1
|
Chen W, Berkhout B, Pasternak AO. Phenotyping Viral Reservoirs to Reveal HIV-1 Hiding Places. Curr HIV/AIDS Rep 2025; 22:15. [PMID: 39903363 PMCID: PMC11794352 DOI: 10.1007/s11904-025-00723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist in various cell types and tissues and reignite active replication if therapy is stopped. Persistence of the viral reservoirs in people with HIV-1 (PWH) is the main obstacle to achieving a cure. Identification and characterization of cellular and tissue HIV-1 reservoirs is thus central to the cure research. Here, we discuss emerging insights into the phenotype of HIV-1 reservoir cells. RECENT FINDINGS HIV-1 persists in multiple tissues, anatomic locations, and cell types. Although contributions of different CD4 + T-cell subsets to the HIV-1 reservoir are not equal, all subsets harbor a part of the viral reservoir. A number of putative cellular markers of the HIV-1 reservoir have been proposed, such as immune checkpoint molecules, integrins, and pro-survival factors. CD32a expression was shown to be associated with a very prominent enrichment in HIV-1 DNA, although this finding has been challenged. Recent technological advances allow unbiased single-cell phenotypic analyses of cells harbouring total or intact HIV-1 proviruses. A number of phenotypic markers have been reported by several independent studies to be enriched on HIV-1 reservoir cells. Expression of some of these markers could be mechanistically linked to the reservoir persistence, as they could for instance shield the reservoir cells from the immune recognition or promote their survival. However, so far no single phenotypic marker, or combination of markers, can effectively distinguish HIV-infected from uninfected cells or identify all reservoir cells.
Collapse
Affiliation(s)
- Wenxuan Chen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Room K3-113B, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Beliakova-Bethell N. Eliminating the persistent HIV reservoir based on biomarker expression - How do we get there? Virology 2025; 603:110368. [PMID: 39721194 DOI: 10.1016/j.virol.2024.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Persistent HIV reservoir with different levels of proviral transcriptional activity represents a hurdle to HIV cure. The absence of a specific molecular signature or a "biomarker" to define cells latently infected with HIV limits reservoir eradication efforts. Biomarkers proposed in the literature define subsets of latently infected cells. This article discusses factors contributing to biomarker heterogeneity: external stimuli the cells are exposed to, tissue microenvironments, and person-to-person variation. Despite reservoir heterogeneity, several biomarkers, e.g., programmed cell death 1 and the Fc fragment of IgG low affinity IIa receptor, were reported consistently in multiple studies; however, they alone are unlikely to define all the HIV reservoir cells. Identifying a minimal set of cell surface proteins that together define all reservoir subsets is needed. Future studies will need to focus on the identification of co-expressed proteins that define the same sets of cells to reduce the number of proteins in a biomarker panel. A detailed characterization of tissue biomarkers and proteins expressed in latently infected cells of the myeloid lineage is needed to ensure that all the reservoirs are targeted throughout the body. Furthermore, the effect of underlying conditions that develop as people with HIV age on the manifestation of latency should be evaluated. With the development of novel technologies, such as spatial transcriptomics and proteomics, such endeavors will soon be possible. Thus, there is promise that a minimal set of proteins defining all the different reservoir subsets can be identified and developed into a reservoir targeting strategy.
Collapse
Affiliation(s)
- Nadejda Beliakova-Bethell
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Wu G, Keller SH, Sardo L, Magliaro B, Zuck P, Balibar CJ, Williams C, Pan L, Gregory M, Ton K, Maxwell J, Cheney C, Rush T, Howell BJ. Single cell spatial profiling of FFPE splenic tissue from a humanized mouse model of HIV infection. Biomark Res 2024; 12:116. [PMID: 39380117 PMCID: PMC11462831 DOI: 10.1186/s40364-024-00658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Latency remains a major obstacle to finding a cure for HIV despite the availability of antiretroviral therapy. Due to virus dormancy, limited biomarkers are available to identify latent HIV-infected cells. Profiling of individual HIV-infected cells is needed to explore potential latency biomarkers and to study the mechanisms of persistence that maintain the HIV reservoir. METHODS Single cell spatial transcriptomic characterization using the CosMx Spatial Molecular Imager platform was conducted to analyze HIV-infected cells in formalin-fixed paraffin-embedded sections of splenic tissue surgically obtained from an HIV-infected humanized mouse model. Regulation of over a thousand human genes was quantified in both viremic and aviremic specimens. In addition, in situ hybridization and immunohistochemistry were performed in parallel to identify HIV viral RNA- and p24-containing cells, respectively. Finally, initial findings from CosMx gene profiling were confirmed by isolating RNA from CD4 + T cells obtained from a person living with HIV on antiretroviral therapy following either PMA/Ionomycin or DMSO treatment. RNA was quantified using qPCR for a panel of targeted human host genes. RESULTS Supervised cell typing revealed that most of the HIV-infected cells in the mouse spleen sections were differentiated CD4 + T cells. A significantly higher number of infected cells, 2781 (1.61%) in comparison to 112 (0.06%), and total HIV transcripts per infected cell were observed in viremic samples compared to aviremic samples, respectively, which was consistent with the data obtained from ISH and IHC. Notably, the expression of 55 genes was different in infected cells within tissue from aviremic animals compared to viremic. In particular, both spleen tyrosine kinase (SYK) and CXCL17, were expressed approximately 100-fold higher. This data was further evaluated against bulk RNA isolated from HIV-infected human primary CD4 + T cells. A nearly 6-fold higher expression of SYK mRNA was observed in DMSO-treated CD4 + T cells compared to those stimulated with PMA/Ionomycin. CONCLUSION This study found that the CosMx SMI platform is valuable for assessing HIV infection and providing insights into host biomarkers associated with HIV reservoirs. Higher relative expression of the SYK gene in aviremic-infected cells from the humanized mouse HIV model was consistent with levels found in CD4 + T cells of aviremic donors.
Collapse
Affiliation(s)
- Guoxin Wu
- MRL, Merck & Co., Inc, Rahway, NJ, USA.
| | | | | | | | - Paul Zuck
- MRL, Merck & Co., Inc, Rahway, NJ, USA
| | | | | | - Liuliu Pan
- NanoString Technologies, a Bruker Company, Seattle, WA, USA
| | - Mark Gregory
- NanoString Technologies, a Bruker Company, Seattle, WA, USA
| | - Kathy Ton
- NanoString Technologies, a Bruker Company, Seattle, WA, USA
| | | | | | - Tom Rush
- MRL, Merck & Co., Inc, Rahway, NJ, USA
| | | |
Collapse
|
4
|
Sabour S, Li JF, Lipscomb JT, Santos Tino AP, Johnson JA. Immunocapture of cell surface proteins embedded in HIV envelopes uncovers considerable virion genetic diversity associated with different source cell types. PLoS One 2024; 19:e0296891. [PMID: 38412143 PMCID: PMC10898758 DOI: 10.1371/journal.pone.0296891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/18/2023] [Indexed: 02/29/2024] Open
Abstract
HIV particles in the blood largely originate from activated lymphocytes and can overshadow variants which may be expressed from other cell types. Investigations of virus persistence must be able to distinguish cells refractory to viral clearance that serve as reservoirs. To investigate additional cell types that may be associated with in vivo HIV expression we developed a virus particle immunomagnetic capture method targeting several markers of cellular origin that become embedded within virion envelopes during budding. We evaluated the ability of markers to better distinguish cell lineage source subpopulations by assessing combinations of different antibodies with cell-sorted in vitro culture and clinical specimens. Various deductive algorithms were designed to discriminate source cell lineages and subsets. From the particle capture algorithms, we identified distinct variants expressed within individuals that were associated with disparate cellular markers. Among the variants uncovered were minority-level viruses with drug resistance mutations undetected by sequencing and often were associated with markers indicative of myeloid lineage (CD3-/CD10-/CD16+ or /CD14+, and CD3-/CD16-/CD14-/CD11c+ or /HLA-DR+) cell sources. The diverse HIV genetic sequences expressed from different cell types within individuals, further supported by the appearance of distinct drug-resistant variants, highlights the complexity of HIV reservoirs in vivo which must be considered for HIV cure strategies. This approach could also be helpful in examining in vivo host cell origins and genetic diversity in infections involving other families of budding viruses.
Collapse
Affiliation(s)
- Sarah Sabour
- ORISE Fellowship Program, Oak Ridge, Tennessee, United States of America
- Division of HIV Prevention, CDC, Atlanta, Georgia, United States of America
| | - Jin-Fen Li
- Division of HIV Prevention, CDC, Atlanta, Georgia, United States of America
| | | | | | - Jeffrey A Johnson
- Division of HIV Prevention, CDC, Atlanta, Georgia, United States of America
| |
Collapse
|
5
|
Zhang X, Qazi AA, Deshmukh S, Lobato Ventura R, Mukim A, Beliakova-Bethell N. Single-cell RNA sequencing reveals common and unique gene expression profiles in primary CD4+ T cells latently infected with HIV under different conditions. Front Cell Infect Microbiol 2023; 13:1286168. [PMID: 38156317 PMCID: PMC10754520 DOI: 10.3389/fcimb.2023.1286168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background The latent HIV reservoir represents the major barrier to a cure. One curative strategy is targeting diseased cells for elimination based on biomarkers that uniquely define these cells. Single-cell RNA sequencing (scRNA-seq) has enabled the identification of gene expression profiles associated with disease at the single-cell level. Because HIV provirus in many cells during latency is not entirely silent, it became possible to determine gene expression patterns in a subset of cells latently infected with HIV. Objective The primary objective of this study was the identification of the gene expression profiles of single latently infected CD4+ T cells using scRNA-seq. Different conditions of latency establishment were considered. The identified profiles were then explored to prioritize the identified genes for future experimental validation. Methods To facilitate gene prioritization, three approaches were used. First, we characterized and compared the gene expression profiles of HIV latency established in different environments: in cells that encountered an activation stimulus and then returned to quiescence, and in resting cells that were infected directly via cell-to-cell viral transmission from autologous activated, productively infected cells. Second, we characterized and compared the gene expression profiles of HIV latency established with viruses of different tropisms, using an isogenic pair of CXCR4- and CCR5-tropic viruses. Lastly, we used proviral expression patterns in cells from people with HIV to more accurately define the latently infected cells in vitro. Results Our analyses demonstrated that a subset of genes is expressed differentially between latently infected and uninfected cells consistently under most conditions tested, including cells from people with HIV. Our second important observation was the presence of latency signatures, associated with variable conditions when latency was established, including cellular exposure and responsiveness to a T cell receptor stimulus and the tropism of the infecting virus. Conclusion Common signatures, specifically genes that encode proteins localized to the cell surface, should be prioritized for further testing at the protein level as biomarkers for the ability to enrich or target latently infected cells. Cell- and tropism-dependent biomarkers may need to be considered in developing targeting strategies to ensure that all the different reservoir subsets are eliminated.
Collapse
Affiliation(s)
- Xinlian Zhang
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, United States
| | - Andrew A. Qazi
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Savitha Deshmukh
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Roni Lobato Ventura
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Amey Mukim
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Nadejda Beliakova-Bethell
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, CA, United States
| |
Collapse
|
6
|
Sperber HS, Raymond KA, Bouzidi MS, Ma T, Valdebenito S, Eugenin EA, Roan NR, Deeks SG, Winning S, Fandrey J, Schwarzer R, Pillai SK. The hypoxia-regulated ectonucleotidase CD73 is a host determinant of HIV latency. Cell Rep 2023; 42:113285. [PMID: 37910505 PMCID: PMC10838153 DOI: 10.1016/j.celrep.2023.113285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/04/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Deciphering the mechanisms underlying viral persistence is critical to achieving a cure for human immunodeficiency virus (HIV) infection. Here, we implement a systems approach to discover molecular signatures of HIV latently infected CD4+ T cells, identifying the immunosuppressive, adenosine-producing ectonucleotidase CD73 as a key surface marker of latent cells. Hypoxic conditioning, reflecting the lymphoid tissue microenvironment, increases the frequency of CD73+ CD4+ T cells and promotes HIV latency. Transcriptomic profiles of CD73+ CD4+ T cells favor viral quiescence, immune evasion, and cell survival. CD73+ CD4+ T cells are capable of harboring a functional HIV reservoir and reinitiating productive infection ex vivo. CD73 or adenosine receptor blockade facilitates latent HIV reactivation in vitro, mechanistically linking adenosine signaling to viral quiescence. Finally, tissue imaging of lymph nodes from HIV-infected individuals on antiretroviral therapy reveals spatial association between CD73 expression and HIV persistence in vivo. Our findings warrant development of HIV-cure strategies targeting the hypoxia-CD73-adenosine axis.
Collapse
Affiliation(s)
- Hannah S Sperber
- Vitalant Research Institute, San Francisco, CA, USA; Free University of Berlin, Institute of Biochemistry, Berlin, Germany; University of California, San Francisco, San Francisco, CA, USA; University Hospital Essen, Institute for Translational HIV Research, Essen, Germany
| | - Kyle A Raymond
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA
| | - Mohamed S Bouzidi
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA
| | - Tongcui Ma
- University of California, San Francisco, San Francisco, CA, USA; Gladstone Institutes, San Francisco, CA, USA
| | | | | | - Nadia R Roan
- University of California, San Francisco, San Francisco, CA, USA; Gladstone Institutes, San Francisco, CA, USA
| | - Steven G Deeks
- University of California, San Francisco, San Francisco, CA, USA
| | - Sandra Winning
- University of Duisburg-Essen, Institute for Physiology, Essen, Germany
| | - Joachim Fandrey
- University of Duisburg-Essen, Institute for Physiology, Essen, Germany
| | - Roland Schwarzer
- University Hospital Essen, Institute for Translational HIV Research, Essen, Germany.
| | - Satish K Pillai
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Wei Y, Davenport TC, Collora JA, Ma HK, Pinto-Santini D, Lama J, Alfaro R, Duerr A, Ho YC. Single-cell epigenetic, transcriptional, and protein profiling of latent and active HIV-1 reservoir revealed that IKZF3 promotes HIV-1 persistence. Immunity 2023; 56:2584-2601.e7. [PMID: 37922905 PMCID: PMC10843106 DOI: 10.1016/j.immuni.2023.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/26/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Understanding how HIV-1-infected cells proliferate and persist is key to HIV-1 eradication, but the heterogeneity and rarity of HIV-1-infected cells hamper mechanistic interrogations. Here, we used single-cell DOGMA-seq to simultaneously capture transcription factor accessibility, transcriptome, surface proteins, HIV-1 DNA, and HIV-1 RNA in memory CD4+ T cells from six people living with HIV-1 during viremia and after suppressive antiretroviral therapy. We identified increased transcription factor accessibility in latent HIV-1-infected cells (RORC) and transcriptionally active HIV-1-infected cells (interferon regulatory transcription factor [IRF] and activator protein 1 [AP-1]). A proliferation program (IKZF3, IL21, BIRC5, and MKI67 co-expression) promoted the survival of transcriptionally active HIV-1-infected cells. Both latent and transcriptionally active HIV-1-infected cells had increased IKZF3 (Aiolos) expression. Distinct epigenetic programs drove the heterogeneous cellular states of HIV-1-infected cells: IRF:activation, Eomes:cytotoxic effector differentiation, AP-1:migration, and cell death. Our study revealed the single-cell epigenetic, transcriptional, and protein states of latent and transcriptionally active HIV-1-infected cells and cellular programs promoting HIV-1 persistence.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Timothy C Davenport
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Jack A Collora
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Haocong Katherine Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Delia Pinto-Santini
- Vaccine and Infectious Disease, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Javier Lama
- Asociación Civil Impacta Salud y Educación, Lima 15063, Perú
| | - Ricardo Alfaro
- Centro de Investigaciones Tecnológicas Biomédicas y Medioambientales (CITBM), Lima 07006, Perú
| | - Ann Duerr
- Vaccine and Infectious Disease, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|
8
|
Faua C, Fafi-Kremer S, Gantner P. Antigen specificities of HIV-infected cells: A role in infection and persistence? J Virus Erad 2023; 9:100329. [PMID: 37440870 PMCID: PMC10334354 DOI: 10.1016/j.jve.2023.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
Antigen-experienced memory CD4+ T cells are the major target of HIV infection and support both productive and latent infections, thus playing a key role in HIV dissemination and persistence, respectively. Here, we reviewed studies that have shown direct association between HIV infection and antigen specificity. During untreated infection, some HIV-specific cells host productive infection, while other pathogen-specific cells such as cytomegalovirus (CMV) and Mycobacterium tuberculosis also contribute to viral persistence on antiretroviral therapy (ART). These patterns could be explained by phenotypic features differing between these pathogen-specific cells. Mechanisms involved in these preferential infection and selection processes include HIV entry and restriction, cell exhaustion, survival, self-renewal and immune escape. For instance, MIP-1β expressing cells such as CMV-specific memory cells were shown to resist infection by HIV CCR5 coreceptor downregulation/inhibition. Conversely, HIV-infected CMV-specific cells undergo clonal expansion during ART. We have identified several research areas that need further focus such as the role of other pathogens, viral genome intactness, inducibility and phenotypic features. However, given the sheer diversity of both the CD4+ T cell repertoire and antigenic history of each individual, studying HIV-infected, antigen-experienced cells still imposes numerous challenges.
Collapse
Affiliation(s)
- Clayton Faua
- INSERM UMR_S1109, University of Strasbourg, Strasbourg, France
| | - Samira Fafi-Kremer
- INSERM UMR_S1109, University of Strasbourg, Strasbourg, France
- Medical Virology Laboratory, University Hospital of Strasbourg, Strasbourg, France
| | - Pierre Gantner
- INSERM UMR_S1109, University of Strasbourg, Strasbourg, France
- Medical Virology Laboratory, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
9
|
Blaauw MJ, Cristina dos Santos J, Vadaq N, Trypsteen W, van der Heijden W, Groenendijk A, Zhang Z, Li Y, de Mast Q, Netea MG, Joosten LA, Vandekerckhove L, van der Ven A, Matzaraki V. Targeted plasma proteomics identifies MICA and IL1R1 proteins associated with HIV-1 reservoir size. iScience 2023; 26:106486. [PMID: 37091231 PMCID: PMC10113782 DOI: 10.1016/j.isci.2023.106486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/18/2023] [Accepted: 03/18/2023] [Indexed: 04/08/2023] Open
Abstract
HIV-1 reservoir shows high variability in size and activity among virally suppressed individuals. Differences in the size of the viral reservoir may relate to differences in plasma protein concentrations. We tested whether plasma protein expression levels are associated with levels of cell-associated (CA) HIV-1 DNA and RNA in 211 virally suppressed people living with HIV (PLHIV). Plasma concentrations of FOLR1, IL1R1, MICA, and FETUB showed a positive association with CA HIV-1 RNA and DNA. Moreover, SNPs in close proximity to IL1R1 and MICA genes were found to influence the levels of CA HIV-1 RNA and DNA. We found a difference in mRNA expression of the MICA gene in homozygotes carrying the rs9348866-A allele compared to the ones carrying the G allele (p < 0.005). Overall, our findings pinpoint plasma proteins that could serve as potential targets for therapeutic interventions to lower or even eradicate cells containing CA HIV-1 RNA and DNA in PLHIV.
Collapse
|
10
|
Zhang X, Deshmukh S, Mukim A, Zhang J, Beliakova-Bethell N. HIV Infection Elicits Differential Transcriptomic Remodeling in CD4+ T Cells with Variable Proliferative Responses to the T Cell Receptor Stimulus. Pathogens 2023; 12:511. [PMID: 37111397 PMCID: PMC10145558 DOI: 10.3390/pathogens12040511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Identification of a cellular biomarker of latent HIV infection will facilitate the latent reservoir detection, quantification, and targeting for elimination. Unfortunately, the latency biomarkers reported in the literature define only a fraction of the entire reservoir. The latent HIV reservoir may be established in dividing cells that subsequently return to quiescence and in resting cells. The strength of the T cell receptor (TCR) signaling at the time of infection affects characteristics of the established reservoir, such as the ability to reactivate with latency reversing agents. To better understand the cellular environments before latency establishment, we characterized transcriptomic remodeling induced by the initial HIV infection in cells with differential proliferative responses to the TCR stimulus. Cell proliferation was monitored using the viable dye carboxyfluorescein diacetate succinimidyl ester. Cells that divided many times, a few times, or remained non-dividing were subjected to single-cell RNA sequencing. A subset of identified transcriptional changes induced by HIV infection was independent of the number of cell divisions; however, responses unique to different cell subsets were also detected. Some of these early gene expression changes were consistent with reported markers of latently infected cells. We pose that the latency biomarkers may depend on the cellular proliferative state at the time of infection.
Collapse
Affiliation(s)
- Xinlian Zhang
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA 92093, USA; (X.Z.); (J.Z.)
| | - Savitha Deshmukh
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA 92161, USA
| | - Amey Mukim
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA 92161, USA
| | - Jasen Zhang
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA 92093, USA; (X.Z.); (J.Z.)
| | - Nadejda Beliakova-Bethell
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA 92161, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Dufour C, Richard C, Pardons M, Massanella M, Ackaoui A, Murrell B, Routy B, Thomas R, Routy JP, Fromentin R, Chomont N. Phenotypic characterization of single CD4+ T cells harboring genetically intact and inducible HIV genomes. Nat Commun 2023; 14:1115. [PMID: 36849523 PMCID: PMC9971253 DOI: 10.1038/s41467-023-36772-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
The phenotype of the rare HIV-infected cells persisting during antiretroviral therapies (ART) remains elusive. We developed a single-cell approach that combines the phenotypic analysis of HIV-infected cells with near full-length sequencing of their associated proviruses to characterize the viral reservoir in 6 male individuals on suppressive ART. We show that individual cells carrying clonally expanded identical proviruses display very diverse phenotypes, indicating that cellular proliferation contributes to the phenotypic diversification of the HIV reservoir. Unlike most viral genomes persisting on ART, inducible and translation-competent proviruses rarely present large deletions but are enriched in defects in the Ψ locus. Interestingly, the few cells harboring genetically intact and inducible viral genomes express higher levels of the integrin VLA-4 compared to uninfected cells or cells with defective proviruses. Viral outgrowth assay confirmed that memory CD4+ T cells expressing high levels of VLA-4 are highly enriched in replication-competent HIV (27-fold enrichment). We conclude that although clonal expansions diversify the phenotype of HIV reservoir cells, CD4+ T cells harboring replication-competent HIV retain VLA-4 expression.
Collapse
Affiliation(s)
- Caroline Dufour
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Corentin Richard
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Marion Pardons
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Marta Massanella
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Antoine Ackaoui
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Bertrand Routy
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Réjean Thomas
- Clinique médicale l'Actuel, Montreal, H2L 4P9, Quebec, Canada
| | - Jean-Pierre Routy
- Division of Hematology & Chronic Viral Illness Service, McGill University Health Centre, Montreal, H4A 3J1, Quebec, Canada
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada.
| |
Collapse
|
12
|
Wu VH, Nordin JML, Nguyen S, Joy J, Mampe F, Del Rio Estrada PM, Torres-Ruiz F, González-Navarro M, Luna-Villalobos YA, Ávila-Ríos S, Reyes-Terán G, Tebas P, Montaner LJ, Bar KJ, Vella LA, Betts MR. Profound phenotypic and epigenetic heterogeneity of the HIV-1-infected CD4 + T cell reservoir. Nat Immunol 2023; 24:359-370. [PMID: 36536105 PMCID: PMC9892009 DOI: 10.1038/s41590-022-01371-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
Understanding the complexity of the long-lived HIV reservoir during antiretroviral therapy (ART) remains a considerable impediment in research towards a cure for HIV. To address this, we developed a single-cell strategy to precisely define the unperturbed peripheral blood HIV-infected memory CD4+ T cell reservoir from ART-treated people living with HIV (ART-PLWH) via the presence of integrated accessible proviral DNA in concert with epigenetic and cell surface protein profiling. We identified profound reservoir heterogeneity within and between ART-PLWH, characterized by new and known surface markers within total and individual memory CD4+ T cell subsets. We further uncovered new epigenetic profiles and transcription factor motifs enriched in HIV-infected cells that suggest infected cells with accessible provirus, irrespective of reservoir distribution, are poised for reactivation during ART treatment. Together, our findings reveal the extensive inter- and intrapersonal cellular heterogeneity of the HIV reservoir, and establish an initial multiomic atlas to develop targeted reservoir elimination strategies.
Collapse
Grants
- K08 AI136660 NIAID NIH HHS
- T32 AI007632 NIAID NIH HHS
- R21 AI172629 NIAID NIH HHS
- UM1 AI164570 NIAID NIH HHS
- P30 AI045008 NIAID NIH HHS
- R01 AI031338 NIAID NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- Support for this study was provided by the following NIH grants: U19-A1-149680-02 (MRB), P01-AI31338 (MRB, KJB), K08-AI136660 (LAV), T32-AI007632 (VW), P30-AI045008 (Penn Center for AIDS Research) (MRB, LAV, KJB, PT, LJM), UM-1AI164570 (BEAT-HIV Collaboratory) which is co-supported by the National Institute of Allergies and Infectious Diseases (NIAID), the National Institute of Mental Health (NIMH), the National Institute of Neurological Disorders and Stroke (NINDS), the National Institute on Drug Abuse (NIDA), and the Robert I. Jacobs Fund of The Philadelphia Foundation (MRB, KJB, PT, LJM). LJM is also supported by the Herbert Kean, M.D., Family Professorship. CIENI-INER is supported by the Mexican Government (Programa Presupuestal P016; Anexo 13 del Decreto del Presupuesto de Egresos de la Federación).
- CIENI-INER is supported by the Mexican Government (Programa Presupuestal P016; Anexo 13 del Decreto del Presupuesto de Egresos de la Federación).
- LJM is also supported by the Herbert Kean, M.D., Family Professorship.
Collapse
Affiliation(s)
- Vincent H Wu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Jayme M L Nordin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaimy Joy
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Felicity Mampe
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Perla M Del Rio Estrada
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Mauricio González-Navarro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Yara Andrea Luna-Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud de México, Mexico City, Mexico
| | - Pablo Tebas
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luis J Montaner
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
- The Wistar Institute, Philadelphia, PA, USA
| | - Katharine J Bar
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura A Vella
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Zhang W, Zhou M, Chen C, Wu S, Wang L, Xia B, Liu J, Ma X, Pan T, Zhang H, Li L, Liu B. Identification of CD98 as a Novel Biomarker for HIV-1 Permissiveness and Latent Infection. mBio 2022; 13:e0249622. [PMID: 36214569 PMCID: PMC9765422 DOI: 10.1128/mbio.02496-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) can integrate viral DNA into host cell chromosomes to establish a long-term stable latent reservoir, which is a major obstacle to cure HIV-1 infection. The characteristics of the HIV-1 latent reservoir have not been fully understood. Here, we identified 126 upregulated plasma membrane proteins in HIV-1 latently infected cells by a label-free liquid chromatography-tandem mass spectrometry analysis. The higher levels of CD98 expression in multiple HIV-1 latently infected cell lines and primary CD4+ T cells compared to uninfected cells were further confirmed by quantitative reverse transcription PCR (RT-qPCR) and flow cytometry analyses. In addition, CD98high CD4+ T cells displayed hyper-permissiveness to HIV-1 infection and possessed distinct immune phenotypic profiles associated with Th17 and peripheral follicular T helper (pTFH) characteristics. Notably, the CD98high resting memory CD4+ T cells harbored significantly higher cell-associated viral RNA and intact provirus than CD98low counterparts in HIV-1-infected individuals receiving combined antiretroviral therapy. Furthermore, CD98high CD4+ T cells exhibited a robust proliferative capacity and significantly contributed to the clonal expansion of the HIV-1 latent reservoir. Our study demonstrates that CD98 can be used as a novel biomarker of HIV-1 latently infected cells to indicate the effect of various strategies to reduce the viral reservoir. IMPORTANCE Identification of cellular biomarkers is the crucial challenge to eradicate the HIV-1 latent reservoir. In our study, we identified CD98 as a novel plasma membrane biomarker for HIV-1 permissiveness and latent infection. Importantly, CD98high CD4+ T cells exhibited a hyper-permissiveness to HIV-1 infection and significantly contributed to the clonal expansion of the HIV-1 latent reservoir. CD98 could be targeted to develop therapeutic strategies to reduce the HIV-1 latent reservoir in further research.
Collapse
Affiliation(s)
- Wanying Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Infectious Diseases Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mo Zhou
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cancan Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shiyu Wu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lilin Wang
- Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Baijin Xia
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Liu
- Qianyang Biomedical Research Institute, Guangzhou, Guangdong, China
| | - Xiancai Ma
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Pan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linghua Li
- Infectious Diseases Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Weymar GHJ, Bar-On Y, Oliveira TY, Gaebler C, Ramos V, Hartweger H, Breton G, Caskey M, Cohn LB, Jankovic M, Nussenzweig MC. Distinct gene expression by expanded clones of quiescent memory CD4 + T cells harboring intact latent HIV-1 proviruses. Cell Rep 2022; 40:111311. [PMID: 36070690 PMCID: PMC9471989 DOI: 10.1016/j.celrep.2022.111311] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 08/12/2022] [Indexed: 01/26/2023] Open
Abstract
Antiretroviral therapy controls, but does not cure, HIV-1 infection due to a reservoir of rare CD4+ T cells harboring latent proviruses. Little is known about the transcriptional program of latent cells. Here, we report a strategy to enrich clones of latent cells carrying intact, replication-competent HIV-1 proviruses from blood based on their expression of unique T cell receptors. Latent cell enrichment enabled single-cell transcriptomic analysis of 1,050 CD4+ T cells belonging to expanded clones harboring intact HIV-1 proviruses from 6 different individuals. The analysis reveals that most of these cells are T effector memory cells that are enriched for expression of HLA-DR, HLA-DP, CD74, CCL5, granzymes A and K, cystatin F, LYAR, and DUSP2. We conclude that expanded clones of latent cells carrying intact HIV-1 proviruses persist preferentially in a distinct CD4+ T cell population, opening possibilities for eradication.
Collapse
Affiliation(s)
- Georg H J Weymar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Yotam Bar-On
- Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Harald Hartweger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Gaëlle Breton
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Lillian B Cohn
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
15
|
Inderbitzin A, Loosli T, Opitz L, Rusert P, Metzner KJ. Transcriptome profiles of latently- and reactivated HIV-1 infected primary CD4+ T cells: A pooled data-analysis. Front Immunol 2022; 13:915805. [PMID: 36090997 PMCID: PMC9459035 DOI: 10.3389/fimmu.2022.915805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
The main obstacle to cure HIV-1 is the latent reservoir. Antiretroviral therapy effectively controls viral replication, however, it does not eradicate the latent reservoir. Latent CD4+ T cells are extremely rare in HIV-1 infected patients, making primary CD4+ T cell models of HIV-1 latency key to understanding latency and thus finding a cure. In recent years several primary CD4+ T cell models of HIV-1 latency were developed to study the underlying mechanism of establishing, maintaining and reversing HIV-1 latency. In the search of biomarkers, primary CD4+ T cell models of HIV-1 latency were used for bulk and single-cell transcriptomics. A wealth of information was generated from transcriptome analyses of different primary CD4+ T cell models of HIV-1 latency using latently- and reactivated HIV-1 infected primary CD4+ T cells. Here, we performed a pooled data-analysis comparing the transcriptome profiles of latently- and reactivated HIV-1 infected cells of 5 in vitro primary CD4+ T cell models of HIV-1 latency and 2 ex vivo studies of reactivated HIV-1 infected primary CD4+ T cells from HIV-1 infected individuals. Identifying genes that are differentially expressed between latently- and reactivated HIV-1 infected primary CD4+ T cells could be a more successful strategy to better understand and characterize HIV-1 latency and reactivation. We observed that natural ligands and coreceptors were predominantly downregulated in latently HIV-1 infected primary CD4+ T cells, whereas genes associated with apoptosis, cell cycle and HLA class II were upregulated in reactivated HIV-1 infected primary CD4+ T cells. In addition, we observed 5 differentially expressed genes that co-occurred in latently- and reactivated HIV-1 infected primary CD4+ T cells, one of which, MSRB2, was found to be differentially expressed between latently- and reactivated HIV-1 infected cells. Investigation of primary CD4+ T cell models of HIV-1 latency that mimic the in vivo state remains essential for the study of HIV-1 latency and thus providing the opportunity to compare the transcriptome profile of latently- and reactivated HIV-1 infected cells to gain insights into differentially expressed genes, which might contribute to HIV-1 latency.
Collapse
Affiliation(s)
- Anne Inderbitzin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Tom Loosli
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, Eidgenössische Technische Hochschule (ETH) Zürich/University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Karin J. Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- *Correspondence: Karin J. Metzner,
| |
Collapse
|
16
|
Beliakova-Bethell N, Manousopoulou A, Deshmukh S, Mukim A, Richman DD, Garbis SD, Spina CA. Integrated proteomics and transcriptomics analyses identify novel cell surface markers of HIV latency. Virology 2022; 573:50-58. [PMID: 35714458 PMCID: PMC10427345 DOI: 10.1016/j.virol.2022.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Elimination of the latent HIV cell reservoir may be possible, if the molecular identity of latently infected cells were fully elucidated. We conducted comprehensive molecular profiling, at the protein and RNA levels, of primary T cells latently infected with HIV in vitro. Isobaric labelling quantitative proteomics and RNA sequencing identified 1453 proteins and 618 genes, altered in latently infected cells compared to mock-infected controls (p < 0.05). Biomarker selection was based on results from integrated data analysis. Relative enrichment for latently infected cells was monitored using flow cytometric sorting and the HIV integrant assay. Antibodies against selected proteins, encoded by CEACAM1 and PLXNB2, enabled enrichment of latently infected cells from cell mixtures by 3-10 fold (5.8 average, p < 0.001), comparable to levels obtained with biomarkers reported previously. Individual biomarkers are likely linked to subsets of latently infected cells, and an extended antibody panel will be required to inclusively target the latent HIV reservoir.
Collapse
Affiliation(s)
- Nadejda Beliakova-Bethell
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, USA; University of California at San Diego, CA, USA.
| | - Antigoni Manousopoulou
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK; Proteas Bioanalytics Inc., BioLabs at the Lundquist Institute, Torrance, CA, USA
| | | | - Amey Mukim
- University of California at San Diego, CA, USA
| | - Douglas D Richman
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, USA; University of California at San Diego, CA, USA
| | - Spiros D Garbis
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK; Proteas Bioanalytics Inc., BioLabs at the Lundquist Institute, Torrance, CA, USA
| | - Celsa A Spina
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, USA; University of California at San Diego, CA, USA
| |
Collapse
|
17
|
Tokarev A, Machmach K, Creegan M, Kim D, Eller MA, Bolton DL. Single-Cell Profiling of Latently SIV-Infected CD4 + T Cells Directly Ex Vivo to Reveal Host Factors Supporting Reservoir Persistence. Microbiol Spectr 2022; 10:e0060422. [PMID: 35510859 PMCID: PMC9241701 DOI: 10.1128/spectrum.00604-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 11/20/2022] Open
Abstract
HIV-1 cure strategies aiming to eliminate persistent infected cell reservoirs are hampered by a poor understanding of cells harboring viral DNA in vivo. We describe a novel method to identify, enumerate, and characterize in detail individual cells infected in vivo using a combination of single-cell multiplexed assays for integrated proviral DNA, quantitative viral and host gene expression, and quantitative surface protein expression without any in vitro manipulation. Latently infected CD4+ T cells, defined as harboring integrated provirus in the absence of spliced viral mRNA, were identified from macaque lymph nodes during acute, chronic, and combination antiretroviral therapy (cART)-suppressed simian immunodeficiency virus (SIV) infection. Latently infected CD4+ T cells were most abundant during acute SIV (~8% of memory CD4+ T cells) and persisted in chronic and cART-suppressed infection. Productively infected cells actively transcribing viral mRNA, by contrast, were much more labile and declined substantially between acute and chronic or cART-suppressed infection. Expression of most surface proteins and host genes was similar between latently infected cells and uninfected cells. Elevated FLIP mRNA and surface CD3 expression among latently infected cells suggest increased survival potential and capacity to respond to T cell receptor stimulation. These findings point to a large pool of latently infected CD4+ T cells established very early in acute infection and upregulated host factors that may facilitate their persistence in vivo, both of which pose potential challenges to eliminating HIV-1 reservoirs. IMPORTANCE Effective combination antiretroviral therapy controls HIV-1 infection but fails to eliminate latent viral reservoirs that give rise to viremia upon treatment interruption. Strategies to eradicate latently infected cells require a better understanding of their biology and distinguishing features to promote their elimination. Tools for studying these cells from patients are currently limited. Here, we developed a single-cell method to identify cells latently infected in vivo and to characterize these cells for expression of surface proteins and host genes without in vitro manipulation, capturing their in vivo state from SIV-infected macaques. Host factors involved in cell survival and proliferation were upregulated in latently infected cells, which were abundant in the earliest stages of acute infection. These studies provide insight into the basic biology of latently infected cells as well as potential mechanisms underlying the persistence of HIV-1/SIV reservoirs to inform development of novel HIV-1 cure strategies.
Collapse
Affiliation(s)
- Andrey Tokarev
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Kawthar Machmach
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Matthew Creegan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Dohoon Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michael A. Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Diane L. Bolton
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Ta TM, Malik S, Anderson EM, Jones AD, Perchik J, Freylikh M, Sardo L, Klase ZA, Izumi T. Insights Into Persistent HIV-1 Infection and Functional Cure: Novel Capabilities and Strategies. Front Microbiol 2022; 13:862270. [PMID: 35572626 PMCID: PMC9093714 DOI: 10.3389/fmicb.2022.862270] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Although HIV-1 replication can be efficiently suppressed to undetectable levels in peripheral blood by combination antiretroviral therapy (cART), lifelong medication is still required in people living with HIV (PLWH). Life expectancies have been extended by cART, but age-related comorbidities have increased which are associated with heavy physiological and economic burdens on PLWH. The obstacle to a functional HIV cure can be ascribed to the formation of latent reservoir establishment at the time of acute infection that persists during cART. Recent studies suggest that some HIV reservoirs are established in the early acute stages of HIV infection within multiple immune cells that are gradually shaped by various host and viral mechanisms and may undergo clonal expansion. Early cART initiation has been shown to reduce the reservoir size in HIV-infected individuals. Memory CD4+ T cell subsets are regarded as the predominant cellular compartment of the HIV reservoir, but monocytes and derivative macrophages or dendritic cells also play a role in the persistent virus infection. HIV latency is regulated at multiple molecular levels in transcriptional and post-transcriptional processes. Epigenetic regulation of the proviral promoter can profoundly regulate the viral transcription. In addition, transcriptional elongation, RNA splicing, and nuclear export pathways are also involved in maintaining HIV latency. Although most proviruses contain large internal deletions, some defective proviruses may induce immune activation by expressing viral proteins or producing replication-defective viral-like particles. In this review article, we discuss the state of the art on mechanisms of virus persistence in the periphery and tissue and summarize interdisciplinary approaches toward a functional HIV cure, including novel capabilities and strategies to measure and eliminate the infected reservoirs and induce immune control.
Collapse
Affiliation(s)
- Tram M. Ta
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Sajjaf Malik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Elizabeth M. Anderson
- Office of the Assistant Secretary for Health, Region 3, U.S. Department of Health and Human Services, Washington, DC, United States
| | - Amber D. Jones
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jocelyn Perchik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Maryann Freylikh
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Luca Sardo
- Department of Infectious Disease and Vaccines, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Zackary A. Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University of Medicine, Philadelphia, PA, United States
| | - Taisuke Izumi
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,*Correspondence: Taisuke Izumi,
| |
Collapse
|
19
|
Mori L, Valente ST. Cure and Long-Term Remission Strategies. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2407:391-428. [PMID: 34985678 DOI: 10.1007/978-1-0716-1871-4_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The majority of virally suppressed individuals will experience rapid viral rebound upon antiretroviral therapy (ART) interruption, providing a strong rationale for the development of cure strategies. Moreover, despite ART virological control, HIV infection is still associated with chronic immune activation, inflammation, comorbidities, and accelerated aging. These effects are believed to be due, in part, to low-grade persistent transcription and trickling production of viral proteins from the pool of latent proviruses constituting the viral reservoir. In recent years there has been an increasing interest in developing what has been termed a functional cure for HIV. This approach entails the long-term, durable control of viral expression in the absence of therapy, preventing disease progression and transmission, despite the presence of detectable integrated proviruses. One such strategy, the block-and-lock approach for a functional cure, proposes the epigenetic silencing of proviral expression, locking the virus in a profound latent state, from which reactivation is very unlikely. The proof-of-concept for this approach was demonstrated with the use of a specific small molecule targeting HIV transcription. Here we review the principles behind the block-and-lock approach and some of the additional strategies proposed to silence HIV expression.
Collapse
Affiliation(s)
- Luisa Mori
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
20
|
Li R, Romerio F. An In Vitro System to Model the Establishment and Reactivation of HIV-1 Latency in Primary Human CD4+ T Cells. Methods Mol Biol 2022; 2407:31-43. [PMID: 34985655 DOI: 10.1007/978-1-0716-1871-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
HIV-1 establishes latency primarily by infecting activated CD4+ T cells that later return to quiescence as memory cells. Latency allows HIV-1 to evade immune responses and to persist during antiretroviral therapy, which represents an important problem in clinical practice. Here we describe both the original and a simplified version of HIV-1 latency models that mimics this process using replication competent viruses. Our model allows generation of large numbers of latently infected CD4+ T cell to dissect molecular mechanisms of HIV latency and reactivation.
Collapse
Affiliation(s)
- Rui Li
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabio Romerio
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Atlas of the HIV-1 Reservoir in Peripheral CD4 T Cells of Individuals on Successful Antiretroviral Therapy. mBio 2021; 12:e0307821. [PMID: 34844430 PMCID: PMC8630536 DOI: 10.1128/mbio.03078-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Knowing the mechanisms that govern the persistence of infected CD4+ subpopulations could help us to design new therapies to cure HIV-1 infection. We evaluated the simultaneous distribution of the HIV-1 reservoir in 13 CD4+ subpopulations from 14 HIV-1-infected individuals on antiretroviral therapy to analyze its relationship with HIV-1 transcription, immune activation, and cell proliferation. A unique large blood donation was used to isolate CD4, CD4 resting (CD4r), CD4 activated (CD4a), T naive (TN), T stem cell memory (TSCM), T central memory (TCM), T transitional memory (TTM), T effector memory (TEM), circulating T follicular helper (cTFH), TCD20, TCD32, and resting memory TCD2high (rmTCD2high) cells. HIV-1 DNA measured by droplet digital PCR ranged from 3,636 copies/106 in TTM to 244 in peripheral blood mononuclear cells (PBMCs), with no subpopulation standing out for provirus enrichment. Importantly, all the subpopulations harbored intact provirus by intact provirus DNA assay (IPDA). TCD32, cTFH, and TTM had the highest levels of HIV-1 transcription measured by fluorescent in situ hybridization with flow cytometry (FISH/flow), but without reaching statistical differences. The subpopulations more enriched in provirus had a memory phenotype, were less activated (measured by CD38+/HLA-DR+), and expressed more programmed cell death 1 (PD-1). Conversely, subpopulations transcribing more HIV-1 RNA were not necessarily enriched in provirus and were more activated (measured by CD38+/HLA-DR+) and more proliferative (measured by Ki-67). In conclusion, the HIV reservoir is composed of a mosaic of subpopulations contributing to the HIV-1 persistence through different mechanisms such as susceptibility to infection, provirus intactness, or transcriptional status. The narrow range of reservoir differences between the different blood cell subsets tested suggests limited efficacy in targeting only specific cell subpopulations during HIV-1 cure strategies. IMPORTANCE The main barrier for HIV-1 cure is the presence of latently infected CD4+ T cells. Although various cell subpopulations have been identified as major HIV-1 reservoir cells, the relative contribution of infected CD4 subpopulations in the HIV-1 reservoir remains largely unknown. Here, we evaluated the simultaneous distribution of the HIV-1 reservoir in 13 CD4+ T-cell subpopulations in peripheral blood from HIV-1-infected individuals under suppressive antiretroviral therapy. We found that the HIV-1 reservoir is composed of a mosaic of cell subpopulations, with heterogeneous proviral DNA, HIV-1 transcription, and activation status. Hence, each cell subpopulation contributes to the HIV-1 persistence through different mechanisms such as susceptibility to infection, rates of intact provirus, transcriptional status or half-life. This research provides new insights into the composition of the HIV-1 reservoir, suggesting that, to be effective, eradication strategies must simultaneously target multiple cell subpopulations.
Collapse
|
22
|
Wu B, Rice L, Shrimpton J, Lawless D, Walker K, Carter C, McKeown L, Anwar R, Doody GM, Srikanth S, Gwack Y, Savic S. Biallelic mutations in calcium release activated channel regulator 2A (CRACR2A) cause a primary immunodeficiency disorder. eLife 2021; 10:e72559. [PMID: 34908525 PMCID: PMC8673834 DOI: 10.7554/elife.72559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/04/2021] [Indexed: 01/19/2023] Open
Abstract
CRAC channel regulator 2 A (CRACR2A) is a large Rab GTPase that is expressed abundantly in T cells and acts as a signal transmitter between T cell receptor stimulation and activation of the Ca2+-NFAT and JNK-AP1 pathways. CRACR2A has been linked to human diseases in numerous genome-wide association studies, however, to date no patient with damaging variants in CRACR2A has been identified. In this study, we describe a patient harboring biallelic variants in CRACR2A [paternal allele c.834 gaG> gaT (p.E278D) and maternal alelle c.430 Aga > Gga (p.R144G) c.898 Gag> Tag (p.E300*)], the gene encoding CRACR2A. The 33-year-old patient of East-Asian origin exhibited late onset combined immunodeficiency characterised by recurrent chest infections, panhypogammaglobulinemia and CD4+ T cell lymphopenia. In vitro exposure of patient B cells to a T-dependent stimulus resulted in normal generation of antibody-secreting cells, however the patient's T cells showed pronounced reduction in CRACR2A protein levels and reduced proximal TCR signaling, including dampened SOCE and reduced JNK phosphorylation, that contributed to a defect in proliferation and cytokine production. Expression of individual allelic mutants in CRACR2A-deleted T cells showed that the CRACR2AE278D mutant did not affect JNK phosphorylation, but impaired SOCE which resulted in reduced cytokine production. The truncated double mutant CRACR2AR144G/E300* showed a pronounced defect in JNK phosphorylation as well as SOCE and strong impairment in cytokine production. Thus, we have identified variants in CRACR2A that led to late-stage combined immunodeficiency characterized by loss of function in T cells.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Physiology, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Laura Rice
- Leeds Institute of Medical Research, University of LeedsLeedsUnited Kingdom
| | - Jennifer Shrimpton
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of LeedsLeedsUnited Kingdom
| | - Dylan Lawless
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Kieran Walker
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of LeedsLeedsUnited Kingdom
| | - Clive Carter
- Department of Clinical Immunology and Allergy, St James's University HospitalLeedsUnited Kingdom
| | - Lynn McKeown
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of LeedsLeedsUnited Kingdom
| | - Rashida Anwar
- Leeds Institute of Medical Research, University of LeedsLeedsUnited Kingdom
| | - Gina M Doody
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of LeedsLeedsUnited Kingdom
| | - Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James's University HospitalLeedsUnited Kingdom
- National Institute for Health Research-Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, Wellcome Trust Brenner Building, St James's University HospitalLeedsUnited Kingdom
| |
Collapse
|
23
|
Prestimulation of CD2 confers resistance to HIV-1 latent infection in blood resting CD4 T cells. iScience 2021; 24:103305. [PMID: 34765923 PMCID: PMC8571718 DOI: 10.1016/j.isci.2021.103305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/08/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
HIV-1 infects blood CD4 T cells through the use of CD4 and CXCR4 or CCR5 receptors, which can be targeted through blocking viral binding to CD4/CXCR4/CCR5 or virus-cell fusion. Here we describe a novel mechanism by which HIV-1 nuclear entry can also be blocked through targeting a non-entry receptor, CD2. Cluster of differentiation 2 (CD2) is an adhesion molecule highly expressed on human blood CD4, particularly, memory CD4 T cells. We found that CD2 ligation with its cell-free ligand LFA-3 or anti-CD2 antibodies rendered blood resting CD4 T cells highly resistant to HIV-1 infection. We further demonstrate that mechanistically, CD2 binding initiates competitive signaling leading to cofilin activation and localized actin polymerization around CD2, which spatially inhibits HIV-1-initiated local actin polymerization needed for viral nuclear migration. Our study identifies CD2 as a novel target to block HIV-1 infection of blood resting T cells. CD2 is highly expressed on human blood CD4 T cells, particularly memory T cells Prestimulation of CD2 rendered resting T cells highly resistant to HIV infection CD2 signaling activates cofilin and actin polymerization blocking HIV nuclear entry CD2 may serve as a novel target to inhibit HIV-1 infection of blood resting T cells
Collapse
|
24
|
The active human immunodeficiency virus reservoir during antiretroviral therapy: emerging players in viral persistence. Curr Opin HIV AIDS 2021; 16:193-199. [PMID: 33973900 DOI: 10.1097/coh.0000000000000685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To discuss the role of CD4+ T cells with active Human immunodeficiency virus (HIV), meaning infected cells with transcriptional and/or translational viral activity during antiretroviral therapy (ART), focusing on new technologies for its detection, potential cell markers for its characterization, and evidences on the contribution of the active HIV reservoir to long-term viral persistence. RECENT FINDINGS HIV-infected cells expressing viral ribonucleic acid are systematically detected in subjects on long-term ART. In recent years, powerful new tools have provided significant insights into the nature, quantification, and identification of cells with active HIV, including the identification of new cell markers, and the presence of viral activity in specific cell populations located in different cellular and anatomical compartments. Moreover, studies on viral sequence integrity have identified cell clones with intact viral genomes and active viral transcription that could potentially persist for years. Together, new investigations support the notion that the active reservoir could represent a relevant fraction of long-term infected cells, and therefore, the study of its cell sources and mechanisms of maintenance could represent a significant advance in our understanding of viral persistence and the development of new curative strategies. SUMMARY The presence of HIV-infected cells with viral expression during ART has been traditionally overlooked for years. Based on recent investigations, this active viral reservoir could play an important role in HIV persistence.
Collapse
|
25
|
Huot N, Rascle P, Planchais C, Contreras V, Passaes C, Le Grand R, Beignon AS, Kornobis E, Legendre R, Varet H, Saez-Cirion A, Mouquet H, Jacquelin B, Müller-Trutwin M. CD32 +CD4 + T Cells Sharing B Cell Properties Increase With Simian Immunodeficiency Virus Replication in Lymphoid Tissues. Front Immunol 2021; 12:695148. [PMID: 34220857 PMCID: PMC8242952 DOI: 10.3389/fimmu.2021.695148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
CD4 T cell responses constitute an important component of adaptive immunity and are critical regulators of anti-microbial protection. CD4+ T cells expressing CD32a have been identified as a target for HIV. CD32a is an Fcγ receptor known to be expressed on myeloid cells, granulocytes, B cells and NK cells. Little is known about the biology of CD32+CD4+ T cells. Our goal was to understand the dynamics of CD32+CD4+ T cells in tissues. We analyzed these cells in the blood, lymph nodes, spleen, ileum, jejunum and liver of two nonhuman primate models frequently used in biomedical research: African green monkeys (AGM) and macaques. We studied them in healthy animals and during viral (SIV) infection. We performed phenotypic and transcriptomic analysis at different stages of infection. In addition, we compared CD32+CD4+ T cells in tissues with well-controlled (spleen) and not efficiently controlled (jejunum) SIV replication in AGM. The CD32+CD4+ T cells more frequently expressed markers associated with T cell activation and HIV infection (CCR5, PD-1, CXCR5, CXCR3) and had higher levels of actively transcribed SIV RNA than CD32-CD4+T cells. Furthermore, CD32+CD4+ T cells from lymphoid tissues strongly expressed B-cell-related transcriptomic signatures, and displayed B cell markers at the cell surface, including immunoglobulins CD32+CD4+ T cells were rare in healthy animals and blood but increased strongly in tissues with ongoing viral replication. CD32+CD4+ T cell levels in tissues correlated with viremia. Our results suggest that the tissue environment induced by SIV replication drives the accumulation of these unusual cells with enhanced susceptibility to viral infection.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Planchais
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Etienne Kornobis
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | | | | |
Collapse
|
26
|
Belshan M, Holbrook A, George JW, Durant HE, Callahan M, Jaquet S, West JT, Siedlik J, Ciborowski P. Discovery of candidate HIV-1 latency biomarkers using an OMICs approach. Virology 2021; 558:86-95. [PMID: 33735754 PMCID: PMC10171037 DOI: 10.1016/j.virol.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 11/19/2022]
Abstract
Infection with HIV-1 remains uncurable due to reservoirs of latently infected cells. Any potential cure for HIV will require a mechanism to identify and target these cells in vivo. We created a panel of Jurkat cell lines latently infected with the HIV DuoFlo virus to identify candidate biomarkers of latency. SWATH mass spectrometry was used to compare the membrane proteomes of one of the cell lines to parental Jurkat cells. Several candidate proteins with significantly altered expression were identified. The differential expression of several candidates was validated in multiple latently infected cell lines. Three factors (LAG-3, CD147,CD231) were altered across numerous cell lines, but the expression of most candidate biomarkers was variable. These results confirm that phenotypic differences in latently infected cells exists and identify additional novel biomarkers. The variable expression of biomarkers across different cell clones suggests universal antigen-based detection of latently infected cells may require a multiplex approach.
Collapse
Affiliation(s)
- Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA.
| | - Alexander Holbrook
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | - Joseph W George
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | - Hannah E Durant
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | - Michael Callahan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | - Spencer Jaquet
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - John T West
- Department of Biochemistry, And the Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
| | - Jacob Siedlik
- Department of Exercise Science and Pre-Health Professions, Creighton University, Omaha, NE, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
27
|
Moron-Lopez S, Urrea V, Dalmau J, Lopez M, Puertas MC, Ouchi D, Gómez A, Passaes C, Mothe B, Brander C, Saez-Cirion A, Clotet B, Esteller M, Berdasco M, Martinez-Picado J. The Genome-wide Methylation Profile of CD4+ T Cells From Individuals With Human Immunodeficiency Virus (HIV) Identifies Distinct Patterns Associated With Disease Progression. Clin Infect Dis 2021; 72:e256-e264. [PMID: 32712664 PMCID: PMC8096268 DOI: 10.1093/cid/ciaa1047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human genetic variation-mostly in the human leukocyte antigen (HLA) and C-C chemokine receptor type 5 (CCR5) regions-explains 25% of the variability in progression of human immunodeficiency virus (HIV) infection. However, it is also known that viral infections can modify cellular DNA methylation patterns. Therefore, changes in the methylation of cytosine-guanine (CpG) islands might modulate progression of HIV infection. METHODS In total, 85 samples were analyzed: 21 elite controllers (EC), 21 subjects with HIV before combination antiretroviral therapy (cART) (viremic, 93 325 human immunodeficiency virus type 1 [HIV-1] RNA copies/mL) and under suppressive cART (cART, median of 17 months, <50 HIV-1 RNA copies/mL), and 22 HIV-negative donors (HIVneg). We analyzed the methylation pattern of 485 577 CpG in DNA from peripheral CD4+ T lymphocytes. We selected the most differentially methylated gene (TNF) and analyzed its specific methylation, messenger RNA (mRNA) expression, and plasma protein levels in 5 individuals before and after initiation of cART. RESULTS We observed 129 methylated CpG sites (associated with 43 gene promoters) for which statistically significant differences were recorded in viremic versus HIVneg, 162 CpG sites (55 gene promoters) in viremic versus cART, 441 CpG sites (163 gene promoters) in viremic versus EC, but none in EC versus HIVneg. The TNF promoter region was hypermethylated in viremic versus HIVneg, cART, and EC. Moreover, we observed greater plasma levels of TNF in viremic individuals than in EC, cART, and HIVneg. CONCLUSIONS Our study shows that genome methylation patterns vary depending on HIV infection status and progression profile and that these variations might have an impact on controlling HIV infection in the absence of cART.
Collapse
Affiliation(s)
| | - Victor Urrea
- AIDS Research Institute IrsiCaixa, Badalona, Spain
| | | | - Miguel Lopez
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain.,Epigenetic Therapies Group, Experimental and Clinical Hematology Program, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | - Dan Ouchi
- AIDS Research Institute IrsiCaixa, Badalona, Spain
| | - Antonio Gómez
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistence, Paris, France
| | - Beatriz Mothe
- AIDS Research Institute IrsiCaixa, Badalona, Spain.,Fundació Lluita Contra la Sida, University Hospital "Germans Trias i Pujol," Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | - Christian Brander
- AIDS Research Institute IrsiCaixa, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistence, Paris, France
| | - Bonaventura Clotet
- AIDS Research Institute IrsiCaixa, Badalona, Spain.,Fundació Lluita Contra la Sida, University Hospital "Germans Trias i Pujol," Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | - Manel Esteller
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.,Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Badalona, Spain
| | - Maria Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain.,Epigenetic Therapies Group, Experimental and Clinical Hematology Program, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
28
|
Fletcher CV, Dyavar SR, Acharya A, Byrareddy SN. The Contributions of Clinical Pharmacology to HIV Cure Research. Clin Pharmacol Ther 2021; 110:334-345. [PMID: 33763860 DOI: 10.1002/cpt.2237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/10/2021] [Indexed: 01/26/2023]
Abstract
Combination antiretroviral therapy (ART) can suppress plasma HIV-RNA to < 50 copies/mL, decrease HIV transmission, reduce mortality, and improve quality of life for people living with HIV. ART cannot, however, eliminate HIV from an infected individual. The primary barrier to cure HIV infection is the multiple reservoir sites, including adipose tissue, bone marrow, central nervous system, liver, lungs, male and female reproductive system, secondary lymph nodes, and gut-associated lymphoid tissue, established 1 to 2 weeks after acquisition of HIV. Additional challenges include understanding the mechanism(s) by which HIV is maintained at low or undetectable levels and developing treatments that will eradicate or produce a sustained suppression of virus without ART. To date, the most extensive clinical investigations of cure strategies have been the shock-and-kill approach using histone deacetylase inhibitors (HDACis) to induce reactivation of latent HIV. Despite evidence for HIV latency reversal, HDACis alone have not decreased the size of the latent reservoir. Clinical pharmacologic explanations for these results include a low inhibitory quotient (i.e., low potency) within the reservoir sites and intrinsic (e.g., sex differences and reservoir size) and extrinsic (physiochemical and pharmacokinetic drug characteristics) factors. We offer an outline of desired clinical pharmacologic attributes for therapeutics intended for clinical HIV cure research and call for research teams to have early and ongoing involvement of clinical pharmacologists. We believe such a collective effort will provide a solid scientific basis and hope for reaching the goal of a cure for HIV infection.
Collapse
Affiliation(s)
- Courtney V Fletcher
- Antiviral Pharmacology Laboratory, Center for Drug Discovery, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Shetty Ravi Dyavar
- Antiviral Pharmacology Laboratory, Center for Drug Discovery, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, UNMC, Omaha, Nebraska, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, UNMC, Omaha, Nebraska, USA
| |
Collapse
|
29
|
CAGE-seq reveals that HIV-1 latent infection does not trigger unique cellular responses in a Jurkat T cell model. J Virol 2021; 95:JVI.02394-20. [PMID: 33504604 PMCID: PMC8103700 DOI: 10.1128/jvi.02394-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cure for HIV-1 is currently stalled by our inability to specifically identify and target latently infected cells. HIV-1 viral RNA/DNA or viral proteins are recognized by cellular mechanisms and induce interferon responses in virus producing cells, but changes in latently infected cells remain unknown. HIVGKO contains a GFP reporter under the HIV-1 promoter and an mKO2 reporter under the internal EF1α promoter. This viral construct enables direct identification of HIV-1 both productively and latently infected cells. In this study we aim to identify specific cellular transcriptional responses triggered by HIV-1 entry and integration using Cap Analysis of Gene Expression (CAGE).We deep sequenced CAGE tags in uninfected, latently and productively infected cells and compared their differentially expressed transcription start site (TSS) profiles. Virus producing cells had differentially expressed TSSs related to T-cell activation and apoptosis when compared to uninfected cells or latently infected cells. Surprisingly, latently infected cells had only 33 differentially expressed TSSs compared to uninfected cells. Among these, SPP1 and APOE were down-regulated in latently infected cells. SPP1 or APOE knockdown in Jurkat T cells increased susceptibility to HIVGKO infection, suggesting that they have anti-viral properties. Components of the PI3K/mTOR pathway, MLST8, 4EBP and RPS6, were significant TSSs in productively infected cells, and S6K phosphorylation was increased compared to latently infected cells, suggesting that mTOR pathway activity plays a role in establishing the latent reservoir. These findings indicate that HIV-1 entry and integration do not trigger unique transcriptional responses when infection becomes latent.Importance: Latent HIV-1 infection is established as early as the first viral exposure and remains the most important barrier in obtaining the cure for HIV-1 infection. Here, we used CAGE to compare the transcriptional landscape of latently infected cells with that of non-infected or productively infected cells. We found that latently infected cells and non-infected cells show quite similar transcriptional profiles. Our data suggest that T-cells cannot recognize incoming viral components nor the integrated HIV-1 genome when infection remains latent. These findings should guide future research into widening our approaches to identify and target latent HIV-1 infected cells.
Collapse
|
30
|
Darcis G, Kootstra NA, Hooibrink B, van Montfort T, Maurer I, Groen K, Jurriaans S, Bakker M, van Lint C, Berkhout B, Pasternak AO. CD32 +CD4 + T Cells Are Highly Enriched for HIV DNA and Can Support Transcriptional Latency. Cell Rep 2021; 30:2284-2296.e3. [PMID: 32075737 PMCID: PMC7050565 DOI: 10.1016/j.celrep.2020.01.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/25/2019] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
The HIV latent reservoir forms the major hurdle to an HIV cure. The discovery of CD32 as marker of this reservoir has aroused much interest, but subsequent reports have challenged this finding. Here, we observe a positive correlation between the percentages of CD32+ cells among CD4+ T cells of aviremic cART-treated, HIV-infected individuals and their HIV DNA loads in peripheral blood. Moreover, optimization of the CD32+CD4+ T cell purification protocol reveals prominent enrichment for HIV DNA (mean, 292-fold) in these cells. However, no enrichment for HIV RNA is observed in CD32+CD4+ cells, yielding significantly reduced HIV RNA/DNA ratios. Furthermore, HIV proviruses in CD32+CD4+ cells can be reactivated ex vivo to produce virus, strongly suggesting that these cells support HIV transcriptional latency. Our results underscore the importance of isolating pure, bona fide CD32+CD4+ T cells for future studies and indicate that CD32 remains a promising candidate marker of the HIV reservoir.
Collapse
Affiliation(s)
- Gilles Darcis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Infectious Diseases Department, Liège University Hospital, Liège, Belgium.
| | - Neeltje A Kootstra
- Laboratory of Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Berend Hooibrink
- Department of Cell Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Thijs van Montfort
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Irma Maurer
- Laboratory of Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kevin Groen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Suzanne Jurriaans
- Laboratory of Clinical Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Carine van Lint
- Service of Molecular Virology, Département de Biologie Moléculaire (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
31
|
Wang X, Xu H. Residual Proviral Reservoirs: A High Risk for HIV Persistence and Driving Forces for Viral Rebound after Analytical Treatment Interruption. Viruses 2021; 13:335. [PMID: 33670027 PMCID: PMC7926539 DOI: 10.3390/v13020335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Antiretroviral therapy (ART) has dramatically suppressed human immunodeficiency virus (HIV) replication and become undetectable viremia. However, a small number of residual replication-competent HIV proviruses can still persist in a latent state even with lifelong ART, fueling viral rebound in HIV-infected patient subjects after treatment interruption. Therefore, the proviral reservoirs distributed in tissues in the body represent a major obstacle to a cure for HIV infection. Given unavailable HIV vaccine and a failure to eradicate HIV proviral reservoirs by current treatment, it is crucial to develop new therapeutic strategies to eliminate proviral reservoirs for ART-free HIV remission (functional cure), including a sterilizing cure (eradication of HIV reservoirs). This review highlights recent advances in the establishment and persistence of HIV proviral reservoirs, their detection, and potential eradication strategies.
Collapse
Affiliation(s)
| | - Huanbin Xu
- Tulane National Primate Research Center, Division of Comparative Pathology, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA 70433, USA;
| |
Collapse
|
32
|
Heinson AI, Woo J, Mukim A, White CH, Moesker B, Bosque A, Spina CA, Woelk CH, Macarthur BD, Beliakova-Bethell N. Micro RNA Targets in HIV Latency: Insights into Novel Layers of Latency Control. AIDS Res Hum Retroviruses 2021; 37:109-121. [PMID: 33045840 PMCID: PMC7876363 DOI: 10.1089/aid.2020.0150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite the considerable progress that has been made in identifying cellular factors and pathways that contribute to establishment and maintenance of the latent HIV reservoir, it remains the major obstacle to eradicating this virus. Most recently, noncoding genes have been implicated in regulation of HIV expression. In this study, small RNA sequencing was used to profile expression of microRNAs (miRNAs) in a primary CD4+ T cell in vitro model of HIV latency. Previously, we have shown that protein-coding genes dysregulated in this model were enriched for the p53 signaling pathway, which was confirmed experimentally. We further found a link between p53 signaling and dysregulated long noncoding RNAs. In this study, we hypothesized that miRNAs may provide an additional level of regulation of the p53 signaling pathway during HIV latency. Twenty-six miRNAs were identified to be dysregulated in our latency model. A subset of these miRNAs was validated by real-time quantitative polymerase chain reaction. Predicted messenger RNA (mRNA) targets and cellular pathways enriched for mRNA targets were identified using several analytical methods. Our analyses showed that many protein-coding genes and pathways targeted by dysregulated miRNAs have relevance to regulation of HIV expression or establishment of HIV latency. The p53 signaling pathway was found among pathways that were targeted by dysregulated miRNAs at a greater level than expected by chance. This study provides a mechanistic insight into regulation of the p53 pathway through miRNAs that may contribute to the establishment of latency.
Collapse
Affiliation(s)
- Ashley I. Heinson
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jeongmin Woo
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Amey Mukim
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California, USA
| | - Cory H. White
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Bastiaan Moesker
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, District of Columbia, USA
| | - Celsa A. Spina
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California, USA
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | | | - Ben D. Macarthur
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nadejda Beliakova-Bethell
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
33
|
Adams P, Fievez V, Schober R, Amand M, Iserentant G, Rutsaert S, Dessilly G, Vanham G, Hedin F, Cosma A, Moutschen M, Vandekerckhove L, Seguin-Devaux C. CD32 +CD4 + memory T cells are enriched for total HIV-1 DNA in tissues from humanized mice. iScience 2021; 24:101881. [PMID: 33364576 PMCID: PMC7753142 DOI: 10.1016/j.isci.2020.101881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/04/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
CD32 has raised conflicting results as a putative marker of the HIV-1 reservoir. We measured CD32 expression in tissues from viremic and virally suppressed humanized mice treated relatively early or late after HIV-1 infection with combined antiretroviral therapy. CD32 was expressed in a small fraction of the memory CD4+ T-cell subsets from different tissues in viremic and aviremic mice, regardless of treatment initiation time. CD32+ memory CD4+ T cells were enriched in cell-associated (CA) HIV-1 DNA but not in CA HIV-1 RNA as compared to the CD32-CD4+ fraction. Using multidimensional reduction analysis, several memory CD4+CD32+ T-cell clusters were identified expressing HLA-DR, TIGIT, or PD-1. Importantly, although tissue-resident CD32+CD4+ memory cells were enriched with translation-competent reservoirs, most of it was detected in memory CD32-CD4+ T cells. Our findings support that CD32 labels highly activated/exhausted memory CD4+ T-cell subsets that contain only a small proportion of the translation-competent reservoir.
Collapse
Affiliation(s)
- Philipp Adams
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
- Department of Biomedical and Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp 2000, Belgium
| | - Virginie Fievez
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Rafaëla Schober
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Mathieu Amand
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Gilles Iserentant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Géraldine Dessilly
- AIDS Reference Laboratory, Catholic University of Louvain, Brussels 1348, Belgium
| | - Guido Vanham
- Department of Biomedical and Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp 2000, Belgium
| | - Fanny Hedin
- Quantitative Biology Unit, National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Antonio Cosma
- Quantitative Biology Unit, National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Michel Moutschen
- Department of Infectious Diseases, University of Liège, CHU de Liège, Liège 4000, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| |
Collapse
|
34
|
Collora JA, Liu R, Albrecht K, Ho YC. The single-cell landscape of immunological responses of CD4+ T cells in HIV versus severe acute respiratory syndrome coronavirus 2. Curr Opin HIV AIDS 2021; 16:36-47. [PMID: 33165008 PMCID: PMC8162470 DOI: 10.1097/coh.0000000000000655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW CD4 T cell loss is the hallmark of uncontrolled HIV-1 infection. Strikingly, CD4 T cell depletion is a strong indicator for disease severity in the recently emerged coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We reviewed recent single-cell immune profiling studies in HIV-1 infection and COVID-19 to provide critical insight in virus-induced immunopathogenesis. RECENT FINDINGS Cytokine dysregulation in HIV-1 leads to chronic inflammation, while severe SARS-CoV-2 infection induces cytokine release syndrome and increased mortality. HIV-1-specific CD4 T cells are dysfunctional, while SARS-CoV-2-specific CD4 T cells exhibit robust Th1 function and correlate with protective antibody responses. In HIV-1 infection, follicular helper T cells (TFH) are susceptible to HIV-1 infection and persist in immune-sanctuary sites in lymphoid tissues as an HIV-1 reservoir. In severe SARS-CoV-2 infection, TFH are absent in lymphoid tissues and are associated with diminished protective immunity. Advancement in HIV-1 DNA, RNA, and protein-based single-cell capture methods can overcome the rarity and heterogeneity of HIV-1-infected cells and identify mechanisms of HIV-1 persistence and clonal expansion dynamics. SUMMARY Single-cell immune profiling identifies a high-resolution picture of immune dysregulation in HIV-1 and SARS-CoV-2 infection and informs outcome prediction and therapeutic interventions.
Collapse
Affiliation(s)
- Jack A Collora
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
35
|
Moranguinho I, Valente ST. Block-And-Lock: New Horizons for a Cure for HIV-1. Viruses 2020; 12:v12121443. [PMID: 33334019 PMCID: PMC7765451 DOI: 10.3390/v12121443] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
HIV-1/AIDS remains a global public health problem. The world health organization (WHO) reported at the end of 2019 that 38 million people were living with HIV-1 worldwide, of which only 67% were accessing antiretroviral therapy (ART). Despite great success in the clinical management of HIV-1 infection, ART does not eliminate the virus from the host genome. Instead, HIV-1 remains latent as a viral reservoir in any tissue containing resting memory CD4+ T cells. The elimination of these residual proviruses that can reseed full-blown infection upon treatment interruption remains the major barrier towards curing HIV-1. Novel approaches have recently been developed to excise or disrupt the virus from the host cells (e.g., gene editing with the CRISPR-Cas system) to permanently shut off transcription of the virus (block-and-lock and RNA interference strategies), or to reactivate the virus from cell reservoirs so that it can be eliminated by the immune system or cytopathic effects (shock-and-kill strategy). Here, we will review each of these approaches, with the major focus placed on the block-and-lock strategy.
Collapse
|
36
|
Neidleman J, Luo X, Frouard J, Xie G, Hsiao F, Ma T, Morcilla V, Lee A, Telwatte S, Thomas R, Tamaki W, Wheeler B, Hoh R, Somsouk M, Vohra P, Milush J, James KS, Archin NM, Hunt PW, Deeks SG, Yukl SA, Palmer S, Greene WC, Roan NR. Phenotypic analysis of the unstimulated in vivo HIV CD4 T cell reservoir. eLife 2020; 9:e60933. [PMID: 32990219 PMCID: PMC7524554 DOI: 10.7554/elife.60933] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
The latent reservoir is a major barrier to HIV cure. As latently infected cells cannot be phenotyped directly, the features of the in vivo reservoir have remained elusive. Here, we describe a method that leverages high-dimensional phenotyping using CyTOF to trace latently infected cells reactivated ex vivo to their original pre-activation states. Our results suggest that, contrary to common assumptions, the reservoir is not randomly distributed among cell subsets, and is remarkably conserved between individuals. However, reservoir composition differs between tissues and blood, as do cells successfully reactivated by different latency reversing agents. By selecting 8-10 of our 39 original CyTOF markers, we were able to isolate highly purified populations of unstimulated in vivo latent cells. These purified populations were highly enriched for replication-competent and intact provirus, transcribed HIV, and displayed clonal expansion. The ability to isolate unstimulated latent cells from infected individuals enables previously impossible studies on HIV persistence.
Collapse
Affiliation(s)
- Jason Neidleman
- Gladstone Institutes, San Francisco, United States
- Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Xiaoyu Luo
- Gladstone Institutes, San Francisco, United States
| | - Julie Frouard
- Gladstone Institutes, San Francisco, United States
- Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Guorui Xie
- Gladstone Institutes, San Francisco, United States
- Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Feng Hsiao
- Gladstone Institutes, San Francisco, United States
- Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Tongcui Ma
- Gladstone Institutes, San Francisco, United States
- Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Vincent Morcilla
- Centre for Virus Research, the Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Ashley Lee
- Centre for Virus Research, the Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Sushama Telwatte
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco, San Francisco, United States
| | | | - Whitney Tamaki
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Benjamin Wheeler
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, San Francisco, United States
| | - Ma Somsouk
- Department of Medicine, Division of Gastroenterology, San Francisco General Hospital and University of California, San Francisco, San Francisco, United States
| | - Poonam Vohra
- Department of Pathology, University of California, San Francisco, San Francisco, United States
| | - Jeffrey Milush
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Katherine Sholtis James
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Nancie M Archin
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Peter W Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, United States
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, San Francisco, United States
| | - Steven A Yukl
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco, San Francisco, United States
| | - Sarah Palmer
- Centre for Virus Research, the Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Warner C Greene
- Gladstone Institutes, San Francisco, United States
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Nadia R Roan
- Gladstone Institutes, San Francisco, United States
- Department of Urology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
37
|
Colomb F, Giron LB, Kuri-Cervantes L, Adeniji OS, Ma T, Dweep H, Battivelli E, Verdin E, Palmer CS, Tateno H, Kossenkov AV, Roan NR, Betts MR, Abdel-Mohsen M. Sialyl-Lewis X Glycoantigen Is Enriched on Cells with Persistent HIV Transcription during Therapy. Cell Rep 2020; 32:107991. [PMID: 32755584 PMCID: PMC7432956 DOI: 10.1016/j.celrep.2020.107991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/30/2020] [Accepted: 07/14/2020] [Indexed: 12/30/2022] Open
Abstract
A comprehensive understanding of the phenotype of persistent HIV-infected cells, transcriptionally active and/or transcriptionally inactive, is imperative for developing a cure. The relevance of cell-surface glycosylation to HIV persistence has never been explored. We characterize the relationship between cell-surface glycomic signatures and persistent HIV transcription in vivo. We find that the cell surface of CD4+ T cells actively transcribing HIV, despite suppressive therapy, harbors high levels of fucosylated carbohydrate ligands, including the cell extravasation mediator Sialyl-LewisX (SLeX), compared with HIV-infected transcriptionally inactive cells. These high levels of SLeX are induced by HIV transcription in vitro and are maintained after therapy in vivo. Cells with high-SLeX are enriched with markers associated with HIV susceptibility, signaling pathways that drive HIV transcription, and pathways involved in leukocyte extravasation. We describe a glycomic feature of HIV-infected transcriptionally active cells that not only differentiates them from their transcriptionally inactive counterparts but also may affect their trafficking abilities.
Collapse
Affiliation(s)
- Florent Colomb
- The Wistar Institute, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leila B Giron
- The Wistar Institute, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Opeyemi S Adeniji
- The Wistar Institute, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tongcui Ma
- University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Harsh Dweep
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Eric Verdin
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Clovis S Palmer
- The Burnet Institute, Melbourne, VIC 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Hiroaki Tateno
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | - Nadia R Roan
- University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohamed Abdel-Mohsen
- The Wistar Institute, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
García M, López-Fernández L, Mínguez P, Morón-López S, Restrepo C, Navarrete-Muñoz MA, López-Bernaldo JC, Benguría A, García MI, Cabello A, Fernández-Guerrero M, De la Hera FJ, Estrada V, Barros C, Martínez-Picado J, Górgolas M, Benito JM, Rallón N. Transcriptional signature of resting-memory CD4 T cells differentiates spontaneous from treatment-induced HIV control. J Mol Med (Berl) 2020; 98:1093-1105. [PMID: 32556382 DOI: 10.1007/s00109-020-01930-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 01/29/2023]
Abstract
The HIV reservoir is the main barrier to eradicating HIV infection, and resting memory CD4 T (Trm) cells are one of the most relevant cellular component harboring latent proviruses. This is the first study analyzing the transcriptional profile of Trm cells, in two well-characterized groups of HIV patients with distinct mechanisms of viral replication control (spontaneous versus treatment-induced). We use a systems biology approach to unravel subtle but important differences in the molecular mechanisms operating at the cellular level that could be associated with the host's ability to control virus replication and persistence. Despite the absence of significant differences in the transcriptome of Trm cells between Elite Controllers (ECs) and cART-treated (TX) patients at the single gene level, we found 353 gene ontology (GO) categories upregulated in EC compared with TX. Our results suggest the existence of mechanisms at two different levels: first boosting both adaptive and innate immune responses, and second promoting active viral replication and halting HIV latency in the Trm cell compartment of ECs as compared with TX patients. These differences in the transcriptional profile of Trm cells could be involved in the lower HIV reservoir observed in ECs compared with TX individuals, although mechanistic studies are needed to confirm this hypothesis. Combining transcriptome analysis and systems biology methods is likely to provide important findings to help us in the design of therapeutic strategies aimed at purging the HIV reservoir. KEY MESSAGES: HIV-elite controllers have the lowest HIV-DNA content in resting memory CD4 T cells. HIV-ECs show a particular transcriptional profile in resting memory CD4 T cells. Molecular mechanisms of enhanced adaptative and innate immune response in HIV-ECs. High viral replication and low viral latency establishment associate to the EC status.
Collapse
Affiliation(s)
- Marcial García
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Luis López-Fernández
- Pharmacy Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pablo Mínguez
- Bioinformatics Unit, Genetics Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | | | - Clara Restrepo
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - María A Navarrete-Muñoz
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | | | - Alberto Benguría
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María Isabel García
- Pharmacy Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | | | | | | | | | - Javier Martínez-Picado
- irsiCaixa AIDS Research Institute, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - José M Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Spain.
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Spain.
| |
Collapse
|
39
|
Zhang Y, Shen Y, Yin L, Qi T, Jia X, Lu H, Zhang L. Plasma Membrane Proteomic Profile Discovers Macrophage-capping Protein Related to Latent HIV-1. Curr HIV Res 2020; 17:42-52. [PMID: 31057110 DOI: 10.2174/1570162x17666190506155222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Due to the persistence of latent HIV-infected cellular reservoirs, HIV virus can not be eradicated completely. OBJECTIVE To identify proteins related to HIV latency, we performed a subcellular proteomic study in HIV latent cell lines. METHODS An established HIV-1 latent cell model (J-Lat Tat-GFP Clone A7 cells, A7 cells) and its parental cell line (Jurkat cells) were used. The plasma membrane (PM) fraction from cultured cells was enriched through aqueous two-phase partition. PM proteins were extracted and then separated using two-dimensional electrophoresis (2DE). Differentially expressed proteins were identified by mass spectrometry, and verified by western blotting. RESULTS Thirteen non-redundant proteins were identified to be differentially expressed in the A7 PM fraction compared to those in the Jurkat PM. Eight had a PM location through Gene Ontology (GO) analysis. A differential protein network of CAPG-ACTR3-CD3D was detected to have interactions with HIV Vpr, Tat, gp160, etc. through STRING software analysis. One of the differential proteins (Macrophage-capping protein (CAPG)) was verified by western blotting to be down- regulated in two cell lines and HIV resting CD4+ T cells negatively selected from patients. CONCLUSION We identified 13 proteins in A7 compared to Jurkat cells. CAPG may be a potential biomarker related to HIV latency.
Collapse
Affiliation(s)
- Yujiao Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yinzhong Shen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Tangkai Qi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaofang Jia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
40
|
Song CB, Zhang LL, Wu X, Fu YJ, Jiang YJ, Shang H, Zhang ZN. CD4 +CD38 + central memory T cells contribute to HIV persistence in HIV-infected individuals on long-term ART. J Transl Med 2020; 18:95. [PMID: 32093678 PMCID: PMC7038621 DOI: 10.1186/s12967-020-02245-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Despite the effective antiretroviral treatment (ART) of HIV-infected individuals, HIV persists in a small pool. Central memory CD4+ T cells (Tcm) make a major contribution to HIV persistence. We found that unlike HLA-DR, CD38 is highly expressed on the Tcm of HIV-infected subjects receiving ART for > 5 years. It has been reported that the half-life of total and episomal HIV DNA in the CD4+CD38+ T cell subset, exhibits lower decay rates at 12 weeks of ART. Whether CD38 contributes to HIV latency in HIV-infected individuals receiving long-term ART is yet to be addressed. Methods Peripheral blood mononuclear cells (PBMCs) were isolated from the whole blood of HIV-infected subjects receiving suppressive ART. The immunophenotyping, proliferation and apoptosis of CD4+ T cell subpopulations were detected by flow cytometry, and the level of CD38 mRNA and total HIV DNA were measured using real-time PCR and digital droplet PCR, respectively. A negative binomial regression model was used to determine the correlation between CD4+CD38+ Tcm and total HIV DNA in CD4+ T cells. Results CD38 was highly expressed on CD4+ Tcm cells from HIV infected individuals on long-term ART. Comparing with HLA-DR−Tcm and CD4+HLA-DR+ T cells, CD4+CD38+ Tcm cells displayed lower levels of activation (CD25 and CD69) and higher levels of CD127 expression. The proportion of CD38+ Tcm, but not CD38− Tcm cells can predict the total HIV DNA in the CD4+ T cells and the CD38+ Tcm subset harbored higher total HIV DNA copy numbers than the CD38− Tcm subset. After transfected with CD38 si-RNA in CD4+ T cells, the proliferation of CD4+ T cells was inhibited. Conclusion The current date indicates that CD4+CD38+ Tcm cells contribute to HIV persistence in HIV-infected individuals on long-term ART. Our study provides a potential target to resolve HIV persistence.
Collapse
Affiliation(s)
- Cheng-Bo Song
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Le-Le Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Xian Wu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Ya-Jing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Yong-Jun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China.
| | - Zi-Ning Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China.
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Gallant efforts are ongoing to achieve sustained antiretroviral therapy (ART)-free HIV remission in the HIV-infected person; however, most, if not all, current human clinical studies have primarily focused these efforts on targeting viral persistence in CD4 T cells in blood and tissue sanctuaries. The lack of myeloid centered HIV clinical trials, either as primary or secondary end points, has hindered our understanding of the contribution of myeloid cells in unsuccessful trials but may also guide successes in future HIV eradication clinical strategies. RECENT FINDINGS Recent advances have highlighted the importance of myeloid reservoirs as sanctuaries of HIV persistence and therefore may partially be responsible for viral recrudescence following ART treatment interruption in several clinical trials where HIV was not detectable or recovered from CD4 T cells. Given these findings, novel innovative therapeutic approaches specifically focused on HIV clearance in myeloid cell populations need to be vigorously pursued if we are to achieve additional cases of sustained ART-free remission. This review will highlight new research efforts defining myeloid persistence and recent advances in HIV remission and cure trials that would be relevant in targeting this compartment and make an argument as to their clinical relevancy as we progress towards sustained ART-free HIV remission in all HIV-infected persons.
Collapse
Affiliation(s)
- Brooks I Mitchell
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, USA
| | - Elizabeth I Laws
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, USA
| | - Lishomwa C Ndhlovu
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, USA.
| |
Collapse
|
42
|
Ait-Ammar A, Kula A, Darcis G, Verdikt R, De Wit S, Gautier V, Mallon PWG, Marcello A, Rohr O, Van Lint C. Current Status of Latency Reversing Agents Facing the Heterogeneity of HIV-1 Cellular and Tissue Reservoirs. Front Microbiol 2020; 10:3060. [PMID: 32038533 PMCID: PMC6993040 DOI: 10.3389/fmicb.2019.03060] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
One of the most explored therapeutic approaches aimed at eradicating HIV-1 reservoirs is the "shock and kill" strategy which is based on HIV-1 reactivation in latently-infected cells ("shock" phase) while maintaining antiretroviral therapy (ART) in order to prevent spreading of the infection by the neosynthesized virus. This kind of strategy allows for the "kill" phase, during which latently-infected cells die from viral cytopathic effects or from host cytolytic effector mechanisms following viral reactivation. Several latency reversing agents (LRAs) with distinct mechanistic classes have been characterized to reactivate HIV-1 viral gene expression. Some LRAs have been tested in terms of their potential to purge latent HIV-1 in vivo in clinical trials, showing that reversing HIV-1 latency is possible. However, LRAs alone have failed to reduce the size of the viral reservoirs. Together with the inability of the immune system to clear the LRA-activated reservoirs and the lack of specificity of these LRAs, the heterogeneity of the reservoirs largely contributes to the limited success of clinical trials using LRAs. Indeed, HIV-1 latency is established in numerous cell types that are characterized by distinct phenotypes and metabolic properties, and these are influenced by patient history. Hence, the silencing mechanisms of HIV-1 gene expression in these cellular and tissue reservoirs need to be better understood to rationally improve this cure strategy and hopefully reach clinical success.
Collapse
Affiliation(s)
- Amina Ait-Ammar
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Anna Kula
- Malopolska Centre of Biotechnology, Laboratory of Virology, Jagiellonian University, Krakow, Poland
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Roxane Verdikt
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stephane De Wit
- Service des Maladies Infectieuses, CHU Saint-Pierre, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
43
|
Cantero-Pérez J, Grau-Expósito J, Serra-Peinado C, Rosero DA, Luque-Ballesteros L, Astorga-Gamaza A, Castellví J, Sanhueza T, Tapia G, Lloveras B, Fernández MA, Prado JG, Solé-Sedeno JM, Tarrats A, Lecumberri C, Mañalich-Barrachina L, Centeno-Mediavilla C, Falcó V, Buzon MJ, Genescà M. Resident memory T cells are a cellular reservoir for HIV in the cervical mucosa. Nat Commun 2019; 10:4739. [PMID: 31628331 PMCID: PMC6802119 DOI: 10.1038/s41467-019-12732-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/30/2019] [Indexed: 11/09/2022] Open
Abstract
HIV viral reservoirs are established very early during infection. Resident memory T cells (TRM) are present in tissues such as the lower female genital tract, but the contribution of this subset of cells to the pathogenesis and persistence of HIV remains unclear. Here, we show that cervical CD4+TRM display a unique repertoire of clusters of differentiation, with enrichment of several molecules associated with HIV infection susceptibility, longevity and self-renewing capacities. These protein profiles are enriched in a fraction of CD4+TRM expressing CD32. Cervical explant models show that CD4+TRM preferentially support HIV infection and harbor more viral DNA and protein than non-TRM. Importantly, cervical tissue from ART-suppressed HIV+ women contain high levels of viral DNA and RNA, being the TRM fraction the principal contributor. These results recognize the lower female genital tract as an HIV sanctuary and identify CD4+TRM as primary targets of HIV infection and viral persistence. Thus, strategies towards an HIV cure will need to consider TRM phenotypes, which are widely distributed in tissues.
Collapse
Affiliation(s)
- Jon Cantero-Pérez
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Grau-Expósito
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carla Serra-Peinado
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniela A Rosero
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Luque-Ballesteros
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Astorga-Gamaza
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Castellví
- Pathology Department, Hospital Universitari Vall d'Hebron, UAB, Barcelona, Spain
| | - Tamara Sanhueza
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Gustavo Tapia
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Belen Lloveras
- Pathology Department, Hospital del Mar, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marco A Fernández
- Flow Cytometry Facility, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Julia G Prado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Josep M Solé-Sedeno
- Obstetrics and Gynecology Department, Hospital del Mar, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Tarrats
- Department of Obstetrics and Gynecology, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Carla Lecumberri
- Department of Obstetrics and Gynecology, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Laura Mañalich-Barrachina
- Department of Obstetrics and Gynecology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Centeno-Mediavilla
- Department of Obstetrics and Gynecology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria J Buzon
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Meritxell Genescà
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
44
|
Darcis G, Berkhout B, Pasternak AO. The Quest for Cellular Markers of HIV Reservoirs: Any Color You Like. Front Immunol 2019; 10:2251. [PMID: 31616425 PMCID: PMC6763966 DOI: 10.3389/fimmu.2019.02251] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Combination antiretroviral therapy (ART) suppresses human immunodeficiency virus (HIV) replication and improves immune function, but is unable to eradicate the virus. Therefore, development of an HIV cure has become one of the main priorities of the HIV research field. The main obstacle for an HIV cure is the formation of latent viral reservoirs, where the virus is able to “hide” despite decades of therapy, just to reignite active replication once therapy is stopped. Revealing HIV hiding places is thus central to HIV cure research, but the absence of markers of these reservoir cells greatly complicates the search for a cure. Identification of one or several marker(s) of latently infected cells would represent a significant step forward toward a better description of the cell types involved and improved understanding of HIV latency. Moreover, it could provide a “handle” for selective therapeutic targeting of the reservoirs. A number of cellular markers of HIV reservoir have recently been proposed, including immune checkpoint molecules, CD2, and CD30. CD32a is perhaps the most promising of HIV reservoir markers as it is reported to be associated with a very prominent enrichment in HIV DNA, although this finding has been challenged. In this review, we provide an update on the current knowledge about HIV reservoir markers. We specifically highlight studies that characterized markers of persistently infected cells in the lymphoid tissues.
Collapse
Affiliation(s)
- Gilles Darcis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
45
|
Sadowski I, Hashemi FB. Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs. Cell Mol Life Sci 2019; 76:3583-3600. [PMID: 31129856 PMCID: PMC6697715 DOI: 10.1007/s00018-019-03156-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
35 years since identification of HIV as the causative agent of AIDS, and 35 million deaths associated with this disease, significant effort is now directed towards the development of potential cures. Current anti-retroviral (ART) therapies for HIV/AIDS can suppress virus replication to undetectable levels, and infected individuals can live symptom free so long as treatment is maintained. However, removal of therapy allows rapid re-emergence of virus from a highly stable reservoir of latently infected cells that exist as a barrier to elimination of the infection with current ART. Prospects of a cure for HIV infection are significantly encouraged by two serendipitous cases where individuals have entered remission following stem cell transplantation from compatible HIV-resistant donors. However, development of a routine cure that could become available to millions of infected individuals will require a means of specifically purging cells harboring latent HIV, preventing replication of latent provirus, or destruction of provirus genomes by gene editing. Elimination of latently infected cells will require a means of exposing this population, which may involve identification of a natural specific biomarker or therapeutic intervention to force their exposure by reactivation of virus expression. Accordingly, the proposed "Shock and Kill" strategy involves treatment with latency-reversing agents (LRA) to induce HIV provirus expression thus exposing these cells to killing by cellular immunity or apoptosis. Current efforts to enable this strategy are directed at developing improved combinations of LRA to produce broad and robust induction of HIV provirus and enhancing the elimination of cells where replication has been reactivated by targeted immune modulation. Alternative strategies may involve preventing re-emergence virus from latently infected cells by "Lock and Block" intervention, where transcription of provirus is inhibited to prevent virus spread or disruption of the HIV provirus genome by genome editing.
Collapse
Affiliation(s)
- Ivan Sadowski
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The HIV-1 reservoir is composed of infected cells poised to replicate and spread the virus upon treatment interruption. It constitutes the main obstacle toward an HIV-1 cure. Whether marker(s) may allow the detection of cells that form the reservoir is an outstanding question. Here, we present and discuss recent advances and controversies in the identification and characterization of markers of the HIV-1 reservoir. RECENT FINDINGS Latently infected T cells that persist under successful therapy do not express viral antigens, making their identification challenging. HIV is not equally distributed across T cells subsets. For instance, central memory, Th17, and T follicular helper cells largely contribute to viral persistence. Recently, novel markers of the reservoir have been identified. Using various strategies, different teams have reported that surface molecules such as immune checkpoints inhibitors, CD30, or CD32a may be enriched in latently infected cells or in cells harboring viral RNA. SUMMARY Understanding the mechanisms underlying the presence of markers of HIV-1 infected cells will provide new insights into the formation and maintenance of the viral reservoir. These markers should also facilitate the detection of persistently infected cells in patients' samples and in animal models, and represent potential targets for elimination of these cells.
Collapse
|
47
|
Humanized Mouse Model of HIV-1 Latency with Enrichment of Latent Virus in PD-1 + and TIGIT + CD4 T Cells. J Virol 2019; 93:JVI.02086-18. [PMID: 30842333 DOI: 10.1128/jvi.02086-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/01/2019] [Indexed: 12/18/2022] Open
Abstract
Combination anti-retroviral drug therapy (ART) potently suppresses HIV-1 replication but does not result in virus eradication or a cure. A major contributing factor is the long-term persistence of a reservoir of latently infected cells. To study this reservoir, we established a humanized mouse model of HIV-1 infection and ART suppression based on an oral ART regimen. Similar to humans, HIV-1 levels in the blood of ART-treated animals were frequently suppressed below the limits of detection. However, the limited timeframe of the mouse model and the small volume of available samples makes it a challenging model with which to achieve full viral suppression and to investigate the latent reservoir. We therefore used an ex vivo latency reactivation assay that allows a semiquantitative measure of the latent reservoir that establishes in individual animals, regardless of whether they are treated with ART. Using this assay, we found that latently infected human CD4 T cells can be readily detected in mouse lymphoid tissues and that latent HIV-1 was enriched in populations expressing markers of T cell exhaustion, PD-1 and TIGIT. In addition, we were able to use the ex vivo latency reactivation assay to demonstrate that HIV-specific TALENs can reduce the fraction of reactivatable virus in the latently infected cell population that establishes in vivo, supporting the use of targeted nuclease-based approaches for an HIV-1 cure.IMPORTANCE HIV-1 can establish latent infections that are not cleared by current antiretroviral drugs or the body's immune responses and therefore represent a major barrier to curing HIV-infected individuals. However, the lack of expression of viral antigens on latently infected cells makes them difficult to identify or study. Here, we describe a humanized mouse model that can be used to detect latent but reactivatable HIV-1 in both untreated mice and those on ART and therefore provides a simple system with which to study the latent HIV-1 reservoir and the impact of interventions aimed at reducing it.
Collapse
|
48
|
|
49
|
Pardons M, Baxter AE, Massanella M, Pagliuzza A, Fromentin R, Dufour C, Leyre L, Routy JP, Kaufmann DE, Chomont N. Single-cell characterization and quantification of translation-competent viral reservoirs in treated and untreated HIV infection. PLoS Pathog 2019; 15:e1007619. [PMID: 30811499 PMCID: PMC6411230 DOI: 10.1371/journal.ppat.1007619] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/11/2019] [Accepted: 02/05/2019] [Indexed: 12/31/2022] Open
Abstract
The phenotypic characterization of the cells in which HIV persists during antiretroviral therapy (ART) remains technically challenging. We developed a simple flow cytometry-based assay to quantify and characterize infected cells producing HIV proteins during untreated and treated HIV infection. By combining two antibodies targeting the HIV capsid in a standard intracellular staining protocol, we demonstrate that p24-producing cells can be detected with high specificity and sensitivity in the blood from people living with HIV. In untreated individuals, the frequency of productively infected cells strongly correlated with plasma viral load. Infected cells preferentially displayed a transitional memory phenotype and were enriched in Th17, peripheral Tfh and regulatory T cells subsets. These cells also preferentially expressed activation markers (CD25, HLA-DR, Ki67), immune checkpoint molecules (PD-1, LAG-3, TIGIT, Tim-3) as well as the integrins α4β7 and α4β1. In virally suppressed individuals on ART, p24-producing cells were only detected upon stimulation (median frequency of 4.3 p24+ cells/106 cells). These measures correlated with other assays assessing the size of the persistent reservoir including total and integrated HIV DNA, Tat/rev Induced Limiting Dilution Assay (TILDA) and quantitative viral outgrowth assay (QVOA). In ART-suppressed individuals, p24-producing cells preferentially displayed a transitional and effector memory phenotype, and expressed immune checkpoint molecules (PD-1, TIGIT) as well as the integrin α4β1. Remarkably, α4β1 was expressed by more than 70% of infected cells both in untreated and ART-suppressed individuals. Altogether, these results highlight a broad diversity in the phenotypes of HIV-infected cells in treated and untreated infection and suggest that strategies targeting multiple and phenotypically distinct cellular reservoirs will be needed to exert a significant impact on the size of the reservoir. HIV persists in a small pool of infected CD4+ T cells during ART. A better characterization of these cells is a pre-requisite to the development of HIV eradication strategies. We developed a novel assay, named HIV-Flow, to simultaneously quantify and characterize reservoir cells in individuals receiving ART. With this assay, we found that a median of only 5 cells/million have the ability to produce the HIV protein Gag in individuals on suppressive ART. These frequencies correlated with other assays aimed at measuring HIV reservoirs. Importantly, we show that the HIV reservoir is phenotypically diverse, with numerous cell subsets contributing to the pool of persistently infected cells. Nonetheless, we identified several markers preferentially expressed at the surface or these rare reservoir cells, including immune checkpoint molecules and homing receptors. By combining these markers, we identified discrete cellular subsets highly enriched in HIV-infected cells. This novel assay will facilitate the identification of markers expressed by cellular HIV reservoirs.
Collapse
Affiliation(s)
- Marion Pardons
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Amy E. Baxter
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Marta Massanella
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Amélie Pagliuzza
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Caroline Dufour
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Louise Leyre
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Division of Hematology & Chronic Viral Illness Service, McGill University Heath Centre, Montreal, Quebec, Canada
| | - Daniel E. Kaufmann
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
50
|
Tomalka AG, Resto-Garay I, Campbell KS, Popkin DL. In vitro Evidence That Combination Therapy With CD16-Bearing NK-92 Cells and FDA-Approved Alefacept Can Selectively Target the Latent HIV Reservoir in CD4+ CD2hi Memory T Cells. Front Immunol 2018; 9:2552. [PMID: 30455699 PMCID: PMC6230627 DOI: 10.3389/fimmu.2018.02552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/17/2018] [Indexed: 12/24/2022] Open
Abstract
Elimination of the latent HIV reservoir remains the biggest hurdle to achieve HIV cure. In order to specifically eliminate HIV infected cells they must be distinguishable from uninfected cells. CD2 was recently identified as a potential marker enriched in the HIV-1 reservoir on CD4+ T cells, the largest, longest-lived and best-characterized constituent of the HIV reservoir. We previously proposed to repurpose FDA-approved alefacept, a humanized α-CD2 fusion protein, to reduce the HIV reservoir in CD2hi CD4+ memory T cells. Here, we show the first evidence that alefacept can specifically target and reduce CD2hi HIV infected cells in vitro. We explore a variety of natural killer (NK) cells as mediators of antibody-dependent cell-mediated cytotoxicity (ADCC) including primary NK cells, expanded NK cells as well as the CD16 transduced NK-92 cell line which is currently under study in clinical trials as a treatment for cancer. We demonstrate that CD16.NK-92 has a natural preference to kill CD2hi CD45RA- memory T cells, specifically CD45RA- CD27+ central memory/transitional memory (TCM/TM) subset in both healthy and HIV+ patient samples as well as to reduce HIV DNA from HIV+ samples from donors well controlled on antiretroviral therapy. Lastly, alefacept can combine with CD16.NK-92 to decrease HIV DNA in some patient samples and thus may yield value as part of a strategy toward sustained HIV remission.
Collapse
Affiliation(s)
- Amanda G. Tomalka
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Ivelisse Resto-Garay
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Kerry S. Campbell
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA, United States
| | - Daniel L. Popkin
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|