1
|
Zhang Y, Pan C, Wang S, Zhou Y, Chen J, Yu X, Peng R, Zhang N, Yang H. Distinctive function of Tetraspanins: Implication in viral infections. Virulence 2025; 16:2474188. [PMID: 40053412 PMCID: PMC11901453 DOI: 10.1080/21505594.2025.2474188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Harboring four transmembrane domains in their structural hallmark, Tetraspanins (Tspans) are a family of glycoproteins with pivotal functions in a variety of biological and cellular processes. Through interacting laterally with each other or specific membrane proteins, Tspans organize tetraspanin-enriched microdomains (TEMs), modulating cellular signaling, adhesion, fusion, and proliferation. An abundance of evidence has identified the multiple functions in the progression of cancer as well as the underlying molecular mechanisms. Recently, plenty of studies have focused on the utilities of Tspans by pathogens for infection, especially the infection of viruses. The expression of Tspans correlates with the phase of viral infection, the type of virus, and targeted therapies. In particular, perturbations of Tspans in host cells can affect viral attachment, intracellular trafficking, translation, virus assembly, and release. In this review, we summarize and provide a historical overview of the discovery and characterization of various kinds of virus infection and highlight their diversity and complexity, along with the virus life cycle. Furthermore, we examined the current understanding of how various Tspans are involved in the regulatory mechanisms underlying viral infection. This review aims to offer a comprehensive understanding of the targeting of Tspans for therapeutic intervention in infections caused by diverse pathogens.
Collapse
Affiliation(s)
- Yuzhi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Chengwei Pan
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | - Sijie Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Yidan Zhou
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jiawei Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xiaoyu Yu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Ruining Peng
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Nu Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Zhu C, Zhou J, Chen Z, Chen C, Wang Z, Yang P, Fu G, Liu X, Huang Y, Wan C. Mechanistic insights into the kidney injury in chickens induced by hypervirulent fowl adenovirus serotype 4. Microbiol Spectr 2025:e0005825. [PMID: 40130861 DOI: 10.1128/spectrum.00058-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
Hypervirulent fowl adenovirus serotype 4 (FAdV-4) has emerged as a significant poultry pathogen since 2015, exhibiting clinical multi-organ and multi-tissue tropism post-infection, resulting in substantial economic losses in the poultry industry. However, the molecular mechanism underlying kidney injury caused by FAdV-4 infection remains unclear. Our results indicated that FAdV-4 infection in chickens induces damage to kidney tissues, characterized by the degeneration and necrosis of kidney epithelial cells, glomerular injury, endoplasmic reticulum stress, and the activation of a robust inflammatory response in the kidney cells. Notably, autophagosome-like vesicles enclosed clusters of viral particles that were transmitted between kidney cells post-infection. There might be a novel mechanism of vesicle-mediated cell-to-cell transmission of hypervirulent FAdV-4 that hijacks autophagosome-like vesicles. We also investigated cellular autophagy in kidney cells in vivo and in vitro during early FAdV-4 infection. The autophagy-related marker proteins LC3B, ATG5, and BECN1 were upregulated post-infection, whereas SQSTM1 was downregulated, indicating that FAdV-4 infection enhances autophagic flux and induces complete autophagy. The viral structural protein Fiber 2 was also observed to colocalize with the autophagy-related marker protein LC3B and the exosome-specific marker protein CD63 in the kidney cells at 24 hpi, suggesting that FAdV-4-induced cellular autophagy promotes viral replication in kidney cells and that autophagosome-like vesicles are involved in early FAdV-4 replication in vivo in chickens. Our results offer novel insights into the pathogenesis of hypervirulent FAdV-4 from the perspective of kidney injury post-infection. IMPORTANCE Hypervirulent fowl adenovirus serotype 4 (FAdV-4) has become globally prevalent since 2015 as a predominant pathogen on poultry farms, leading to substantial economic losses for the poultry industry. However, the molecular mechanisms underlying kidney injury induced by FAdV-4 infection remain unclear. In this study, we primarily elucidated the mechanisms of kidney injury induced by FAdV-4 infection in chickens, utilizing both in vitro and in vivo models. Our results demonstrate that FAdV-4 infection in chickens causes degeneration and necrosis of kidney epithelial cells, glomerular injury, and expansion of the endoplasmic reticulum, while also triggering a robust inflammatory response in kidney cells. Notably, we observed the cell-to-cell transmission of virus particles delivered by autophagosome-like vesicles, and the viral infection-induced cellular autophagy facilitated viral replication in the kidney cells. These findings offer a novel perspective to understand the molecular mechanisms of FAdV-4-induced kidney injury and establish a basis for further investigation into the molecular pathogenesis of hypervirulent FAdV-4.
Collapse
Affiliation(s)
- Chunhua Zhu
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jiayu Zhou
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zhen Chen
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Cuiteng Chen
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Ziyue Wang
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Pei Yang
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Guanghua Fu
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xiaodong Liu
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yu Huang
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Chunhe Wan
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
3
|
Xing Y, Wen Z, Mei J, Huang X, Zhao S, Zhong J, Jiu Y. Cytoskeletal Vimentin Directs Cell-Cell Transmission of Hepatitis C Virus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408917. [PMID: 39611409 PMCID: PMC11744697 DOI: 10.1002/advs.202408917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/26/2024] [Indexed: 11/30/2024]
Abstract
Hepatitis C virus (HCV) is a major human pathogen causing liver diseases. Although direct-acting antiviral agents effectively inhibit HCV infection, cell-cell transmission remains a critical venue for HCV persistence in vivo. However, the underlying mechanism of how HCV spreads intercellularly remains elusive. Here, we demonstrated that vimentin, a host intermediate filaments protein, is dispensable for HCV infection in cell models but essential for simulated in vivo infection in differentiated hepatocytes. Genetic removal of vimentin markedly and specifically disrupts HCV cell-cell transmission without influencing cell-free infection. Through mutual co-immunoprecipitation screening, we identified that the N-terminal 1-95 amino acids of vimentin exclusively interact with the HCV envelope protein E1. Introducing either full-length or head region of vimentin is capable of restoring the cell-cell transmission deficiency in vimentin-knockout cells. Moreover, we showed that it is vimentin on the plasma membrane of recipient cells that orchestrates HCV cell-cell transmission. Consequently, vimentin antibody, either applied individually or in combination with HCV neutralizing antibody, exerts pronounced inhibition of HCV cell-cell transmission. Together, the results unveil an unrecognized function of vimentin as a unique venue dominating viral transmission, providing novel insights into propelling advancements in vimentin-targeted anti-HCV therapies.
Collapse
Affiliation(s)
- Yifan Xing
- University of Chinese Academy of SciencesYuquan Road No. 19(A)Shijingshan DistrictBeijing100049P. R. China
- Key Laboratory of Molecular Virology and ImmunologyShanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghai200031P. R. China
| | - Zeyu Wen
- Key Laboratory of Molecular Virology and ImmunologyShanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghai200031P. R. China
| | - Jie Mei
- University of Chinese Academy of SciencesYuquan Road No. 19(A)Shijingshan DistrictBeijing100049P. R. China
- Key Laboratory of Molecular Virology and ImmunologyShanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghai200031P. R. China
| | - Xinyi Huang
- Key Laboratory of Molecular Virology and ImmunologyShanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghai200031P. R. China
| | - Shuangshuang Zhao
- Key Laboratory of Molecular Virology and ImmunologyShanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghai200031P. R. China
| | - Jin Zhong
- University of Chinese Academy of SciencesYuquan Road No. 19(A)Shijingshan DistrictBeijing100049P. R. China
- Key Laboratory of Molecular Virology and ImmunologyShanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghai200031P. R. China
| | - Yaming Jiu
- University of Chinese Academy of SciencesYuquan Road No. 19(A)Shijingshan DistrictBeijing100049P. R. China
- Key Laboratory of Molecular Virology and ImmunologyShanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghai200031P. R. China
| |
Collapse
|
4
|
Nagashima S, Primadharsini PP, Takahashi M, Nishiyama T, Murata K, Okamoto H. Role of Rab13, Protein Kinase A, and Zonula Occludens-1 in Hepatitis E Virus Entry and Cell-to-Cell Spread: Comparative Analysis of Quasi-Enveloped and Non-Enveloped Forms. Pathogens 2024; 13:1130. [PMID: 39770389 PMCID: PMC11678111 DOI: 10.3390/pathogens13121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Hepatitis E virus (HEV) exists in two distinct forms: a non-enveloped form (neHEV), which is present in feces and bile, and a quasi-enveloped form (eHEV), found in circulating blood and culture supernatants. This study aimed to elucidate the roles of Ras-associated binding 13 (Rab13) and protein kinase A (PKA) in the entry mechanisms of both eHEV and neHEV, utilizing small interfering RNA (siRNA) and chemical inhibitors. The results demonstrated that the entry of both viral forms is dependent on Rab13 and PKA. Further investigation into the involvement of tight junction (TJ) proteins revealed that the targeted knockdown of zonula occludens-1 (ZO-1) significantly impaired the entry of both eHEV and neHEV. In addition, in ZO-1 knockout (KO) cells inoculated with either viral form, HEV RNA levels in culture supernatants did not increase, even up to 16 days post-inoculation. Notably, the absence of ZO-1 did not affect the adsorption efficiency of eHEV or neHEV, nor did it influence HEV RNA replication. In cell-to-cell spread assays, ZO-1 KO cells inoculated with eHEV showed a lack of expression of HEV ORF2 and ORF3 proteins. In contrast, neHEV-infected ZO-1 KO cells showed markedly reduced ORF2 and ORF3 protein expression within virus-infected foci, compared to non-targeting knockout (NC KO) cells. These findings underscore the crucial role of ZO-1 in facilitating eHEV entry and mediating the cell-to-cell spread of neHEV in infected cells.
Collapse
Affiliation(s)
- Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (P.P.P.); (M.T.); (T.N.); (K.M.)
| | | | | | | | | | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (P.P.P.); (M.T.); (T.N.); (K.M.)
| |
Collapse
|
5
|
Chavda VP, Luo G, Bezbaruah R, Kalita T, Sarma A, Deka G, Duo Y, Das BK, Shah Y, Postwala H. Unveiling the promise: Exosomes as game-changers in anti-infective therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230139. [PMID: 39439498 PMCID: PMC11491308 DOI: 10.1002/exp.20230139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/23/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs)-based intercellular communication (through exosomes, microvesicles, and apoptotic bodies) is conserved across all kingdoms of life. In recent years, exosomes have gained much attention for targeted pharmaceutical administration due to their unique features, nanoscale size, and capacity to significantly contribute to cellular communication. As drug delivery vehicles, exosomes have several advantages over alternative nanoparticulate drug delivery technologies. A key advantage lies in their comparable makeup to the body's cells, which makes them non-immunogenic. However, exosomes vesicles face several challenges, including a lack of an effective and standard production technique, decreased drug loading capacity, limited characterization techniques, and underdeveloped isolation and purification procedures. Exosomes are well known for their long-term safety and natural ability to transport intercellular nucleic acids and medicinal compounds across the blood-brain-barrier (BBB). Therefore, in addition to revealing new insights into exosomes' distinctiveness, the growing availability of new analytical tools may drive the development of next-generation synthetic systems. Herein, light is shed on exosomes as drug delivery vehicles in anti-infective therapy by reviewing the literature on primary articles published between 2002 and 2023. Additionally, the benefits and limitations of employing exosomes as vehicles for therapeutic drug delivery are also discussed.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical TechnologyL. M. College of PharmacyAhmedabadGujaratIndia
| | - Guanghong Luo
- Department of Radiation OncologyShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Rajashri Bezbaruah
- Department of Pharmaceutical SciencesFaculty of Science and EngineeringDibrugarh UniversityDibrugarhAssamIndia
| | - Tutumoni Kalita
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Anupam Sarma
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Gitima Deka
- College of PharmacyYeungnam UniversityGyeonsanRepublic of Korea
| | - Yanhong Duo
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Bhrigu Kumar Das
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Yesha Shah
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| | - Humzah Postwala
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| |
Collapse
|
6
|
Yu X, Zhu Y, Yin G, Wang Y, Shi X, Cheng G. Exploiting hosts and vectors: viral strategies for facilitating transmission. EMBO Rep 2024; 25:3187-3201. [PMID: 39048750 PMCID: PMC11315993 DOI: 10.1038/s44319-024-00214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Viruses have developed various strategies to ensure their survival and transmission. One intriguing strategy involves manipulating the behavior of infected arthropod vectors and hosts. Through intricate interactions, viruses can modify vector behavior, aiding in crossing barriers and improving transmission to new hosts. This manipulation may include altering vector feeding preferences, thus promoting virus transmission to susceptible individuals. In addition, viruses employ diverse dissemination methods, including cell-to-cell and intercellular transmission via extracellular vesicles. These strategies allow viruses to establish themselves in favorable environments, optimize replication, and increase the likelihood of spreading to other individuals. Understanding these complex viral strategies offers valuable insights into their biology, transmission dynamics, and potential interventions for controlling infections. Unraveling interactions between viruses, hosts, and vectors enables the development of targeted approaches to effectively mitigate viral diseases and prevent transmission.
Collapse
Affiliation(s)
- Xi Yu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Gang Yin
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518000, China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
7
|
Bley H, Krisp C, Schöbel A, Hehner J, Schneider L, Becker M, Stegmann C, Heidenfels E, Nguyen-Dinh V, Schlüter H, Gerold G, Herker E. Proximity labeling of host factor ANXA3 in HCV infection reveals a novel LARP1 function in viral entry. J Biol Chem 2024; 300:107286. [PMID: 38636657 PMCID: PMC11101947 DOI: 10.1016/j.jbc.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
Hepatitis C virus (HCV) infection is tightly connected to the lipid metabolism with lipid droplets (LDs) serving as assembly sites for progeny virions. A previous LD proteome analysis identified annexin A3 (ANXA3) as an important HCV host factor that is enriched at LDs in infected cells and required for HCV morphogenesis. To further characterize ANXA3 function in HCV, we performed proximity labeling using ANXA3-BioID2 as bait in HCV-infected cells. Two of the top proteins identified proximal to ANXA3 during HCV infection were the La-related protein 1 (LARP1) and the ADP ribosylation factor-like protein 8B (ARL8B), both of which have been previously described to act in HCV particle production. In follow-up experiments, ARL8B functioned as a pro-viral HCV host factor without localizing to LDs and thus likely independent of ANXA3. In contrast, LARP1 interacts with HCV core protein in an RNA-dependent manner and is translocated to LDs by core protein. Knockdown of LARP1 decreased HCV spreading without altering HCV RNA replication or viral titers. Unexpectedly, entry of HCV particles and E1/E2-pseudotyped lentiviral particles was reduced by LARP1 depletion, whereas particle production was not altered. Using a recombinant vesicular stomatitis virus (VSV)ΔG entry assay, we showed that LARP1 depletion also decreased entry of VSV with VSV, MERS, and CHIKV glycoproteins. Therefore, our data expand the role of LARP1 as an HCV host factor that is most prominently involved in the early steps of infection, likely contributing to endocytosis of viral particles through the pleiotropic effect LARP1 has on the cellular translatome.
Collapse
Affiliation(s)
- Hanna Bley
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Christoph Krisp
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Schöbel
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Julia Hehner
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Laura Schneider
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Miriam Becker
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Cora Stegmann
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Elisa Heidenfels
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Van Nguyen-Dinh
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Gerold
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Eva Herker
- Institute of Virology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
8
|
Williams B, Carruthers J, Gillard JJ, Lythe G, Perelson AS, Ribeiro RM, Molina-París C, López-García M. The reproduction number and its probability distribution for stochastic viral dynamics. J R Soc Interface 2024; 21:20230400. [PMID: 38264928 PMCID: PMC10806437 DOI: 10.1098/rsif.2023.0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
We consider stochastic models of individual infected cells. The reproduction number, R, is understood as a random variable representing the number of new cells infected by one initial infected cell in an otherwise susceptible (target cell) population. Variability in R results partly from heterogeneity in the viral burst size (the number of viral progeny generated from an infected cell during its lifetime), which depends on the distribution of cellular lifetimes and on the mechanism of virion release. We analyse viral dynamics models with an eclipse phase: the period of time after a cell is infected but before it is capable of releasing virions. The duration of the eclipse, or the subsequent infectious, phase is non-exponential, but composed of stages. We derive the probability distribution of the reproduction number for these viral dynamics models, and show it is a negative binomial distribution in the case of constant viral release from infectious cells, and under the assumption of an excess of target cells. In a deterministic model, the ultimate in-host establishment or extinction of the viral infection depends entirely on whether the mean reproduction number is greater than, or less than, one, respectively. Here, the probability of extinction is determined by the probability distribution of R, not simply its mean value. In particular, we show that in some cases the probability of infection is not an increasing function of the mean reproduction number.
Collapse
Affiliation(s)
- Bevelynn Williams
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK
| | | | - Joseph J. Gillard
- CBR Division, Defence Science and Technology Laboratory, Salisbury, UK
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK
| | - Alan S. Perelson
- T-6, Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ruy M. Ribeiro
- T-6, Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Carmen Molina-París
- T-6, Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Martín López-García
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK
| |
Collapse
|
9
|
Carriquí-Madroñal B, Sheldon J, Duven M, Stegmann C, Cirksena K, Wyler E, Zapatero-Belinchón FJ, Vondran FWR, Gerold G. The matrix metalloproteinase ADAM10 supports hepatitis C virus entry and cell-to-cell spread via its sheddase activity. PLoS Pathog 2023; 19:e1011759. [PMID: 37967063 PMCID: PMC10650992 DOI: 10.1371/journal.ppat.1011759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023] Open
Abstract
Hepatitis C virus (HCV) exploits the four entry factors CD81, scavenger receptor class B type I (SR-BI, also known as SCARB1), occludin, and claudin-1 as well as the co-factor epidermal growth factor receptor (EGFR) to infect human hepatocytes. Here, we report that the disintegrin and matrix metalloproteinase 10 (ADAM10) associates with CD81, SR-BI, and EGFR and acts as HCV host factor. Pharmacological inhibition, siRNA-mediated silencing and genetic ablation of ADAM10 reduced HCV infection. ADAM10 was dispensable for HCV replication but supported HCV entry and cell-to-cell spread. Substrates of the ADAM10 sheddase including epidermal growth factor (EGF) and E-cadherin, which activate EGFR family members, rescued HCV infection of ADAM10 knockout cells. ADAM10 did not influence infection with other enveloped RNA viruses such as alphaviruses and a common cold coronavirus. Collectively, our study reveals a critical role for the sheddase ADAM10 as a HCV host factor, contributing to EGFR family member transactivation and as a consequence to HCV uptake.
Collapse
Affiliation(s)
- Belén Carriquí-Madroñal
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Julie Sheldon
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Mara Duven
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Cora Stegmann
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Karsten Cirksena
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Emanuel Wyler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Francisco J. Zapatero-Belinchón
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
- Gladstone Institutes, San Francisco, California, United States of America
| | - Florian W. R. Vondran
- Department of General, Visceral and Transplant Surgery, Regenerative Medicine and Experimental Surgery, Hannover Medical School, Hannover, Germany
- German Center for Infection Research Partner Site Hannover-Braunschweig Hannover, Germany
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Fu Y, Zi R, Xiong S. Infection by exosome-carried Coxsackievirus B3 induces immune escape resulting in an aggravated pathogenesis. Microbes Infect 2023; 25:105148. [PMID: 37156458 DOI: 10.1016/j.micinf.2023.105148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Increasing evidence has shown that extracellular vesicles or exosomes released from virus-infected cells contain viral particles, genomes, or other pathogenic factors that move to neighbor cells, contributing to virus dissemination and productive infection. Our recent study demonstrated that exosomes carrying CVB3 virions exhibited greater infection efficiency than free virions because they accessed various entry routes, overcoming restrictions to viral tropism. However, the pathogenicity of exosomes carried CVB3 and their effect on immunological properties have not yet been completely explained. In the current study, we sought to explore whether exosomes exert their effect on the CVB3-induced pathogenesis or evade the immune attack. Our results showed that exosomes-carried CVB3 could effectively infect viral receptor-negative immune cells in vivo, resulting in inducing immune system loss. Importantly, the exosomes-carried CVB3 had the ability to escape the neutralizing antibodies activity resulting in inducing the severe onset of myocarditis. Using the genetically engineered mouse with deficiency of exosomes, we observed that the exosomes-carried CVB3 reinforced an aggravated pathogenesis. By understanding how exosomes promote the course of viral disease, clinical applications of exosomes can be developed.
Collapse
Affiliation(s)
- Yuxuan Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Ruidong Zi
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
11
|
Conde JN, Himmler GE, Mladinich MC, Setoh YX, Amarilla AA, Schutt WR, Saladino N, Gorbunova EE, Salamango DJ, Benach J, Kim HK, Mackow ER. Establishment of a CPER reverse genetics system for Powassan virus defines attenuating NS1 glycosylation sites and an infectious NS1-GFP11 reporter virus. mBio 2023; 14:e0138823. [PMID: 37489888 PMCID: PMC10470542 DOI: 10.1128/mbio.01388-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/26/2023] Open
Abstract
Powassan virus (POWV) is an emerging tick-borne Flavivirus that causes lethal encephalitis and long-term neurologic damage. Currently, there are no POWV therapeutics, licensed vaccines, or reverse genetics systems for producing infectious POWVs from recombinant DNA. Using a circular polymerase extension reaction (CPER), we generated recombinant LI9 (recLI9) POWVs with attenuating NS1 protein mutations and a recLI9-split-eGFP reporter virus. NS1 proteins are highly conserved glycoproteins that regulate replication, spread, and neurovirulence. POWV NS1 contains three putative N-linked glycosylation sites that we modified individually in infectious recLI9 mutants (N85Q, N208Q, and N224Q). NS1 glycosylation site mutations reduced replication kinetics and were attenuated, with 1-2 log decreases in titer. Severely attenuated recLI9-N224Q exhibited a 2- to 3-day delay in focal cell-to-cell spread and reduced NS1 secretion but was lethal when intracranially inoculated into suckling mice. However, footpad inoculation of recLI9-N224Q resulted in the survival of 80% of mice and demonstrated that NS1-N224Q mutations reduce POWV neuroinvasion in vivo. To monitor NS1 trafficking, we CPER fused a split GFP11-tag to the NS1 C-terminus and generated an infectious reporter virus, recLI9-NS1-GFP11. Cells infected with recLI9-NS1-GFP11 revealed NS1 trafficking in live cells and the novel formation of large NS1-lined intracellular vesicles. An infectious recLI9-NS1-GFP11 reporter virus permits real-time analysis of NS1 functions in POWV replication, assembly, and secretion and provides a platform for evaluating antiviral compounds. Collectively, our robust POWV reverse genetics system permits analysis of viral spread and neurovirulence determinants in vitro and in vivo and enables the rational genetic design of live attenuated POWV vaccines. IMPORTANCE Our findings newly establish a mechanism for genetically modifying Powassan viruses (POWVs), systematically defining pathogenic determinants and rationally designing live attenuated POWV vaccines. This initial study demonstrates that mutating POWV NS1 glycosylation sites attenuates POWV spread and neurovirulence in vitro and in vivo. Our findings validate a robust circular polymerase extension reaction approach as a mechanism for developing, and evaluating, attenuated genetically modified POWVs. We further designed an infectious GFP-tagged reporter POWV that permits us to monitor secretory trafficking of POWV in live cells, which can be applied to screen potential POWV replication inhibitors. This robust system for modifying POWVs provides the ability to define attenuating POWV mutations and create genetically attenuated recPOWV vaccines.
Collapse
Affiliation(s)
- Jonas N. Conde
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Grace E. Himmler
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Megan C. Mladinich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Yin Xiang Setoh
- Microbiology and Molecular Epidemiology Division, Environmental Health Institute, National Environmental Agency, Singapore, Singapore
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - William R. Schutt
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Nicholas Saladino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Elena E. Gorbunova
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Daniel J. Salamango
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Jorge Benach
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Erich R. Mackow
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
12
|
Ohta K, Saka N, Fukasawa M, Nishio M. Hazara orthonairovirus nucleoprotein facilitates viral cell-to-cell spread by modulating tight junction protein, claudin-1. Front Microbiol 2023; 14:1192956. [PMID: 37287449 PMCID: PMC10243194 DOI: 10.3389/fmicb.2023.1192956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
Background Tight junctions act as a barrier that prevents invasion of pathogens through epithelial cells. This study aims to elucidate the correlation between tight junctions and nairoviruses using Hazara orthonairovirus (HAZV) as a surrogate model for Crimean-Congo hemorrhagic fever virus. Methods mRNA, total protein, and cell surface protein levels of tight junction proteins were examined by quantitative real-time reverse transcription polymerase chain reaction, immunoblot and flow cytometry, respectively. HAZV growth was measured by plaque assay. Immunofluorescence assay was used to examine viral cell-to-cell spread. The interaction between HAZV nucleoprotein and claudin-1 was analyzed by immunoprecipitation. Results HAZV infection induced mRNA of several tight junction proteins, especially claudin-1. HAZV infection also induced cell surface expression of claudin-1 protein. Claudin-1 overexpression inhibited the growth of HAZV by blocking its cell-to-cell spread. In contrast, HAZV nucleoprotein completely inhibited HAZV-induced cell surface expression of claudin-1, and this inhibition required interaction between HAZV nucleoprotein and claudin-1. Conclusion HAZV nucleoprotein was shown to bind to claudin-1 to negatively regulate its cell surface expression, and so can promote cell-to-cell spread of HAZV. This is the first presentation of a possible mechanism behind how nairoviruses counteract tight junction barrier function.
Collapse
Affiliation(s)
- Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naoki Saka
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
13
|
Xia S, Xiao W, Zhu X, Liao S, Guo J, Zhou J, Xiao S, Fang P, Fang L. Porcine deltacoronavirus resists antibody neutralization through cell-to-cell transmission. Emerg Microbes Infect 2023; 12:2207688. [PMID: 37125733 DOI: 10.1080/22221751.2023.2207688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteric coronavirus that has been reported to infect a variety of animals and even humans. Cell-cell fusion has been identified as an alternative pathway for the cell-to-cell transmission of certain viruses, but the ability of PDCoV to exploit this transmission model, and the relevant mechanisms, have not been fully elucidated. Herein, we provide evidence that cell-to-cell transmission is the main mechanism supporting PDCoV spread in cell culture and that this efficient spread model is mediated by spike glycoprotein-driven cell-cell fusion. We found that PDCoV efficiently spread to non-susceptible cells via cell-to-cell transmission, and demonstrated that functional receptor porcine aminopeptidase N and cathepsins in endosomes are involved in the cell-to-cell transmission of PDCoV. Most importantly, compared with non-cell-to-cell infection, the cell-to-cell transmission of PDCoV was resistant to neutralizing antibodies and immune sera that potently neutralized free viruses. Taken together, our study revealed key characteristics of the cell-to-cell transmission of PDCoV and provided new insights into the mechanism of PDCoV infection.
Collapse
Affiliation(s)
- Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wenwen Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xuerui Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shusen Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiahui Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Junwei Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
14
|
Zhang J, Yang W, Roy S, Liu H, Roberts R, Wang L, Shi L, Ma W. Tight junction protein occludin is an internalization factor for SARS-CoV-2 infection and mediates virus cell-to-cell transmission. Proc Natl Acad Sci U S A 2023; 120:e2218623120. [PMID: 37068248 PMCID: PMC10151465 DOI: 10.1073/pnas.2218623120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/13/2023] [Indexed: 04/19/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads efficiently by spike-mediated, direct cell-to-cell transmission. However, the underlying mechanism is poorly understood. Herein, we demonstrate that the tight junction protein occludin (OCLN) is critical to this process. SARS-CoV-2 infection alters OCLN distribution and expression and causes syncytium formation that leads to viral spread. OCLN knockdown fails to alter SARS-CoV-2 binding but significantly lowers internalization, syncytium formation, and transmission. OCLN overexpression also has no effect on virus binding but enhances virus internalization, cell-to-cell transmission, and replication. OCLN directly interacts with the SARS-CoV-2 spike, and the endosomal entry pathway is involved in OCLN-mediated cell-to-cell fusion rather than in the cell surface entry pathway. All SARS-CoV-2 strains tested (prototypic, alpha, beta, gamma, delta, kappa, and omicron) are dependent on OCLN for cell-to-cell transmission, although the extent of syncytium formation differs between strains. We conclude that SARS-CoV-2 utilizes OCLN as an internalization factor for cell-to-cell transmission.
Collapse
Affiliation(s)
- Jialin Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - Wenyu Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - Sawrab Roy
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - Heidi Liu
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - R. Michael Roberts
- Division of Animal Sciences, College of Agriculture, Food, & Natural Resources, University of Missouri, Columbia, MO65211
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO65211
| | - Liping Wang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - Lei Shi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| |
Collapse
|
15
|
Extracellular Vesicles: a Trojan Horse Delivery Method for Systemic Administration of Oncolytic Viruses. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023. [DOI: 10.1007/s40883-023-00295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
16
|
Sadki M, Danane J, Allali K. Hepatitis C virus fractional-order model: mathematical analysis. MODELING EARTH SYSTEMS AND ENVIRONMENT 2022; 9:1695-1707. [PMID: 36345473 PMCID: PMC9629771 DOI: 10.1007/s40808-022-01582-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/14/2022] [Indexed: 01/11/2023]
Abstract
Mathematical analysis of epidemics is crucial for the prediction of diseases over time and helps to guide decision makers in terms of public health policy. It is in this context that the purpose of this paper is to study a fractional-order differential mathematical model of HCV infection dynamics, incorporating two fundamental modes of transmission of the infection; virus-to-cell and cell-to-cell along with a cure rate of infected cells. The model includes four compartments, namely, the susceptible hepatocytes, the infected ones, the viral load and the humoral immune response, which is activated in the host to attack the virus. Each compartment involves a long memory effect that is modeled by a Caputo fractional derivative. Our paper starts with the investigation of some basic analytical results. First, we introduce some preliminaries about the needed fractional calculus tools. Next, we establish the well-posedness of our mathematical model in terms of proving the existence, positivity and boundedness of solutions. We present the different problem steady states depending on some reproduction numbers. After that, the paper moves to the stage of proving the global stability of the three steady states. To evaluate the theoretical study of the global stability, we apply a numerical method based on the fundamental theorem of fractional calculus as well as a three-step Lagrange polynomial interpolation method. The numerical simulations show that the free-endemic equilibrium is stable if the basic reproduction number is less than unity. In addition, the numerical tests demonstrate the stability of the other endemic equilibria under some optimal conditions. It is observed that the numerical simulations and the founding theoretical results are coherents.
Collapse
Affiliation(s)
- Marya Sadki
- Laboratory of Mathematics, Computer Science and Applications, FST Mohammedia, Hassan II University of Casablanca, PO Box 146, Mohammedia, Morocco
| | - Jaouad Danane
- Laboratory of Systems Modelization and Analysis for Decision Support, National School of Applied Sciences, Hassan First University of Settat, Berrechid, 26100 Morocco
| | - Karam Allali
- Laboratory of Mathematics, Computer Science and Applications, FST Mohammedia, Hassan II University of Casablanca, PO Box 146, Mohammedia, Morocco
| |
Collapse
|
17
|
Huda MN, Nurunnabi M. Potential Application of Exosomes in Vaccine Development and Delivery. Pharm Res 2022; 39:2635-2671. [PMID: 35028802 PMCID: PMC8757927 DOI: 10.1007/s11095-021-03143-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
Exosomes are cell-derived components composed of proteins, lipid, genetic information, cytokines, and growth factors. They play a vital role in immune modulation, cell-cell communication, and response to inflammation. Immune modulation has downstream effects on the regeneration of damaged tissue, promoting survival and repair of damaged resident cells, and promoting the tumor microenvironment via growth factors, antigens, and signaling molecules. On top of carrying biological messengers like mRNAs, miRNAs, fragmented DNA, disease antigens, and proteins, exosomes modulate internal cell environments that promote downstream cell signaling pathways to facilitate different disease progression and induce anti-tumoral effects. In this review, we have summarized how vaccines modulate our immune response in the context of cancer and infectious diseases and the potential of exosomes as vaccine delivery vehicles. Both pre-clinical and clinical studies show that exosomes play a decisive role in processes like angiogenesis, prognosis, tumor growth metastasis, stromal cell activation, intercellular communication, maintaining cellular and systematic homeostasis, and antigen-specific T- and B cell responses. This critical review summarizes the advancement of exosome based vaccine development and delivery, and this comprehensive review can be used as a valuable reference for the broader delivery science community.
Collapse
Affiliation(s)
- Md Nurul Huda
- Department of Pharmaceutical Sciences, University of Texas at El Paso School of Pharmacy, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Enviromental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, University of Texas at El Paso School of Pharmacy, 1101 N. Campbell St, El Paso, TX, 79902, USA.
- Enviromental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
18
|
Salama II, Raslan HM, Abdel-Latif GA, Salama SI, Sami SM, Shaaban FA, Abdelmohsen AM, Fouad WA. Impact of direct-acting antiviral regimens on hepatic and extrahepatic manifestations of hepatitis C virus infection. World J Hepatol 2022; 14:1053-1073. [PMID: 35978668 PMCID: PMC9258264 DOI: 10.4254/wjh.v14.i6.1053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/01/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a common cause of liver disease and is associated with various extrahepatic manifestations (EHMs). This mini-review outlines the currently available treatments for HCV infection and their prognostic effect on hepatic manifestations and EHMs. Direct-acting antiviral (DAA) regimens are considered pan-genotypic as they achieve a sustained virological response (SVR) > 85% after 12 wk through all the major HCV genotypes, with high percentages of SVR even in advanced fibrosis and cirrhosis. The risk factors for DAA failure include old males, cirrhosis, and the presence of resistance-associated substitutions (RAS) in the region targeted by the received DAAs. The effectiveness of DAA regimens is reduced in HCV genotype 3 with baseline RAS like A30K, Y93H, and P53del. Moreover, the European Association for the Study of the Liver recommended the identification of baseline RAS for HCV genotype 1a. The higher rate of hepatocellular carcinoma (HCC) after DAA therapy may be related to the fact that DAA regimens are offered to patients with advanced liver fibrosis and cirrhosis, where interferon was contraindicated to those patients. The change in the growth of pre-existing subclinical, undetectable HCC upon DAA treatment might be also a cause. Furthermore, after DAA therapy, the T cell-dependent immune response is much weaker upon HCV clearance, and the down-regulation of TNF-α or the elevated neutrophil to lymphocyte ratio might increase the risk of HCC. DAAs can result in reactivation of hepatitis B virus (HBV) in HCV co-infected patients. DAAs are effective in treating HCV-associated mixed cryoglobulinemia, with clinical and immunological responses, and have rapid and high effectiveness in thrombocytopenia. DAAs improve insulin resistance in 90% of patients, increase glomerular filtration rate, and decrease proteinuria, hematuria and articular manifestations. HCV clearance by DAAs allows a significant improvement in atherosclerosis and metabolic and immunological conditions, with a reduction of major cardiovascular events. They also improve physical function, fatigue, cognitive impairment, and quality of life. Early therapeutic approach with DAAs is recommended as it cure many of the EHMs that are still in a reversible stage and can prevent others that can develop due to delayed treatment.
Collapse
Affiliation(s)
- Iman Ibrahim Salama
- Department of Community Medicine Research, National Research Center, Giza 12622, Dokki, Egypt
| | - Hala M Raslan
- Department of Internal Medicine, National Research Center, Giza 12622, Dokki, Egypt
| | - Ghada A Abdel-Latif
- Department of Community Medicine Research, National Research Center, Giza 12622, Dokki, Egypt
| | - Somaia I Salama
- Department of Community Medicine Research, National Research Center, Giza 12622, Dokki, Egypt
| | - Samia M Sami
- Department of Child Health, National Research Center, Giza 12622, Dokki, Egypt
| | - Fatma A Shaaban
- Department of Child Health, National Research Center, Giza 12622, Dokki, Egypt
| | - Aida M Abdelmohsen
- Department of Community Medicine Research, National Research Center, Giza 12622, Dokki, Egypt
| | - Walaa A Fouad
- Department of Community Medicine Research, National Research Center, Giza 12622, Dokki, Egypt
| |
Collapse
|
19
|
Heuss C, Rothhaar P, Burm R, Lee JY, Ralfs P, Haselmann U, Ströh LJ, Colasanti O, Tran CS, Schäfer N, Schnitzler P, Merle U, Bartenschlager R, Patel AH, Graw F, Krey T, Laketa V, Meuleman P, Lohmann V. A Hepatitis C virus genotype 1b post-transplant isolate with high replication efficiency in cell culture and its adaptation to infectious virus production in vitro and in vivo. PLoS Pathog 2022; 18:e1010472. [PMID: 35763545 PMCID: PMC9273080 DOI: 10.1371/journal.ppat.1010472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/11/2022] [Accepted: 05/29/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatitis C virus (HCV) is highly diverse and grouped into eight genotypes (gts). Infectious cell culture models are limited to a few subtypes and isolates, hampering the development of prophylactic vaccines. A consensus gt1b genome (termed GLT1) was generated from an HCV infected liver-transplanted patient. GLT1 replicated to an outstanding efficiency in Huh7 cells upon SEC14L2 expression, by use of replication enhancing mutations or with a previously developed inhibitor-based regimen. RNA replication levels almost reached JFH-1, but full-length genomes failed to produce detectable amounts of infectious virus. Long-term passaging led to the adaptation of a genome carrying 21 mutations and concomitant production of high levels of transmissible infectivity (GLT1cc). During the adaptation, GLT1 spread in the culture even in absence of detectable amounts of free virus, likely due to cell-to-cell transmission, which appeared to substantially contribute to spreading of other isolates as well. Mechanistically, genome replication and particle production efficiency were enhanced by adaptation, while cell entry competence of HCV pseudoparticles was not affected. Furthermore, GLT1cc retained the ability to replicate in human liver chimeric mice, which was critically dependent on a mutation in domain 3 of nonstructural protein NS5A. Over the course of infection, only one mutation in the surface glycoprotein E2 consistently reverted to wildtype, facilitating assembly in cell culture but potentially affecting CD81 interaction in vivo. Overall, GLT1cc is an efficient gt1b infectious cell culture model, paving the road to a rationale-based establishment of new infectious HCV isolates and represents an important novel tool for the development of prophylactic HCV vaccines.
Collapse
Affiliation(s)
- Christian Heuss
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Paul Rothhaar
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Rani Burm
- Laboratory of Liver Infectious Diseases, Ghent University, Gent, Belgium
| | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Philipp Ralfs
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Luisa J. Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ombretta Colasanti
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Cong Si Tran
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Noemi Schäfer
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
| | - Paul Schnitzler
- Department of Infectious Diseases Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Frederik Graw
- BioQuant – Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Vibor Laketa
- Department of Infectious Diseases Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Ghent University, Gent, Belgium
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Section virus-host interactions, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
20
|
Tassi AD, Ramos-González PL, Sinico TE, Kitajima EW, Freitas-Astúa J. Circulative Transmission of Cileviruses in Brevipalpus Mites May Involve the Paracellular Movement of Virions. Front Microbiol 2022; 13:836743. [PMID: 35464977 PMCID: PMC9019602 DOI: 10.3389/fmicb.2022.836743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Plant viruses transmitted by mites of the genus Brevipalpus are members of the genera Cilevirus, family Kitaviridae, or Dichorhavirus, family Rhabdoviridae. They produce non-systemic infections that typically display necrotic and/or chlorotic lesions around the inoculation loci. The cilevirus citrus leprosis virus C (CiLV-C) causes citrus leprosis, rated as one of the most destructive diseases affecting this crop in the Americas. CiLV-C is vectored in a persistent manner by the flat mite Brevipalpus yothersi. Upon the ingestion of viral particles with the content of the infected plant cell, virions must pass through the midgut epithelium and the anterior podocephalic gland of the mites. Following the duct from this gland, virions reach the salivary canal before their inoculation into a new plant cell through the stylet canal. It is still unclear whether CiLV-C multiplies in mite cells and what mechanisms contribute to its movement through mite tissues. In this study, based on direct observation of histological sections from viruliferous mites using the transmission electron microscope, we posit the hypothesis of the paracellular movement of CiLV-C in mites which may involve the manipulation of septate junctions. We detail the presence of viral particles aligned in the intercellular spaces between cells and the gastrovascular system of Brevipalpus mites. Accordingly, we propose putative genes that could control either active or passive paracellular circulation of viral particles inside the mites.
Collapse
Affiliation(s)
- Aline Daniele Tassi
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | | | - Thais Elise Sinico
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Centro de Citricultura Sylvio Moreira, Cordeirópolis, Brazil
| | - Elliot Watanabe Kitajima
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | - Juliana Freitas-Astúa
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Embrapa Mandioca e Fruticultura, Cruz das Almas, Brazil
| |
Collapse
|
21
|
Zaki MYW, Fathi AM, Samir S, Eldafashi N, William KY, Nazmy MH, Fathy M, Gill US, Shetty S. Innate and Adaptive Immunopathogeneses in Viral Hepatitis; Crucial Determinants of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:1255. [PMID: 35267563 PMCID: PMC8909759 DOI: 10.3390/cancers14051255] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
Viral hepatitis B (HBV) and hepatitis C (HCV) infections remain the most common risk factors for the development of hepatocellular carcinoma (HCC), and their heterogeneous distribution influences the global prevalence of this common type of liver cancer. Typical hepatitis infection elicits various immune responses within the liver microenvironment, and viral persistence induces chronic liver inflammation and carcinogenesis. HBV is directly mutagenic but can also cause low-grade liver inflammation characterized by episodes of intermittent high-grade liver inflammation, liver fibrosis, and cirrhosis, which can progress to decompensated liver disease and HCC. Equally, the absence of key innate and adaptive immune responses in chronic HCV infection dampens viral eradication and induces an exhausted and immunosuppressive liver niche that favors HCC development and progression. The objectives of this review are to (i) discuss the epidemiological pattern of HBV and HCV infections, (ii) understand the host immune response to acute and chronic viral hepatitis, and (iii) explore the link between this diseased immune environment and the development and progression of HCC in preclinical models and HCC patients.
Collapse
Affiliation(s)
- Marco Y. W. Zaki
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Ahmed M. Fathi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Samara Samir
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Nardeen Eldafashi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Kerolis Y. William
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo 12613, Egypt;
| | - Maiiada Hassan Nazmy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Upkar S. Gill
- Barts Liver Centre, Centre for Immunobiology, Barts & The London School of Medicine & Dentistry, QMUL, London E1 2AT, UK;
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
22
|
Abstract
It is currently unknown if SARS-CoV-2 can spread through cell–cell contacts, and if so, the underlying mechanisms and implications. In this work, we show, by using lentiviral pseudotyped virus, that the spike protein of SARS-CoV-2 mediates the viral cell-to-cell transmission, with an efficiency higher than that of SARS-CoV. We also find that cell–cell fusion contributes to cell-to-cell transmission, yet ACE2 is not absolutely required. While the authentic variants of concern (VOCs) B.1.1.7 (alpha) and B.1.351 (beta) differ in cell-free infectivity from wild type and from each other, these VOCs have similar cell-to-cell transmission capability and exhibit differential sensitivity to neutralization by vaccinee sera. Results from our study will contribute to a better understanding of SARS-CoV-2 spread and pathogenesis. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the global COVID-19 pandemic. Herein, we provide evidence that SARS-CoV-2 spreads through cell–cell contact in cultures, mediated by the spike glycoprotein. SARS-CoV-2 spike is more efficient in facilitating cell-to-cell transmission than is SARS-CoV spike, which reflects, in part, their differential cell–cell fusion activity. Interestingly, treatment of cocultured cells with endosomal entry inhibitors impairs cell-to-cell transmission, implicating endosomal membrane fusion as an underlying mechanism. Compared with cell-free infection, cell-to-cell transmission of SARS-CoV-2 is refractory to inhibition by neutralizing antibody or convalescent sera of COVID-19 patients. While angiotensin-converting enzyme 2 enhances cell-to-cell transmission, we find that it is not absolutely required. Notably, despite differences in cell-free infectivity, the authentic variants of concern (VOCs) B.1.1.7 (alpha) and B.1.351 (beta) have similar cell-to-cell transmission capability. Moreover, B.1.351 is more resistant to neutralization by vaccinee sera in cell-free infection, whereas B.1.1.7 is more resistant to inhibition by vaccinee sera in cell-to-cell transmission. Overall, our study reveals critical features of SARS-CoV-2 spike-mediated cell-to-cell transmission, with important implications for a better understanding of SARS-CoV-2 spread and pathogenesis.
Collapse
|
23
|
Wang T, Zhang L, Liang W, Liu S, Deng W, Liu Y, Liu Y, Song M, Guo K, Zhang Y. Extracellular vesicles originating from autophagy mediate an antibody-resistant spread of classical swine fever virus in cell culture. Autophagy 2021; 18:1433-1449. [PMID: 34740307 DOI: 10.1080/15548627.2021.1987673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Free spread is a classical mode for mammalian virus transmission. However, the efficiency of this transmission approach is generally low as there are structural barriers or immunological surveillances in the extracellular environment under physiological conditions. In this study, we systematically analyzed the spreading of classical swine fever virus (CSFV) using multiple viral replication analysis in combination with antibody neutralization, transwell assay, and electron microscopy, and identified an extracellular vesicle (EV)-mediated spreading of CSFV in cell cultures. In this approach, intact CSFV virions are enclosed within EVs and transferred into uninfected cells with the movement of EVs, leading to an antibody-resistant infection of the virus. Using fractionation assays, immunostaining, and electron microscopy, we characterized the CSFV-containing EVs and demonstrated that the EVs originated from macroautophagy/autophagy. Taken together, our results showed a new spreading mechanism for CSFV and demonstrated that the EVs in CSFV spreading are closely related to autophagy. These findings shed light on the immune evasion mechanisms of CSFV transmission, as well as new functions of cellular vesicles in virus lifecycles.Abbreviations: 3-MA: 3-methyladenine; CCK-8: Cell Counting Kit-8; CSF: classical swine fever; CQ: chloroquine; CSFV: classical swine fever virus; DAPI, 4-,6-diamidino-2-phenylindole; EVs: extracellular vesicles; hpi: h post infection; IEM: immunoelectron microscopy; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MOI: multiplicity of infection; MVs: microvesicles; ND50: half neutralizing dose; PCR: polymerase chain reaction; PBS: phosphate-buffered saline; SEC: size-exclusion chromatography; siRNA: small interfering RNA; TEM: transmission electron microscopy.
Collapse
Affiliation(s)
- Tao Wang
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| | - Liang Zhang
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| | - Wulong Liang
- College of Veterinary Medicine, Northwest A&f University, Yangling, China.,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanchuan Liu
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| | - Wen Deng
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| | - Yangruiyu Liu
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| | - Yaru Liu
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| | - Mengzhao Song
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| |
Collapse
|
24
|
Echeverría N, Comas V, Aldunate F, Perbolianachis P, Moreno P, Cristina J. In the era of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet? World J Hepatol 2021; 13:1234-1268. [PMID: 34786164 PMCID: PMC8568586 DOI: 10.4254/wjh.v13.i10.1234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplantation worldwide. Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections, there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility. Indeed, the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected. To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must. The coronavirus disease 19 (COVID-19) pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which has renewed interest on fighting HCV epidemic with vaccination. The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications. We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus, together with some key aspects of HCV immunology which have, so far, hampered the progress in this area. The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches, some of which have been recently and successfully employed for SARS-CoV-2 vaccines. Finally, some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV.
Collapse
Affiliation(s)
- Natalia Echeverría
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Victoria Comas
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabián Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
25
|
Li HC, Yang CH, Lo SY. Cellular factors involved in the hepatitis C virus life cycle. World J Gastroenterol 2021; 27:4555-4581. [PMID: 34366623 PMCID: PMC8326260 DOI: 10.3748/wjg.v27.i28.4555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/04/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV), an obligatory intracellular pathogen, highly depends on its host cells to propagate successfully. The HCV life cycle can be simply divided into several stages including viral entry, protein translation, RNA replication, viral assembly and release. Hundreds of cellular factors involved in the HCV life cycle have been identified over more than thirty years of research. Characterization of these cellular factors has provided extensive insight into HCV replication strategies. Some of these cellular factors are targets for anti-HCV therapies. In this review, we summarize the well-characterized and recently identified cellular factors functioning at each stage of the HCV life cycle.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| |
Collapse
|
26
|
Yu T, Yang Q, Tian F, Chang H, Hu Z, Yu B, Han L, Xing Y, Jiu Y, He Y, Zhong J. Glycometabolism regulates hepatitis C virus release. PLoS Pathog 2021; 17:e1009746. [PMID: 34297778 PMCID: PMC8301660 DOI: 10.1371/journal.ppat.1009746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/23/2021] [Indexed: 01/01/2023] Open
Abstract
HCV cell-culture system uses hepatoma-derived cell lines for efficient virus propagation. Tumor cells cultured in glucose undergo active aerobic glycolysis, but switch to oxidative phosphorylation for energy production when cultured in galactose. Here, we investigated whether modulation of glycolysis in hepatocytes affects HCV infection. We showed HCV release, but not entry, genome replication or virion assembly, is significantly blocked when cells are cultured in galactose, leading to accumulation of intracellular infectious virions within multivesicular body (MVB). Blockade of the MVB-lysosome fusion or treatment with pro-inflammatory cytokines promotes HCV release in galactose. Furthermore, we found this glycometabolic regulation of HCV release is mediated by MAPK-p38 phosphorylation. Finally, we showed HCV cell-to-cell transmission is not affected by glycometabolism, suggesting that HCV cell-to-supernatant release and cell-to-cell transmission are two mechanistically distinct pathways. In summary, we demonstrated glycometabolism regulates the efficiency and route of HCV release. We proposed HCV may exploit the metabolic state in hepatocytes to favor its spread through the cell-to-cell transmission in vivo to evade immune response. Hepatitis C virus (HCV) is a positive-stranded RNA virus that causes acute and chronic hepatitis and hepatocellular carcinoma. HCV infectious cycle comprises viral entry, uncoating, translation and replication of viral RNA, assembly into new virions and release. Establishment of HCV cell culture system (HCVcc) has yielded many insights into complete HCV infectious cycle in Huh7 cell and Huh7-derived human hepatoma cell lines. However, because hepatoma-derived cell lines and hepatocytes vary in metabolism, HCV infectious cycle in tumor cell lines and the patient’s liver may also be different. Therefore, we explored the alterations of HCV infectious cycle by forcing the tumor cell lines to switch their glycometabolic pathways. We found that HCV release can be blocked by culturing cells in galactose-containing medium, leading to accumulation of intracellular infectious virions within MVB. Moreover, we provided new evidence to suggest that HCV cell-to-cell transmission may be mechanistically distinct from cell-to-supernatant release. Finally, we proposed a new concept that HCV release from hepatocytes into circulation may be naturally inefficient due to the metabolic state in liver that may favor more HCV cell-to-cell transmission. This strategy would allow HCV to effectively evade neutralizing antibodies to establish persistent infection.
Collapse
Affiliation(s)
- Tao Yu
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiankun Yang
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fangling Tian
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- ShanghaiTech University, Shanghai, China
| | - Haishuang Chang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai
| | - Zhenzheng Hu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai
| | - Bowen Yu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai
| | - Lin Han
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- ShanghaiTech University, Shanghai, China
| | - Yifan Xing
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Cell Biology and Imaging Study of Pathogen Host Interaction Unit, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
| | - Yaming Jiu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai
- Cell Biology and Imaging Study of Pathogen Host Interaction Unit, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
| | - Yongning He
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Jin Zhong
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- ShanghaiTech University, Shanghai, China
- * E-mail:
| |
Collapse
|
27
|
HCV Spread Kinetics Reveal Varying Contributions of Transmission Modes to Infection Dynamics. Viruses 2021; 13:v13071308. [PMID: 34372514 PMCID: PMC8310333 DOI: 10.3390/v13071308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/13/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
The hepatitis C virus (HCV) is capable of spreading within a host by two different transmission modes: cell-free and cell-to-cell. However, the contribution of each of these transmission mechanisms to HCV spread is unknown. To dissect the contribution of these different transmission modes to HCV spread, we measured HCV lifecycle kinetics and used an in vitro spread assay to monitor HCV spread kinetics after a low multiplicity of infection in the absence and presence of a neutralizing antibody that blocks cell-free spread. By analyzing these data with a spatially explicit mathematical model that describes viral spread on a single-cell level, we quantified the contribution of cell-free, and cell-to-cell spread to the overall infection dynamics and show that both transmission modes act synergistically to enhance the spread of infection. Thus, the simultaneous occurrence of both transmission modes represents an advantage for HCV that may contribute to viral persistence. Notably, the relative contribution of each viral transmission mode appeared to vary dependent on different experimental conditions and suggests that viral spread is optimized according to the environment. Together, our analyses provide insight into the spread dynamics of HCV and reveal how different transmission modes impact each other.
Collapse
|
28
|
Kruglova N, Siniavin A, Gushchin V, Mazurov D. Different Neutralization Sensitivity of SARS-CoV-2 Cell-to-Cell and Cell-Free Modes of Infection to Convalescent Sera. Viruses 2021; 13:1133. [PMID: 34204732 PMCID: PMC8231521 DOI: 10.3390/v13061133] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has posed a global threat to human lives and economics. One of the best ways to determine protection against the infection is to quantify the neutralizing activity of serum antibodies. Multiple assays have been developed to validate SARS-CoV-2 neutralization; most of them utilized lentiviral or vesicular stomatitis virus-based particles pseudotyped with the spike (S) protein, making them safe and acceptable to work with in many labs. However, these systems are only capable of measuring infection with purified particles. This study has developed a pseudoviral assay with replication-dependent reporter vectors that can accurately quantify the level of infection directly from the virus producing cell to the permissive target cell. Comparative analysis of cell-free and cell-to-cell infection revealed that the neutralizing activity of convalescent sera was more than tenfold lower in cell cocultures than in the cell-free mode of infection. As the pseudoviral system could not properly model the mechanisms of SARS-CoV-2 transmission, similar experiments were performed with replication-competent coronavirus, which detected nearly complete SARS-CoV-2 cell-to-cell infection resistance to neutralization by convalescent sera. These findings suggest that the cell-to-cell mode of SARS-CoV-2 transmission, for which the mechanisms are largely unknown, could be of great importance for treatment and prevention of COVID-19.
Collapse
Affiliation(s)
- Natalia Kruglova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, 119334 Moscow, Russia;
| | - Andrei Siniavin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (A.S.); (V.G.)
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vladimir Gushchin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (A.S.); (V.G.)
| | - Dmitriy Mazurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, 119334 Moscow, Russia;
| |
Collapse
|
29
|
Troyer Z, Alhusaini N, Tabler CO, Sweet T, de Carvalho KIL, Schlatzer DM, Carias L, King CL, Matreyek K, Tilton JC. Extracellular vesicles carry SARS-CoV-2 spike protein and serve as decoys for neutralizing antibodies. J Extracell Vesicles 2021; 10:e12112. [PMID: 34188786 PMCID: PMC8213968 DOI: 10.1002/jev2.12112] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 01/05/2023] Open
Abstract
In late 2019, a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China. SARS-CoV-2 and the disease it causes, coronavirus disease 2019 (COVID-19), spread rapidly and became a global pandemic in early 2020. SARS-CoV-2 spike protein is responsible for viral entry and binds to angiotensin converting enzyme 2 (ACE2) on host cells, making it a major target of the immune system - particularly neutralizing antibodies (nAbs) that are induced by infection or vaccines. Extracellular vesicles (EVs) are small membraned particles constitutively released by cells, including virally-infected cells. EVs and viruses enclosed within lipid membranes share some characteristics: they are small, sub-micron particles and they overlap in cellular biogenesis and egress routes. Given their shared characteristics, we hypothesized that EVs released from spike-expressing cells could carry spike and serve as decoys for anti-spike nAbs, promoting viral infection. Here, using mass spectrometry and nanoscale flow cytometry (NFC) approaches, we demonstrate that SARS-CoV-2 spike protein can be incorporated into EVs. Furthermore, we show that spike-carrying EVs act as decoy targets for convalescent patient serum-derived nAbs, reducing their effectiveness in blocking viral entry. These findings have important implications for the pathogenesis of SARS-CoV-2 infection in vivo and highlight the complex interplay between viruses, extracellular vesicles, and the immune system that occurs during viral infections.
Collapse
Affiliation(s)
- Zach Troyer
- Center for Proteomics and BioinformaticsDepartment of NutritionSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Najwa Alhusaini
- Center for Proteomics and BioinformaticsDepartment of NutritionSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Caroline O. Tabler
- Center for Proteomics and BioinformaticsDepartment of NutritionSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Thomas Sweet
- Center for Proteomics and BioinformaticsDepartment of NutritionSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | | | - Daniela M. Schlatzer
- Center for Proteomics and BioinformaticsDepartment of NutritionSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Lenore Carias
- Division of General Medical SciencesSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Christopher L. King
- Division of General Medical SciencesSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Kenneth Matreyek
- Department of PathologySchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - John C. Tilton
- Center for Proteomics and BioinformaticsDepartment of NutritionSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
30
|
Zeng C, Evans JP, King T, Zheng YM, Oltz EM, Whelan SPJ, Saif L, Peeples ME, Liu SL. SARS-CoV-2 Spreads through Cell-to-Cell Transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34100011 PMCID: PMC8183005 DOI: 10.1101/2021.06.01.446579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the global COVID-19 pandemic. Herein we provide evidence that SARS-CoV-2 spreads through cell-cell contact in cultures, mediated by the spike glycoprotein. SARS-CoV-2 spike is more efficient in facilitating cell-to-cell transmission than SARS-CoV spike, which reflects, in part, their differential cell-cell fusion activity. Interestingly, treatment of cocultured cells with endosomal entry inhibitors impairs cell-to-cell transmission, implicating endosomal membrane fusion as an underlying mechanism. Compared with cell-free infection, cell-to-cell transmission of SARS-CoV-2 is refractory to inhibition by neutralizing antibody or convalescent sera of COVID-19 patients. While ACE2 enhances cell-to-cell transmission, we find that it is not absolutely required. Notably, despite differences in cell-free infectivity, the variants of concern (VOC) B.1.1.7 and B.1.351 have similar cell-to-cell transmission capability. Moreover, B.1.351 is more resistant to neutralization by vaccinee sera in cell-free infection, whereas B.1.1.7 is more resistant to inhibition by vaccine sera in cell-to-cell transmission. Overall, our study reveals critical features of SARS-CoV-2 spike-mediated cell-to-cell transmission, with important implications for a better understanding of SARS-CoV-2 spread and pathogenesis.
Collapse
|
31
|
Kongsomros S, Manopwisedjaroen S, Chaopreecha J, Wang SF, Borwornpinyo S, Thitithanyanont A. Rapid and Efficient Cell-to-Cell Transmission of Avian Influenza H5N1 Virus in MDCK Cells Is Achieved by Trogocytosis. Pathogens 2021; 10:483. [PMID: 33923524 PMCID: PMC8074074 DOI: 10.3390/pathogens10040483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 01/14/2023] Open
Abstract
Viruses have developed direct cell-to-cell transfer strategies to enter target cells without being released to escape host immune responses and antiviral treatments. These strategies are more rapid and efficient than transmission through indirect mechanisms of viral infection between cells. Here, we demonstrate that an H5N1 influenza virus can spread via direct cell-to-cell transfer in Madin-Darby canine kidney (MDCK) cells. We compared cell-to-cell transmission of the H5N1 virus to that of a human influenza H1N1 virus. The H5N1 virus has been found to spread to recipient cells faster than the human influenza H1N1 virus. Additionally, we showed that plasma membrane exchange (trogocytosis) occurs between co-cultured infected donor cells and uninfected recipient cells early point, allowing the intercellular transfer of viral material to recipient cells. Notably, the H5N1 virus induced higher trogocytosis levels than the H1N1 virus, which could explain the faster cell-to-cell transmission rate of H5N1. Importantly, this phenomenon was also observed in A549 human lung epithelial cells, which are representative cells in the natural infection site. Altogether, our results provide evidence demonstrating that trogocytosis could be the additional mechanism utilized by the H5N1 virus for rapid and efficient cell-to-cell transmission.
Collapse
Affiliation(s)
- Supasek Kongsomros
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.M.); (J.C.)
| | - Suwimon Manopwisedjaroen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.M.); (J.C.)
| | - Jarinya Chaopreecha
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.M.); (J.C.)
| | - Sheng-Fan Wang
- Department of Medical Laboratory Sciences and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Suparerk Borwornpinyo
- Excellence Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.M.); (J.C.)
| |
Collapse
|
32
|
Life as a Vector of Dengue Virus: The Antioxidant Strategy of Mosquito Cells to Survive Viral Infection. Antioxidants (Basel) 2021; 10:antiox10030395. [PMID: 33807863 PMCID: PMC8000470 DOI: 10.3390/antiox10030395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue fever is a mosquito-borne viral disease of increasing global importance. The disease has caused heavy burdens due to frequent outbreaks in tropical and subtropical areas of the world. The dengue virus (DENV) is generally transmitted between human hosts via the bite of a mosquito vector, primarily Aedes aegypti and Ae. albopictus as a minor species. It is known that the virus needs to alternately infect mosquito and human cells. DENV-induced cell death is relevant to the pathogenesis in humans as infected cells undergo apoptosis. In contrast, mosquito cells mostly survive the infection; this allows infected mosquitoes to remain healthy enough to serve as an efficient vector in nature. Overexpression of antioxidant genes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutaredoxin (Grx), thioredoxin (Trx), and protein disulfide isomerase (PDI) have been detected in DENV2-infected mosquito cells. Additional antioxidants, including GST, eukaryotic translation initiation factor 5A (eIF5a), and p53 isoform 2 (p53-2), and perhaps some others, are also involved in creating an intracellular environment suitable for cell replication and viral infection. Antiapoptotic effects involving inhibitor of apoptosis (IAP) upregulation and subsequent elevation of caspase-9 and caspase-3 activities also play crucial roles in the ability of mosquito cells to survive DENV infection. This article focused on the effects of intracellular responses in mosquito cells to infection primarily by DENVs. It may provide more information to better understand virus/cell interactions that can possibly elucidate the evolutionary pathway that led to the mosquito becoming a vector.
Collapse
|
33
|
Extracellular Vesicles in Viral Pathogenesis: A Case of Dr. Jekyll and Mr. Hyde. Life (Basel) 2021; 11:life11010045. [PMID: 33450847 PMCID: PMC7828316 DOI: 10.3390/life11010045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Secretion of extracellular vesicles (EVs) is a fundamental property of living cells. EVs are known to transfer biological signals between cells and thus regulate the functional state of recipient cells. Such vesicles mediate the intercellular transport of many biologically active molecules (proteins, nucleic acids, specific lipids) and participate in regulation of key physiological processes. In addition, EVs are involved in the pathogenesis of multiple diseases: infectious, neurodegenerative, and oncological. The current EV classification into microvesicles, apoptotic bodies, and exosomes is based on their size, pathways of cellular biogenesis, and molecular composition. This review is focused on analysis of the role of EVs (mainly exosomes) in the pathogenesis of viral infection. We briefly characterize the biogenesis and molecular composition of various EV types. Then, we consider EV-mediated pro- and anti-viral mechanisms. EV secretion by infected cells can be an important factor of virus spread in target cell populations, or a protective factor limiting viral invasion. The data discussed in this review, on the effect of EV secretion by infected cells on processes in neighboring cells and on immune cells, are of high significance in the search for new therapeutic approaches and for design of new generations of vaccines.
Collapse
|
34
|
Leroy H, Han M, Woottum M, Bracq L, Bouchet J, Xie M, Benichou S. Virus-Mediated Cell-Cell Fusion. Int J Mol Sci 2020; 21:E9644. [PMID: 33348900 PMCID: PMC7767094 DOI: 10.3390/ijms21249644] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cell-cell fusion between eukaryotic cells is a general process involved in many physiological and pathological conditions, including infections by bacteria, parasites, and viruses. As obligate intracellular pathogens, viruses use intracellular machineries and pathways for efficient replication in their host target cells. Interestingly, certain viruses, and, more especially, enveloped viruses belonging to different viral families and including human pathogens, can mediate cell-cell fusion between infected cells and neighboring non-infected cells. Depending of the cellular environment and tissue organization, this virus-mediated cell-cell fusion leads to the merge of membrane and cytoplasm contents and formation of multinucleated cells, also called syncytia, that can express high amount of viral antigens in tissues and organs of infected hosts. This ability of some viruses to trigger cell-cell fusion between infected cells as virus-donor cells and surrounding non-infected target cells is mainly related to virus-encoded fusion proteins, known as viral fusogens displaying high fusogenic properties, and expressed at the cell surface of the virus-donor cells. Virus-induced cell-cell fusion is then mediated by interactions of these viral fusion proteins with surface molecules or receptors involved in virus entry and expressed on neighboring non-infected cells. Thus, the goal of this review is to give an overview of the different animal virus families, with a more special focus on human pathogens, that can trigger cell-cell fusion.
Collapse
Affiliation(s)
- Héloïse Leroy
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Mingyu Han
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Marie Woottum
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Lucie Bracq
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| | - Jérôme Bouchet
- Laboratory Orofacial Pathologies, Imaging and Biotherapies UR2496, University of Paris, 92120 Montrouge, France;
| | - Maorong Xie
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK;
| | - Serge Benichou
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| |
Collapse
|
35
|
Zitzmann C, Kaderali L, Perelson AS. Mathematical modeling of hepatitis C RNA replication, exosome secretion and virus release. PLoS Comput Biol 2020; 16:e1008421. [PMID: 33151933 PMCID: PMC7671504 DOI: 10.1371/journal.pcbi.1008421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/17/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
Hepatitis C virus (HCV) causes acute hepatitis C and can lead to life-threatening complications if it becomes chronic. The HCV genome is a single plus strand of RNA. Its intracellular replication is a spatiotemporally coordinated process of RNA translation upon cell infection, RNA synthesis within a replication compartment, and virus particle production. While HCV is mainly transmitted via mature infectious virus particles, it has also been suggested that HCV-infected cells can secrete HCV RNA carrying exosomes that can infect cells in a receptor independent manner. In order to gain insight into these two routes of transmission, we developed a series of intracellular HCV replication models that include HCV RNA secretion and/or virus assembly and release. Fitting our models to in vitro data, in which cells were infected with HCV, suggests that initially most secreted HCV RNA derives from intracellular cytosolic plus-strand RNA, but subsequently secreted HCV RNA derives equally from the cytoplasm and the replication compartments. Furthermore, our model fits to the data suggest that the rate of virus assembly and release is limited by host cell resources. Including the effects of direct acting antivirals in our models, we found that in spite of decreasing intracellular HCV RNA and extracellular virus concentration, low level HCV RNA secretion may continue as long as intracellular RNA is available. This may possibly explain the presence of detectable levels of plasma HCV RNA at the end of treatment even in patients that ultimately attain a sustained virologic response. Approximately 70 million people are chronically infected with hepatitis C virus (HCV), which if left untreated may lead to cirrhosis and liver cancer. However, modern drug therapy is highly effective and hepatitis C is the first chronic virus infection that can be cured with short-term therapy in almost all infected individuals. The within-host transmission of HCV occurs mainly via infectious virus particles, but experimental studies suggest that there may be additional receptor-independent cell-to-cell transmission by exosomes that carry the HCV genome. In order to understand the intracellular HCV lifecycle and HCV RNA spread, we developed a series of mathematical models that take both exosomal secretion and viral secretion into account. By fitting these models to in vitro data, we found that secretion of both HCV RNA as well as virus probably occurs and that the rate of virus assembly is likely limited by cellular co-factors on which the virus strongly depends for its own replication. Furthermore, our modeling predicted that the parameters governing the processes in the viral lifecycle that are targeted by direct acting antivirals are the most sensitive to perturbations, which may help explain their ability to cure this infection.
Collapse
Affiliation(s)
- Carolin Zitzmann
- University Medicine Greifswald, Institute of Bioinformatics and Center for Functional Genomics of Microbes, Greifswald, Germany
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Lars Kaderali
- University Medicine Greifswald, Institute of Bioinformatics and Center for Functional Genomics of Microbes, Greifswald, Germany
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
36
|
Human Monoclonal Antibody Derived from Transchromosomic Cattle Neutralizes Multiple H1 Clades of Influenza A Virus by Recognizing a Novel Conformational Epitope in the Hemagglutinin Head Domain. J Virol 2020; 94:JVI.00945-20. [PMID: 32847862 DOI: 10.1128/jvi.00945-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
Influenza remains a global health risk and challenge. Currently, neuraminidase (NA) inhibitors are extensively used to treat influenza, but their efficacy is compromised by the emergence of drug-resistant variants. Neutralizing antibodies targeting influenza A virus surface glycoproteins are critical components of influenza therapeutic agents and may provide alternative strategies to the existing countermeasures. However, the major hurdle for the extensive application of antibody therapies lies in the difficulty of generating nonimmunogenic antibodies in large quantities rapidly. Here, we report that one human monoclonal antibody (MAb), 53C10, isolated from transchromosomic (Tc) cattle exhibits potent neutralization and hemagglutination inhibition titers against different clades of H1N1 subtype influenza A viruses. In vitro selection of antibody escape mutants revealed that 53C10 recognizes a novel noncontinuous epitope in the hemagglutinin (HA) head domain involving three amino acid residues, glycine (G), serine (S), and glutamic acid (E) at positions 172, 207, and 212, respectively. The results of our experiments supported a critical role for substitution of arginine at position 207 (S207R) in mediating resistance to 53C10, while substitutions at either G172E or E212A did not alter antibody recognition and neutralization. The E212A mutation may provide structural stability for the epitope, while the substitution G172E probably compensates for loss of fitness introduced by S207R. Our results offer novel insights into the mechanism of action of MAb 53C10 and indicate its potential role in therapeutic treatment of H1 influenza virus infection in humans.IMPORTANCE Respiratory diseases caused by influenza viruses still pose a serious concern to global health, and neutralizing antibodies constitute a promising area of antiviral therapeutics. However, the potential application of antibodies is often hampered by the challenge in generating nonimmunogenic antibodies in large scale. In the present study, transchromosomic (Tc) cattle were used for the generation of nonimmunogenic monoclonal antibodies (MAbs), and characterization of such MAbs revealed one monoclonal antibody, 53C10, exhibiting a potent neutralization activity against H1N1 influenza viruses. Further characterization of the neutralization escape mutant generated using this MAb showed that three amino acid substitutions in the HA head domain contributed to the resistance. These findings emphasize the importance of Tc cattle in the production of nonimmunogenic MAbs and highlight the potential of MAb 53C10 in the therapeutic application against H1 influenza virus infection in humans.
Collapse
|
37
|
Abstract
A critical step in the life cycle of a virus is spread to a new target cell, which generally involves the release of new viral particles from the infected cell which can then initiate infection in the next target cell. While cell-free viral particles released into the extracellular environment are necessary for long distance spread, there are disadvantages to this mechanism. These include the presence of immune system components, the low success rate of infection by single particles, and the relative fragility of viral particles in the environment. Several mechanisms of direct cell-to-cell spread have been reported for animal viruses which would avoid the issues associated with cell-free particles. A number of viruses can utilize several different mechanisms of direct cell-to-cell spread, but our understanding of the differential usage by these pathogens is modest. Although the mechanisms of cell-to-cell spread differ among viruses, there is a common exploitation of key pathways and components of the cellular cytoskeleton. Remarkably, some of the viral mechanisms of cell-to-cell spread are surprisingly similar to those used by bacteria. Here we summarize the current knowledge of the conventional and non-conventional mechanisms of viral spread, the common methods used to detect viral spread, and the impact that these mechanisms can have on viral pathogenesis.
Collapse
Affiliation(s)
- Nicolas Cifuentes-Munoz
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, San Miguel, Santiago, Chile
| | - Farah El Najjar
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States.
| |
Collapse
|
38
|
Hepatitis C virus vaccine design: focus on the humoral immune response. J Biomed Sci 2020; 27:78. [PMID: 32631318 PMCID: PMC7338099 DOI: 10.1186/s12929-020-00669-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the recent development of safe and highly effective direct-acting antivirals, hepatitis C virus (HCV) infection remains a significant health problem. In 2016, the World Health Organization set out to reduce the rate of new HCV infections by 90% by 2030. Still, global control of the virus does not seem to be achievable in the absence of an effective vaccine. Current approaches to the development of a vaccine against HCV include the production of recombinant proteins, synthetic peptides, DNA vaccines, virus-like particles, and viral vectors expressing various antigens. In this review, we focus on the development of vaccines targeting the humoral immune response against HCV based on the cumulative evidence supporting the important role of neutralizing antibodies in protection against HCV infection. The main targets of HCV-specific neutralizing antibodies are the glycoproteins E1 and E2. Recent advances in the knowledge of HCV glycoprotein structure and their epitopes, as well as the possibility of getting detailed information on the human antibody repertoire generated by the infection, will allow rational structure-based antigen design to target specific germline antibodies. Although obtaining a vaccine capable of inducing sterilizing immunity will be a difficult task, a vaccine that prevents chronic hepatitis C infections, a more realistic goal in the short term, would have a considerable health impact.
Collapse
|
39
|
Extracellular Vesicles in Viral Infections of the Nervous System. Viruses 2020; 12:v12070700. [PMID: 32605316 PMCID: PMC7411781 DOI: 10.3390/v12070700] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Almost all types of cells release extracellular vesicles (EVs) into the extracellular space. EVs such as exosomes and microvesicles are membrane-bound vesicles ranging in size from 30 to 1000 nm in diameter. Under normal conditions, EVs mediate cell to cell as well as inter-organ communication via the shuttling of their cargoes which include RNA, DNA and proteins. Under pathological conditions, however, the number, size and content of EVs are found to be altered and have been shown to play crucial roles in disease progression. Emerging studies have demonstrated that EVs are involved in many aspects of viral infection-mediated neurodegenerative diseases. In the current review, we will describe the interactions between EV biogenesis and the release of virus particles while also reviewing the role of EVs in various viral infections, such as HIV-1, HTLV, Zika, CMV, EBV, Hepatitis B and C, JCV, and HSV-1. We will also discuss the potential uses of EVs and their cargoes as biomarkers and therapeutic vehicles for viral infections.
Collapse
|
40
|
Cell-to-Cell Spread of Dengue Viral RNA in Mosquito Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2452409. [PMID: 32685452 PMCID: PMC7335394 DOI: 10.1155/2020/2452409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022]
Abstract
Dengue virus (DENV) is an important mosquito-borne arbovirus that is particularly prevalent in tropical and subtropical areas of the world. The virus is generally ingested with a blood meal, replicates in host tissues, and disseminates into salivary glands for transmission to the next host. Membrane-bound vacuoles carrying DENV particles have been documented in mosquito cells and play a role in the cell-to-cell transmission of DENV2. C189 is one member of the tetraspanin family and generally increases its expression as one component of the vacuoles (C189-VCs) within C6/36 cells infected with DENV2. In the present study, we have further demonstrated via sucrose gradient centrifugation as well as magnetic immune isolation (MI) that the RNA of DENV2 was eventually carried by C189-VCs. In addition, viral RNA was shown to spread from donor to recipient cells in a coculture assay even when 20 mM NH4Cl was added to inhibit virus replication in the culture. In an alternate assay using the transwell system, viral RNA was only detected in recipient cells in the absence of 40 mM NH4Cl, suggesting that cell-cell contact is required for the intercellular spread of DENV2. In turn, the formation of viral synapse (VS) derived from aggregates of viral particles was frequently observed at sites of cell contact. Taken together, the formation of C189-VCs in C6/36 cells is induced by DENV2 infection, which may serve as a vehicle for transferring virions and also viral RNA to neighboring cells by cell-to-cell transmission after cell-cell contact. This finding provides insight into the understanding of viral spread between mosquito cells. It may also elucidate the benign persistent infection in mosquito cells and efficient dissemination of DENV infection within a mosquito vector.
Collapse
|
41
|
Mailly L, Baumert TF. Hepatitis C virus infection and tight junction proteins: The ties that bind. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183296. [PMID: 32268133 DOI: 10.1016/j.bbamem.2020.183296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
Abstract
The hepatitis C virus (HCV) is a major cause of liver diseases ranging from liver inflammation to advanced liver diseases like cirrhosis and hepatocellular carcinoma (HCC). HCV infection is restricted to the liver, and more specifically to hepatocytes, which represent around 80% of liver cells. The mechanism of HCV entry in human hepatocytes has been extensively investigated since the discovery of the virus 30 years ago. The entry mechanism is a multi-step process relying on several host factors including heparan sulfate proteoglycan (HSPG), low density lipoprotein receptor (LDLR), tetraspanin CD81, Scavenger Receptor class B type I (SR-BI), Epidermal Growth Factor Receptor (EGFR) and Niemann-Pick C1-like 1 (NPC1L1). Moreover, in order to establish a persistent infection, HCV entry is dependent on the presence of tight junction (TJ) proteins Claudin-1 (CLDN1) and Occludin (OCLN). In the liver, tight junction proteins play a role in architecture and homeostasis including sealing the apical pole of adjacent cells to form bile canaliculi and separating the basolateral domain drained by sinusoidal blood flow. In this review, we will highlight the role of liver tight junction proteins in HCV infection, and we will discuss the potential targeted therapeutic approaches to improve virus eradication.
Collapse
Affiliation(s)
- Laurent Mailly
- Université de Strasbourg, INSERM, UMR-S1110, Institut de Recherche sur les Maladies Virales et Hépatiques, F-67000 Strasbourg, France.
| | - Thomas F Baumert
- Université de Strasbourg, INSERM, UMR-S1110, Institut de Recherche sur les Maladies Virales et Hépatiques, F-67000 Strasbourg, France; Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France; Institut Universitaire de France, F-75231 Paris, France.
| |
Collapse
|
42
|
Hepatitis C Virus Entry: An Intriguingly Complex and Highly Regulated Process. Int J Mol Sci 2020; 21:ijms21062091. [PMID: 32197477 PMCID: PMC7140000 DOI: 10.3390/ijms21062091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic hepatitis and liver disease worldwide. Its tissue and species tropism are largely defined by the viral entry process that is required for subsequent productive viral infection and establishment of chronic infection. This review provides an overview of the viral and host factors involved in HCV entry into hepatocytes, summarizes our understanding of the molecular mechanisms governing this process and highlights the therapeutic potential of host-targeting entry inhibitors.
Collapse
|
43
|
Itami-Matsumoto S, Hayakawa M, Uchida-Kobayashi S, Enomoto M, Tamori A, Mizuno K, Toyoda H, Tamura T, Akutsu T, Ochiya T, Kawada N, Murakami Y. Circulating Exosomal miRNA Profiles Predict the Occurrence and Recurrence of Hepatocellular Carcinoma in Patients with Direct-Acting Antiviral-Induced Sustained Viral Response. Biomedicines 2019; 7:biomedicines7040087. [PMID: 31684167 PMCID: PMC6966514 DOI: 10.3390/biomedicines7040087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Direct-acting antiviral (DAA) therapy for chronic hepatitis C virus (HCV) infection patients (CH) results in a sustained viral response (SVR) in over 95% of patients. However, hepatocellular carcinoma (HCC) occurs in 1–5% of patients who achieved an SVR after treatment with interferon. We attempted to develop a minimally invasive and highly reliable method of predicting the occurrence and recurrence of HCC in patients who achieved an SVR with DAA therapy. The exosomal miRNA expression patterns of 69 CH patients who underwent HCC curative treatment and 70 CH patients were assessed using microarray analysis. We identified a miRNA expression pattern characteristic of SVR-HCC by using machine learning. Twenty-five of 69 patients had HCC recurrence. The expression of four exosomal miRNAs predicted HCC recurrence with 85.3% accuracy. Fifteen of 70 patients had HCC occurrence. The expression of four exosomal miRNAs predicted the onset of HCC with 85.5% accuracy. The expression patterns of miR-4718, 642a-5p, 6826-3p, and 762 in exosomes were positively correlated with those in the liver, and downregulation of these miRNAs induced cell proliferation and prevented apoptosis in vitro. Aberrant expression of four miRNAs, which was used for prediction, was associated with HCC onset after HCV eradication. Expression patterns of exosomal miRNAs are a promising tool to predict SVR-HCC.
Collapse
Affiliation(s)
- Saori Itami-Matsumoto
- Department of Hepatology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
| | - Michiyo Hayakawa
- Department of Hepatology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
| | - Sawako Uchida-Kobayashi
- Department of Hepatology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
| | - Masaru Enomoto
- Department of Hepatology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
| | - Akihiro Tamori
- Department of Hepatology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
| | - Kazuyuki Mizuno
- Department of Gastroenterology, Ogaki Municipal Hospital, 4-86 Minaminokawa-cho, Ogaki, Gifu 503-8502, Japan.
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, 4-86 Minaminokawa-cho, Ogaki, Gifu 503-8502, Japan.
| | - Takeyuki Tamura
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Takahiro Ochiya
- Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
| | - Yoshiki Murakami
- Department of Hepatology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
| |
Collapse
|
44
|
Walker MR, Leung P, Eltahla AA, Underwood A, Abayasingam A, Brasher NA, Li H, Wu BR, Maher L, Luciani F, Lloyd AR, Bull RA. Clearance of hepatitis C virus is associated with early and potent but narrowly-directed, Envelope-specific antibodies. Sci Rep 2019; 9:13300. [PMID: 31527718 PMCID: PMC6746763 DOI: 10.1038/s41598-019-49454-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) is one of very few viruses that are either naturally cleared, or alternatively persist to cause chronic disease. Viral diversity and escape, as well as host adaptive immune factors, are believed to control the outcome. To date, there is limited understanding of the critical, early host-pathogen interactions. The asymptomatic nature of early HCV infection generally prevents identification of the transmitted/founder (T/F) virus, and thus the study of host responses directed against the autologous T/F strain. In this study, 14 rare subjects identified from very early in infection (4–45 days) with varied disease outcomes (n = 7 clearers) were examined in regard to the timing, breadth, and magnitude of the neutralizing antibody (nAb) response, as well as evolution of the T/F strain. Clearance was associated with earlier onset and more potent nAb responses appearing at a mean of 71 days post-infection (DPI), but these responses were narrowly directed against the autologous T/F virus or closely related variants. In contrast, a delayed onset of nAbs (mean 425 DPI) was observed in chronic progressors that appear to have targeted longitudinal variants rather than the T/F strain. The nAb responses in the chronic progressors mapped to known CD81 binding epitopes, and were associated with rapid emergence of new viral variants with reduced CD81 binding. We propose that the prolonged period of viremia in the absence of nAbs in these subjects was associated with an increase in viral diversity, affording the virus greater options to escape nAb pressure once it emerged. These findings indicate that timing of the nAb response is essential for clearance. Further investigation of the specificities of the early nAbs and the factors regulating early induction of protective nAbs is needed.
Collapse
Affiliation(s)
- Melanie R Walker
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Preston Leung
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Auda A Eltahla
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Alexander Underwood
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Arunasingam Abayasingam
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Nicholas A Brasher
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Hui Li
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Bing-Ru Wu
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Lisa Maher
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia
| | - Fabio Luciani
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Andrew R Lloyd
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia
| | - Rowena A Bull
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia. .,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
45
|
Chigbu DI, Loonawat R, Sehgal M, Patel D, Jain P. Hepatitis C Virus Infection: Host⁻Virus Interaction and Mechanisms of Viral Persistence. Cells 2019; 8:cells8040376. [PMID: 31027278 PMCID: PMC6523734 DOI: 10.3390/cells8040376] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C (HCV) is a major cause of liver disease, in which a third of individuals with chronic HCV infections may develop liver cirrhosis. In a chronic HCV infection, host immune factors along with the actions of HCV proteins that promote viral persistence and dysregulation of the immune system have an impact on immunopathogenesis of HCV-induced hepatitis. The genome of HCV encodes a single polyprotein, which is translated and processed into structural and nonstructural proteins. These HCV proteins are the target of the innate and adaptive immune system of the host. Retinoic acid-inducible gene-I (RIG-I)-like receptors and Toll-like receptors are the main pattern recognition receptors that recognize HCV pathogen-associated molecular patterns. This interaction results in a downstream cascade that generates antiviral cytokines including interferons. The cytolysis of HCV-infected hepatocytes is mediated by perforin and granzyme B secreted by cytotoxic T lymphocyte (CTL) and natural killer (NK) cells, whereas noncytolytic HCV clearance is mediated by interferon gamma (IFN-γ) secreted by CTL and NK cells. A host-HCV interaction determines whether the acute phase of an HCV infection will undergo complete resolution or progress to the development of viral persistence with a consequential progression to chronic HCV infection. Furthermore, these host-HCV interactions could pose a challenge to developing an HCV vaccine. This review will focus on the role of the innate and adaptive immunity in HCV infection, the failure of the immune response to clear an HCV infection, and the factors that promote viral persistence.
Collapse
Affiliation(s)
- DeGaulle I Chigbu
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
- Pennsylvania College of Optometry at Salus University, Elkins Park, PA 19027, USA.
| | - Ronak Loonawat
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| | - Mohit Sehgal
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Dip Patel
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| |
Collapse
|
46
|
Fukasawa M. [Anti-hepatitis C Virus Strategy Targeting the Entry Steps]. YAKUGAKU ZASSHI 2019; 139:89-95. [PMID: 30606936 DOI: 10.1248/yakushi.18-00164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatitis C virus (HCV) infection is a major leading cause of chronic severe liver diseases such as cirrhosis and hepatocellular carcinoma. The recent direct-acting antivirals (DAAs) for the treatment of HCV infection offer very high cure rates, but DAAs are vulnerable to drug resistance because HCV is an RNA virus, which generally has very high mutation rates. DAA resistance-associated variants of HCV could reduce the effectiveness of DAAs in the future. Thus, the continuous development of new anti-HCV drugs against different target molecules is needed. We have been studying the host factors involved in HCV entry into cells. From those studies, we obtained novel candidates for host-targeting anti-HCV entry inhibitors, such as monoclonal antibodies against HCV receptors, which can be used together with DAAs. In this symposium review, we present and discuss our recent work on anti-HCV strategies targeting HCV entry steps.
Collapse
Affiliation(s)
- Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases
| |
Collapse
|
47
|
Yumine N, Matsumoto Y, Ohta K, Fukasawa M, Nishio M. Claudin-1 inhibits human parainfluenza virus type 2 dissemination. Virology 2019; 531:93-99. [PMID: 30856486 DOI: 10.1016/j.virol.2019.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/04/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
Abstract
Tight junctions enable epithelial cells to form physical barriers that act as an innate immune defense against respiratory infection. However, the involvement of tight junction molecules in paramyxovirus infections, which include various respiratory pathogens, has not been examined in detail. Human parainfluenza virus type 2 (hPIV2) infects airway epithelial cells and causes respiratory illness. In the present study, we found that hPIV2 infection of cultured cells induces expression of claudin-1 (CLDN1), an essential component of tight junctions. This induction seemed to be intrinsically restricted by V, an accessory protein that modulates various host responses, to enable efficient virus propagation. By generating CLDN1 over-expressing and knockout cell lines, we showed that CLDN1 is involved in the restriction of hPIV2 spread via cell-to-cell contact. Taken together, we identified CLDN1 an inhibitory factor for hPIV2 dissemination, and that its V protein acts to counter this.
Collapse
Affiliation(s)
- Natsuko Yumine
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yusuke Matsumoto
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
48
|
Zeisel MB, Dhawan P, Baumert TF. Tight junction proteins in gastrointestinal and liver disease. Gut 2019; 68:547-561. [PMID: 30297438 PMCID: PMC6453741 DOI: 10.1136/gutjnl-2018-316906] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
Over the past two decades a growing body of evidence has demonstrated an important role of tight junction (TJ) proteins in the physiology and disease biology of GI and liver disease. On one side, TJ proteins exert their functional role as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ proteins can also be expressed outside TJs where they play important functional roles in signalling, trafficking and regulation of gene expression. A hallmark of TJ proteins in disease biology is their functional role in epithelial-to-mesenchymal transition. A causative role of TJ proteins has been established in the pathogenesis of colorectal cancer and gastric cancer. Among the best characterised roles of TJ proteins in liver disease biology is their function as cell entry receptors for HCV-one of the most common causes of hepatocellular carcinoma. At the same time TJ proteins are emerging as targets for novel therapeutic approaches for GI and liver disease. Here we review our current knowledge of the role of TJ proteins in the pathogenesis of GI and liver disease biology and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mirjam B. Zeisel
- Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE
- VA Nebraska-Western Iowa Health Care System, Omaha, NE
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
49
|
Hepatitis C Virus Escape Studies of Human Antibody AR3A Reveal a High Barrier to Resistance and Novel Insights on Viral Antibody Evasion Mechanisms. J Virol 2019; 93:JVI.01909-18. [PMID: 30487284 DOI: 10.1128/jvi.01909-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022] Open
Abstract
Yearly, ∼2 million people become hepatitis C virus (HCV) infected, resulting in an elevated lifetime risk for severe liver-related chronic illnesses. Characterizing epitopes of broadly neutralizing antibodies (NAbs), such as AR3A, is critical to guide vaccine development. Previously identified alanine substitutions that can reduce AR3A binding to expressed H77 envelope were introduced into chimeric cell culture-infectious HCV recombinants (HCVcc) H77(core-NS2)/JFH1. Substitutions G523A, G530A, and D535A greatly reduced fitness, and S424A, P525A, and N540A, although viable, conferred only low-level AR3A resistance. Using highly NAb-sensitive hypervariable region 1 (HVR1)-deleted HCVcc, H77/JFH1ΔHVR1 and J6(core-NS2)/JFH1ΔHVR1, we previously reported a low barrier to developing AR5A NAb resistance substitutions. Here, we cultured Huh7.5 cells infected with H77/JFH1, H77/JFH1ΔHVR1, or J6/JFH1ΔHVR1 with AR3A. We identified the resistance envelope substitutions M345T in H77/JFH1, L438S and F442Y in H77/JFH1ΔHVR1, and D431G in J6/JFH1ΔHVR1 M345T increased infectivity and conferred low-level AR3A resistance to H77/JFH1 but not H77/JFH1ΔHVR1 L438S and F442Y conferred high-level AR3A resistance to H77/JFH1ΔHVR1 but abrogated the infectivity of H77/JFH1. D431G conferred AR3A resistance to J6/JFH1ΔHVR1 but not J6/JFH1. This was possibly because D431G conferred broadly increased neutralization sensitivity to J6/JFH1D431G but not J6/JFH1ΔHVR1/D431G while decreasing scavenger receptor class B type I coreceptor dependency. Common substitutions at positions 431 and 442 did not confer high-level resistance in other genotype 2a recombinants [JFH1 or T9(core-NS2)/JFH1]. Although the data indicate that AR3A has a high barrier to resistance, our approach permitted identification of low-level resistance substitutions. Also, the HVR1-dependent effects on AR3A resistance substitutions suggest a complex role of HVR1 in virus escape and receptor usage, with important implications for HCV vaccine development.IMPORTANCE Hepatitis C virus (HCV) is a leading cause of liver-related mortality, and limited treatment accessibility makes vaccine development a high priority. The vaccine-relevant cross-genotype-reactive antibody AR3A has shown high potency, but the ability of the virus to rapidly escape by mutating the AR3A epitope (barrier to resistance) remains unexplored. Here, we succeeded in inducing only low-level AR3A resistance, indicating a higher barrier to resistance than what we have previously reported for AR5A. Furthermore, we identify AR3A resistance substitutions that have hypervariable region 1 (HVR1)-dependent effects on HCV viability and on broad neutralization sensitivity. One of these substitutions increased envelope breathing and decreased scavenger receptor class B type I HCV coreceptor dependency, both in an HVR1-dependent fashion. Thus, we identify novel AR3A-specific resistance substitutions and the role of HVR1 in protecting HCV from AR3-targeting antibodies. These viral escape mechanisms should be taken into consideration in future HCV vaccine development.
Collapse
|
50
|
Zhuang X, Magri A, Hill M, Lai AG, Kumar A, Rambhatla SB, Donald CL, Lopez-Clavijo AF, Rudge S, Pinnick K, Chang WH, Wing PAC, Brown R, Qin X, Simmonds P, Baumert TF, Ray D, Loudon A, Balfe P, Wakelam M, Butterworth S, Kohl A, Jopling CL, Zitzmann N, McKeating JA. The circadian clock components BMAL1 and REV-ERBα regulate flavivirus replication. Nat Commun 2019; 10:377. [PMID: 30670689 PMCID: PMC6343007 DOI: 10.1038/s41467-019-08299-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
The circadian clock regulates immune responses to microbes and affects pathogen replication, but the underlying molecular mechanisms are not well understood. Here we demonstrate that the circadian components BMAL1 and REV-ERBα influence several steps in the hepatitis C virus (HCV) life cycle, including particle entry into hepatocytes and RNA genome replication. Genetic knock out of Bmal1 and over-expression or activation of REV-ERB with synthetic agonists inhibits the replication of HCV and the related flaviruses dengue and Zika via perturbation of lipid signaling pathways. This study highlights a role for the circadian clock component REV-ERBα in regulating flavivirus replication.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Michelle Hill
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Alvina G Lai
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Abhinav Kumar
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | | | - Simon Rudge
- The Babraham Institute, Cambridge CB22 3AT, UK
| | - Katherine Pinnick
- Oxford Centre for Diabetes Endocrinology Metabolism, University of Oxford, Oxford OX3 9DU, UK
| | - Wai Hoong Chang
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Peter A C Wing
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Ryan Brown
- Department of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Ximing Qin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Thomas F Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg 67000, France
| | - David Ray
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Andrew Loudon
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Peter Balfe
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9NT, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | | | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|