral infections. This review will discuss the roles of ceramide and its related molecules in the different steps of the viral life cycle. We will also discuss how novel strategies could exploit these for therapeutic benefit.
Collapse
|
16
|
Dissanayake TK, Yan B, Ng ACK, Zhao H, Chan G, Yip CCY, Sze KH, To KKW. Differential role of sphingomyelin in influenza virus, rhinovirus and SARS-CoV-2 infection of Calu-3 cells. J Gen Virol 2021; 102. [PMID: 33956593 DOI: 10.1099/jgv.0.001593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Host cell lipids play a pivotal role in the pathogenesis of respiratory virus infection. However, a direct comparison of the lipidomic profile of influenza virus and rhinovirus infections is lacking. In this study, we first compared the lipid profile of influenza virus and rhinovirus infection in a bronchial epithelial cell line. Most lipid features were downregulated for both influenza virus and rhinovirus, especially for the sphingomyelin features. Pathway analysis showed that sphingolipid metabolism was the most perturbed pathway. Functional study showed that bacterial sphingomyelinase suppressed influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, but promoted rhinovirus replication. These findings suggest that sphingomyelin pathway can be a potential target for antiviral therapy, but should be carefully evaluated as it has opposite effects on different respiratory viruses. Furthermore, the differential effect of sphingomyelinase on rhinovirus and influenza virus may explain the interference between rhinovirus and influenza virus infection.
Collapse
Affiliation(s)
- Thrimendra Kaushika Dissanayake
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Bingpeng Yan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Anthony Chin-Ki Ng
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Hanjun Zhao
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Gabriella Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Cyril Chik-Yan Yip
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Kong-Hung Sze
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, PR China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, PR China
| |
Collapse
|
17
|
Abstract
Rubella virus (RUBV), a rubivirus, is an airborne human pathogen that generally causes mild measles-like symptoms in children or adults. However, RUBV infection of pregnant women can result in miscarriage or congenital rubella syndrome (CRS), a collection of long-term birth defects including incomplete organ development and mental retardation. Worldwide vaccination campaigns have significantly reduced the number of RUBV infections, but RUBV continues to be a problem in countries with low vaccination coverage. Further, the recent discovery of pathogenic rubiviruses in other mammals emphasizes the spillover potential of rubella-related viruses to humans. In the last decade, our understanding of RUBV has been significantly increased by virological, biochemical, and structural studies, providing a platform to begin understanding the life cycle of RUBV at the molecular level. This review concentrates on recent work on RUBV, focusing on the virion, its structural components, and its entry, fusion, and assembly mechanisms. Important features of RUBV are compared with those of viruses from other families. We also use comparative genomics, manual curation, and protein homology modeling to highlight distinct features of RUBV that are evolutionarily conserved in the non-human rubiviruses. Since rubella-like viruses may potentially have higher pathogenicity and transmissibility to humans, we also propose a framework for utilizing RUBV as a model to study its more pathogenic cousins.
Collapse
|
18
|
The Epithelial-to-Mesenchymal Transition-Like Process Induced by TGF-β1 Enhances Rubella Virus Binding and Infection in A549 Cells via the Smad Pathway. Microorganisms 2021; 9:microorganisms9030662. [PMID: 33806778 PMCID: PMC8004957 DOI: 10.3390/microorganisms9030662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Virus–host cell interactions in rubella virus (RuV) are of great interest in current research in the field, as their mechanism is not yet well understood. By hypothesizing that the epithelial-to-mesenchymal transition (EMT) may play a role in RuV infection, this study aimed to investigate the influence of TGF-β1-induced EMT of human lung epithelial A549 cells on the infectivity of RuV. A549 cells were cultured and treated with TGF-β1 for 1 to 2 days prior to virus infection (with a clinical strain). Viral infectivity was determined by flow cytometry analysis of cells harvested at 24 and 48 h post-infection (hpi) and by titration of supernatants collected at 48 hpi. The results showed that the percentages of the TGF-β1-treated A549 cells that were positive for RuV were at least twofold higher than those of the control, and the viral progeny titers in the supernatants collected at 48 hpi were significantly higher in the treatment group than in the control group. In addition, the virus binding assay showed a strong increase (more than threefold) in the percentages of RuV-positive cells, as determined by flow cytometry analysis and further confirmed by real-time PCR. Such an enhancement effect on RuV infectivity was abolished using LY364947 or SB431542, inhibitors of the TGF-β/Smad signaling pathway. The findings suggest that the TGF-β1-induced EMT-like process enhances RuV binding and infection in A549 cells via the Smad pathway. Further studies are necessary to identify possible proteins that facilitate viral binding and entry into treated cells.
Collapse
|
19
|
Ripa I, Andreu S, López-Guerrero JA, Bello-Morales R. Membrane Rafts: Portals for Viral Entry. Front Microbiol 2021; 12:631274. [PMID: 33613502 PMCID: PMC7890030 DOI: 10.3389/fmicb.2021.631274] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/14/2021] [Indexed: 02/02/2023] Open
Abstract
Membrane rafts are dynamic, small (10-200 nm) domains enriched with cholesterol and sphingolipids that compartmentalize cellular processes. Rafts participate in roles essential to the lifecycle of different viral families including virus entry, assembly and/or budding events. Rafts seem to participate in virus attachment and recruitment to the cell surface, as well as the endocytic and non-endocytic mechanisms some viruses use to enter host cells. In this review, we will introduce the specific role of rafts in viral entry and define cellular factors implied in the choice of one entry pathway over the others. Finally, we will summarize the most relevant information about raft participation in the entry process of enveloped and non-enveloped viruses.
Collapse
Affiliation(s)
- Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
20
|
Avota E, Bodem J, Chithelen J, Mandasari P, Beyersdorf N, Schneider-Schaulies J. The Manifold Roles of Sphingolipids in Viral Infections. Front Physiol 2021. [PMID: 34658908 DOI: 10.3389/fphys.2021.71552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Sphingolipids are essential components of eukaryotic cells. In this review, we want to exemplarily illustrate what is known about the interactions of sphingolipids with various viruses at different steps of their replication cycles. This includes structural interactions during entry at the plasma membrane or endosomal membranes, early interactions leading to sphingolipid-mediated signal transduction, interactions with internal membranes and lipids during replication, and interactions during virus assembly and budding. Targeted interventions in sphingolipid metabolism - as far as they can be tolerated by cells and organisms - may open novel possibilities to support antiviral therapies. Human immunodeficiency virus type 1 (HIV-1) infections have intensively been studied, but for other viral infections, such as influenza A virus (IAV), measles virus (MV), hepatitis C virus (HCV), dengue virus, Ebola virus, and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), investigations are still in their beginnings. As many inhibitors of sphingolipid metabolism are already in clinical use against other diseases, repurposing studies for applications in some viral infections appear to be a promising approach.
Collapse
Affiliation(s)
- Elita Avota
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Jochen Bodem
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Janice Chithelen
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Putri Mandasari
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
21
|
Balgoma D, Gil-de-Gómez L, Montero O. Lipidomics Issues on Human Positive ssRNA Virus Infection: An Update. Metabolites 2020; 10:E356. [PMID: 32878290 PMCID: PMC7569815 DOI: 10.3390/metabo10090356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022] Open
Abstract
The pathogenic mechanisms underlying the Biology and Biochemistry of viral infections are known to depend on the lipid metabolism of infected cells. From a lipidomics viewpoint, there are a variety of mechanisms involving virus infection that encompass virus entry, the disturbance of host cell lipid metabolism, and the role played by diverse lipids in regard to the infection effectiveness. All these aspects have currently been tackled separately as independent issues and focused on the function of proteins. Here, we review the role of cholesterol and other lipids in ssRNA+ infection.
Collapse
Affiliation(s)
- David Balgoma
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Husarg. 3, 75123 Uppsala, Sweden;
| | - Luis Gil-de-Gómez
- Center of Childhood Cancer Center, Children’s Hospital of Philadelphia, Colket Translational Research Center, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA;
| | - Olimpio Montero
- Spanish National Research Council (CSIC), Boecillo’s Technological Park Bureau, Av. Francisco Vallés 8, 47151 Boecillo, Spain
| |
Collapse
|
22
|
Abstract
Viruses manipulate cellular lipids and membranes at each stage of their life cycle. This includes lipid-receptor interactions, the fusion of viral envelopes with cellular membranes during endocytosis, the reorganization of cellular membranes to form replication compartments, and the envelopment and egress of virions. In addition to the physical interactions with cellular membranes, viruses have evolved to manipulate lipid signaling and metabolism to benefit their replication. This review summarizes the strategies that viruses use to manipulate lipids and membranes at each stage in the viral life cycle.
Collapse
Affiliation(s)
- Ellen Ketter
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA;
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA;
| |
Collapse
|
23
|
Audi A, Soudani N, Dbaibo G, Zaraket H. Depletion of Host and Viral Sphingomyelin Impairs Influenza Virus Infection. Front Microbiol 2020; 11:612. [PMID: 32425895 PMCID: PMC7203554 DOI: 10.3389/fmicb.2020.00612] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Influenza A virus (IAV) is a major human respiratory pathogen causing annual epidemics as well as periodic pandemics. A complete understanding of the virus pathogenesis and host factors involved in the viral lifecycle is crucial for developing novel therapeutic approaches. Sphingomyelin (SM) is the most abundant membrane sphingolipid. It preferentially associates with cholesterol to form distinct domains named lipid rafts. Sphingomyelinases, including acid sphingomyelinase (ASMase), catalyzes the hydrolysis of membrane SM and consequently transform lipid rafts into ceramide-enriched membrane platforms. In this study, we investigated the effect of SM hydrolysis on IAV propagation. Depleting plasma membrane SM by exogenous bacterial SMase (bSMase) impaired virus infection and reduced virus entry, whereas exogenous SM enhanced infection. Moreover, the depletion of virus envelope SM also reduced virus infectivity and impaired its attachment and internalization. Nonetheless, inhibition of ASMase by desipramine did not affect IAV infection. Similarly, virus replication was not impaired in Niemann-Pick disease type A (NPA) cells, which lack functional ASMase. IAV infection in A549 cells was associated with suppression of ASMase activity starting at 6 h post-infection. Our data reveals that intact cellular and viral envelope SM is required for efficient IAV infection. Therefore, SM metabolism can be a potential target for therapeutic intervention against influenza virus infection.
Collapse
Affiliation(s)
- Amani Audi
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadia Soudani
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Doctoral School of Science and Technology, Research Platform for Environmental Science (PRASE), Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Ghassan Dbaibo
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
24
|
Heat Shock Protein 90 Ensures the Integrity of Rubella Virus p150 Protein and Supports Viral Replication. J Virol 2019; 93:JVI.01142-19. [PMID: 31484751 DOI: 10.1128/jvi.01142-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022] Open
Abstract
Two viral nonstructural proteins, p150 and p90, are expressed in rubella virus (RUBV)-infected cells and mediate viral genome replication, presumably using various host machineries. Molecular chaperones are critical host factors for the maintenance of cellular proteostasis, and certain viral proteins use this chaperone system. The RUBV p150 and p90 proteins are generated from a precursor polyprotein, p200, via processing by the protease activity of its p150 region. This processing is essential for RUBV genome replication. Here we show that heat shock protein 90 (HSP90), a molecular chaperone, is an important host factor for RUBV genome replication. The treatment of RUBV-infected cells with the HSP90 inhibitors 17-allylamino-17-desmethoxygeldanamycin (17-AAG) and ganetespib suppressed RUBV genome replication. HSP90α physically interacted with p150, but not p90. Further analyses into the mechanism of action of the HSP90 inhibitors revealed that HSP90 activity contributes to p150 functional integrity and promotes p200 processing. Collectively, our data demonstrate that RUBV p150 is a client of the HSP90 molecular chaperone and that HSP90 functions as a key host factor for RUBV replication.IMPORTANCE Accumulating evidence indicates that RNA viruses use numerous host factors during replication of their genomes. However, the host factors involved in rubella virus (RUBV) genome replication are largely unknown. In this study, we demonstrate that the HSP90 molecular chaperone is needed for the efficient replication of the RUBV genome. Further, we reveal that HSP90 interacts with RUBV nonstructural protein p150 and its precursor polyprotein, p200. HSP90 contributes to the stability of p150 and the processing of p200 via its protease domain in the p150 region. We conclude that the cellular molecular chaperone HSP90 is a key host factor for functional maturation of nonstructural proteins for RUBV genome replication. These findings provide novel insight into this host-virus interaction.
Collapse
|
25
|
Nakao N, Ueno M, Sakai S, Egawa D, Hanzawa H, Kawasaki S, Kumagai K, Suzuki M, Kobayashi S, Hanada K. Natural ligand-nonmimetic inhibitors of the lipid-transfer protein CERT. Commun Chem 2019. [DOI: 10.1038/s42004-019-0118-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
26
|
Otsuki N, Sakata M, Mori Y, Okamoto K, Takeda M. Analysis of the effect of Sphingomyelinase on rubellavirus infectivity in two cell lines. Bio Protoc 2018; 8:e2992. [PMID: 34395791 DOI: 10.21769/bioprotoc.2992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 11/02/2022] Open
Abstract
Rubella is a mildly contagious disease characterized by low-grade fever and a morbilliform rash caused by the rubella virus (RuV). Viruses often use cellular phospholipids for infection. We studied the roles of cellular sphingomyelin in RuV infection. Treatment of cells with sphingomyelinase (SMase) inhibited RuV infection in rabbit kidney-derived RK13 cells and African green monkey (Cercopithecus aethiops) kidney-derived Vero cells. Our data further demonstrated that RuV used cellular sphingomyelin and cholesterol for its binding to cells and membrane fusion at the step of virus entry. Detailed protocols of our assays, which assess the effects of SMase treatment on RuV infectivity in RK13 and Vero cells, are described.
Collapse
Affiliation(s)
- Noriyuki Otsuki
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masafumi Sakata
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshio Mori
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kiyoko Okamoto
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
27
|
Orchard RC, Wilen CB, Virgin HW. Sphingolipid biosynthesis induces a conformational change in the murine norovirus receptor and facilitates viral infection. Nat Microbiol 2018; 3:1109-1114. [PMID: 30127493 PMCID: PMC6158067 DOI: 10.1038/s41564-018-0221-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022]
Abstract
Cellular susceptibility to viral infections is in part determined by the presence of a host cellular receptor. Here we use murine norovirus as a model to uncover an unappreciated connection between an intracellular lipid biosynthetic enzyme and a receptor conformation permissive for viral infection. The serine palmitoyltransferase (SPT) complex is required for de novo sphingolipid biosynthesis and we find that its absence impairs the ability of murine norovirus to bind and enter cells. While, the SPT complex is dispensable for the surface expression of the norovirus receptor, CD300lf, SPT activity is required for CD300lf to adopt a conformation permissive for viral binding. Addition of extracellular ceramide to SPT deficient cells chemically complements both the conformational changes of CD300lf and the cellular susceptibility to murine norovirus infection. Taken together, these data indicate that intracellular sphingolipid biosynthesis regulates the conformation of the murine norovirus receptor, and therefore the tropism of murine norovirus. This indicates that intracellular biosynthetic pathways can regulate viral tropism even when the receptor for a virus is expressed on the target cell surface.
Collapse
Affiliation(s)
- Robert C Orchard
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Craig B Wilen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
28
|
Saito K, Otsuki N, Takeda M, Hanada K. Liposome Flotation Assay for Studying Interactions Between Rubella Virus Particles and Lipid Membranes. Bio Protoc 2018; 8:e2983. [PMID: 34395782 DOI: 10.21769/bioprotoc.2983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/05/2018] [Accepted: 08/10/2018] [Indexed: 11/02/2022] Open
Abstract
Rubella virus (RuV) is an enveloped, positive-sense single-stranded RNA virus that is pathogenic to humans. RuV binds to the target cell via the viral envelope protein E1, but the specific receptor molecules on the target cell are yet to be fully elucidated. Here, we describe a protocol for liposome flotation assay to study direct interactions between RuV particles and lipid membranes in a qualitative manner. Interactions are examined by a Nycodenz density gradient fractionation using UV-inactivated RuV particles and fluorescent-labeled liposomes consisting of pure lipids. Fractionated RuV particles are detected using standard sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by Western blot analysis for viral proteins. On the Nycodenz gradient, RuV particles bound to liposomes shift to lower density fractions than unbound RuV particles. Using this protocol, we provide compelling evidence that, at neutral pH in a calcium-dependent manner, RuV particles bind to lipid membranes containing both sphingomyelin (SM) and cholesterol in certain cell types.
Collapse
Affiliation(s)
- Kyoko Saito
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyuki Otsuki
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
29
|
Trinh QD, Pham NTK, Takada K, Komine-Aizawa S, Hayakawa S. Myelin Oligodendrocyte Glycoprotein-Independent Rubella Infection of Keratinocytes and Resistance of First-Trimester Trophoblast Cells to Rubella Virus In Vitro. Viruses 2018; 10:v10010023. [PMID: 29300335 PMCID: PMC5795436 DOI: 10.3390/v10010023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/30/2017] [Accepted: 01/03/2018] [Indexed: 10/26/2022] Open
Abstract
Rubella virus (RuV), which belongs to the family Togaviridae and genus Rubivirus, causes systemic infection in children and young adults and congenital rubella syndrome in developing fetuses if the infection occurs during pregnancy. The mechanisms of fetal infection by RuV are not completely understood. Myelin oligodendrocyte glycoprotein (MOG) is reported to be a cellular receptor for RuV; however, it is mainly expressed in the central nervous system. Therefore, it is thought that other receptors are also responsible for virus entry into susceptible cells. In this study, we found that first-trimester trophoblast cells were resistant to RuV. In addition, we showed that HaCaT cells (an immortalized keratinocyte cell line) that did not express MOG on their surface were infected with RuV. This finding is one of the first demonstrations of MOG-independent RuV infection of susceptible host cells and suggests that it is important to continue searching for alternative RuV receptors. In addition, this study reports the resistance of first-trimester trophoblast cells to RuV and suggests that utilizing an epithelial-mesenchymal transition approach to study the mechanisms of transplacental vertical RuV infection.
Collapse
Affiliation(s)
- Quang Duy Trinh
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| |
Collapse
|