1
|
Rodríguez-Ararat AC, Hayek-Orduz Y, Vásquez AF, Sierra-Hurtado F, Villegas-Torres MF, Caicedo-Burbano PA, Achenie LEK, Barrios AFG. Non-Nucleoside Lycorine-Based Analogs as Potential DENV/ZIKV NS5 Dual Inhibitors: Structure-Based Virtual Screening and Chemoinformatic Analysis. Metabolites 2024; 14:519. [PMID: 39452899 PMCID: PMC11509260 DOI: 10.3390/metabo14100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Dengue (DENV) and Zika (ZIKV) virus continue to pose significant challenges globally due to their widespread prevalence and severe health implications. Given the absence of effective vaccines and specific therapeutics, targeting the highly conserved NS5 RNA-dependent RNA polymerase (RdRp) domain has emerged as a promising strategy. However, limited efforts have been made to develop inhibitors for this crucial target. In this study, we employed an integrated in silico approach utilizing combinatorial chemistry, docking, molecular dynamics simulations, MM/GBSA, and ADMET studies to target the allosteric N-pocket of DENV3-RdRp and ZIKV-RdRp. Using this methodology, we designed lycorine analogs with natural S-enantiomers (LYCS) and R-enantiomers (LYCR) as potential inhibitors of non-structural protein 5 (NS5) in DENV3 and ZIKV. Notably, 12 lycorine analogs displayed a robust binding free energy (<-9.00 kcal/mol), surpassing that of RdRp-ribavirin (<-7.00 kcal/mol) along with promising ADMET score predictions (<4.00), of which (LYCR728-210, LYCS728-210, LYCR728-212, LYCS505-214) displayed binding properties to both DENV3 and ZIKV targets. Our research highlights the potential of non-nucleoside lycorine-based analogs with different enantiomers that may present different or even completely opposite metabolic, toxicological, and pharmacological profiles as promising candidates for inhibiting NS5-RdRp in ZIKV and DENV3, paving the way for further exploration for the development of effective antiviral agents.
Collapse
Affiliation(s)
- Adrián Camilo Rodríguez-Ararat
- Grupo Natura, Faculty of Engineering, Design, and Applied Sciences, Universidad ICESI, Cali 760031, Colombia; (A.C.R.-A.); (M.-F.V.-T.); (P.A.C.-B.)
| | - Yasser Hayek-Orduz
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (Y.H.-O.); (A.-F.V.); (F.S.-H.)
| | - Andrés-Felipe Vásquez
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (Y.H.-O.); (A.-F.V.); (F.S.-H.)
- Naturalius SAS, Bogotá 110221, Colombia
| | - Felipe Sierra-Hurtado
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (Y.H.-O.); (A.-F.V.); (F.S.-H.)
| | - María-Francisca Villegas-Torres
- Grupo Natura, Faculty of Engineering, Design, and Applied Sciences, Universidad ICESI, Cali 760031, Colombia; (A.C.R.-A.); (M.-F.V.-T.); (P.A.C.-B.)
- Centro de Investigaciones Microbiológicas (CIMIC), Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia
| | - Paola A. Caicedo-Burbano
- Grupo Natura, Faculty of Engineering, Design, and Applied Sciences, Universidad ICESI, Cali 760031, Colombia; (A.C.R.-A.); (M.-F.V.-T.); (P.A.C.-B.)
| | - Luke E. K. Achenie
- Department of Chemical Engineering, Virginia Tech (Virginia Polytechnic Institute and State University), 298 Goodwin Hall, Blacksburg, VA 24061, USA;
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (Y.H.-O.); (A.-F.V.); (F.S.-H.)
| |
Collapse
|
2
|
Chauhan N, Gaur KK, Asuru TR, Guchhait P. Dengue virus: pathogenesis and potential for small molecule inhibitors. Biosci Rep 2024; 44:BSR20240134. [PMID: 39051974 PMCID: PMC11327219 DOI: 10.1042/bsr20240134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
Dengue, caused by dengue virus (DENV), is now endemic in nearly 100 countries and infection incidence is reported in another 30 countries. Yearly an estimated 400 million cases and 2200 deaths are reported. Effective vaccines against DENV are limited and there has been significant focus on the development of effective antiviral against the disease. The World Health Organization has initiated research programs to prioritize the development and optimization of antiviral agents against several viruses including Flaviviridae. A significant effort has been taken by the researchers to develop effective antivirals against DENV. Several potential small-molecule inhibitors like efavirenz, tipranavir and dasabuvir have been tested against envelope and non-structural proteins of DENV, and are in clinical trials around the world. We recently developed one small molecule, namely 7D, targeting the host PF4-CXCR3 axis. 7D inhibited all 4 serotypes of DENV in vitro and specifically DENV2 infection in two different mice models. Although the development of dengue vaccines remains a high priority, antibody cross reactivity among the serotypes and resulting antibody-dependent enhancement (ADE) of infection are major concerns that have limited the development of effective vaccine against DENV. Therefore, there has been a significant emphasis on the development of antiviral drugs against dengue. This review article describes the rescue effects of some of the small molecule inhibitors to viral/host factors associated with DENV pathogenesis.
Collapse
Affiliation(s)
- Navya Chauhan
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Kishan Kumar Gaur
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Tejeswara Rao Asuru
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
3
|
Gonçalves SMC, Galdino LV, Lima MC, da Silva Moura JA, Viana DCF, da Rosa MM, Ferreira LFGR, Hernandes MZ, Pereira MC, de Melo Rêgo MJB, da Rocha Pitta I, de Oliveira França R, da Rocha Pitta MG, da Rocha Pitta MG. Evaluation of Thiazolidine Derivatives with Potential Anti-ZIKV Activity. Curr Top Med Chem 2024; 24:2224-2237. [PMID: 39136505 DOI: 10.2174/0115680266315388240801053401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVE In this study, we have synthesized 19 Thiazolidine (TZD) derivatives to investigate their potential anti-ZIKV effects. METHODS Nineteen thiazolidine derivatives were synthesized and evaluated for their cytotoxicity and antiviral activity against the ZIKA virus. RESULTS Among them, six demonstrated remarkable selectivity against the ZIKV virus, exhibiting IC50 values of <5μM, and the other compounds did not demonstrate selectivity for the virus. Interestingly, several derivatives effectively suppressed the replication of ZIKV RNA copies, with derivatives significantly reducing ZIKV mRNA levels at 24 hours post-infection (hpi). Notably, two derivatives (ZKC-4 and -9) stood out by demonstrating a protective effect against ZIKV cell entry. Informed by computational analysis of binding affinity and intermolecular interactions within the NS5 domain's N-7 and O'2 positions, ZKC-4 and FT-39 displayed the highest predicted affinities. Intriguingly, ZKC-4 and ZKC-9 derivatives exhibited the most favorable predicted binding affinities for the ZIKV-E binding site. CONCLUSION The significance of TZDs as potent antiviral agents is underscored by these findings, suggesting that exploring TZD derivatives holds promise for advancing antiviral therapeutic strategies.
Collapse
Affiliation(s)
| | - Lília Vieira Galdino
- Therapeutic Innovation Research Center, Federal University of Pernambuco, Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Morganna Costa Lima
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation / FIOCRUZ, Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - José Arion da Silva Moura
- Pharmaceutical Planning and Synthesis Laboratory, Federal University of Pernambuco Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Douglas Carvalho Francisco Viana
- Pharmaceutical Planning and Synthesis Laboratory, Federal University of Pernambuco Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Michelle Melgarejo da Rosa
- Therapeutic Innovation Research Center, Federal University of Pernambuco, Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | | | - Marcelo Zaldini Hernandes
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Artur de Sá, Recife-PE, 50740-521, Brazil
| | - Michelly Cristiny Pereira
- Therapeutic Innovation Research Center, Federal University of Pernambuco, Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | | | - Ivan da Rocha Pitta
- Pharmaceutical Planning and Synthesis Laboratory, Federal University of Pernambuco Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Rafael de Oliveira França
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation / FIOCRUZ, Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Marina Galdino da Rocha Pitta
- Pharmaceutical Planning and Synthesis Laboratory, Federal University of Pernambuco Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| | - Maira Galdino da Rocha Pitta
- Therapeutic Innovation Research Center, Federal University of Pernambuco, Av. Moraes Rego, 1235, Recife, 50670-901, Brazil
| |
Collapse
|
4
|
Diani E, Lagni A, Lotti V, Tonon E, Cecchetto R, Gibellini D. Vector-Transmitted Flaviviruses: An Antiviral Molecules Overview. Microorganisms 2023; 11:2427. [PMID: 37894085 PMCID: PMC10608811 DOI: 10.3390/microorganisms11102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Flaviviruses cause numerous pathologies in humans across a broad clinical spectrum with potentially severe clinical manifestations, including hemorrhagic and neurological disorders. Among human flaviviruses, some viral proteins show high conservation and are good candidates as targets for drug design. From an epidemiological point of view, flaviviruses cause more than 400 million cases of infection worldwide each year. In particular, the Yellow Fever, dengue, West Nile, and Zika viruses have high morbidity and mortality-about an estimated 20,000 deaths per year. As they depend on human vectors, they have expanded their geographical range in recent years due to altered climatic and social conditions. Despite these epidemiological and clinical premises, there are limited antiviral treatments for these infections. In this review, we describe the major compounds that are currently under evaluation for the treatment of flavivirus infections and the challenges faced during clinical trials, outlining their mechanisms of action in order to present an overview of ongoing studies. According to our review, the absence of approved antivirals for flaviviruses led to in vitro and in vivo experiments aimed at identifying compounds that can interfere with one or more viral cycle steps. Still, the currently unavailability of approved antivirals poses a significant public health issue.
Collapse
Affiliation(s)
- Erica Diani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Anna Lagni
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Virginia Lotti
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Emil Tonon
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Riccardo Cecchetto
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| |
Collapse
|
5
|
Boerneke MA, Gokhale NS, Horner SM, Weeks KM. Structure-first identification of RNA elements that regulate dengue virus genome architecture and replication. Proc Natl Acad Sci U S A 2023; 120:e2217053120. [PMID: 37011200 PMCID: PMC10104495 DOI: 10.1073/pnas.2217053120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023] Open
Abstract
The genomes of RNA viruses encode the information required for replication in host cells both in their linear sequence and in complex higher-order structures. A subset of these RNA genome structures show clear sequence conservation, and have been extensively described for well-characterized viruses. However, the extent to which viral RNA genomes contain functional structural elements-unable to be detected by sequence alone-that nonetheless are critical to viral fitness is largely unknown. Here, we devise a structure-first experimental strategy and use it to identify 22 structure-similar motifs across the coding sequences of the RNA genomes for the four dengue virus serotypes. At least 10 of these motifs modulate viral fitness, revealing a significant unnoticed extent of RNA structure-mediated regulation within viral coding sequences. These viral RNA structures promote a compact global genome architecture, interact with proteins, and regulate the viral replication cycle. These motifs are also thus constrained at the levels of both RNA structure and protein sequence and are potential resistance-refractory targets for antivirals and live-attenuated vaccines. Structure-first identification of conserved RNA structure enables efficient discovery of pervasive RNA-mediated regulation in viral genomes and, likely, other cellular RNAs.
Collapse
Affiliation(s)
- Mark A. Boerneke
- Department of Chemistry, University of North Carolina, Chapel Hill, NC27599-3290
| | - Nandan S. Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Stacy M. Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC27599-3290
| |
Collapse
|
6
|
Boonyasuppayakorn S, Saelee T, Huynh TNT, Hairani R, Hengphasatporn K, Loeanurit N, Cao V, Vibulakhaophan V, Siripitakpong P, Kaur P, Chu JJH, Tunghirun C, Choksupmanee O, Chimnaronk S, Shigeta Y, Rungrotmongkol T, Chavasiri W. The 8-bromobaicalein inhibited the replication of dengue, and Zika viruses and targeted the dengue polymerase. Sci Rep 2023; 13:4891. [PMID: 36966240 PMCID: PMC10039358 DOI: 10.1038/s41598-023-32049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2023] [Indexed: 03/27/2023] Open
Abstract
Dengue and Zika viruses are mosquito-borne flaviviruses burdening millions every year with hemorrhagic fever and neurological symptoms. Baicalein was previously reported as a potential anti-flaviviral candidate and halogenation of flavones and flavanones potentiated their antiviral efficacies. Here, we reported that a chemically modified 8-bromobaicalein effectively inhibited all dengue serotypes and Zika viruses at 0.66-0.88 micromolar in cell-based system. The compound bound to dengue serotype 2 conserved pocket and inhibited the dengue RdRp activity with 6.93 fold more than the original baicalein. Moreover, the compound was mildly toxic against infant and adult C57BL/6 mice despite administering continuously for 7 days. Therefore, the 8-bromobaicalein should be investigated further in pharmacokinetics and efficacy in an animal model.
Collapse
Affiliation(s)
- Siwaporn Boonyasuppayakorn
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Thanaphon Saelee
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thao Nguyen Thanh Huynh
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rita Hairani
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Naphat Loeanurit
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Graduate School, Interdisciplinary Program in Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Van Cao
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Graduate School, Interdisciplinary Program in Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vipanee Vibulakhaophan
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panattida Siripitakpong
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Parveen Kaur
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Medicine BSL3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
| | - Chairat Tunghirun
- The Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Opas Choksupmanee
- The Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Sarin Chimnaronk
- The Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
7
|
Identification of West Nile virus RNA-dependent RNA polymerase non-nucleoside inhibitors by real-time high throughput fluorescence screening. Antiviral Res 2023; 212:105568. [PMID: 36842536 DOI: 10.1016/j.antiviral.2023.105568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
West Nile virus (WNV) is a re-emergent mosquito-borne RNA virus that causes major outbreaks of encephalitis around the world. However, there is no therapeutic treatment to struggle against WNV, and the current treatment relies on alleviating symptoms. Therefore, due to the threat virus poses to animal and human health, there is an urgent need to come up with fast strategies to identify and assess effective antiviral compounds. A relevant target when developing drugs against RNA viruses is the viral RNA-dependent RNA polymerase (RdRp), responsible for the replication of the viral genome within a host cell. RdRps are key therapeutic targets based on their specificity for RNA and their essential role in the propagation of the infection. We have developed a fluorescence-based method to measure WNV RdRp activity in a fast and reliable real-time way. Interestingly, rilpivirine has shown in our assay inhibition of the WNV RdRp activity with an IC50 value of 3.3 μM and its antiviral activity was confirmed in cell cultures. Furthermore, this method has been extended to build up a high-throughput screening platform to identify WNV polymerase inhibitors. By screening a small chemical library, novel RdRp inhibitors 1-4 have been identified. When their antiviral activity was tested against WNV in cell culture, 4 exhibited an EC50 value of 2.5 μM and a selective index of 12.3. Thus, rilpivirine shows up as an interesting candidate for repurposing against flavivirus. Moreover, the here reported method allows the rapid identification of new WNV RdRp inhibitors.
Collapse
|
8
|
Abstract
Flaviviruses are vector-borne pathogens capable of causing devastating human diseases. The re-emergence of Zika in 2016 notoriously led to a widescale epidemic in the Americas. New daunting evidence suggests that a single mutation in Zika virus genome may increase transmission and pathogenesis, further highlighting the need to be prepared for flavivirus outbreaks. Dengue, in particular infects about 400 million people each year, leading to reoccurring local outbreaks. Public health efforts to mitigate flavivirus transmission is largely dependent on vector control strategies, as only a limited number of flavivirus vaccines have been developed thus far. There are currently no commercially available antivirals for flaviviruses, leaving supportive care as the primary treatment option. In this review, we will briefly paint a broad picture of the flavivirus landscape in terms of therapeutics, with particular focus on viral targets, promising novel compounds entering the drug discovery pipeline, as well as model systems for evaluating drug efficacy.
Collapse
|
9
|
Malik M, Vijayan P, Jagannath DK, Mishra RK, Lakshminarasimhan A. Sofosbuvir and its tri-phosphate metabolite inhibit the RNA-dependent RNA polymerase activity of non-structural protein 5 from the Kyasanur forest disease virus. Biochem Biophys Res Commun 2023; 641:50-56. [PMID: 36521285 DOI: 10.1016/j.bbrc.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Kyasanur forest disease is a neglected zoonotic disease caused by a single-stranded RNA-based flavivirus, the incidence of which was first recorded in 1957 in the Southern part of India. Kyasanur forest disease virus is transmitted to monkeys and humans through the infected tick bite of Haemophysalis spinigera. Kyasanur forest disease is a febrile illness, which in severe cases, results in neurological complications leading to mortality. The current treatment regimens are symptomatic and supportive, and no targeted therapies are available for this disease. In this study, we evaluated the ability of FDA-approved drugs sofosbuvir (and its active metabolite) and Dasabuvir to inhibit the RNA-dependent RNA polymerase activity of NS5 protein from the Kyasanur forest disease virus. NS5 protein containing the N-terminal methyl transferase domain and C-terminal RNA-dependent RNA polymerase domain was expressed in Escherichia coli, and RNA-dependent RNA polymerase activity was demonstrated with the purified protein. The RNA-dependent RNA polymerase assay conditions were optimized, followed by the determination of apparent Km,ATP to validate the enzyme preparation. Half maximal-inhibitory concentrations against RNA-dependent RNA polymerase activity were determined for Sofosbuvir and its active metabolite. Dasabuvir did not show detectable inhibition with the tested conditions. This is the first demonstration of the inhibition of RNA-dependent RNA polymerase activity of NS5 protein from the Kyasanur forest disease virus with small molecule inhibitors. These initial findings can potentially facilitate the discovery and development of targeted therapies for treating Kyasanur forest disease.
Collapse
Affiliation(s)
- Mansi Malik
- Tata Institute for Genetics and Society, NCBS campus, GKVK, Bellary Road, Bengaluru, 560065, KA, India
| | - Parvathy Vijayan
- Tata Institute for Genetics and Society, NCBS campus, GKVK, Bellary Road, Bengaluru, 560065, KA, India
| | - Deepak K Jagannath
- Tata Institute for Genetics and Society, NCBS campus, GKVK, Bellary Road, Bengaluru, 560065, KA, India
| | - Rakesh K Mishra
- Tata Institute for Genetics and Society, NCBS campus, GKVK, Bellary Road, Bengaluru, 560065, KA, India
| | | |
Collapse
|
10
|
Natural Compounds as Non-Nucleoside Inhibitors of Zika Virus Polymerase through Integration of In Silico and In Vitro Approaches. Pharmaceuticals (Basel) 2022; 15:ph15121493. [PMID: 36558945 PMCID: PMC9788182 DOI: 10.3390/ph15121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Although the past epidemic of Zika virus (ZIKV) resulted in severe neurological consequences for infected infants and adults, there are still no approved drugs to treat ZIKV infection. In this study, we applied computational approaches to screen an in-house database of 77 natural and semi-synthetic compounds against ZIKV NS5 RNA-dependent RNA-polymerase (NS5 RdRp), an essential protein for viral RNA elongation during the replication process. For this purpose, we integrated computational approaches such as binding-site conservation, chemical space analysis and molecular docking. As a result, we prioritized nine virtual hits for experimental evaluation. Enzymatic assays confirmed that pedalitin and quercetin inhibited ZIKV NS5 RdRp with IC50 values of 4.1 and 0.5 µM, respectively. Moreover, pedalitin also displayed antiviral activity on ZIKV infection with an EC50 of 19.28 µM cell-based assays, with low toxicity in Vero cells (CC50 = 83.66 µM) and selectivity index of 4.34. These results demonstrate the potential of the natural compounds pedalitin and quercetin as candidates for structural optimization studies towards the discovery of new anti-ZIKV drug candidates.
Collapse
|
11
|
Ramaswamy K, Rashid M, Ramasamy S, Jayavelu T, Venkataraman S. Revisiting Viral RNA-Dependent RNA Polymerases: Insights from Recent Structural Studies. Viruses 2022; 14:2200. [PMID: 36298755 PMCID: PMC9612308 DOI: 10.3390/v14102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
RNA-dependent RNA polymerases (RdRPs) represent a distinctive yet versatile class of nucleic acid polymerases encoded by RNA viruses for the replication and transcription of their genome. The structure of the RdRP is comparable to that of a cupped right hand consisting of fingers, palm, and thumb subdomains. Despite the presence of a common structural core, the RdRPs differ significantly in the mechanistic details of RNA binding and polymerization. The present review aims at exploring these incongruities in light of recent structural studies of RdRP complexes with diverse cofactors, RNA moieties, analogs, and inhibitors.
Collapse
Affiliation(s)
- Kavitha Ramaswamy
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| | - Mariya Rashid
- Taiwan International Graduate Program, Molecular Cell Biology (National Defense Medical Center and Academia Sinica), Taipei 115, Taiwan;
| | - Selvarajan Ramasamy
- National Research Center for Banana, Somarasempettai−Thogaimalai Rd, Podavur, Tamil Nadu 639103, India;
| | - Tamilselvan Jayavelu
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| | - Sangita Venkataraman
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| |
Collapse
|
12
|
Qian W, Xue JX, Xu J, Li F, Zhou GF, Wang F, Luo RH, Liu J, Zheng YT, Zhou GC. Design, synthesis, discovery and SAR of the fused tricyclic derivatives of indoline and imidazolidinone against DENV replication and infection. Bioorg Chem 2022; 120:105639. [DOI: 10.1016/j.bioorg.2022.105639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/09/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022]
|
13
|
Gharbi-Ayachi A, El Sahili A, Lescar J. Purification of Dengue and Zika Virus Non-structural Protein 5 for Crystallization and Screening of Antivirals. Methods Mol Biol 2022; 2409:47-61. [PMID: 34709635 DOI: 10.1007/978-1-0716-1879-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dengue Virus (DENV) and ZIKA Virus (ZIKV) are two important human pathogens that belong to the Flavivirus genus of positive strand RNA viruses. Symptoms of DENV infections range from asymptomatic or mild fever to life-threatening forms, while ZIKV can lead to teratogenic effects such as microcephaly in newborns and neurological disease like the Guillain-Barré syndrome.Non-Structural Protein 5 (NS5) is the largest and most conserved enzyme across flaviviruses and hence constitutes a prime target for developing pan-flavivirus antiviral inhibitors. NS5 results from the gene fusion between a methyltransferase at the N-terminus of the protein and an RNA-dependent RNA polymerase (RdRp) at the C-terminal end. The NS5 protein plays key roles in replication and modification of viral RNA and its inhibition by potent antiviral drugs could prevent severe symptoms associated with infections.We have optimized purification and crystallization protocols to obtain active recombinant proteins suitable for structure-based drug discovery for both the full-length NS5 protein and the polymerase domain of NS5 from DENV and ZIKV .
Collapse
Affiliation(s)
- Aicha Gharbi-Ayachi
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| | - Abbas El Sahili
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Julien Lescar
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
14
|
Plavec Z, Pöhner I, Poso A, Butcher SJ. Virus structure and structure-based antivirals. Curr Opin Virol 2021; 51:16-24. [PMID: 34564030 PMCID: PMC8460353 DOI: 10.1016/j.coviro.2021.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/13/2021] [Accepted: 09/12/2021] [Indexed: 01/18/2023]
Abstract
Structure-based antiviral developments in the past two years have been dominated by the structure determination and inhibition of SARS-CoV-2 proteins and new lead molecules for picornaviruses. The SARS-CoV-2 spike protein has been targeted successfully with antibodies, nanobodies, and receptor protein mimics effectively blocking receptor binding or fusion. The two most promising non-structural proteins sharing strong structural and functional conservation across virus families are the main protease and the RNA-dependent RNA polymerase, for which design and reuse of broad range inhibitors already approved for use has been an attractive avenue. For picornaviruses, the increasing recognition of the transient expansion of the capsid as a critical transition towards RNA release has been targeted through a newly identified, apparently widely conserved, druggable, interprotomer pocket preventing viral entry. We summarize some of the key papers in these areas and ponder the practical uses and contributions of molecular modeling alongside empirical structure determination.
Collapse
Affiliation(s)
- Zlatka Plavec
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland; Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Ina Pöhner
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland; University Hospital Tübingen, Department of Internal Medicine VII, Tübingen, Germany
| | - Sarah J Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland; Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
15
|
Chikungunya nsP4 homology modeling reveals a common motif with Zika and Dengue RNA polymerases as a potential therapeutic target. J Mol Model 2021; 27:247. [PMID: 34386905 DOI: 10.1007/s00894-021-04868-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Among the diseases transmitted by vectors, there are those caused by viruses named arboviruses (arthropod-borne viruses). In past years, viruses transmitted by mosquitoes have been of relevance in global health, such as Chikungunya (CHIKV), Dengue (DENV), and Zika (ZIKV), which have Aedes aegypti as a common vector, thus raising the possibility of multi-infection. Previous reports have described the general structure of RNA-dependent RNA polymerases termed right-hand fold, which is conserved in positive single-stranded RNA viruses. Here, we report a comparison between sequences and the computational structure of RNA-dependent RNA polymerases from CHIKV, DENV, and ZIKV and the conserved sites to be considered for the design of an antiviral drug against the three viruses. We show that the sequential identity between consensus sequences from CHIKV and DENV is 8.1% and the similarity is 15.1%; the identity between CHIKV and ZIKV is 9.3%, and the similarity is 16.6%; and the identity between DENV and ZIKV is 68.6%, and the similarity is 79.2%. Nevertheless, the structural alignment shows that the root-mean-square deviation (RMSD) measurement value in general structure comparison between CHIKV RdRp and ZIKV RdRp was 1.248 Å, RMSD between CHIKV RdRp and DENV RdRp was 1.070 Å, and RMSD between ZIKV RdRp and DENV RdRp was 1.106 Å. Despite the low identity and similarity of CHIKV sequence with DENV and ZIKV, we show that A, B, C, and E motifs are structurally well conserved. These structural similarities offer a window into drug design against these arboviruses giving clues about critical target sites.
Collapse
|