1
|
Litov AG, Semenyuk II, Belova OA, Polienko AE, Thinh NV, Karganova GG, Tiunov AV. Extensive Diversity of Viruses in Millipedes Collected in the Dong Nai Biosphere Reserve (Vietnam). Viruses 2024; 16:1486. [PMID: 39339962 PMCID: PMC11437466 DOI: 10.3390/v16091486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Advances in sequencing technologies and bioinformatics have led to breakthroughs in the study of virus biodiversity. Millipedes (Diplopoda, Myriapoda, Arthropoda) include more than 12,000 extant species, yet data on virus diversity in Diplopoda are scarce. This study aimed to explore the virome of the millipedes collected in the Dong Nai Biosphere Reserve in Vietnam. We studied 14 species of millipedes and managed to assemble and annotate the complete coding genomes of 16 novel viruses, the partial coding genomes of 10 more viruses, and several fragmented viral sequences, which may indicate the presence of about 54 more viruses in the studied samples. Among the complete and partial genomes, 27% were putative members of the order Picornavirales. Most of the discovered viruses were very distant from the viruses currently present in the relevant databases. At least eight viruses meet the criteria to be recognized as a new species by the International Committee on Taxonomy of Viruses, and, for two of them, a higher taxonomic status (genus and even family) can be suggested.
Collapse
Affiliation(s)
- Alexander G Litov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia
| | - Irina I Semenyuk
- A.N. Severtsov Institute of Ecology and Evolution, 119071 Moscow, Russia
- Southern Branch, Russian-Vietnamese Tropical Scientific and Technological Center, Ho Chi Minh City 70001, Vietnam
| | - Oxana A Belova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alexandra E Polienko
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Nguyen Van Thinh
- Southern Branch, Russian-Vietnamese Tropical Scientific and Technological Center, Ho Chi Minh City 70001, Vietnam
| | - Galina G Karganova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia
| | - Alexei V Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, 119071 Moscow, Russia
| |
Collapse
|
2
|
MATSUMURA R, KOBAYASHI D, ITOYAMA K, ISAWA H. Detection of novel coltivirus-related sequences in Haemaphysalis megaspinosa ticks collected from Kanagawa Prefecture, Japan. J Vet Med Sci 2024; 86:866-871. [PMID: 38880612 PMCID: PMC11300128 DOI: 10.1292/jvms.24-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/01/2024] [Indexed: 06/18/2024] Open
Abstract
Coltiviruses, belonging to the genus Coltivirus within the family Spinareoviridae, are predominantly tick-borne viruses. Some of these species have been implicated in human diseases; however, their diversity, geographical distribution, and evolutionary dynamics remain inadequately. Therefore, this study was undertaken to explore the phylogenetic evolution of coltiviruses and related viruses. Our results revealed the detection of novel coltivirus-related sequences in adult female Haemaphysalis megaspinosa ticks collected from Kanagawa Prefecture, Japan. Molecular phylogenetic analysis revealed a close association between the sequences and the genome sequences of known coltivirus-related viruses, namely Qinghe tick reovirus and Fennes virus. The putative coltivirus-related virus was tentatively designated the Nakatsu tick virus. This study provides insights into the phylogenetic evolution of coltiviruses and related viruses.
Collapse
Affiliation(s)
- Ryo MATSUMURA
- Graduate School of Agriculture, Meiji University, Kanagawa,
Japan
- Department of Medical Entomology, National Institute of
Infectious Diseases, Tokyo, Japan
| | - Daisuke KOBAYASHI
- Department of Medical Entomology, National Institute of
Infectious Diseases, Tokyo, Japan
- Management Department of Biosafety, Laboratory Animal, and
Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kyo ITOYAMA
- Graduate School of Agriculture, Meiji University, Kanagawa,
Japan
| | - Haruhiko ISAWA
- Department of Medical Entomology, National Institute of
Infectious Diseases, Tokyo, Japan
| |
Collapse
|
3
|
Oliver G, Yap VMZ, Chalder T, Oliver VL, Gibney KB, Dharan A, Wilson SJ, Kanaan RAA. The challenges of living with Debilitating Symptom Complexes Attributed to Ticks (DSCATT) - A qualitative study. Aust N Z J Public Health 2024; 48:100163. [PMID: 38945055 DOI: 10.1016/j.anzjph.2024.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
OBJECTIVE We sought to explore the lived experience of people with Debilitating Symptom Complexes Attributed to Ticks (DSCATT) to inform the development of a potential treatment intervention. METHODS We conducted one-to-one in-depth, semi-structured interviews with 13 people living in Australia affected by DSCATT. Interviews were transcribed and analysed using thematic analysis. RESULTS Although participants attributed the origin of their illness to tick bites, not all were adamant they had Lyme disease. Negative experiences in conventional healthcare were marked and were reported to exacerbate the impact of the illness and affect mental health. Further, these negative experiences propelled participants to seek unapproved treatments (by Australian standards). The desire for the illness to be acknowledged and causative agents identified was pronounced among the participant group. CONCLUSIONS Individuals with DSCATT experience significant challenges amid a contentious healthcare landscape surrounding chronic symptoms attributed to ticks in Australia. Our findings suggest the need for empathetic, supportive and patient-centred treatments for this cohort. IMPLICATIONS FOR PUBLIC HEALTH DSCATT results in a considerable burden across multiple domains for those affected. Negative experiences with healthcare exacerbate the suffering of people with DSCATT in Australia. New approaches that acknowledge the illness experience of people with DSCATT, alongside evidence-based treatments that encompass biopsychosocial models of care, are needed to tackle this debilitating condition.
Collapse
Affiliation(s)
- Georgina Oliver
- Department of Psychiatry, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia.
| | - Valerie M Z Yap
- Department of Psychiatry, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Trudie Chalder
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Victoria L Oliver
- Nossal Institute for Global Health, Melbourne School of Population and Global Health, University of Melbourne, Victoria 3010, Australia
| | - Katherine B Gibney
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Anita Dharan
- Department of Psychiatry, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Victoria 3010, Australia
| | - Sarah J Wilson
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria 3010, Australia; Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Richard A A Kanaan
- Department of Psychiatry, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
4
|
Martyn C, Hayes BM, Lauko D, Midthun E, Castaneda G, Bosco-Lauth A, Salkeld DJ, Kistler A, Pollard KS, Chou S. Metatranscriptomic investigation of single Ixodes pacificus ticks reveals diverse microbes, viruses, and novel mRNA-like endogenous viral elements. mSystems 2024; 9:e0032124. [PMID: 38742892 PMCID: PMC11237458 DOI: 10.1128/msystems.00321-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
Ticks are increasingly important vectors of human and agricultural diseases. While many studies have focused on tick-borne bacteria, far less is known about tick-associated viruses and their roles in public health or tick physiology. To address this, we investigated patterns of bacterial and viral communities across two field populations of western black-legged ticks (Ixodes pacificus). Through metatranscriptomic analysis of 100 individual ticks, we quantified taxon prevalence, abundance, and co-occurrence with other members of the tick microbiome. In addition to commonly found tick-associated microbes, we assembled 11 novel RNA virus genomes from Rhabdoviridae, Chuviridae, Picornaviridae, Phenuiviridae, Reoviridae, Solemovidiae, Narnaviridae and two highly divergent RNA virus genomes lacking sequence similarity to any known viral families. We experimentally verified the presence of these in I. pacificus ticks across several life stages. We also unexpectedly identified numerous virus-like transcripts that are likely encoded by tick genomic DNA, and which are distinct from known endogenous viral element-mediated immunity pathways in invertebrates. Taken together, our work reveals that I. pacificus ticks carry a greater diversity of viruses than previously appreciated, in some cases resulting in evolutionarily acquired virus-like transcripts. Our findings highlight how pervasive and intimate tick-virus interactions are, with major implications for both the fundamental biology and vectorial capacity of I. pacificus ticks. IMPORTANCE Ticks are increasingly important vectors of disease, particularly in the United States where expanding tick ranges and intrusion into previously wild areas has resulted in increasing human exposure to ticks. Emerging human pathogens have been identified in ticks at an increasing rate, and yet little is known about the full community of microbes circulating in various tick species, a crucial first step to understanding how they interact with each and their tick host, as well as their ability to cause disease in humans. We investigated the bacterial and viral communities of the Western blacklegged tick in California and found 11 previously uncharacterized viruses circulating in this population.
Collapse
Affiliation(s)
- Calla Martyn
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
- Gladstone Institute of Data Science & Biotechnology, San Francisco, California, USA
| | - Beth M. Hayes
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
- One Health Institute, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Domokos Lauko
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
| | - Edward Midthun
- Department of Biomedical Sciences, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Gloria Castaneda
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
| | - Angela Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Daniel J. Salkeld
- Department of Biology, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Amy Kistler
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
| | - Katherine S. Pollard
- Gladstone Institute of Data Science & Biotechnology, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Seemay Chou
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Litov AG, Shchetinin AM, Kholodilov IS, Belova OA, Gadzhikurbanov MN, Ivannikova AY, Kovpak AA, Gushchin VA, Karganova GG. High-Throughput Sequencing Reveals Three Rhabdoviruses Persisting in the IRE/CTVM19 Cell Line. Viruses 2024; 16:576. [PMID: 38675918 PMCID: PMC11054507 DOI: 10.3390/v16040576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Cell cultures derived from ticks have become a commonly used tool for the isolation and study of tick-borne pathogens and tick biology. The IRE/CTVM19 cell line, originating from embryos of Ixodes ricinus, is one such line. Previously, reovirus-like particles, as well as sequences with similarity to rhabdoviruses and iflaviruses, were detected in the IRE/CTVM19 cell line, suggesting the presence of multiple persisting viruses. Subsequently, the full genome of an IRE/CTVM19-associated rhabdovirus was recovered from a cell culture during the isolation of the Alongshan virus. In the current work, we used high-throughput sequencing to describe a virome of the IRE/CTVM19 cell line. In addition to the previously detected IRE/CTVM19-associated rhabdovirus, two rhabdoviruses were detected: Chimay rhabdovirus and Norway mononegavirus 1. In the follow-up experiments, we were able to detect both positive and negative RNA strands of the IRE/CTVM19-associated rhabdovirus and Norway mononegavirus 1 in the IRE/CTVM19 cells, suggesting their active replication in the cell line. Passaging attempts in cell lines of mammalian origin failed for all three discovered rhabdoviruses.
Collapse
Affiliation(s)
- Alexander G. Litov
- Laboratory of Biology of Arboviruses, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.G.L.); (I.S.K.); (O.A.B.); (M.N.G.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia
| | - Alexey M. Shchetinin
- Pathogenic Microorganisms Variability Laboratory, Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (A.M.S.); (V.A.G.)
| | - Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.G.L.); (I.S.K.); (O.A.B.); (M.N.G.)
| | - Oxana A. Belova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.G.L.); (I.S.K.); (O.A.B.); (M.N.G.)
| | - Magomed N. Gadzhikurbanov
- Laboratory of Biology of Arboviruses, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.G.L.); (I.S.K.); (O.A.B.); (M.N.G.)
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anna Y. Ivannikova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.G.L.); (I.S.K.); (O.A.B.); (M.N.G.)
| | - Anastasia A. Kovpak
- Laboratory of Biochemistry, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia;
| | - Vladimir A. Gushchin
- Pathogenic Microorganisms Variability Laboratory, Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (A.M.S.); (V.A.G.)
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.G.L.); (I.S.K.); (O.A.B.); (M.N.G.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia
| |
Collapse
|
6
|
Ye RZ, Li YY, Xu DL, Wang BH, Wang XY, Zhang MZ, Wang N, Gao WY, Li C, Han XY, Du LF, Xia LY, Song K, Xu Q, Liu J, Cheng N, Li ZH, Du YD, Yu HJ, Shi XY, Jiang JF, Sun Y, Cui XM, Ding SJ, Zhao L, Cao WC. Virome diversity shaped by genetic evolution and ecological landscape of Haemaphysalis longicornis. MICROBIOME 2024; 12:35. [PMID: 38378577 PMCID: PMC10880243 DOI: 10.1186/s40168-024-01753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Haemaphysalis longicornis is drawing attentions for its geographic invasion, extending population, and emerging disease threat. However, there are still substantial gaps in our knowledge of viral composition in relation to genetic diversity of H. longicornis and ecological factors, which are important for us to understand interactions between virus and vector, as well as between vector and ecological elements. RESULTS We conducted the meta-transcriptomic sequencing of 136 pools of H. longicornis and identified 508 RNA viruses of 48 viral species, 22 of which have never been reported. Phylogenetic analysis of mitochondrion sequences divided the ticks into two genetic clades, each of which was geographically clustered and significantly associated with ecological factors, including altitude, precipitation, and normalized difference vegetation index. The two clades showed significant difference in virome diversity and shared about one fifth number of viral species that might have evolved to "generalists." Notably, Bandavirus dabieense, the pathogen of severe fever with thrombocytopenia syndrome was only detected in ticks of clade 1, and half number of clade 2-specific viruses were aquatic-animal-associated. CONCLUSIONS These findings highlight that the virome diversity is shaped by internal genetic evolution and external ecological landscape of H. longicornis and provide the new foundation for promoting the studies on virus-vector-ecology interaction and eventually for evaluating the risk of H. longicornis for transmitting the viruses to humans and animals. Video Abstract.
Collapse
Affiliation(s)
- Run-Ze Ye
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Yu-Yu Li
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Da-Li Xu
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Department of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Bai-Hui Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Xiao-Yang Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Ning Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Wan-Ying Gao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Cheng Li
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Xiao-Yu Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Li-Feng Du
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Luo-Yuan Xia
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Ke Song
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Qing Xu
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Jing Liu
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Nuo Cheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Ze-Hui Li
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yi-Di Du
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Hui-Jun Yu
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiao-Yu Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| | - Shu-Jun Ding
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Department of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China.
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Kim MM, Shea G, Šlapeta J. Detection of tick-borne bacterial DNA (Rickettsia sp.) in reptile ticks Amblyomma moreliae from New South Wales, Australia. Parasitol Res 2024; 123:89. [PMID: 38194190 PMCID: PMC10776464 DOI: 10.1007/s00436-023-08108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
Ticks are major arthropod vectors of disease, transmitting tick-borne pathogens during blood meal episodes. Rickettsia spp. and Borrelia spp. are two tick-borne pathogens of zoonotic concern previously identified in DNA isolates from the tick genera Amblyomma and Bothriocroton associated with reptilian hosts in Australia. Some reports suggest that these reptile ticks bite and attach to humans via accidental parasitism and transmit disease, with the tick Bothriocroton hydrosauri known to transmit Rickettsia honei or Flinders Island Spotted Fever Rickettsia to humans. This descriptive study aims to identify the ticks collected from wild reptiles submitted to veterinary clinics and captured by snake rescuers from New South Wales (NSW), Australia, and detect the presence of tick-borne bacterial DNA using quantitative polymerase chain reaction (qPCR) to detect Rickettsia spp. and Bartonella spp. and conventional nested-PCR to detect Borrelia spp. Morphological identification revealed ticks removed from one eastern blue-tongued lizard (Tiliqua scincoides scincoides) from North-Eastern NSW (Lismore), one eastern blue-tongued lizard from the Greater Sydney area (Canley Heights), one diamond python (Morelia spilota spilota) from the Greater Sydney area (Woronora Heights) and one red-bellied black snake (Pseudechis porphyriacus) from the Greater Sydney Area (Cronulla) in New South Wales were Amblyomma moreliae. No ticks were positive for Bartonella spp. and Borrelia spp. DNA using real-time PCR targeting ssrA gene and nested PCR targeting Borrelia-specific 16S rRNA gene, respectively. Real-time PCR targeting gltA, ompA, ompB and 17kDa gene of Rickettsia spp. revealed 14 out of 16 ticks were positive. The undescribed Rickettsia sp. DNA was identical to that previously recovered from reptile ticks in Australia and closely related to Rickettsia tamurae and Rickettsia monacensis, both of which are aetiologic pathogens of the Spotted Fever Group Rickettsiosis (SFGR). These results accentuate the ongoing need for increased study efforts to understand zoonotic potential of bacteria from reptile ticks and the tick-reptile-human relationship.
Collapse
Affiliation(s)
- Michelle Misong Kim
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Glenn Shea
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Australian Museum Research Institute, The Australian Museum, Sydney, Sydney, New South Wales, 2006, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- The University of Sydney Institute for Infectious Diseases, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
8
|
Ni XB, Pei Y, Ye YT, Shum MHH, Cui XM, Wu YQ, Pierce MP, Zhao L, Wang GP, Wei JT, Fan JL, Wang Q, Smith DK, Sun Y, Du LF, Zhang J, Jiang JF, He PJ, Chen X, Wei H, Zhao NQ, Cao WC, Lam TTY, Jia N. Ecoclimate drivers shape virome diversity in a globally invasive tick species. THE ISME JOURNAL 2024; 18:wrae087. [PMID: 38747389 PMCID: PMC11187987 DOI: 10.1093/ismejo/wrae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/04/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Spillovers of viruses from animals to humans occur more frequently under warmer conditions, particularly arboviruses. The invasive tick species Haemaphysalis longicornis, the Asian longhorned tick, poses a significant public health threat due to its global expansion and its potential to carry a wide range of pathogens. We analyzed meta-transcriptomic data from 3595 adult H. longicornis ticks collected between 2016 and 2019 in 22 provinces across China encompassing diverse ecological conditions. Generalized additive modeling revealed that climate factors exerted a stronger influence on the virome of H. longicornis than other ecological factors, such as ecotypes, distance to coastline, animal host, tick gender, and antiviral immunity. To understand how climate changes drive the tick virome, we performed a mechanistic investigation using causality inference with emphasis on the significance of this process for public health. Our findings demonstrated that higher temperatures and lower relative humidity/precipitation contribute to variations in animal host diversity, leading to increased diversity of the tick virome, particularly the evenness of vertebrate-associated viruses. These findings may explain the evolution of tick-borne viruses into generalists across multiple hosts, thereby increasing the probability of spillover events involving tick-borne pathogens. Deep learning projections have indicated that the diversity of the H. longicornis virome is expected to increase in 81.9% of regions under the SSP8.5 scenario from 2019 to 2030. Extension of surveillance should be implemented to avert the spread of tick-borne diseases.
Collapse
Affiliation(s)
- Xue-Bing Ni
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, People’s Republic of China
| | - Yao Pei
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, People’s Republic of China
| | - Yong-Tao Ye
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, People’s Republic of China
| | - Marcus Ho-Hin Shum
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, People’s Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People’s Republic of China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, People’s Republic of China
| | - Yu-Qian Wu
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, People’s Republic of China
| | - Mac P Pierce
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, People’s Republic of China
| | - Lin Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People’s Republic of China
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan 250012, Shandong, People’s Republic of China
| | - Gong-Pei Wang
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, People’s Republic of China
- Centre for Immunology & Infection Limited, 17W Hong Kong Science & Technology Parks, Hong Kong SAR, People’s Republic of China
| | - Jia-Te Wei
- Beijing Friendship Hospital, Capital Medical University, Beijing 100083, People’s Republic of China
| | - Jing-Li Fan
- Center for Sustainable Development and Energy Policy Research (SDEP), School of Energy and Mining Engineering, China University of Mining and Technology, Beijing 100083, People’s Republic of China
| | - Qian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People’s Republic of China
| | - David K Smith
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, People’s Republic of China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People’s Republic of China
| | - Li-Feng Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People’s Republic of China
| | - Jie Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People’s Republic of China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People’s Republic of China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, People’s Republic of China
| | - Pei-Jun He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, People’s Republic of China
| | - Xin Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, People’s Republic of China
| | - Hua Wei
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan 250012, Shandong, People’s Republic of China
| | - Ning-Qi Zhao
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, People’s Republic of China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People’s Republic of China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, People’s Republic of China
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan 250012, Shandong, People’s Republic of China
- The representative of Tick Genome and Microbiome Consortium (TIGMIC)
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Laboratory of Data Discovery for Health Limited, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, People’s Republic of China
- Centre for Immunology & Infection Limited, 17W Hong Kong Science & Technology Parks, Hong Kong SAR, People’s Republic of China
- Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou 515063, Guangdong, People’s Republic of China
- EKIH (Gewuzhikang) Pathogen Research Institute, Futian District, Shenzhen 518045, Guangdong, People’s Republic of China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People’s Republic of China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, People’s Republic of China
| | | |
Collapse
|
9
|
Lin Y, Pascall DJ. Characterisation of putative novel tick viruses and zoonotic risk prediction. Ecol Evol 2024; 14:e10814. [PMID: 38259958 PMCID: PMC10800298 DOI: 10.1002/ece3.10814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
Tick-associated viruses remain a substantial zoonotic risk worldwide, so knowledge of the diversity of tick viruses has potential health consequences. Despite their importance, large amounts of sequences in public data sets from tick meta-genomic and -transcriptomic projects remain unannotated, sequence data that could contain undocumented viruses. Through data mining and bioinformatic analysis of more than 37,800 public meta-genomic and -transcriptomic data sets, we found 83 unannotated contigs exhibiting high identity with known tick viruses. These putative viral contigs were classified into three RNA viral families (Alphatetraviridae, Orthomyxoviridae and Chuviridae) and one DNA viral family (Asfarviridae). After manual checking of quality and dissimilarity towards other sequences in the data set, these 83 contigs were reduced to five contigs in the Alphatetraviridae from four putative viruses, four in the Orthomyxoviridae from two putative viruses and one in the Chuviridae which clustered with known tick-associated viruses, forming a separate clade within the viral families. We further attempted to assess which previously known tick viruses likely represent zoonotic risks and thus deserve further investigation. We ranked the human infection potential of 133 known tick-associated viruses using a genome composition-based machine learning model. We found five high-risk tick-associated viruses (Langat virus, Lonestar tick chuvirus 1, Grotenhout virus, Taggert virus and Johnston Atoll virus) that have not been known to infect human and two viral families (Nairoviridae and Phenuiviridae) that contain a large proportion of potential zoonotic tick-associated viruses. This adds to the knowledge of tick virus diversity and highlights the importance of surveillance of newly emerging tick-associated diseases.
Collapse
Affiliation(s)
- Yuting Lin
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
- Royal Veterinary CollegeUniversity of LondonLondonUK
| | | |
Collapse
|
10
|
Wang J, Wang J, Kuang G, Wu W, Yang L, Yang W, Pan H, Han X, Yang T, Shi M, Feng Y. Meta-transcriptomics for the diversity of tick-borne virus in Nujiang, Yunnan Province. Front Cell Infect Microbiol 2023; 13:1283019. [PMID: 38179426 PMCID: PMC10766107 DOI: 10.3389/fcimb.2023.1283019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
Ticks, an arthropod known for transmitting various pathogens such as viruses, bacteria, and fungi, pose a perpetual public health concern. A total of 2,570 ticks collected from Nujiang Prefecture in Yunnan Province between 2017 and 2022 were included in the study. Through the meta-transcriptomic sequencing of four locally distributed tick species, we identified 13 RNA viruses belonging to eight viral families, namely, Phenuiviridae, Nairoviridae, Peribunyaviridae, Flaviviridae, Chuviridae, Rhabdoviridae, Orthomyxoviridae, and Totiviridae. The most prevalent viruses were members of the order Bunyavirales, including three of Phenuiviridae, two were classified as Peribunyaviridae, and one was associated with Nairoviridae. However, whether they pose a threat to human health still remains unclear. Indeed, this study revealed the genetic diversity of tick species and tick-borne viruses in Nujiang Prefecture based on COI gene and tick-borne virus research. These data clarified the genetic evolution of some RNA viruses and furthered our understanding of the distribution pattern of tick-borne pathogens, highlighting the importance and necessity of monitoring tick-borne pathogens.
Collapse
Affiliation(s)
- Juan Wang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Jing Wang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Sun Yat-sen University, Shenzhen, China
| | - Guopeng Kuang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Weichen Wu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Sun Yat-sen University, Shenzhen, China
| | - Lifen Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Weihong Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Hong Pan
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Xi Han
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Tian Yang
- School of Public Health, Dali University, Dali, China
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yun Feng
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
- School of Public Health, Dali University, Dali, China
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
11
|
Litov AG, Belova OA, Kholodilov IS, Kalyanova AS, Gadzhikurbanov MN, Rogova AA, Gmyl LV, Karganova GG. Viromes of Tabanids from Russia. Viruses 2023; 15:2368. [PMID: 38140608 PMCID: PMC10748123 DOI: 10.3390/v15122368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Advances in sequencing technologies and bioinformatics have greatly enhanced our knowledge of virus biodiversity. Currently, the viromes of hematophagous invertebrates, such as mosquitoes and ixodid ticks, are being actively studied. Tabanidae (Diptera) are a widespread family, with members mostly known for their persistent hematophagous behavior. They transmit viral, bacterial, and other pathogens, both biologically and mechanically. However, tabanid viromes remain severely understudied. In this study, we used high-throughput sequencing to describe the viromes of several species in the Hybomitra, Tabanus, Chrysops, and Haematopota genera, which were collected in two distant parts of Russia: the Primorye Territory and Ryazan Region. We assembled fourteen full coding genomes of novel viruses, four partial coding genomes, as well as several fragmented viral sequences, which presumably belong to another twelve new viruses. All the discovered viruses were tested for their ability to replicate in mammalian porcine embryo kidney (PEK), tick HAE/CTVM8, and mosquito C6/36 cell lines. In total, 16 viruses were detected in at least one cell culture after three passages (for PEK and C6/36) or 3 weeks of persistence in HAE/CTVM8. However, in the majority of cases, qPCR showed a decline in virus load over time.
Collapse
Affiliation(s)
- Alexander G. Litov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia; (A.G.L.); (O.A.B.); (I.S.K.); (M.N.G.); (A.A.R.); (L.V.G.)
| | - Oxana A. Belova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia; (A.G.L.); (O.A.B.); (I.S.K.); (M.N.G.); (A.A.R.); (L.V.G.)
| | - Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia; (A.G.L.); (O.A.B.); (I.S.K.); (M.N.G.); (A.A.R.); (L.V.G.)
| | - Anna S. Kalyanova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia; (A.G.L.); (O.A.B.); (I.S.K.); (M.N.G.); (A.A.R.); (L.V.G.)
| | - Magomed N. Gadzhikurbanov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia; (A.G.L.); (O.A.B.); (I.S.K.); (M.N.G.); (A.A.R.); (L.V.G.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia A. Rogova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia; (A.G.L.); (O.A.B.); (I.S.K.); (M.N.G.); (A.A.R.); (L.V.G.)
| | - Larissa V. Gmyl
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia; (A.G.L.); (O.A.B.); (I.S.K.); (M.N.G.); (A.A.R.); (L.V.G.)
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia; (A.G.L.); (O.A.B.); (I.S.K.); (M.N.G.); (A.A.R.); (L.V.G.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia
| |
Collapse
|
12
|
Stegmüller S, Qi W, Torgerson PR, Fraefel C, Kubacki J. Hazard potential of Swiss Ixodes ricinus ticks: Virome composition and presence of selected bacterial and protozoan pathogens. PLoS One 2023; 18:e0290942. [PMID: 37956168 PMCID: PMC10642849 DOI: 10.1371/journal.pone.0290942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Ticks play an important role in transmitting many different emerging zoonotic pathogens that pose a significant threat to human and animal health. In Switzerland and abroad, the number of tick-borne diseases, in particular tick-borne encephalitis (TBE), has been increasing over the last few years. Thus, it remains essential to investigate the pathogen spectrum of ticks to rapidly detect emerging pathogens and initiate the necessary measures. To assess the risk of tick-borne diseases in different regions of Switzerland, we collected a total of 10'286 ticks from rural and urban areas in ten cantons in 2021 and 2022. Ticks were pooled according to species, developmental stage, gender, and collection site, and analyzed using next generation sequencing (NGS) and quantitative polymerase chain reaction (qPCR). The metagenomic analysis revealed for the first time the presence of Alongshan virus (ALSV) in Swiss ticks. Interestingly, the pool-prevalence of ALSV was higher than that of tick-borne encephalitis virus (TBEV). Furthermore, several TBEV foci have been identified and pool prevalence of selected non-viral pathogens determined.
Collapse
Affiliation(s)
- Stefanie Stegmüller
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Paul R. Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jakub Kubacki
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Barnes M, Price DC. Endogenous Viral Elements in Ixodid Tick Genomes. Viruses 2023; 15:2201. [PMID: 38005880 PMCID: PMC10675110 DOI: 10.3390/v15112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The documentation of endogenous viral elements (EVEs; virus-derived genetic material integrated into the genome of a nonviral host) has offered insights into how arthropods respond to viral infection via RNA interference pathways. Small non-coding RNAs derived from EVE loci serve to direct RNAi pathways in limiting replication and infection from cognate viruses, thus benefiting the host's fitness and, potentially, vectorial capacity. Here we use informatic approaches to analyze nine available genome sequences of hard ticks (Acari: Ixodidae; Rhipicephalus sanguineus, R. microplus, R. annulatus, Ixodes ricinus, I. persulcatus, I. scapularis, Hyalomma asiaticum, Haemaphysalis longicornis, and Dermacentor silvarum) to identify endogenous viral elements and to illustrate the shared ancestry of all elements identified. Our results highlight a broad diversity of viral taxa as having given rise to 1234 identified EVEs in ticks, with Mononegavirales (specifically Rhabdoviridae) well-represented in this subset of hard ticks. Further investigation revealed extensive adintovirus integrations in several Ixodes species, the prevalence of Bunyavirales EVEs (notably not observed in mosquitoes), and the presence of several elements similar to known emerging human and veterinary pathogens. These results will inform subsequent work on current and past associations with tick species with regard to the viruses from which their "viral fossils" are derived and may serve as a reference for quality control of various tick-omics data that may suffer from misidentification of EVEs as viral genetic material.
Collapse
Affiliation(s)
| | - Dana C. Price
- Center for Vector Biology, Department of Entomology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| |
Collapse
|
14
|
de la Fuente J, Estrada-Peña A, Rafael M, Almazán C, Bermúdez S, Abdelbaset AE, Kasaija PD, Kabi F, Akande FA, Ajagbe DO, Bamgbose T, Ghosh S, Palavesam A, Hamid PH, Oskam CL, Egan SL, Duarte-Barbosa A, Hekimoğlu O, Szabó MPJ, Labruna MB, Dahal A. Perception of Ticks and Tick-Borne Diseases Worldwide. Pathogens 2023; 12:1258. [PMID: 37887774 PMCID: PMC10610181 DOI: 10.3390/pathogens12101258] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
In this comprehensive review study, we addressed the challenge posed by ticks and tick-borne diseases (TBDs) with growing incidence affecting human and animal health worldwide. Data and perspectives were collected from different countries and regions worldwide, including America, Europe, Africa, Asia, and Oceania. The results updated the current situation with ticks and TBD and how it is perceived by society with information bias and gaps. The study reinforces the importance of multidisciplinary and international collaborations to advance in the surveillance, communication and proposed future directions to address these challenges.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain;
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, 50013 Zaragoza, Spain
- Research Group in Emerging Zoonoses, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain
| | - Marta Rafael
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain;
| | - Consuelo Almazán
- Facultad de Ciencias Naturales, Universidad Autonóma de Querétaro, Avenida de las Ciencias S/N Juriquilla, Querétaro 76230, Mexico;
| | - Sergio Bermúdez
- Medical Entomology Research Department, Gorgas Memorial Institute for Health Research, Panama City 0816-02593, Panama;
| | - Abdelbaset E. Abdelbaset
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Sapporo 060-0818, Hokkaido, Japan;
| | - Paul D. Kasaija
- National Livestock Resources Research Institute (NaLIRRI/NARO), Kampala P.O. Box 5704, Uganda; (P.D.K.); (F.K.)
| | - Fredrick Kabi
- National Livestock Resources Research Institute (NaLIRRI/NARO), Kampala P.O. Box 5704, Uganda; (P.D.K.); (F.K.)
| | - Foluke Adedayo Akande
- Department of Veterinary Parasitology and Entomology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta 111101, Ogun State, Nigeria;
| | - Dorcas Oluwakemi Ajagbe
- Department of Pure and Applied Zoology, College of Biological Sciences, Federal University of Agriculture, Abeokuta 111101, Ogun State, Nigeria;
| | - Timothy Bamgbose
- Department of Biological Sciences, Microbiology Unit, Faculty of Science, Kings University, Ode-Omu City 221102, Osun State, Nigeria;
| | - Srikant Ghosh
- Entomology Laboratory, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India;
- IVRI-Eastern Regional Station, 37, Belgachia Road, Kolkata 700037, West Bengal, India
| | - Azhahianambi Palavesam
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600051, Tamil Nadu, India;
| | - Penny H. Hamid
- Department of Animal Science, Universitas Sebelas Maret, Surakarta 57126, Indonesia;
| | - Charlotte L. Oskam
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia; (C.L.O.); (S.L.E.)
- Centre for One Health and Biosecurity, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
| | - Siobhon L. Egan
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia; (C.L.O.); (S.L.E.)
- Centre for One Health and Biosecurity, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
| | - Amanda Duarte-Barbosa
- Centre for One Health and Biosecurity, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia
| | - Olcay Hekimoğlu
- Division of Ecology, Faculty of Science, Hacettepe University, Beytepe, Ankara 06800, Turkey;
| | - Matias P. J. Szabó
- Laboratório de Ixodologia, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Av. Pará, 1720/Campus Umuarama-Bloco 2T, Uberlândia 38400-902, Brazil;
| | - Marcelo B. Labruna
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Sao Paulo 05508-220, Brazil;
| | - Ananta Dahal
- Department of Microbiology and Parasitology, Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Chitwan 44200, Nepal;
| |
Collapse
|
15
|
Harvey E, Mifsud JCO, Holmes EC, Mahar JE. Divergent hepaciviruses, delta-like viruses, and a chu-like virus in Australian marsupial carnivores (dasyurids). Virus Evol 2023; 9:vead061. [PMID: 37941997 PMCID: PMC10630069 DOI: 10.1093/ve/vead061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Although Australian marsupials are characterised by unique biology and geographic isolation, little is known about the viruses present in these iconic wildlife species. The Dasyuromorphia are an order of marsupial carnivores found only in Australia that include both the extinct Tasmanian tiger (thylacine) and the highly threatened Tasmanian devil. Several other members of the order are similarly under threat of extinction due to habitat loss, hunting, disease, and competition and predation by introduced species such as feral cats. We utilised publicly available RNA-seq data from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database to document the viral diversity within four Dasyuromorph species. Accordingly, we identified fifteen novel virus sequences from five DNA virus families (Adenoviridae, Anelloviridae, Gammaherpesvirinae, Papillomaviridae, and Polyomaviridae) and three RNA virus taxa: the order Jingchuvirales, the genus Hepacivirus, and the delta-like virus group. Of particular note was the identification of a marsupial-specific clade of delta-like viruses that may indicate an association of deltaviruses with marsupial species. In addition, we identified a highly divergent hepacivirus in a numbat liver transcriptome that falls outside of the larger mammalian clade. We also detect what may be the first Jingchuvirales virus in a mammalian host-a chu-like virus in Tasmanian devils-thereby expanding the host range beyond invertebrates and ectothermic vertebrates. As many of these Dasyuromorphia species are currently being used in translocation efforts to reseed populations across Australia, understanding their virome is of key importance to prevent the spread of viruses to naive populations.
Collapse
Affiliation(s)
- Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jackie E Mahar
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Toon K, Kalemera MD, Palor M, Rose NJ, Takeuchi Y, Grove J, Mattiuzzo G. GB Virus B and Hepatitis C Virus, Distantly Related Hepaciviruses, Share an Entry Factor, Claudin-1. J Virol 2023; 97:e0046923. [PMID: 37310242 PMCID: PMC10373534 DOI: 10.1128/jvi.00469-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/10/2023] [Indexed: 06/14/2023] Open
Abstract
Due to increased and broadened screening efforts, the last decade has seen a rapid expansion in the number of viral species classified into the Hepacivirus genus. Conserved genetic features of hepaciviruses suggest that they have undergone specific adaptation and have evolved to hijack similar host proteins for efficient propagation in the liver. Here, we developed pseudotyped viruses to elucidate the entry factors of GB virus B (GBV-B), the first hepacivirus described in an animal after hepatitis C virus (HCV). GBV-B-pseudotyped viral particles (GBVBpp) were shown to be uniquely sensitive to the sera of tamarins infected with GBV-B, validating their usefulness as a surrogate for GBV-B entry studies. We screened GBVBpp infection of human hepatoma cell lines that were CRISPR/Cas9 engineered to ablate the expression of individual HCV receptors/entry factors and found that claudin-1 is essential for GBV-B infection, indicating the GBV-B and HCV share an entry factor. Our data suggest that claudin-1 facilitates HCV and GBV-B entry through distinct mechanisms since the former requires the first extracellular loop and the latter is reliant on a C-terminal region containing the second extracellular loop. The observation that claudin-1 is an entry factor shared between these two hepaciviruses suggests that the tight junction protein is of fundamental mechanistic importance during cell entry. IMPORTANCE Hepatitis C virus (HCV) is a major public health burden; approximately 58 million individuals have chronic HCV infection and are at risk of developing cirrhosis and liver cancer. To achieve the World Health Organization's target of eliminating hepatitis by 2030, new therapeutics and vaccines are needed. Understanding how HCV enters cells can inform the design of new vaccines and treatments targeting the first stage of infection. However, the HCV cell entry mechanism is complex and has been sparsely described. Studying the entry of related hepaciviruses will increase the knowledge of the molecular mechanisms of the first stages of HCV infection, such as membrane fusion, and inform structure-guided HCV vaccine design; in this work, we have identified a protein, claudin-1, that facilitates the entry of an HCV-related hepacivirus but with a mechanism not described for HCV. Similar work on other hepaciviruses may unveil a commonality of entry factors and, possibly, new mechanisms.
Collapse
Affiliation(s)
- Kamilla Toon
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mphatso D. Kalemera
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Machaela Palor
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Nicola J. Rose
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | - Yasuhiro Takeuchi
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Joe Grove
- Division of Infection and Immunity, University College London, London, United Kingdom
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Giada Mattiuzzo
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| |
Collapse
|
17
|
Li YQ, Ghafari M, Holbrook AJ, Boonen I, Amor N, Catalano S, Webster JP, Li YY, Li HT, Vergote V, Maes P, Chong YL, Laudisoit A, Baelo P, Ngoy S, Mbalitini SG, Gembu GC, Musaba AP, Goüy de Bellocq J, Leirs H, Verheyen E, Pybus OG, Katzourakis A, Alagaili AN, Gryseels S, Li YC, Suchard MA, Bletsa M, Lemey P. The evolutionary history of hepaciviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547218. [PMID: 37425679 PMCID: PMC10327235 DOI: 10.1101/2023.06.30.547218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In the search for natural reservoirs of hepatitis C virus (HCV), a broad diversity of non-human viruses within the Hepacivirus genus has been uncovered. However, the evolutionary dynamics that shaped the diversity and timescale of hepaciviruses evolution remain elusive. To gain further insights into the origins and evolution of this genus, we screened a large dataset of wild mammal samples (n = 1,672) from Africa and Asia, and generated 34 full-length hepacivirus genomes. Phylogenetic analysis of these data together with publicly available genomes emphasizes the importance of rodents as hepacivirus hosts and we identify 13 rodent species and 3 rodent genera (in Cricetidae and Muridae families) as novel hosts of hepaciviruses. Through co-phylogenetic analyses, we demonstrate that hepacivirus diversity has been affected by cross-species transmission events against the backdrop of detectable signal of virus-host co-divergence in the deep evolutionary history. Using a Bayesian phylogenetic multidimensional scaling approach, we explore the extent to which host relatedness and geographic distances have structured present-day hepacivirus diversity. Our results provide evidence for a substantial structuring of mammalian hepacivirus diversity by host as well as geography, with a somewhat more irregular diffusion process in geographic space. Finally, using a mechanistic model that accounts for substitution saturation, we provide the first formal estimates of the timescale of hepacivirus evolution and estimate the origin of the genus to be about 22 million years ago. Our results offer a comprehensive overview of the micro- and macroevolutionary processes that have shaped hepacivirus diversity and enhance our understanding of the long-term evolution of the Hepacivirus genus.
Collapse
Affiliation(s)
- YQ Li
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - M Ghafari
- Department of Biology, University of Oxford, Oxford, OX1, UK
| | - AJ Holbrook
- Department of Biostatistics, University of California, Los Angeles, CA 90095, USA
| | - I Boonen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - N Amor
- Laboratory of Biodiversity, Parasitology, and Ecology of Aquatic Ecosystems, Department of Biology - Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - S Catalano
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Department of Pathobiology and Population Sciences, the Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - JP Webster
- Department of Pathobiology and Population Sciences, the Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - YY Li
- College of Life Sciences, Linyi University, Linyi, 276000, China
- Marine College, Shandong University (Weihai), Weihai, 264209, China
| | - HT Li
- College of Life Sciences, Liaocheng University, Liaocheng, 252000, China
- Marine College, Shandong University (Weihai), Weihai, 264209, China
| | - V Vergote
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - P Maes
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - YL Chong
- Animal Resource Science and Management Group, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak (UNIMAS), 94300, Malaysia
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, 999077, China
| | - A Laudisoit
- EcoHealth Alliance, New York, NY 10018, USA
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - P Baelo
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - S Ngoy
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - SG Mbalitini
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - GC Gembu
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Akawa P Musaba
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - J Goüy de Bellocq
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - H Leirs
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - E Verheyen
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - OG Pybus
- Department of Biology, University of Oxford, Oxford, OX1, UK
- Department of Pathobiology and Population Sciences, the Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - A Katzourakis
- Department of Biology, University of Oxford, Oxford, OX1, UK
| | - AN Alagaili
- Laboratory of Biodiversity, Parasitology, and Ecology of Aquatic Ecosystems, Department of Biology - Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - S Gryseels
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - YC Li
- Marine College, Shandong University (Weihai), Weihai, 264209, China
| | - MA Suchard
- Department of Biostatistics, University of California, Los Angeles, CA 90095, USA
| | - M Bletsa
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - P Lemey
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| |
Collapse
|
18
|
Hu G, Jiang F, Luo Q, Zong K, Dong L, Mei G, Du H, Dong H, Song Q, Song J, Xia Z, Gao C, Han J. Diversity Analysis of Tick-Borne Viruses from Hedgehogs and Hares in Qingdao, China. Microbiol Spectr 2023; 11:e0534022. [PMID: 37074196 PMCID: PMC10269667 DOI: 10.1128/spectrum.05340-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/12/2023] [Indexed: 04/20/2023] Open
Abstract
Tick-borne viruses (TBVs) have attracted increasingly global public health attention. In this study, the viral compositions of five tick species, Haemaphysalis flava, Rhipicephalus sanguineus, Dermacentor sinicus, Haemaphysalis longicornis, and Haemaphysalis campanulata, from hedgehogs and hares in Qingdao, China, were profiled via metagenomic sequencing. Thirty-six strains of 10 RNA viruses belonging to 4 viral families, including 3 viruses of Iflaviridae, 4 viruses of Phenuiviridae, 2 viruses of Nairoviridae, and 1 virus of Chuviridae, were identified in five tick species. Three novel viruses of two families, namely, Qingdao tick iflavirus (QDTIFV) of the family of Iflaviridae and Qingdao tick phlebovirus (QDTPV) and Qingdao tick uukuvirus (QDTUV) of the family of Phenuiviridae, were found in this study. This study shows that ticks from hares and hedgehogs in Qingdao harbored diverse viruses, including some that can cause emerging infectious diseases, such as Dabie bandavirus. Phylogenetic analysis revealed that these tick-borne viruses were genetically related to viral strains isolated previously in Japan. These findings shed new light on the cross-sea transmission of tick-borne viruses between China and Japan. IMPORTANCE Thirty-six strains of 10 RNA viruses belonging to 4 viral families, including 3 viruses of Iflaviridae, 4 viruses of Phenuiviridae, 2 viruses of Nairoviridae, and 1 virus of Chuviridae, were identified from five tick species in Qingdao, China. A diversity of tick-borne viruses from hares and hedgehogs in Qingdao was found in this study. Phylogenetic analysis showed that most of these TBVs were genetically related to Japanese strains. These findings indicate the possibility of the cross-sea transmission of TBVs between China and Japan.
Collapse
Affiliation(s)
- Geng Hu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fachun Jiang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Prevention Medicine, Qingdao, Shandong Province, China
| | - Qin Luo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kexin Zong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liyan Dong
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Prevention Medicine, Qingdao, Shandong Province, China
| | - Guoyong Mei
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haijun Du
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongming Dong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qinqin Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiqiang Xia
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Han
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
19
|
Paulson AR, Lougheed SC, Huang D, Colautti RI. Multiomics Reveals Symbionts, Pathogens, and Tissue-Specific Microbiome of Blacklegged Ticks (Ixodes scapularis) from a Lyme Disease Hot Spot in Southeastern Ontario, Canada. Microbiol Spectr 2023; 11:e0140423. [PMID: 37184407 PMCID: PMC10269869 DOI: 10.1128/spectrum.01404-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Ticks in the family Ixodidae are important vectors of zoonoses, including Lyme disease (LD), which is caused by spirochete bacteria from the Borreliella (Borrelia) burgdorferi sensu lato complex. The blacklegged tick (Ixodes scapularis) continues to expand across Canada, creating hot spots of elevated LD risk at the leading edge of its expanding range. Current efforts to understand the risk of pathogen transmission associated with I. scapularis in Canada focus primarily on targeted screens, while natural variation in the tick microbiome remains poorly understood. Using multiomics consisting of 16S metabarcoding and ribosome-depleted, whole-shotgun RNA transcriptome sequencing, we examined the microbial communities associated with adult I. scapularis (n = 32), sampled from four tissue types (whole tick, salivary glands, midgut, and viscera) and three geographical locations within a LD hot spot near Kingston, Ontario, Canada. The communities consisted of both endosymbiotic and known or potentially pathogenic microbes, including RNA viruses, bacteria, and a Babesia sp. intracellular parasite. We show that β-diversity is significantly higher between the bacterial communities of individual tick salivary glands and midguts than that of whole ticks. Linear discriminant analysis effect size (LEfSe) determined that the three potentially pathogenic bacteria detected by V4 16S rRNA sequencing also differed among dissected tissues only, including a Borrelia strain from the B. burgdorferi sensu lato complex, Borrelia miyamotoi, and Anaplasma phagocytophilum. Importantly, we find coinfection of I. scapularis by multiple microbes, in contrast to diagnostic protocols for LD, which typically focus on infection from a single pathogen of interest (B. burgdorferi sensu stricto). IMPORTANCE As a vector of human health concern, blacklegged ticks (Ixodes scapularis) transmit pathogens that cause tick-borne diseases (TBDs), including Lyme disease (LD). Several hot spots of elevated LD risk have emerged across Canada as I. scapularis expands its range. Focusing on a hot spot in southeastern Ontario, we used high-throughput sequencing to characterize the microbiome of whole ticks and dissected salivary glands and midguts. Compared with whole ticks, salivary glands and midguts were more diverse and associated with distinct bacterial communities that are less dominated by Rickettsia endosymbiont bacteria and are enriched for pathogenic bacteria, including a B. burgdorferi sensu lato-associated Borrelia sp., Borrelia miyamotoi, and Anaplasma phagocytophilum. We also found evidence of coinfection of I. scapularis by multiple pathogens. Overall, our study highlights the challenges and opportunities associated with the surveillance of the microbiome of I. scapularis for pathogen detection using metabarcoding and metatranscriptome approaches.
Collapse
Affiliation(s)
- Amber R. Paulson
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | | | - David Huang
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | | |
Collapse
|
20
|
Rong Lee M, Kim JC, Eun Park S, Kim WJ, Su Kim J. Detection of Viral Genes in Metarhizium anisopliae JEF-290-infected longhorned tick, Haemaphysalis longicornis using transcriptome analysis. J Invertebr Pathol 2023; 198:107926. [PMID: 37087092 DOI: 10.1016/j.jip.2023.107926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
Ticks are carriers of viruses that can cause disease in humans and animals. The longhorned ticks (Haemaphysalis longicornis; LHT), for example, mediates the severe fever with thrombocytopenia syndrome virus (SFTSV) in humans, and the population of ticks is growing due to increases in temperature caused by climate change. As ticks carry primarily RNA viruses, there is a need to study the possibility of detecting new viruses through tick virome analysis. In this study, viruses in LHTs collected in Korea were investigated and virus titers in ticks exposed to the entomopathogenic fungus Metarhizium anisopliae JEF-290 were analyzed. Total RNA was extracted from the collected ticks, and short reads were obtained from Illumina sequencing. A total of 50,024 contigs with coding capacity were obtained after de novo assembly of the reads in the metaSPAdes genome assembler. A series of BLAST-based analyses using the GenBank database was performed to screen viral contigs, and three putative virus species were identified from the tick meta-transcriptome, such as Alongshan virus (ALSV), Denso virus and Taggert virus. Measurements of virus-expression levels of infected and non-infected LHTs failed to detect substantial differences in expression levels. However, we suggest that LHT can spread not only SFTSV, but also various other disease-causing viruses over large areas of the world. From the phylogenetic analysis of ALSV glycoproteins, genetic differences in the ALSV could be due to host differences as well as regional differences. Viral metagenome analysis can be used as a tool to manage future outbreaks of disease caused by ticks by detecting unknown viruses.
Collapse
Affiliation(s)
- Mi Rong Lee
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54596, Korea
| | - Jong-Cheol Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54596, Korea
| | - So Eun Park
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54596, Korea
| | | | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54596, Korea; Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54596, Republic of Korea.
| |
Collapse
|
21
|
Jankovic M, Cirkovic V, Stamenkovic G, Loncar A, Todorovic M, Stanojevic M, Siljic M. Detection of the Xanthi Chryso-like Virus in New Geographical Area and a Novel Arthropod Carrier. Trop Med Infect Dis 2023; 8:tropicalmed8040225. [PMID: 37104350 PMCID: PMC10144253 DOI: 10.3390/tropicalmed8040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Here, we report on a serendipitous finding of a chryso-like virus associated with Culex pipiens mosquitos in the course of study aimed to detect and characterize West Nile virus (WNV) circulating in mosquitos in Serbia, Southern Europe. Upon initial detection of unexpected product in a PCR protocol for partial WNV NS5 gene amplification, further confirmation and identification was obtained through additional PCR and Sanger sequencing experiments. Bioinformatic and phylogenetic analysis identified the obtained sequences as Xanthi chryso-like virus (XCLV). The finding is particular for the fact that it associates XCLV with a new potential vector species and documents a novel geographical area of its distribution.
Collapse
Affiliation(s)
- Marko Jankovic
- Faculty of Medicine, Institute of Microbiology and Immunology, Department of Virology, University of Belgrade, 1 Dr Subotića Starijeg Street, 11000 Belgrade, Serbia
| | - Valentina Cirkovic
- Group for Medical Entomology, Centre of Excellence for Food and Vector Borne Zoonoses, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Gorana Stamenkovic
- Department for Genetic Research, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Loncar
- Institute for Biocides and Medical Ecology, 11000 Belgrade, Serbia
| | - Marija Todorovic
- Faculty of Medicine, Institute of Microbiology and Immunology, Department of Virology, University of Belgrade, 1 Dr Subotića Starijeg Street, 11000 Belgrade, Serbia
| | - Maja Stanojevic
- Faculty of Medicine, Institute of Microbiology and Immunology, Department of Virology, University of Belgrade, 1 Dr Subotića Starijeg Street, 11000 Belgrade, Serbia
| | - Marina Siljic
- Faculty of Medicine, Institute of Microbiology and Immunology, Department of Virology, University of Belgrade, 1 Dr Subotića Starijeg Street, 11000 Belgrade, Serbia
| |
Collapse
|
22
|
Dezordi FZ, Coutinho GB, Dias YJM, Wallau GL. Ancient origin of Jingchuvirales derived glycoproteins integrated in arthropod genomes. Genet Mol Biol 2023; 46:e20220218. [PMID: 37036390 PMCID: PMC10084718 DOI: 10.1590/1678-4685-gmb-2022-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/11/2023] [Indexed: 04/11/2023] Open
Abstract
Endogenous virus elements (EVEs) are viral-derived sequences integrated into their host genomes. EVEs of the Jingchuvirales order were detected in a wide range of insect genomes covering several distantly related families. Moreover, Jingchuvirales-derived glycoproteins were recently associated by our group with the origin of a putative new retrovirus based on a glycoprotein captured by a mosquito retrotransposon. But, except for mosquitoes, there is a lack of a more detailed understanding of the endogenization mechanism, timing, and frequency per Jingchuvirales viral lineages. Here we screened Jingchuvirales glycoprotein-derived EVEs (Jg-EVEs) in eukaryotic genomes. We found six distinct endogenization events of Jg-EVEs, that belong to two out of five known Jingchuvirales families (Chuviridae and Natareviridae). For seven arthropod families bearing Jg-EVEs there is no register of bona fide circulating chuvirus infection. Hence, our results show that Jingchuvirales viruses infected or still infect these host families. Although we found abundant evidence of LTR-Gypsy retrotransposons fragments associated with the glycoprotein in Hymenoptera and other insect orders, our results show that the widespread distribution of Jingchuvirales glycoproteins in extant Arhtropods is a result of multiple ancient endogenization events and that these virus fossils are being vertically inherited in Arthropods genomes for millions of years.
Collapse
Affiliation(s)
- Filipe Zimmer Dezordi
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Departamento de Entomologia, Recife, PE, Brazil
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Núcleo de Bioinformática, Recife, PE, Brazil
| | - Gutembergmann Batista Coutinho
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Departamento de Entomologia, Recife, PE, Brazil
- Universidade Federal de Pernambuco, Centro de Biociências, Recife, PE, Brazil
| | - Yago José Mariz Dias
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Departamento de Entomologia, Recife, PE, Brazil
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Núcleo de Bioinformática, Recife, PE, Brazil
- Universidade Federal de Pernambuco, Centro de Biociências, Recife, PE, Brazil
| | - Gabriel Luz Wallau
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Departamento de Entomologia, Recife, PE, Brazil
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Núcleo de Bioinformática, Recife, PE, Brazil
- WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Department of Arbovirology, Hamburg, Germany
| |
Collapse
|
23
|
Ortiz-Baez AS, Jaenson TGT, Holmes EC, Pettersson JHO, Wilhelmsson P. Substantial viral and bacterial diversity at the bat-tick interface. Microb Genom 2023; 9. [PMID: 36862584 PMCID: PMC10132063 DOI: 10.1099/mgen.0.000942] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Ticks harbour a high diversity of viruses, bacteria and protozoa. The soft tick Carios vespertilionis (Argasidae) is a common ectoparasite of bats in the Palearctic region and is suspected to be vector and reservoir of viruses and other microbial species in bat populations, some of which may act as zoonotic agents for human disease. The Soprano pipistrelle (Pipistrellus pygmaeus, Vespertilionidae) is widely distributed in Europe, where it can be found inside or close to human habitation. We used meta-transcriptomic sequencing to determine the RNA virome and common microbiota in blood-fed C. vespertilionis ticks collected from a Soprano pipistrelle bat roosting site in south-central Sweden. Our analyses identified 16 viruses from 11 virus families, of which 15 viruses were novel. For the first time in Sweden we identified Issuk-Kul virus, a zoonotic arthropod-borne virus previously associated with outbreaks of acute febrile illness in humans. Probable bat-associated and tick-borne viruses were classified within the families Nairoviridae, Caliciviridae and Hepeviridae, while other invertebrate-associated viruses included members of the Dicistroviridae, Iflaviridae, Nodaviridae, Partitiviridae, Permutotetraviridae, Polycipiviridae and Solemoviridae. Similarly, we found abundant bacteria in C. vespertilionis, including genera with known tick-borne bacteria, such as Coxiella spp. and Rickettsia spp. These findings demonstrate the remarkable diversity of RNA viruses and bacteria present in C. vespertilionis and highlight the importance of bat-associated ectoparasite surveillance as an effective and non-invasive means to track viruses and bacteria circulating in bats and ticks.
Collapse
Affiliation(s)
- Ayda Susana Ortiz-Baez
- Sydney Institute for Infectious Diseases, School of Medical Sciences, the University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas G T Jaenson
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, the University of Sydney, Sydney, New South Wales 2006, Australia
| | - John H-O Pettersson
- Sydney Institute for Infectious Diseases, School of Medical Sciences, the University of Sydney, Sydney, New South Wales 2006, Australia.,Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, University of Uppsala, SE-751 23 Uppsala, Sweden.,Clinical Microbiology and Hospital Hygiene, Uppsala University Hospital, 75237 Uppsala, Sweden
| | - Peter Wilhelmsson
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, SE-581 83 Linköping, Sweden.,Department of Clinical Microbiology, Region Jönköping County, SE-553 05 Jönköping, Sweden
| |
Collapse
|
24
|
Perveen N, Kundu B, Sudalaimuthuasari N, Al-Maskari RS, Muzaffar SB, Al-Deeb MA. Virome diversity of Hyalomma dromedarii ticks collected from camels in the United Arab Emirates. Vet World 2023; 16:439-448. [PMID: 37041826 PMCID: PMC10082741 DOI: 10.14202/vetworld.2023.439-448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/30/2023] [Indexed: 03/18/2023] Open
Abstract
Background and Aim: Viruses are important components of the microbiome of ticks. Ticks are capable of transmitting several serious viral diseases to humans and animals. Hitherto, the composition of viral communities in Hyalomma dromedarii ticks associated with camels in the United Arab Emirates (UAE) remains unexplored. This study aimed to characterize the RNA virome diversity in male and female H. dromedarii ticks collected from camels in Al Ain, UAE.
Materials and Methods: We collected ticks, extracted, and sequenced RNA, using Illumina (NovaSeq 6000) and Oxford Nanopore (MinION).
Results: From the total generated sequencing reads, 180,559 (~0.35%) and 197,801 (~0.34%) reads were identified as virus-related reads in male and female tick samples, respectively. Taxonomic assignment of the viral sequencing reads was accomplished based on bioinformatic analyses. Further, viral reads were classified into 39 viral families. Poxiviridae, Phycodnaviridae, Phenuiviridae, Mimiviridae, and Polydnaviridae were the most abundant families in the tick viromes. Notably, we assembled the genomes of three RNA viruses, which were placed by phylogenetic analyses in clades that included the Bole tick virus.
Conclusion: Overall, this study attempts to elucidate the RNA virome of ticks associated with camels in the UAE and the results obtained from this study improve the knowledge of the diversity of viruses in H. dromedarii ticks.
Keywords: camels, Hyalomma dromedarii, nanopore technology, UAE, viral diversity, virome analysis, whole genome sequencing.
Collapse
Affiliation(s)
- Nighat Perveen
- Department of Biology, United Arab Emirates University, Al-Ain, P.O. Box 15551, UAE
| | - Biduth Kundu
- Department of Biology, United Arab Emirates University, Al-Ain, P.O. Box 15551, UAE
| | | | | | - Sabir Bin Muzaffar
- Department of Biology, United Arab Emirates University, Al-Ain, P.O. Box 15551, UAE
| | - Mohammad Ali Al-Deeb
- Department of Biology, United Arab Emirates University, Al-Ain, P.O. Box 15551, UAE
| |
Collapse
|
25
|
Wu Q, Guo C, Li XK, Yi BY, Li QL, Guo ZM, Lu JH. A meta-transcriptomic study of mosquito virome and blood feeding patterns at the human-animal-environment interface in Guangdong Province, China. One Health 2023; 16:100493. [PMID: 36817976 PMCID: PMC9932184 DOI: 10.1016/j.onehlt.2023.100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Mosquitoes are a formidable reservoir of viruses and important vectors of zoonotic pathogens. Blood-fed mosquitoes have been utilized to determine host infection status, overcoming the difficulties associated with sampling from human and animal populations. Comprehensive surveillance of potential pathogens at the interface of humans, animals, and the environment is currently an accredited method to provide an early warning of emerging or re-emerging infectious diseases and to proactively respond to them. Herein we performed comprehensive sampling of mosquitoes from seven habitats (residential areas, hospital, airplane, harbor, zoo, domestic sheds, and forest park) across five cities in Guangdong Province, China. Our aim was to characterize the viral communities and blood feeding patterns at the human-animal-environment interface and analyze the potential risk of cross-species transmission using meta-transcriptomic sequencing. 1898 female adult mosquitoes were collected, including 1062 Aedes and 836 Culex mosquitoes, of which approximately 12% (n = 226) were satiated with blood. Consequently, 101 putative viruses were identified, which included DNA and RNA viruses, and positive-stranded RNA viruses (+ssRNA) were the most abundant. According to viral diversity analysis, the composition of the viral structure was highly dependent on host species, and Culex mosquitoes showed richer viral diversity than Aedes mosquitoes. Although the virome of mosquitoes from different sampling habitats showed an overlap of 39.6%, multiple viruses were specific to certain habitats, particularly at the human-animal interface. Blood meal analysis found four mammals and one bird bloodmeal source, including humans, dogs, cats, poultry, and rats. Further, the blood feeding patterns of mosquitoes were found to be habitat dependent, and mosquitoes at the human-animal interface and from forests had a wider choice of hosts, including humans, domesticated animals, and wildlife, which in turn considerably increases the risk of spillover of potential zoonotic pathogens. To summarize, we are the first to investigate the virome of mosquitoes from multiple interfaces based on the One Health concept. The characteristics of viral community and blood feeding patterns of mosquitoes at the human-animal-environment interface were determined. Our findings should support surveillance activities to identify known and potential pathogens that are pathogenic to vertebrates.
Collapse
Affiliation(s)
- Qin Wu
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China,One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York 10032, USA
| | - Xiao-kang Li
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China,One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bo-Yang Yi
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China,One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qian-Lin Li
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China,One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhong-Min Guo
- Laboratory Animal Center, Sun Yat-Sen University, Guangzhou 510080, China,Corresponding author.
| | - Jia-Hai Lu
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China,One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China,National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China,Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou 571199, China,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China,Corresponding author at: School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
26
|
Ghafar A, Davies N, Tadepalli M, Breidahl A, Death C, Haros P, Li Y, Dann P, Cabezas-Cruz A, Moutailler S, Foucault-Simonin A, Gauci CG, Stenos J, Hufschmid J, Jabbar A. Unravelling the Diversity of Microorganisms in Ticks from Australian Wildlife. Pathogens 2023; 12:153. [PMID: 36839425 PMCID: PMC9967841 DOI: 10.3390/pathogens12020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Ticks and tick-borne pathogens pose a significant threat to the health and welfare of humans and animals. Our knowledge about pathogens carried by ticks of Australian wildlife is limited. This study aimed to characterise ticks and tick-borne microorganisms from a range of wildlife species across six sites in Victoria, Australia. Following morphological and molecular characterisation (targeting 16S rRNA and cytochrome c oxidase I), tick DNA extracts (n = 140) were subjected to microfluidic real-time PCR-based screening for the detection of microorganisms and Rickettsia-specific real-time qPCRs. Five species of ixodid ticks were identified, including Aponomma auruginans, Ixodes (I.) antechini, I. kohlsi, I. tasmani and I. trichosuri. Phylogenetic analyses of 16S rRNA sequences of I. tasmani revealed two subclades, indicating a potential cryptic species. The microfluidic real-time PCR detected seven different microorganisms as a single (in 13/45 ticks) or multiple infections (27/45). The most common microorganisms detected were Apicomplexa (84.4%, 38/45) followed by Rickettsia sp. (55.6%, 25/45), Theileria sp. (22.2% 10/45), Bartonella sp. (17.8%, 8/45), Coxiella-like sp. (6.7%, 3/45), Hepatozoon sp. (2.2%, 1/45), and Ehrlichia sp. (2.2%, 1/45). Phylogenetic analyses of four Rickettsia loci showed that the Rickettsia isolates detected herein potentially belonged to a novel species of Rickettsia. This study demonstrated that ticks of Australian wildlife carry a diverse array of microorganisms. Given the direct and indirect human-wildlife-livestock interactions, there is a need to adopt a One Health approach for continuous surveillance of tick-associated pathogens/microorganisms to minimise the associated threats to animal and human health.
Collapse
Affiliation(s)
- Abdul Ghafar
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Nick Davies
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Mythili Tadepalli
- Australian Rickettsial Reference Laboratory, Barwon Health, Geelong, VIC 3220, Australia
| | - Amanda Breidahl
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Clare Death
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Philip Haros
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Yuting Li
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Peter Dann
- Research Department, Phillip Island Nature Park, P.O. Box 97, Cowes, VIC 3922, Australia
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
| | - Angélique Foucault-Simonin
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
| | - Charles G. Gauci
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, Barwon Health, Geelong, VIC 3220, Australia
| | - Jasmin Hufschmid
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia
| |
Collapse
|
27
|
Yuan S, Yao XY, Lian CY, Kong S, Shao JW, Zhang XL. Molecular detection and genetic characterization of bovine hepacivirus identified in ticks collected from cattle in Harbin, northeastern China. Front Vet Sci 2023; 10:1093898. [PMID: 36937022 PMCID: PMC10016144 DOI: 10.3389/fvets.2023.1093898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Bovine hepacivirus (BovHepV) is a member of the genus Hepacivirus of the family Flaviviridae, which can cause acute or persistent infections in cattle. Currently, BovHepV strains identified in cattle populations worldwide can be classified into two genotypes with eight subtypes in genotype 1. BovHepV has been identified in a wide geographic area in China. Interestingly, the viral RNA of BovHepV has also been detected in ticks in Guangdong province, China. In this study, Rhipicephalus microplus tick samples were collected in Heilongjiang province, northeastern China, and BovHepV was screened with an overall positive rate of 10.9%. Sequence comparison and phylogenetic analysis showed that the BovHepV strains detected in this study belong to the subtype G. This is the first report about the detection of BovHepV in ticks in Heilongjiang province, China, which expands our knowledge that ticks may be a transmission vector of BovHepV.
Collapse
Affiliation(s)
- Sheng Yuan
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xin-Yan Yao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chun-Yang Lian
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Sa Kong
- Beijing Biomedical Technology Center of Jofunhwa Biotechnology (Nanjing) Co., Ltd., Beijing, China
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xue-Lian Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Xue-Lian Zhang
| |
Collapse
|
28
|
Metavirome of 31 tick species provides a compendium of 1,801 RNA virus genomes. Nat Microbiol 2023; 8:162-173. [PMID: 36604510 PMCID: PMC9816062 DOI: 10.1038/s41564-022-01275-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/20/2022] [Indexed: 01/07/2023]
Abstract
The increasing prevalence and expanding distribution of tick-borne viruses globally have raised health concerns, but the full repertoire of the tick virome has not been assessed. We sequenced the meta-transcriptomes of 31 different tick species in the Ixodidae and Argasidae families from across mainland China, and identified 724 RNA viruses with distinctive virome compositions among genera. A total of 1,801 assembled and complete or nearly complete viral genomes revealed an extensive diversity of genome architectures of tick-associated viruses, highlighting ticks as a reservoir of RNA viruses. We examined the phylogenies of different virus families to investigate virome evolution and found that the most diverse tick-associated viruses are positive-strand RNA virus families that demonstrate more ancient divergence than other arboviruses. Tick-specific viruses are often associated with only a few tick species, whereas virus clades that can infect vertebrates are found in a wider range of tick species. We hypothesize that tick viruses can exhibit both 'specialist' and 'generalist' evolutionary trends. We hope that our virome dataset will enable much-needed research on vertebrate-pathogenic tick-associated viruses.
Collapse
|
29
|
Batovska J, Mee PT, Sawbridge TI, Rodoni BC, Lynch SE. Enhanced Arbovirus Surveillance with High-Throughput Metatranscriptomic Processing of Field-Collected Mosquitoes. Viruses 2022; 14:v14122759. [PMID: 36560765 PMCID: PMC9782886 DOI: 10.3390/v14122759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Surveillance programs are essential for the prevention and control of mosquito-borne arboviruses that cause serious human and animal diseases. Viral metatranscriptomic sequencing can enhance surveillance by enabling untargeted, high-throughput arbovirus detection. We used metatranscriptomic sequencing to screen field-collected mosquitoes for arboviruses to better understand how metatranscriptomics can be utilised in routine surveillance. Following a significant flood event in 2016, more than 56,000 mosquitoes were collected over seven weeks from field traps set up in Victoria, Australia. The traps were split into samples of 1000 mosquitoes or less and sequenced on the Illumina HiSeq. Five arboviruses relevant to public health (Ross River virus, Sindbis virus, Trubanaman virus, Umatilla virus, and Wongorr virus) were detected a total of 33 times in the metatranscriptomic data, with 94% confirmed using reverse transcription quantitative PCR (RT-qPCR). Analysis of metatranscriptomic cytochrome oxidase I (COI) sequences enabled the detection of 12 mosquito and two biting midge species. Screening of the same traps by an established public health arbovirus surveillance program corroborated the metatranscriptomic arbovirus and mosquito species detections. Assembly of genome sequences from the metatranscriptomic data also led to the detection of 51 insect-specific viruses, both known and previously undescribed, and allowed phylogenetic comparison to past strains. We have demonstrated how metatranscriptomics can enhance surveillance by enabling untargeted arbovirus detection, providing genomic epidemiological data, and simultaneously identifying vector species from large, unsorted mosquito traps.
Collapse
Affiliation(s)
- Jana Batovska
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Peter T. Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Tim I. Sawbridge
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Brendan C. Rodoni
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Stacey E. Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| |
Collapse
|
30
|
Bassi C, Guerriero P, Pierantoni M, Callegari E, Sabbioni S. Novel Virus Identification through Metagenomics: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122048. [PMID: 36556413 PMCID: PMC9784588 DOI: 10.3390/life12122048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Metagenomic Next Generation Sequencing (mNGS) allows the evaluation of complex microbial communities, avoiding isolation and cultivation of each microbial species, and does not require prior knowledge of the microbial sequences present in the sample. Applications of mNGS include virome characterization, new virus discovery and full-length viral genome reconstruction, either from virus preparations enriched in culture or directly from clinical and environmental specimens. Here, we systematically reviewed studies that describe novel virus identification through mNGS from samples of different origin (plant, animal and environment). Without imposing time limits to the search, 379 publications were identified that met the search parameters. Sample types, geographical origin, enrichment and nucleic acid extraction methods, sequencing platforms, bioinformatic analytical steps and identified viral families were described. The review highlights mNGS as a feasible method for novel virus discovery from samples of different origins, describes which kind of heterogeneous experimental and analytical protocols are currently used and provides useful information such as the different commercial kits used for the purification of nucleic acids and bioinformatics analytical pipelines.
Collapse
Affiliation(s)
- Cristian Bassi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paola Guerriero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Marina Pierantoni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Callegari
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Sabbioni
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-053-245-5319
| |
Collapse
|
31
|
Liu Z, Li L, Xu W, Yuan Y, Liang X, Zhang L, Wei Z, Sui L, Zhao Y, Cui Y, Yin Q, Li D, Li Q, Hou Z, Wei F, Liu Q, Wang Z. Extensive diversity of RNA viruses in ticks revealed by metagenomics in northeastern China. PLoS Negl Trop Dis 2022; 16:e0011017. [PMID: 36542659 PMCID: PMC9836300 DOI: 10.1371/journal.pntd.0011017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/12/2023] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ticks act as important vectors of infectious agents, and several emerging tick-borne viruses have recently been identified to be associated with human diseases in northeastern China. However, little is known about the tick virome in northeastern China. METHODS Ticks collected from April 2020 to July 2021 were pooled for metagenomic analysis to investigate the virome diversity in northeastern China. RESULTS In total, 22 RNA viruses were identified, including four each in the Nairoviridae and Phenuiviridae families, three each in the Flaviviridae, Rhabdoviridae, and Solemoviridae families, two in the Chuviridae family, and one each in the Partitiviridae, Tombusviridae families and an unclassified virus. Of these, eight viruses were of novel species, belonging to the Nairoviridae (Ji'an nairovirus and Yichun nairovirus), Phenuiviridae (Mudanjiang phlebovirus), Rhabdoviridae (Tahe rhabdovirus 1-3), Chuviridae (Yichun mivirus), and Tombusviridae (Yichun tombus-like virus) families, and five members were established human pathogens, including Alongshan virus, tick-borne encephalitis virus, Songling virus, Beiji nairovirus, and Nuomin virus. I. persulcatus ticks had significant higher number of viral species than H. japonica, H. concinna, and D. silvarum ticks. Significant differences in tick viromes were observed among Daxing'an, Xiaoxing'an and Changbai mountains. CONCLUSIONS These findings showed an extensive diversity of RNA viruses in ticks in northeastern China, revealing potential public health threats from the emerging tick-borne viruses. Further studies are needed to explain the natural circulation and pathogenicity of these viruses.
Collapse
Affiliation(s)
- Ziyan Liu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Liang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| | - Wenbo Xu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Yongxu Yuan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Xiaojie Liang
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Li Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| | - Zhengkai Wei
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People’s Republic of China
| | - Liyan Sui
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Yinghua Zhao
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Yanyan Cui
- College of Food Science and Engineering, Tonghua Normal University, Tonghua, Jilin Province, People’s Republic of China
| | - Qing Yin
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Dajun Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Qianxue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, People’s Republic of China
| | - Feng Wei
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Quan Liu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People’s Republic of China
| | - Zedong Wang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
32
|
Deciphering the Tissue Tropism of the RNA Viromes Harbored by Field-Collected Anopheles sinensis and Culex quinquefasciatus. Microbiol Spectr 2022; 10:e0134422. [PMID: 35968979 PMCID: PMC9604083 DOI: 10.1128/spectrum.01344-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Arboviruses and insect-specific viruses (ISVs) are two major types of viruses harbored by mosquitoes that are distinguished by the involvement of vertebrate hosts in their transmission cycles. While intensive studies have focused on the transmission, tissue tropism, and evolution of arboviruses, these characteristics are poorly investigated in ISVs, which dominate the mosquito virome. Therefore, in this study, we collected two mosquito species, Anopheles sinensis and Culex quinquefasciatus, in the field and used a metatranscriptomics approach to characterize their RNA viromes in different tissues, such as the midgut, legs, salivary gland, eggs, and the remainder of the carcass. Blood-engorged individuals of these species were captured in 3 locations, and 60 mosquitoes were pooled from each species and location. A total of 40 viral species from diverse viral taxa associated with all viral RNA genome types were identified, among which 19 were newly identified in this study. According to the current viral taxonomy, some of these viruses, such as Yancheng Anopheles associated virus 2 (Narnaviridae) and Jiangsu Anopheles-related virus (Ghabrivirales), were novel. The two investigated mosquito species generally harbored distinct viromes. Nevertheless, the viruses were generally shared among different tissue types to various degrees. Specifically, the eggs possessed a viral community with significantly lower diversity and abundance than those in other tissues, whereas the legs and salivary glands exhibited higher viral abundance. The compositions and distributions of the viromes of different mosquito tissues were demonstrated for the first time in our study, providing important insight into the virome dynamics within individual mosquitoes. IMPORTANCE ISVs are considered to be ancestral to arboviruses. Because of their medical importance, arboviruses have been well studied from the aspects of their transmission mode, evolution of dual-host tropism, and genetic dynamics within mosquito vectors. However, the mode of ISV maintenance is poorly understood, even though many novel ISVs have been identified with the emergence of sequencing technology. In our study, in addition to the identification of a diverse virus community, the tissue tropism of RNA viromes harbored by two field-collected mosquito species was demonstrated for the first time. According to the results, the virus communities of different tissues, such as the salivary glands, midguts, legs, and eggs, can help us understand the evolution, transmission routes, and maintenance modes of mosquito-specific viruses in nature.
Collapse
|
33
|
Abstract
Blood-sucking ticks are obligate parasites and vectors of a variety of human and animal viruses. Some tick-borne viruses have been identified as pathogens of infectious diseases in humans or animals, potentially imposing significant public health burdens and threats to the husbandry industry. Therefore, identifying the profiles of tick-borne viruses will provide valuable information about the evolution and pathogen ecology of tick-borne viruses. In this study, we investigated the viromes of parasitic ticks collected from the body surfaces of herbivores in Xinjiang Uyghur Autonomous Region and Inner Mongolia Autonomous Region of China, two regions in northwest China. By using a metatranscriptomic approach, 17 RNA viruses with high diversity in genomic organization and evolution were identified. Among them, nine are proposed to be novel species. The classified viruses belonged to six viral families, including Phenuiviridae, Rhabdoviridae, Peribunyaviridae, Lispiviridae, Chuviridae, and Reoviridae, and unclassified viruses were also identified. In addition, although some viruses from different sampling locations shared significant similarities, the abundance and diversity of viruses notably varied among the different collection locations. This study demonstrates the diversity of tick-borne viruses in Xinjiang and Inner Mongolia and provides informative data for further study of the evolution and pathogenicity of these RNA viruses. IMPORTANCE Ticks are widely distributed in pastoral areas in northwestern China and act as vectors that carry and transmit a variety of pathogens, especially viruses. Our study revealed the diversity of tick viruses in Xinjiang and Inner Mongolia and uncovered the phylogenetic relationships of some RNA viruses, especially the important zoonotic tick-borne severe fever with thrombocytopenia syndrome virus in Inner Mongolia. These data suggest a complex and diverse evolutionary history and potential ecological factors associated with pathogenic viruses. The pathogenicity of these tick-borne viruses currently remains unclear. Therefore, future research should focus on evaluating the transmissability and pathogenicity of these tick-borne viruses.
Collapse
|
34
|
Van Brussel K, Mahar JE, Ortiz-Baez AS, Carrai M, Spielman D, Boardman WSJ, Baker ML, Beatty JA, Geoghegan JL, Barrs VR, Holmes EC. Faecal virome of the Australian grey-headed flying fox from urban/suburban environments contains novel coronaviruses, retroviruses and sapoviruses. Virology 2022; 576:42-51. [PMID: 36150229 DOI: 10.1016/j.virol.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 01/04/2023]
Abstract
Bats are important reservoirs for viruses of public health and veterinary concern. Virus studies in Australian bats usually target the families Paramyxoviridae, Coronaviridae and Rhabdoviridae, with little known about their overall virome composition. We used metatranscriptomic sequencing to characterise the faecal virome of grey-headed flying foxes from three colonies in urban/suburban locations from two Australian states. We identified viruses from three mammalian-infecting (Coronaviridae, Caliciviridae, Retroviridae) and one possible mammalian-infecting (Birnaviridae) family. Of particular interest were a novel bat betacoronavirus (subgenus Nobecovirus) and a novel bat sapovirus (Caliciviridae), the first identified in Australian bats, as well as a potentially exogenous retrovirus. The novel betacoronavirus was detected in two sampling locations 1375 km apart and falls in a viral lineage likely with a long association with bats. This study highlights the utility of unbiased sequencing of faecal samples for identifying novel viruses and revealing broad-scale patterns of virus ecology and evolution.
Collapse
Affiliation(s)
- Kate Van Brussel
- Sydney Institute for Infectious Diseases, School of Life & Environmental Sciences and School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Jackie E Mahar
- Sydney Institute for Infectious Diseases, School of Life & Environmental Sciences and School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Ayda Susana Ortiz-Baez
- Sydney Institute for Infectious Diseases, School of Life & Environmental Sciences and School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Maura Carrai
- Jockey Club College of Veterinary Medicine & Life Sciences, City University of Hong Kong, Kowloon Tong, People's Republic of China
| | - Derek Spielman
- School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, 2006, Australia
| | - Wayne S J Boardman
- School of Animal and Veterinary Sciences, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide, SA, 5371, Australia
| | - Michelle L Baker
- CSIRO Australian Centre for Disease Preparedness, Health and Biosecurity Business Unit, Geelong, VIC, 3220, Australia
| | - Julia A Beatty
- Jockey Club College of Veterinary Medicine & Life Sciences, City University of Hong Kong, Kowloon Tong, People's Republic of China
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, New Zealand; Institute of Environmental Science and Research, Wellington, 5022, New Zealand
| | - Vanessa R Barrs
- Jockey Club College of Veterinary Medicine & Life Sciences, City University of Hong Kong, Kowloon Tong, People's Republic of China; Centre for Animal Health and Welfare, City University of Hong Kong, Kowloon Tong, People's Republic of China.
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life & Environmental Sciences and School of Medical Sciences, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
35
|
Shi YN, Li LM, Zhou JB, Hua Y, Zeng ZL, Yu YP, Liu P, Yuan ZG, Chen JP. Detection of a novel Pestivirus strain in Java ticks (Amblyomma javanense) and the hosts Malayan pangolin (Manis javanica) and Chinese pangolin (Manis pentadactyla). Front Microbiol 2022; 13:988730. [PMID: 36118205 PMCID: PMC9479695 DOI: 10.3389/fmicb.2022.988730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Pangolins are endangered animals and are listed in the CITES Appendix I of the Convention International Trade Endangered Species of Wild Fauna and Flora as well as being the national first-level protected wild animal in China. Based on a few reports on pangolins infected with pestiviruses of the Flaviviridae family, Pestivirus infections in pangolins have attracted increasing attention. Pangolin pestivirus is a pathogen that may cause diseases such as acute diarrhea and acute hemorrhagic syndrome. To better understand the epidemiology and genomic characterization of pestiviruses carried by pangolins, we detected pestiviruses in dead Malayan pangolin using metavirome sequencing technology and obtained a Pestivirus sequence of 12,333 nucleotides (named Guangdong pangolin Pestivirus, GDPV). Phylogenetic tree analysis based on the entire coding sequence, NS3 gene or RdRp gene sequences, showed that GDPV was closely related to previously reported pangolin-derived Pestivirus and clustered into a separate branch. Molecular epidemiological investigation revealed that 15 Pestivirus-positive tissues from two pangolins individuals with a positivity rate of 5.56%, and six Amblyomma javanense carried pestiviruses with a positivity rate of 19.35%. Moreover, the RdRp gene of the Pestivirus carried by A. javanense showed a high similarity to that carried by pangolins (93–100%), indicating A. javanense is likely to represent the vector of Pestivirus transmission. This study expands the diversity of viruses carried by pangolins and provides an important reference value for interrupting the transmission route of the virus and protecting the health of pangolins.
Collapse
Affiliation(s)
- Yuan-Ni Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Lin-Miao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jia-Bin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, Guangdong, China
| | - Zhi-Liao Zeng
- Shenzhen Management Bureau of Natural Reserve, Shenzhen, Guangdong, China
| | - Ye-Pin Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ping Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- *Correspondence: Zi-Guo Yuan,
| | - Jin-Ping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- Jin-Ping Chen,
| |
Collapse
|
36
|
Guo L, Ma J, Lin J, Chen M, Liu W, Zha J, Jin Q, Hong H, Huang W, Zhang L, Zhang K, Wei Z, Liu Q. Virome of Rhipicephalus ticks by metagenomic analysis in Guangdong, southern China. Front Microbiol 2022; 13:966735. [PMID: 36033874 PMCID: PMC9403862 DOI: 10.3389/fmicb.2022.966735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Tick-borne viruses (TBVs) have increasingly caused a global public health concern. This study collected Rhipicephalus ticks in Guangdong, southern China to identify RNA viruses. Meta-transcriptome analysis revealed the virome in Rhipicephalus ticks, resulting in the discovery of 10 viruses, including Lihan tick virus, Brown dog tick phlebovirus 1 and 2 in the family Phenuiviridae, Mivirus and Wuhan tick virus 2 in the family Chuviridae, Wuhan tick virus 1 in the family Rhabdoviridae, bovine hepacivirus in the family Flaviviridae, Guangdong tick quaranjavirus (GTQV) in the family Orthomyxoviridae, Guangdong tick orbivirus (GTOV) in the family Reoviridae, and Guangdong tick Manly virus (GTMV) of an unclassified family. Phylogenetic analysis showed that most of these TBVs were genetically related to the strains in countries outside China, and GTQV, GTOV, and GTMV may represent novel viral species. These findings provided evidence of the long-distance spread of these TBVs in Guangdong, southern China, suggesting the necessity and importance of TBV surveillance.
Collapse
Affiliation(s)
- Luanying Guo
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Jun Ma
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Junwei Lin
- Jieyang Animal Health Supervision Institute, Jieyang, China
| | - Meiyi Chen
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Wei Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Jin Zha
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Qinqin Jin
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Hongrong Hong
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Weinan Huang
- Agricultural and Rural Bureau of Huilai County, Jieyang, China
| | - Li Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ketong Zhang
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhengkai Wei
- School of Life Sciences and Engineering, Foshan University, Foshan, China
- Zhengkai Wei,
| | - Quan Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
- Center for Infectious Diseases and Pathogen Biology, International Center of Future Science, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China
- *Correspondence: Quan Liu,
| |
Collapse
|
37
|
Pang Z, Jin Y, Pan M, Zhang Y, Wu Z, Liu L, Niu G. Geographical distribution and phylogenetic analysis of Jingmen tick virus in China. iScience 2022; 25:105007. [PMID: 36097615 PMCID: PMC9463580 DOI: 10.1016/j.isci.2022.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022] Open
Abstract
Jingmen tick virus (JMTV) is a novel tick-borne segmented RNA virus that is closely related to un-segmental RNA virus in evolution. It has been confirmed that JMTV could be a causative agent of human disease. In this study, a total of 3658 ticks were sampled from 7 provinces of China and then divided into 545 pools according to the location and species. QRT-PCR and nested PCR were performed to confirm the presence of JMTV. The results showed JMTV was identified in 5 out of 7 provinces with an average infection rate of 1.4% (51/3658). Phylogenetic analysis indicated that all JMTV strains identified in this study were closely related to each other and formed a well-supported sub-lineage. Our results provide molecular evidence of JMTV in different species of ticks from endemic and non-endemic regions and demonstrate that JMTV, as a natural foci pathogen, may be widely distributed all over China. JMTV was first identified in unrecognized endemic regions of China Two complete genomes and 13 partial S1 segments of JMTV were sequenced and analyzed JMTV was relatively conservative in evolution JMTV was widely distributed in China as a potential health threat to humans and animals
Collapse
|
38
|
Shi W, Shi M, Que TC, Cui XM, Ye RZ, Xia LY, Hou X, Zheng JJ, Jia N, Xie X, Wu WC, He MH, Wang HF, Wei YJ, Wu AQ, Zhang SF, Pan YS, Chen PY, Wang Q, Li SS, Zhong YL, Li YJ, Tan LH, Zhao L, Jiang JF, Hu YL, Cao WC. Trafficked Malayan pangolins contain viral pathogens of humans. Nat Microbiol 2022; 7:1259-1269. [PMID: 35918420 PMCID: PMC9352580 DOI: 10.1038/s41564-022-01181-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/21/2022] [Indexed: 12/03/2022]
Abstract
Pangolins are the most trafficked wild animal in the world according to the World Wildlife Fund. The discovery of SARS-CoV-2-related coronaviruses in Malayan pangolins has piqued interest in the viromes of these wild, scaly-skinned mammals. We sequenced the viromes of 161 pangolins that were smuggled into China and assembled 28 vertebrate-associated viruses, 21 of which have not been previously reported in vertebrates. We named 16 members of Hunnivirus, Pestivirus and Copiparvovirus pangolin-associated viruses. We report that the l-protein has been lost from all hunniviruses identified in pangolins. Sequences of four human-associated viruses were detected in pangolin viromes, including respiratory syncytial virus, Orthopneumovirus, RotavirusA and Mammalian orthoreovirus. The genomic sequences of five mammal-associated and three tick-associated viruses were also present. Notably, a coronavirus related to HKU4-CoV, which was originally found in bats, was identified. The presence of these viruses in smuggled pangolins identifies these mammals as a potential source of emergent pathogenic viruses. Multiple pathogenic viruses are identified in a large set of pangolins, which shows that trading pangolins for scales or flesh may increase the risk of emergence of viral infections.
Collapse
Affiliation(s)
- Wenqiang Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Mang Shi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Teng-Cheng Que
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Run-Ze Ye
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.,Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Xin Hou
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Jia-Jing Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Xing Xie
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Wei-Chen Wu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Mei-Hong He
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Hui-Feng Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yong-Jie Wei
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Ai-Qiong Wu
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Sheng-Feng Zhang
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yu-Sheng Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Pan-Yu Chen
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Qian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.,Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Shou-Sheng Li
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Yan-Li Zhong
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Ying-Jiao Li
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Luo-Hao Tan
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China. .,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, P. R. China.
| | - Yan-Ling Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, P. R. China. .,Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, P. R. China.
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China. .,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, P. R. China. .,Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China.
| |
Collapse
|
39
|
Expanded Diversity and Host Range of Bovine Hepacivirus—Genomic and Serological Evidence in Domestic and Wild Ruminant Species. Viruses 2022; 14:v14071457. [PMID: 35891438 PMCID: PMC9319978 DOI: 10.3390/v14071457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
The hepatitis C virus (HCV)-related bovine hepacivirus (BovHepV) can cause acute as well as persistent infections in cattle. The true clinical relevance of the virus is not yet known. As reliable antibody detection methods are lacking and prevalence studies have only been conducted in cattle and few countries to date, the true distribution, genetic diversity, and host range is probably greatly underestimated. In this study, we applied several RT-PCR methods and a nano-luciferase-based immunoprecipitation system (LIPS) assay to analyze bovine serum samples from Bulgaria as well as wild ruminant sera from Germany and the Czech Republic. Using these methods, BovHepV infections were confirmed in Bulgarian cattle, with viral genomes detected in 6.9% and serological reactions against the BovHepV NS3 helicase domain in 10% of bovine serum samples. Genetic analysis demonstrated co-circulation of highly diverse BovHepV strains in Bulgarian cattle, and three novel BovHepV subtypes within the genotype 1 could be defined. Furthermore, application of a nested RT-PCR led to the first description of a BovHepV variant (genotype 2) in a wild ruminant species. The results of this study significantly enhance our knowledge of BovHepV distribution, genetic diversity, and host range.
Collapse
|
40
|
Habarugira G, Moran J, Harrison JJ, Isberg SR, Hobson-Peters J, Hall RA, Bielefeldt-Ohmann H. Evidence of Infection with Zoonotic Mosquito-Borne Flaviviruses in Saltwater Crocodiles (Crocodylus porosus) in Northern Australia. Viruses 2022; 14:v14051106. [PMID: 35632847 PMCID: PMC9144604 DOI: 10.3390/v14051106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
The risk of flavivirus infections among the crocodilian species was not recognised until West Nile virus (WNV) was introduced into the Americas. The first outbreaks caused death and substantial economic losses in the alligator farming industry. Several other WNV disease episodes have been reported in crocodilians in other parts of the world, including Australia and Africa. Considering that WNV shares vectors with other flaviviruses, crocodilians are highly likely to also be exposed to flaviviruses other than WNV. A serological survey for flaviviral infections was conducted on saltwater crocodiles (Crocodylus porosus) at farms in the Northern Territory, Australia. Five hundred serum samples, collected from three crocodile farms, were screened using a pan-flavivirus-specific blocking ELISA. The screening revealed that 26% (n = 130/500) of the animals had antibodies to flaviviruses. Of these, 31.5% had neutralising antibodies to WNVKUN (Kunjin strain), while 1.5% had neutralising antibodies to another important flavivirus pathogen, Murray Valley encephalitis virus (MVEV). Of the other flaviviruses tested for, Fitzroy River virus (FRV) was the most frequent (58.5%) in which virus neutralising antibodies were detected. Our data indicate that farmed crocodiles in the Northern Territory are exposed to a range of potentially zoonotic flaviviruses, in addition to WNVKUN. While these flaviviruses do not cause any known diseases in crocodiles, there is a need to investigate whether infected saltwater crocodiles can develop a viremia to sustain the transmission cycle or farmed crocodilians can be used as sentinels to monitor the dynamics of arboviral infections in tropical areas.
Collapse
Affiliation(s)
- Gervais Habarugira
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Jasmin Moran
- Centre for Crocodile Research, Noonamah, NT 0837, Australia; (J.M.); (S.R.I.)
| | - Jessica J. Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (J.H.-P.); (R.A.H.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Sally R. Isberg
- Centre for Crocodile Research, Noonamah, NT 0837, Australia; (J.M.); (S.R.I.)
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (J.H.-P.); (R.A.H.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (J.H.-P.); (R.A.H.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.J.H.); (J.H.-P.); (R.A.H.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
41
|
Di Paola N, Dheilly NM, Junglen S, Paraskevopoulou S, Postler TS, Shi M, Kuhn JH. Jingchuvirales: a New Taxonomical Framework for a Rapidly Expanding Order of Unusual Monjiviricete Viruses Broadly Distributed among Arthropod Subphyla. Appl Environ Microbiol 2022; 88:e0195421. [PMID: 35108077 PMCID: PMC8939347 DOI: 10.1128/aem.01954-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Technical advances in metagenomics and metatranscriptomics have dramatically accelerated virus discovery in recent years. "Chuviruses" were first described in 2015 as obscure negative-sense RNA viruses of diverse arthropods. Although "chuviruses" first appeared to be members of the negarnaviricot order Mononegavirales in phylogenetic analyses using RNA-directed RNA polymerase sequences, further characterization revealed unusual gene orders in genomes that are nonsegmented, segmented, and/or possibly circular. Consequently, a separate order, Jingchuvirales, was established to include a monospecific family, Chuviridae. Recently, it has become apparent that jingchuvirals are broadly distributed and are therefore likely of ecological and economic importance. Here, we describe recent and ongoing efforts to create the necessary taxonomic framework to accommodate the expected flood of novel viruses belonging to the order.
Collapse
Affiliation(s)
- Nicholas Di Paola
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA
| | - Nolwenn M. Dheilly
- UMR 1161 Virology ANSES/INRAE/ENVA, ANSES Animal Health Laboratory, Maisons-Alfort, France
| | - Sandra Junglen
- Institute of Virology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sofia Paraskevopoulou
- Institute of Virology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas S. Postler
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Mang Shi
- Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| |
Collapse
|
42
|
Greay TL, Evasco KL, Evans ML, Oskam CL, Magni PA, Ryan UM, Irwin PJ. Illuminating the bacterial microbiome of Australian ticks with 16S and Rickettsia-specific next-generation sequencing. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100037. [PMID: 35284883 PMCID: PMC8906098 DOI: 10.1016/j.crpvbd.2021.100037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/20/2021] [Accepted: 06/04/2021] [Indexed: 12/27/2022]
Abstract
Next-generation sequencing (NGS) studies show that mosquito and tick microbiomes influence the transmission of pathogens, opening new avenues for vector-borne pathogen control. Recent microbiological studies of Australian ticks highlight fundamental knowledge gaps of tick-borne agents. This investigation explored the composition, diversity and prevalence of bacteria in Australian ticks (n = 655) from companion animals (dogs, cats and horses). Bacterial 16S NGS was used to identify most bacterial taxa and a Rickettsia-specific NGS assay was developed to identify Rickettsia species that were indistinguishable at the V1-2 regions of 16S. Sanger sequencing of near full-length 16S was used to confirm whether species detected by 16S NGS were novel. The haemotropic bacterial pathogens Anaplasma platys, Bartonella clarridgeiae, “Candidatus Mycoplasma haematoparvum” and Coxiella burnetii were identified in Rhipicephalus sanguineus (s.l.) from Queensland (QLD), Western Australia, the Northern Territory (NT), and South Australia, Ixodes holocyclus from QLD, Rh. sanguineus (s.l.) from the NT, and I. holocyclus from QLD, respectively. Analysis of the control data showed that cross-talk compromises the detection of rare species as filtering thresholds for less abundant sequences had to be applied to mitigate false positives. A comparison of the taxonomic assignments made with 16S sequence databases revealed inconsistencies. The Rickettsia-specific citrate synthase gene NGS assay enabled the identification of Rickettsia co-infections with potentially novel species and genotypes most similar (97.9–99.1%) to Rickettsia raoultii and Rickettsia gravesii. “Candidatus Rickettsia jingxinensis” was identified for the first time in Australia. Phylogenetic analysis of near full-length 16S sequences confirmed a novel Coxiellaceae genus and species, two novel Francisella species, and two novel Francisella genotypes. Cross-talk raises concerns for the MiSeq platform as a diagnostic tool for clinical samples. This study provides recommendations for adjustments to Illuminaʼs 16S metagenomic sequencing protocol that help track and reduce cross-talk from cross-contamination during library preparation. The inconsistencies in taxonomic assignment emphasise the need for curated and quality-checked sequence databases. Bacterial pathogens identified in ticks from companion animals with 16S NGS. Sanger sequencing confirmed novel Coxiellaceae gen. sp. and Francisella. “Candidatus Rickettsia jingxinensis” was identified with Rickettsia-specific NGS. Comparison of taxonomic assignments in 16S sequence databases revealed errors. Modifications to the 16S metagenomic library protocol (Illumina) are provided.
Collapse
Affiliation(s)
- Telleasha L Greay
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.,Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.,Executive Consultant, EpiSeq, PO Box 357, Kwinana, Western Australia, 6966, Australia
| | - Kimberly L Evasco
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.,Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.,A/Senior Scientific Officer, Medical Entomology Unit, Department of Health, 1A Brockway Road, Mount Claremont, Western Australia, 6010, Australia
| | - Megan L Evans
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.,Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.,Cardio Respiratory Sleep, Level 1, 52-54 Monash Avenue, Nedlands, Western Australia, 6009, Australia
| | - Charlotte L Oskam
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.,Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Paola A Magni
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia.,Murdoch University Singapore, King's Centre, 390 Havelock Road, Singapore, 169662, Republic of Singapore
| | - Una M Ryan
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
| | - Peter J Irwin
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
| |
Collapse
|
43
|
Li LJ, Ning NZ, Zheng YC, Chu YL, Cui XM, Zhang MZ, Guo WB, Wei R, Liu HB, Sun Y, Ye JL, Jiang BG, Yuan TT, Li J, Bian C, Bell-Sakyi L, Wang H, Jiang JF, Song JL, Cao WC, Tsan-Yuk Lam T, Ni XB, Jia N. Virome and Blood Meal-Associated Host Responses in Ixodes persulcatus Naturally Fed on Patients. Front Microbiol 2022; 12:728996. [PMID: 35250897 PMCID: PMC8891964 DOI: 10.3389/fmicb.2021.728996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
The long-lasting co-evolution of ticks with pathogens results in mutual adaptation. Blood-feeding is one of the critical physiological behaviors that have been associated with the tick microbiome; however, most knowledge was gained through the study of laboratory-reared ticks. Here we detached Ixodes persulcatus ticks at different stages of blood-feeding from human patients and performed high-throughput transcriptomic analysis on them to identify their virome and genes differentially expressed between flat and fully fed ticks. We also traced bloodmeal sources of those ticks and identified bats and three other potential mammalian hosts, highlighting the public health significance. We found Jingmen tick virus and 13 putative new viruses belonging to 11 viral families, three of which even exhibited high genetic divergence from viruses previously reported in the same tick species from the same geographic region. Furthermore, differential expression analysis suggested a downregulation of antioxidant genes in the fully fed I. persulcatus ticks, which might be related to bloodmeal-related redox homeostasis. Our work highlights the significance of active surveillance of tick viromes and suggests a role of reactive oxygen species (ROS) in modulating changes in the microbiome during blood-feeding.
Collapse
Affiliation(s)
- Liang-Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nian-Zhi Ning
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | | | - Yan-Li Chu
- Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ming-Zhu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wen-Bin Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ran Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Bo Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jin-Ling Ye
- Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ting-Ting Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| | - Jie Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cai Bian
- Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Hui Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ju-Liang Song
- Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Joint Institute of Virology (SU/HKU), Shantou University, Shantou, China
| | - Xue-Bing Ni
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- *Correspondence: Xue-Bing Ni,
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Na Jia,
| |
Collapse
|
44
|
A Highly Divergent Hepacivirus Identified in Domestic Ducks Further Reveals the Genetic Diversity of Hepaciviruses. Viruses 2022; 14:v14020371. [PMID: 35215964 PMCID: PMC8879383 DOI: 10.3390/v14020371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
Hepaciviruses represent a group of viruses that pose a significant threat to the health of humans and animals. During the last decade, new members of the genus Hepacivirus have been identified in various host species worldwide, indicating the widespread distribution of genetically diversified hepaciviruses among animals. By applying unbiased high-throughput sequencing, a novel hepacivirus, provisionally designated Hepacivirus Q, was discovered in duck liver samples collected in Guangdong province of China. Genetic analysis revealed that the complete polyprotein of Hepacivirus Q shares 23.9–46.6% amino acid identity with other representatives of the genus Hepacivirus. Considering the species demarcation criteria for hepaciviruses, Hepacivirus Q should be regarded as a novel hepacivirus species of the genus Hepacivirus within the family Flaviviridae. Phylogenetic analyses also indicate the large genetic distance between Hepacivirus Q and other known hepaciviruses. Molecular detection of this novel hepacivirus showed an overall prevalence of 15.9% in duck populations in partial areas of Guangdong province. These results expand knowledge about the genetic diversity and evolution of hepaciviruses and indicate that genetically divergent hepaciviruses are circulating in duck populations in China.
Collapse
|
45
|
Abstract
The COVID-19 pandemic has given the study of virus evolution and ecology new relevance. Although viruses were first identified more than a century ago, we likely know less about their diversity than that of any other biological entity. Most documented animal viruses have been sampled from just two phyla - the Chordata and the Arthropoda - with a strong bias towards viruses that infect humans or animals of economic and social importance, often in association with strong disease phenotypes. Fortunately, the recent development of unbiased metagenomic next-generation sequencing is providing a richer view of the animal virome and shedding new light on virus evolution. In this Review, we explore our changing understanding of the diversity, composition and evolution of the animal virome. We outline the factors that determine the phylogenetic diversity and genomic structure of animal viruses on evolutionary timescales and show how this impacts assessment of the risk of disease emergence in the short term. We also describe the ongoing challenges in metagenomic analysis and outline key themes for future research. A central question is how major events in the evolutionary history of animals, such as the origin of the vertebrates and periodic mass extinction events, have shaped the diversity and evolution of the viruses they carry.
Collapse
|
46
|
Kuhn JH, Adkins S, Agwanda BR, Al Kubrusli R, Alkhovsky SV, Amarasinghe GK, Avšič-Županc T, Ayllón MA, Bahl J, Balkema-Buschmann A, Ballinger MJ, Basler CF, Bavari S, Beer M, Bejerman N, Bennett AJ, Bente DA, Bergeron É, Bird BH, Blair CD, Blasdell KR, Blystad DR, Bojko J, Borth WB, Bradfute S, Breyta R, Briese T, Brown PA, Brown JK, Buchholz UJ, Buchmeier MJ, Bukreyev A, Burt F, Büttner C, Calisher CH, Cao M, Casas I, Chandran K, Charrel RN, Cheng Q, Chiaki Y, Chiapello M, Choi IR, Ciuffo M, Clegg JCS, Crozier I, Dal Bó E, de la Torre JC, de Lamballerie X, de Swart RL, Debat H, Dheilly NM, Di Cicco E, Di Paola N, Di Serio F, Dietzgen RG, Digiaro M, Dolnik O, Drebot MA, Drexler JF, Dundon WG, Duprex WP, Dürrwald R, Dye JM, Easton AJ, Ebihara H, Elbeaino T, Ergünay K, Ferguson HW, Fooks AR, Forgia M, Formenty PBH, Fránová J, Freitas-Astúa J, Fu J, Fürl S, Gago-Zachert S, Gāo GF, García ML, García-Sastre A, Garrison AR, Gaskin T, Gonzalez JPJ, Griffiths A, Goldberg TL, Groschup MH, Günther S, Hall RA, Hammond J, Han T, Hepojoki J, Hewson R, Hong J, Hong N, Hongo S, Horie M, Hu JS, Hu T, Hughes HR, Hüttner F, Hyndman TH, Ilyas M, Jalkanen R, Jiāng D, Jonson GB, Junglen S, Kadono F, Kaukinen KH, Kawate M, Klempa B, Klingström J, Kobinger G, Koloniuk I, Kondō H, Koonin EV, Krupovic M, Kubota K, Kurath G, Laenen L, Lambert AJ, Langevin SL, Lee B, Lefkowitz EJ, Leroy EM, Li S, Li L, Lǐ J, Liu H, Lukashevich IS, Maes P, de Souza WM, Marklewitz M, Marshall SH, Marzano SYL, Massart S, McCauley JW, Melzer M, Mielke-Ehret N, Miller KM, Ming TJ, Mirazimi A, Mordecai GJ, Mühlbach HP, Mühlberger E, Naidu R, Natsuaki T, Navarro JA, Netesov SV, Neumann G, Nowotny N, Nunes MRT, Olmedo-Velarde A, Palacios G, Pallás V, Pályi B, Papa A, Paraskevopoulou S, Park AC, Parrish CR, Patterson DA, Pauvolid-Corrêa A, Pawęska JT, Payne S, Peracchio C, Pérez DR, Postler TS, Qi L, Radoshitzky SR, Resende RO, Reyes CA, Rima BK, Luna GR, Romanowski V, Rota P, Rubbenstroth D, Rubino L, Runstadler JA, Sabanadzovic S, Sall AA, Salvato MS, Sang R, Sasaya T, Schulze AD, Schwemmle M, Shi M, Shí X, Shí Z, Shimomoto Y, Shirako Y, Siddell SG, Simmonds P, Sironi M, Smagghe G, Smither S, Song JW, Spann K, Spengler JR, Stenglein MD, Stone DM, Sugano J, Suttle CA, Tabata A, Takada A, Takeuchi S, Tchouassi DP, Teffer A, Tesh RB, Thornburg NJ, Tomitaka Y, Tomonaga K, Tordo N, Torto B, Towner JS, Tsuda S, Tu C, Turina M, Tzanetakis IE, Uchida J, Usugi T, Vaira AM, Vallino M, van den Hoogen B, Varsani A, Vasilakis N, Verbeek M, von Bargen S, Wada J, Wahl V, Walker PJ, Wang LF, Wang G, Wang Y, Wang Y, Waqas M, Wèi T, Wen S, Whitfield AE, Williams JV, Wolf YI, Wu J, Xu L, Yanagisawa H, Yang C, Yang Z, Zerbini FM, Zhai L, Zhang YZ, Zhang S, Zhang J, Zhang Z, Zhou X. 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch Virol 2021; 166:3513-3566. [PMID: 34463877 PMCID: PMC8627462 DOI: 10.1007/s00705-021-05143-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.
Collapse
Affiliation(s)
- Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA.
| | - Scott Adkins
- United States Department of Agriculture, Agricultural Research Service, US Horticultural Research Laboratory, Fort Pierce, FL, USA
| | - Bernard R Agwanda
- Zoology Department, National Museums of Kenya, Nairobi, Kenya
- Jomo Kenyatta University of Agriculture & Technology, Nairobi, Kenya
| | - Rim Al Kubrusli
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sergey V Alkhovsky
- D.I. Ivanovsky Institute of Virology of N.F. Gamaleya National Center on Epidemiology and Microbiology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Justin Bahl
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, Department of Epidemiology and Biostatistics, Insitute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Matthew J Ballinger
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sina Bavari
- Edge BioInnovation Consulting and Mgt, Frederick, MD, USA
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | - Andrew J Bennett
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Frederick, MD, USA
| | | | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brian H Bird
- School of Veterinary Medicine, One Health Institute, University of California, Davis, Davis, CA, USA
| | - Carol D Blair
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kim R Blasdell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | | | - Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK
| | | | - Steven Bradfute
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rachel Breyta
- University of Washington, Seattle, WA, USA
- US Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - Thomas Briese
- Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Paul A Brown
- Laboratory of Ploufragan-Plouzané-Niort, French Agency for Food, Environmental and Occupational Heath Safety ANSES, Ploufragan, France
| | - Judith K Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Buchmeier
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Alexander Bukreyev
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Felicity Burt
- Division of Virology, National Health Laboratory Service and Division of Virology, University of the Free State, Bloemfontein, Republic of South Africa
| | - Carmen Büttner
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, People's Republic of China
| | - Inmaculada Casas
- Respiratory Virus and Influenza Unit, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rémi N Charrel
- Unité des Virus Emergents (Aix-Marseille Univ, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France
| | - Qi Cheng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuya Chiaki
- Grape and Persimmon Research Station, Institute of Fruit tree and Tea Science, NARO, Higashihiroshima, Hiroshima, Japan
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Strada delle Cacce 73, 10135, Turin, Italy
| | - Il-Ryong Choi
- Plant Breeding Genetics and Biotechnology Division and International Rice Research Institute, Los Baños, Philippines
| | - Marina Ciuffo
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Strada delle Cacce 73, 10135, Turin, Italy
| | | | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Elena Dal Bó
- CIDEFI, Facultad de Ciencias Agrarias y Forestales, Universidad de La Plata, La Plata, Argentina
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology IMM-6, The Scripps Research Institute, La Jolla, CA, USA
| | - Xavier de Lamballerie
- Unité des Virus Emergents (Aix-Marseille Univ, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France
| | - Rik L de Swart
- Department Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Humberto Debat
- Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas (UFYMA-CONICET), Córdoba, Argentina
| | - Nolwenn M Dheilly
- UMR 1161 Virology ANSES/INRAE/ENVA, ANSES Animal Health Laboratory, 94704, Maisons-Alfort, France
| | | | - Nicholas Di Paola
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Michele Digiaro
- CIHEAM, Istituto Agronomico Mediterraneo di Bari, Valenzano, Italy
| | - Olga Dolnik
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Michael A Drebot
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - J Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität Berlin, Berlin, Germany
| | - William G Dundon
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - W Paul Duprex
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Andrew J Easton
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Koray Ergünay
- Virology Unit, Department of Medical Microbiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Hugh W Ferguson
- School of Veterinary Medicine, St. George's University, True Blue, Grenada
| | | | - Marco Forgia
- Institute for sustainable plant protection, CNR, Turin, Italy
| | | | - Jana Fránová
- Plant Virology Department, Institute of Plant Molecular Biology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| | | | - Jingjing Fu
- College of Life Science and Engineering, Shenyang University, Shenyang, Liaoning, People's Republic of China
| | - Stephanie Fürl
- Albrecht Daniel Thaer-Institute for Crop and Animal Sciences, Division Phytomedicine, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Selma Gago-Zachert
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - George Fú Gāo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - María Laura García
- nstituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, I, CONICET UNLP, La Plata, Argentina
| | | | - Aura R Garrison
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Thomas Gaskin
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Landwirtschaft und Flurneuordnung, Landesamt für ländliche Entwicklung, Frankfurt (Oder), Germany
| | - Jean-Paul J Gonzalez
- Department of Microbiology and Immunology, Division of Biomedical Graduate Research Organization, School of Medicine, Georgetown University, Washington, DC, 20057, USA
- Centaurus Biotechnologies, CTP, Manassas, VA, USA
| | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Stephan Günther
- WHO Collaborating Centre for Arboviruses and Hemorrhagic Fever Reference and Research, Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - John Hammond
- Floral and Nursery Plants Research Unit, United States Department of Agriculture, Agricultural Research Service, USNA, Beltsville, MD, USA
| | - Tong Han
- College of Life Science and Engineering, Shenyang University, Shenyang, Liaoning, People's Republic of China
| | - Jussi Hepojoki
- Department of Virology, University of Helsinki, Medicum, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Hewson
- London School of Hygeine and Tropical Medicine, London, UK
| | - Jiang Hong
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Ni Hong
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masayuki Horie
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
- Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | - John S Hu
- University of Hawaii, Honolulu, HI, USA
| | - Tao Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Holly R Hughes
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Florian Hüttner
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Timothy H Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, WA, Australia
| | - M Ilyas
- Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | | | - Dàohóng Jiāng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Gilda B Jonson
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Centre for Infection Research, Berlin, Germany
| | - Fujio Kadono
- Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry, Hosei University, Koganei, Tokyo, Japan
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | | | - Boris Klempa
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Gary Kobinger
- Department of Microbiology, Immunology and Infectious Diseases, Université Laval, Quebec City, Canada
| | - Igor Koloniuk
- Plant Virology Department, Institute of Plant Molecular Biology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| | - Hideki Kondō
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Kenji Kubota
- Central Region Agricultural Research Center, NARO, Tsukuba, Ibaraki, Japan
| | - Gael Kurath
- US Geological Survey Western Fisheries Research Center, Seattle, WA, USA
| | - Lies Laenen
- KU Leuven, Rega Institute, Zoonotic Infectious Diseases unit, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Amy J Lambert
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | | | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Eric M Leroy
- MIVEGEC (IRD-CNRS-Montpellier university) Unit, French National Research Institute for Sustainable Development (IRD), Montpellier, France
| | - Shaorong Li
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, V9T 6N7, Canada
| | - Longhui Li
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jiànróng Lǐ
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Huazhen Liu
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Piet Maes
- KU Leuven, Rega Institute, Zoonotic Infectious Diseases unit, Leuven, Belgium
| | | | - Marco Marklewitz
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Sergio H Marshall
- Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile
| | - Shin-Yi L Marzano
- United States Department of Agriculture, Agricultural Research Service , Washington, USA
| | - Sebastien Massart
- Gembloux Agro-Bio Tech, TERRA, Plant Pathology Laboratory, Liège University, Liege, Belgium
| | - John W McCauley
- Worldwide Influenza Centre, Francis Crick Institute, London, UK
| | - Michael Melzer
- Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Tobi J Ming
- Molecular Genetics, Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, Canada
| | | | - Gideon J Mordecai
- Department of Medicine, Univeristy of British Columbia, Vancouver, Canada
| | | | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Rayapati Naidu
- Department of Plant Pathology, Irrigated Agricultural Research and Extension Center, Washington State University, Prosser, WA, USA
| | - Tomohide Natsuaki
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - José A Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Sergey V Netesov
- Novosibirsk State University, Novosibirsk, Novosibirsk Oblast, Russia
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | | | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Bernadett Pályi
- National Biosafety Laboratory, National Public Health Center, Budapest, Hungary
| | - Anna Papa
- National Reference Centre for Arboviruses and Haemorrhagic Fever Viruses, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Paraskevopoulou
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Adam C Park
- University of Hawaii, Honolulu, HI, USA
- Hawaii Department of Agriculture, Honolulu, HI, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - David A Patterson
- Fisheries and Oceans Canada, Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - Alex Pauvolid-Corrêa
- Department of Veterinary Integrated Biosciences and Department of Entomology, Texas A&M University, College Station, USA
- Laboratory of Respiratory Viruses and Measles, Fiocruz, Rio de Janeiro, Brazil
| | - Janusz T Pawęska
- Center for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham-Johannesburg, Gauteng, South Africa
| | - Susan Payne
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Carlotta Peracchio
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Strada delle Cacce 73, 10135, Turin, Italy
| | - Daniel R Pérez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Thomas S Postler
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Liying Qi
- Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, People's Republic of China
| | | | - Renato O Resende
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Carina A Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Bertus K Rima
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Gabriel Robles Luna
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular, Centro Cientifico Technológico-La Plata, Consejo Nacional de Investigaciones Científico Tecnológico-Universidad Nacional de La Plata, La Plata, Argentina
| | - Paul Rota
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Luisa Rubino
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| | - Jonathan A Runstadler
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA, 01536, USA
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | | | - Maria S Salvato
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MA, USA
| | - Rosemary Sang
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Takahide Sasaya
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Angela D Schulze
- Molecular Genetics Lab, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Martin Schwemmle
- Faculty of Medicine, University Medical Center-University Freiburg, Freiburg, Germany
| | - Mang Shi
- Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Xiǎohóng Shí
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Zhènglì Shí
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, People's Republic of China
| | | | - Yukio Shirako
- Asian Center for Bioresources and Environmental Sciences, University of Tokyo, Tokyo, Japan
| | - Stuart G Siddell
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Manuela Sironi
- Bioinformatics Unit, Scientific Institute IRCCS "E. Medea", Bosisio Parini, Italy
| | - Guy Smagghe
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Sophie Smither
- CBR Division, DSTL, Porton Down, Salisbury, Wiltshire, UK
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kirsten Spann
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, USA
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - David M Stone
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | | | - Curtis A Suttle
- Departments of Earth, Ocean and Atmospheric Sciences, Microbiology and Immunology, and Botany, and the Institute for Oceans and Fisheries, University of British Columbia, Vancouver, Canada
| | - Amy Tabata
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shigeharu Takeuchi
- Japan Plant Protection Association Kochi Experiment Station, Konan, Kochi, Japan
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Amy Teffer
- Department of Forest Sciences, University of British Columbia, Vancouver, Canada
| | - Robert B Tesh
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Yasuhiro Tomitaka
- Kyushu Okinawa Agricultural Research Center, NARO, Koshi, Kumamoto, Japan
| | - Keizō Tomonaga
- Institute for Frontier Life and Medical Sciences (inFront), , Kyoto University, Kyoto, Japan
| | - Noël Tordo
- Unité des Stratégies Antivirales, WHO Collaborative Centre for Viral Haemorrhagic Fevers and Arboviruses, OIE Reference Laboratory for RVFV & CCHFV, Institut Pasteur, Paris, France
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Institut Pasteur de Guinée, Conakry, Guinea
| | - Shinya Tsuda
- Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry, Hosei University, Koganei, Tokyo, Japan
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People's Republic of China
| | - Massimo Turina
- National Institute of Optics, National Research Council of Italy (INO-CNR), Via Branze 45, 25123Brescia, Italy
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System,, Fayetteville, AR, 72701, USA
| | | | - Tomio Usugi
- Central Region Agricultural Research Center, NARO, Tsukuba, Ibaraki, Japan
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Strada delle Cacce 73, 10135, Turin, Italy
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Strada delle Cacce 73, 10135, Turin, Italy
| | - Bernadette van den Hoogen
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Nikos Vasilakis
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Martin Verbeek
- Wageningen University and Research, Biointeractions and Plant Health, Wageningen, The Netherlands
| | - Susanne von Bargen
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Victoria Wahl
- National Biodefense Analysis and Countermeasures Center, Fort Detrick, Frederick, MD, USA
| | - Peter J Walker
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yanxiang Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Muhammad Waqas
- Key Laboratory of Crop Disease Monitoring and Safety Control in Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Tàiyún Wèi
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Shaohua Wen
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - John V Williams
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jiangxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Lei Xu
- Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, People's Republic of China
| | | | - Caixia Yang
- College of Life Science and Engineering, Shenyang University, Shenyang, Liaoning, People's Republic of China
| | - Zuokun Yang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - F Murilo Zerbini
- Departamento de Fitopatologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Lifeng Zhai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, Hubei , People's Republic of China
| | - Yong-Zhen Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, People's Republic of China
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Song Zhang
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, People's Republic of China
| | - Jinguo Zhang
- National Sand Pear Germplasm Repository in Wuchang, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, Hubei, People's Republic of China
| | - Zhe Zhang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
47
|
Possible Arbovirus Found in Virome of Melophagus ovinus. Viruses 2021; 13:v13122375. [PMID: 34960644 PMCID: PMC8707155 DOI: 10.3390/v13122375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022] Open
Abstract
Members of the Lipopteninae subfamily are blood-sucking ectoparasites of mammals. The sheep ked (Melophagus ovinus) is a widely distributed ectoparasite of sheep. It can be found in most sheep-rearing areas and can cause skin irritation, restlessness, anemia, weight loss and skin injuries. Various bacteria and some viruses have been detected in M. ovinus; however, the virome of this ked has never been studied using modern approaches. Here, we study the virome of M. ovinus collected in the Republic of Tuva, Russia. In our research, we were able to assemble full genomes for five novel viruses, related to the Rhabdoviridae (Sigmavirus), Iflaviridae, Reoviridae and Solemoviridae families. Four viruses were found in all five of the studied pools, while one virus was found in two pools. Phylogenetically, all of the novel viruses clustered together with various recently described arthropod viruses. All the discovered viruses were tested on their ability to replicate in the mammalian porcine embryo kidney (PEK) cell line. Aksy-Durug Melophagus sigmavirus RNA was detected in the PEK cell line cultural supernate after the first, second and third passages. Such data imply that this virus might be able to replicate in mammalian cells, and thus, can be considered as a possible arbovirus.
Collapse
|
48
|
Shao JW, Guo LY, Yuan YX, Ma J, Chen JM, Liu Q. A Novel Subtype of Bovine Hepacivirus Identified in Ticks Reveals the Genetic Diversity and Evolution of Bovine Hepacivirus. Viruses 2021; 13:v13112206. [PMID: 34835012 PMCID: PMC8623979 DOI: 10.3390/v13112206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 12/15/2022] Open
Abstract
Hepaciviruses represent a group of viruses that pose a significant threat to the health of humans and animals. New members of the genus Hepacivirus in the family Flaviviridae have recently been identified in a wide variety of host species worldwide. Similar to the Hepatitis C virus (HCV), bovine hepacivirus (BovHepV) is hepatotropic and causes acute or persistent infections in cattle. BovHepVs are distributed worldwide and classified into two genotypes with seven subtypes in genotype 1. In this study, three BovHepV strains were identified in the samples of ticks sucking blood on cattle in the Guangdong province of China, through unbiased high-throughput sequencing. Genetic analysis revealed the polyprotein-coding gene of these viral sequences herein shared 67.7–84.8% nt identity and 76.1–95.6% aa identity with other BovHepVs identified worldwide. As per the demarcation criteria adopted for the genotyping and subtyping of HCV, these three BovHepV strains belonged to a novel subtype within the genotype 1. Additionally, purifying selection was the dominant evolutionary pressure acting on the genomes of BovHepV, and genetic recombination was not common among BovHepVs. These results expand the knowledge about the genetic diversity and evolution of BovHepV distributed globally, and also indicate genetically divergent BovHepV strains were co-circulating in cattle populations in China.
Collapse
|
49
|
Porter AF, Cobbin J, Li CX, Eden JS, Holmes EC. Metagenomic Identification of Viral Sequences in Laboratory Reagents. Viruses 2021; 13:v13112122. [PMID: 34834931 PMCID: PMC8625350 DOI: 10.3390/v13112122] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
Metagenomic next-generation sequencing has transformed the discovery and diagnosis of infectious disease, with the power to characterise the complete 'infectome' (bacteria, viruses, fungi, parasites) of an individual host organism. However, the identification of novel pathogens has been complicated by widespread microbial contamination in commonly used laboratory reagents. Using total RNA sequencing ("metatranscriptomics") we documented the presence of contaminant viral sequences in multiple 'blank' negative control sequencing libraries that comprise a sterile water and reagent mix. Accordingly, we identified 14 viral sequences in 7 negative control sequencing libraries. As in previous studies, several circular replication-associated protein encoding (CRESS) DNA virus-like sequences were recovered in the blank control libraries, as well as contaminating sequences from the Totiviridae, Tombusviridae and Lentiviridae families of RNA virus. These data suggest that viral contamination of common laboratory reagents is likely commonplace and can comprise a wide variety of viruses.
Collapse
Affiliation(s)
- Ashleigh F. Porter
- The Peter Doherty Institute of Immunity and Infection, Department of Microbiology and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Joanna Cobbin
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (J.-S.E.)
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ci-Xiu Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China;
| | - John-Sebastian Eden
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (J.-S.E.)
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (J.C.); (J.-S.E.)
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
50
|
Development of an entirely plasmid-based reverse genetics system for 12-segmented double-stranded RNA viruses. Proc Natl Acad Sci U S A 2021; 118:2105334118. [PMID: 34635593 DOI: 10.1073/pnas.2105334118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Abstract
The family Reoviridae is a nonenveloped virus group with a double-stranded (ds) RNA genome comprising 9 to 12 segments. In the family Reoviridae, the genera Cardoreovirus, Phytoreovirus, Seadornavirus, Mycoreovirus, and Coltivirus contain virus species having 12-segmented dsRNA genomes. Reverse genetics systems used to generate recombinant infectious viruses are powerful tools for investigating viral gene function and for developing vaccines and therapeutic interventions. Generally, this methodology has been utilized for Reoviridae viruses such as Orthoreovirus, Orbivirus, Cypovirus, and Rotavirus, which have genomes with 10 or 11 segments, respectively. However, no reverse genetics system has been developed for Reoviridae viruses with a genome harboring 12 segments. Herein, we describe development of an entire plasmid-based reverse genetics system for Tarumizu tick virus (TarTV) (genus Coltivirus, family Reoviridae), which has a genome of 12 segments. Recombinant TarTVs were generated by transfection of 12 cloned complementary DNAs encoding the TarTV genome into baby hamster kidney cells expressing T7 RNA polymerase. Using this technology, we generated VP12 mutant viruses and demonstrated that VP12 is an N-glycosylated protein. We also generated a reporter virus expressing the HiBiT-tagged VP8 protein. This reverse genetics system will increase our understanding of not only the biology of the genus Coltivirus but also the replication machinery of the family Reoviridae.
Collapse
|