1
|
Grunst MW, Ladd RA, Clark NM, Gil HM, Klenchin VA, Mason R, Franchini G, Roederer M, Evans DT. Antibody-dependent cellular cytotoxicity, infected cell binding and neutralization by antibodies to the SIV envelope glycoprotein. PLoS Pathog 2023; 19:e1011407. [PMID: 37253062 PMCID: PMC10256149 DOI: 10.1371/journal.ppat.1011407] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/09/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Antibodies specific for diverse epitopes of the simian immunodeficiency virus envelope glycoprotein (SIV Env) have been isolated from rhesus macaques to provide physiologically relevant reagents for investigating antibody-mediated protection in this species as a nonhuman primate model for HIV/AIDS. With increasing interest in the contribution of Fc-mediated effector functions to protective immunity, we selected thirty antibodies representing different classes of SIV Env epitopes for a comparison of antibody-dependent cellular cytotoxicity (ADCC), binding to Env on the surface of infected cells and neutralization of viral infectivity. These activities were measured against cells infected with neutralization-sensitive (SIVmac316 and SIVsmE660-FL14) and neutralization-resistant (SIVmac239 and SIVsmE543-3) viruses representing genetically distinct isolates. Antibodies to the CD4-binding site and CD4-inducible epitopes were identified with especially potent ADCC against all four viruses. ADCC correlated well with antibody binding to virus-infected cells. ADCC also correlated with neutralization. However, several instances of ADCC without detectable neutralization or neutralization without detectable ADCC were observed. The incomplete correspondence between ADCC and neutralization shows that some antibody-Env interactions can uncouple these antiviral activities. Nevertheless, the overall correlation between neutralization and ADCC implies that most antibodies that are capable of binding to Env on the surface of virions to block infectivity are also capable of binding to Env on the surface of virus-infected cells to direct their elimination by ADCC.
Collapse
Affiliation(s)
- Michael W. Grunst
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ruby A. Ladd
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Cytokine Adjuvants IL-7 and IL-15 Improve Humoral Responses of a SHIV LentiDNA Vaccine in Animal Models. Vaccines (Basel) 2022; 10:vaccines10030461. [PMID: 35335093 PMCID: PMC8949948 DOI: 10.3390/vaccines10030461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
HIV-1 remains a major public health issue worldwide in spite of efficacious antiviral therapies, but with no cure or preventive vaccine. The latter has been very challenging, as virus infection is associated with numerous escape mechanisms from host specific immunity and the correlates of protection remain incompletely understood. We have developed an innovative vaccine strategy, inspired by the efficacy of live-attenuated virus, but with the safety of a DNA vaccine, to confer both cellular and humoral responses. The CAL-SHIV-IN− lentiDNA vaccine comprises the backbone of the pathogenic SHIVKU2 genome, able to mimic the early phase of viral infection, but with a deleted integrase gene to ensure safety precluding integration within the host genome. This vaccine prototype, constitutively expressing viral antigen under the CAEV LTR promoter, elicited a variety of vaccine-specific, persistent CD4 and CD8 T cells against SIV-Gag and Nef up to 80 weeks post-immunization in cynomolgus macaques. Furthermore, these specific responses led to antiviral control of the pathogenic SIVmac251. To further improve the efficacy of this vaccine, we incorporated the IL-7 or IL-15 genes into the CAL-SHIV-IN− plasmid DNA in efforts to increase the pool of vaccine-specific memory T cells. In this study, we examined the immunogenicity of the two co-injected lentiDNA vaccines CAL-SHIV-IN− IRES IL-7 and CAL-SHIV-IN− IRES IL-15 in BALB/cJ mice and rhesus macaques and compared the immune responses with those generated by the parental vaccine CAL-SHIV-IN−. This co-immunization elicited potent vaccine-specific CD4 and CD8 T cells both in mice and rhesus macaques. Antibody-dependent cell-mediated cytotoxicity (ADCC) antibodies were detected up to 40 weeks post-immunization in both plasma and mucosal compartments of rhesus macaques and were enhanced by the cytokines.
Collapse
|
3
|
Sangare K, Helmold Hait S, Moore M, Hogge C, Hoang T, Rahman MA, Venzon DJ, LaBranche C, Montefiori D, Robert-Guroff M, Thomas MA. E4orf1 Suppresses E1B-Deleted Adenovirus Vaccine-Induced Immune Responses. Vaccines (Basel) 2022; 10:vaccines10020295. [PMID: 35214753 PMCID: PMC8875587 DOI: 10.3390/vaccines10020295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
As demonstrated by the recent COVID pandemic, vaccines can reduce the burden arising from infectious agents. Adenoviruses (Ads) with deletion of the early region 1B55K (ΔE1B Ad) are currently being explored for use in vaccine delivery. ΔE1B Ads are different from Ads with deletions in early region 1 and early region 3 (ΔE1/E3) used in most Ad vaccine vectors in that they contain the Ad early region 1A (E1A), and therefore the ability to replicate. Common to almost all Ads that are being explored for clinical use is the Ad early region 4 (E4). Among the E4 genes is open reading frame 1 (E4orf1), which mediates signals through the PI3-kinase/Akt pathway that is known to modulate immune responses. This suggests that E4orf1 might also modulate immune responses, although it has remained unexplored in ΔE1B Ad. Here, we show that cells infected with an E1B55K and E4orf1-deleted (ΔE41) Ad exhibited reduced levels of phosphorylated Akt (Ser473 and Thr308)) and expressed different intrinsic innate immune cytokines from those induced in cells infected with an E4orf1-containing, ΔE1B parental Ad that exhibited elevated levels of phosphorylated Akt. Rhesus macaques immunized with a ΔE41 Ad that expressed rhFLSC (HIV-1BaL gp120 linked to rhesus CD4 D1 and D2), exhibited higher levels of rhFLSC-specific interferon γ-producing memory T-cells, higher titers of rhFLSC-specific IgG1 binding antibody in serum, and antibodies able to mediate antibody-dependent cellular cytotoxicity (ADCC) with greater killing capacity than the ΔE1B Ad. Therefore, E4orf1, perhaps by acting through the PI3-kinase/Akt pathway, limits intrinsic innate and system-wide adaptive immune responses that are important for improved ΔE1B Ad-based vaccines.
Collapse
Affiliation(s)
- Kotou Sangare
- Department of Biology, Howard University, Washington, DC 20059, USA; (K.S.); (M.M.)
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.H.H.); (C.H.); (T.H.); (M.A.R.); (M.R.-G.)
| | - Sabrina Helmold Hait
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.H.H.); (C.H.); (T.H.); (M.A.R.); (M.R.-G.)
| | - Madison Moore
- Department of Biology, Howard University, Washington, DC 20059, USA; (K.S.); (M.M.)
| | - Christopher Hogge
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.H.H.); (C.H.); (T.H.); (M.A.R.); (M.R.-G.)
| | - Tanya Hoang
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.H.H.); (C.H.); (T.H.); (M.A.R.); (M.R.-G.)
| | - Mohammad Arif Rahman
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.H.H.); (C.H.); (T.H.); (M.A.R.); (M.R.-G.)
| | - David J. Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Celia LaBranche
- Duke University Medical Center, Durham, NC 27710, USA; (C.L.); (D.M.)
| | - David Montefiori
- Duke University Medical Center, Durham, NC 27710, USA; (C.L.); (D.M.)
| | - Marjorie Robert-Guroff
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.H.H.); (C.H.); (T.H.); (M.A.R.); (M.R.-G.)
| | - Michael A. Thomas
- Department of Biology, Howard University, Washington, DC 20059, USA; (K.S.); (M.M.)
- Correspondence: ; Tel.: +1-202-806-6941
| |
Collapse
|
4
|
Selection of HIV Envelope strains for standardized assessments of vaccine-elicited antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. J Virol 2021; 96:e0164321. [PMID: 34730393 PMCID: PMC8791251 DOI: 10.1128/jvi.01643-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) has been correlated with reduced risk of HIV-1 infection in several preclinical vaccine trials and the RV144 clinical trial, indicating this is a relevant antibody function to study. Given the diversity of HIV-1, the breadth of vaccine-induced antibody responses is a critical parameter to understand if a universal vaccine is to be realised. Moreover, breadth of ADCC responses can be influenced by different vaccine strategies and regimens, including adjuvants. Therefore, to accurately evaluate ADCC and to compare vaccine regimens, it is important to understand the range of HIV Envelope susceptibility to these responses. These evaluations have been limited because of the complexity of the assay and the lack of a comprehensive panel of viruses for the assessment of these humoral responses. Here, we used twenty-nine HIV-1 infectious molecular clones (IMCs) representing different Envelope subtypes and circulating recombinant forms to characterise susceptibility to ADCC from antibodies in plasma from infected individuals, including thirteen viraemic individuals, ten controllers and six with broadly neutralizing antibody responses. We found in our panel that ADCC susceptibility of the IMCs in our panel did not cluster by subtype, infectivity, level of CD4 downregulation, level of shedding, or neutralization sensitivity. Using partition-around-medoids (PAM) clustering to distinguish smaller groups of IMCs with similar ADCC susceptibility, we identified nested panels of four to eight IMCs that broadly represent the ADCC susceptibility of the entire 29 IMC panel. These panels, together with reagents developed to specifically accommodate circulating viruses at the geographical sites of vaccine trials, will provide a powerful tool to harmonise ADCC data generated across different studies, and detect common themes of ADCC responses elicited by various vaccines. IMPORTANCE Antibody-dependent cellular cytotoxicity (ADCC) responses were found to correlate with reduced risk of infection in the RV144 trial, the only human HIV-1 vaccine to show any efficacy to date. However, reagents to understand the breadth and magnitude of these responses across preclinical and clinical vaccine trials remain underdeveloped. In this study, we characterise HIV-1 infectious molecular clones encoding 29 distinct envelope strains (Env-IMCs) to understand factors which impact virus susceptibility to ADCC and use statistical methods to identify smaller nested panels of four to eight Env-IMCs which accurately represent the full set. These reagents can be used as standardized reagents across studies to fully understand how ADCC may affect efficacy of future vaccine studies, and how studies differed in the breadth of responses developed.
Collapse
|
5
|
Mielke D, Bandawe G, Zheng J, Jones J, Abrahams MR, Bekker V, Ochsenbauer C, Garrett N, Abdool Karim S, Moore PL, Morris L, Montefiori D, Anthony C, Ferrari G, Williamson C. ADCC-mediating non-neutralizing antibodies can exert immune pressure in early HIV-1 infection. PLoS Pathog 2021; 17:e1010046. [PMID: 34788337 PMCID: PMC8598021 DOI: 10.1371/journal.ppat.1010046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
Despite antibody-dependent cellular cytotoxicity (ADCC) responses being implicated in protection from HIV-1 infection, there is limited evidence that they control virus replication. The high mutability of HIV-1 enables the virus to rapidly adapt, and thus evidence of viral escape is a very sensitive approach to demonstrate the importance of this response. To enable us to deconvolute ADCC escape from neutralizing antibody (nAb) escape, we identified individuals soon after infection with detectable ADCC responses, but no nAb responses. We evaluated the kinetics of ADCC and nAb responses, and viral escape, in five recently HIV-1-infected individuals. In one individual we detected viruses that escaped from ADCC responses but were sensitive to nAbs. In the remaining four participants, we did not find evidence of viral evolution exclusively associated with ADCC-mediating non-neutralizing Abs (nnAbs). However, in all individuals escape from nAbs was rapid, occurred at very low titers, and in three of five cases we found evidence of viral escape before detectable nAb responses. These data show that ADCC-mediating nnAbs can drive immune escape in early infection, but that nAbs were far more effective. This suggests that if ADCC responses have a protective role, their impact is limited after systemic virus dissemination.
Collapse
Affiliation(s)
- Dieter Mielke
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Gama Bandawe
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
- Malawi University of Science and Technology, Thyolo, Malawi
| | - Jie Zheng
- University of Alabama at Birmingham, Department of Medicine, Birmingham, Alabama, United States of America
| | - Jennifer Jones
- University of Alabama at Birmingham, Department of Medicine, Birmingham, Alabama, United States of America
| | - Melissa-Rose Abrahams
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Valerie Bekker
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Christina Ochsenbauer
- University of Alabama at Birmingham, Department of Medicine, Birmingham, Alabama, United States of America
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu Natal, Durban, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, New York, United States of America
| | - Penny L. Moore
- National Institute for Communicable Diseases, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- University of Witswaterstrand, Johannesburg, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- University of Witswaterstrand, Johannesburg, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| | - David Montefiori
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Colin Anthony
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Guido Ferrari
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Carolyn Williamson
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
6
|
Cheng HD, Dowell KG, Bailey-Kellogg C, Goods BA, Love JC, Ferrari G, Alter G, Gach J, Forthal DN, Lewis GK, Greene K, Gao H, Montefiori DC, Ackerman ME. Diverse antiviral IgG effector activities are predicted by unique biophysical antibody features. Retrovirology 2021; 18:35. [PMID: 34717659 PMCID: PMC8557579 DOI: 10.1186/s12977-021-00579-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The critical role of antibody Fc-mediated effector functions in immune defense has been widely reported in various viral infections. These effector functions confer cellular responses through engagement with innate immune cells. The precise mechanism(s) by which immunoglobulin G (IgG) Fc domain and cognate receptors may afford protection are poorly understood, however, in the context of HIV/SHIV infections. Many different in vitro assays have been developed and utilized to measure effector functions, but the extent to which these assays capture distinct antibody activities has not been fully elucidated. RESULTS In this study, six Fc-mediated effector function assays and two biophysical antibody profiling assays were performed on a common set of samples from HIV-1 infected and vaccinated subjects. Biophysical antibody profiles supported robust prediction of diverse IgG effector functions across distinct Fc-mediated effector function assays. While a number of assays showed correlated activities, supervised machine learning models indicated unique antibody features as primary contributing factors to the associated effector functions. Additional experiments established the mechanistic relevance of relationships discovered using this unbiased approach. CONCLUSIONS In sum, this study provides better resolution on the diversity and complexity of effector function assays, offering a clearer perspective into this family of antibody mechanisms of action to inform future HIV-1 treatment and vaccination strategies.
Collapse
Affiliation(s)
- Hao D. Cheng
- grid.254880.30000 0001 2179 2404Thayer School of Engineering, Dartmouth College, Hanover, NH USA ,grid.254880.30000 0001 2179 2404Molecular and Cellular Biology Program, Dartmouth College, 14 Engineering Dr., Hanover, NH 03755 USA
| | - Karen G. Dowell
- grid.254880.30000 0001 2179 2404Department of Computer Science, Dartmouth College, Hanover, 03755 USA
| | - Chris Bailey-Kellogg
- grid.254880.30000 0001 2179 2404Department of Computer Science, Dartmouth College, Hanover, 03755 USA
| | - Brittany A. Goods
- grid.116068.80000 0001 2341 2786Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Biological Engineering, Koch Institute at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - J. Christopher Love
- grid.116068.80000 0001 2341 2786Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Biological Engineering, Koch Institute at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Guido Ferrari
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA ,grid.189509.c0000000100241216Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27719 USA
| | - Galit Alter
- grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139 USA
| | - Johannes Gach
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, Irvine School of Medicine, University California, Irvine, CA 92697 USA
| | - Donald N. Forthal
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, Irvine School of Medicine, University California, Irvine, CA 92697 USA
| | - George K. Lewis
- grid.411024.20000 0001 2175 4264Division of Vaccine Research, Institute of Human Virology, University Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Kelli Greene
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA
| | - Hongmei Gao
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA
| | - David C. Montefiori
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC 27710 USA ,grid.189509.c0000000100241216Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27719 USA
| | - Margaret E. Ackerman
- grid.254880.30000 0001 2179 2404Thayer School of Engineering, Dartmouth College, Hanover, NH USA ,grid.254880.30000 0001 2179 2404Molecular and Cellular Biology Program, Dartmouth College, 14 Engineering Dr., Hanover, NH 03755 USA
| |
Collapse
|
7
|
Chua JV, Davis C, Husson JS, Nelson A, Prado I, Flinko R, Lam KWJ, Mutumbi L, Mayer BT, Dong D, Fulp W, Mahoney C, Gerber M, Gottardo R, Gilliam BL, Greene K, Gao H, Yates N, Ferrari G, Tomaras G, Montefiori D, Schwartz JA, Fouts T, DeVico AL, Lewis GK, Gallo RC, Sajadi MM. Safety and immunogenicity of an HIV-1 gp120-CD4 chimeric subunit vaccine in a phase 1a randomized controlled trial. Vaccine 2021; 39:3879-3891. [PMID: 34099328 PMCID: PMC8224181 DOI: 10.1016/j.vaccine.2021.05.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/14/2021] [Accepted: 05/23/2021] [Indexed: 01/14/2023]
Abstract
A major challenge for HIV vaccine development is to raise anti-envelope antibodies capable of recognizing and neutralizing diverse strains of HIV-1. Accordingly, a full length single chain (FLSC) of gp120-CD4 chimeric vaccine construct was designed to present a highly conserved CD4-induced (CD4i) HIV-1 envelope structure that elicits cross-reactive anti-envelope humoral responses and protective immunity in animal models of HIV infection. IHV01 is the FLSC formulated in aluminum phosphate adjuvant. We enrolled 65 healthy adult volunteers in this first-in-human phase 1a randomized, double-blind, placebo-controlled study with three dose-escalating cohorts (75 µg, 150 µg, and 300 µg doses). Intramuscular injections were given on weeks 0, 4, 8, and 24. Participants were followed for an additional 24 weeks after the last immunization. The overall incidence of adverse events (AEs) was not significantly different between vaccinees and controls. The majority (89%) of vaccine-related AE were mild. The most common vaccine-related adverse event was injection site pain. There were no vaccine-related serious AE, discontinuation due to AE, intercurrent HIV infection, or significant decreases in CD4 count. By the final vaccination, all vaccine recipients developed antibodies against IHV01 and demonstrated anti-CD4i epitope antibodies. The elicited antibodies reacted with CD4 non-liganded Env antigens from diverse HIV-1 strains. Antibody-dependent cell-mediated cytotoxicity against heterologous infected cells or gp120 bound to CD4+ cells was evident in all cohorts as were anti-gp120 T-cell responses. IHV01 vaccine was safe, well tolerated, and immunogenic at all doses tested. The vaccine raised broadly reactive humoral responses against conserved CD4i epitopes on gp120 that mediates antiviral functions.
Collapse
Affiliation(s)
- Joel V Chua
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Charles Davis
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jennifer S Husson
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy Nelson
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ilia Prado
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robin Flinko
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ka Wing J Lam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lydiah Mutumbi
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bryan T Mayer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dan Dong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - William Fulp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Celia Mahoney
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Monica Gerber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bruce L Gilliam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kelli Greene
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Hongmei Gao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nicole Yates
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Georgia Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Timothy Fouts
- Advanced BioScience Laboratories, Rockville, MD, USA
| | - Anthony L DeVico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA; Global Virus Network, Baltimore, MD, USA
| | - George K Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA; Global Virus Network, Baltimore, MD, USA
| | - Robert C Gallo
- Global Virus Network, Baltimore, MD, USA; Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mohammad M Sajadi
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA; Intralytix, Columbia, MD, USA.
| |
Collapse
|
8
|
Felber BK, Lu Z, Hu X, Valentin A, Rosati M, Remmel CAL, Weiner JA, Carpenter MC, Faircloth K, Stanfield-Oakley S, Williams WB, Shen X, Tomaras GD, LaBranche CC, Montefiori D, Trinh HV, Rao M, Alam MS, Vandergrift NA, Saunders KO, Wang Y, Rountree W, Das J, Alter G, Reed SG, Aye PP, Schiro F, Pahar B, Dufour JP, Veazey RS, Marx PA, Venzon DJ, Shaw GM, Ferrari G, Ackerman ME, Haynes BF, Pavlakis GN. Co-immunization of DNA and Protein in the Same Anatomical Sites Induces Superior Protective Immune Responses against SHIV Challenge. Cell Rep 2021; 31:107624. [PMID: 32402293 DOI: 10.1016/j.celrep.2020.107624] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
We compare immunogenicity and protective efficacy of an HIV vaccine comprised of env and gag DNA and Env (Envelope) proteins by co-administration of the vaccine components in the same muscles or by separate administration of DNA + protein in contralateral sites in female rhesus macaques. The 6-valent vaccine includes gp145 Env DNAs, representing six sequentially isolated Envs from the HIV-infected individual CH505, and matching GLA-SE-adjuvanted gp120 Env proteins. Interestingly, only macaques in the co-administration vaccine group are protected against SHIV CH505 acquisition after repeated low-dose intravaginal challenge and show 67% risk reduction per exposure. Macaques in the co-administration group develop higher Env-specific humoral and cellular immune responses. Non-neutralizing Env antibodies, ADCC, and antibodies binding to FcγRIIIa are associated with decreased transmission risk. These data suggest that simultaneous recognition, processing, and presentation of DNA + Env protein in the same draining lymph nodes play a critical role in the development of protective immunity.
Collapse
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Zhongyan Lu
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Xintao Hu
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | | | - Katelyn Faircloth
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Sherry Stanfield-Oakley
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Celia C LaBranche
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Hung V Trinh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Munir S Alam
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | | | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Jishnu Das
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Steven G Reed
- Infectious Disease Research Institute, Seattle, WA 98102, USA
| | - Pyone P Aye
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Faith Schiro
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Jason P Dufour
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Ronald S Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Preston A Marx
- Tulane National Primate Research Center, and Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | | | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
9
|
Om K, Paquin-Proulx D, Montero M, Peachman K, Shen X, Wieczorek L, Beck Z, Weiner JA, Kim D, Li Y, Mdluli T, Shubin Z, Bryant C, Sharma V, Tokarev A, Dawson P, White Y, Appelbe O, Klatt NR, Tovanabutra S, Estes JD, Matyas GR, Ferrari G, Alving CR, Tomaras GD, Ackerman ME, Michael NL, Robb ML, Polonis V, Rolland M, Eller MA, Rao M, Bolton DL. Adjuvanted HIV-1 vaccine promotes antibody-dependent phagocytic responses and protects against heterologous SHIV challenge. PLoS Pathog 2020; 16:e1008764. [PMID: 32881968 PMCID: PMC7505435 DOI: 10.1371/journal.ppat.1008764] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/21/2020] [Accepted: 06/30/2020] [Indexed: 01/29/2023] Open
Abstract
To augment HIV-1 pox-protein vaccine immunogenicity using a next generation adjuvant, a prime-boost strategy of recombinant modified vaccinia virus Ankara and multimeric Env gp145 was evaluated in macaques with either aluminum (alum) or a novel liposomal monophosphoryl lipid A (MPLA) formulation adsorbed to alum, ALFA. Binding antibody responses were robust and comparable between arms, while antibody-dependent neutrophil and monocyte phagocytotic responses were greatly enhanced by ALFA. Per-exposure vaccine efficacy against heterologous tier 2 SHIV mucosal challenge was 90% in ALFA-adjuvanted males (P = 0.002), while alum conferred no protection. Half of the ALFA-adjuvanted males remained uninfected after the full challenge series, which spanned seven months after the last vaccination. Antibody-dependent monocyte and neutrophil phagocytic responses both strongly correlated with protection. Significant sex differences in infection risk were observed, with much lower infection rates in females than males. In humans, MPLA-liposome-alum adjuvanted gp120 also increased HIV-1-specific phagocytic responses relative to alum. Thus, next-generation liposome-based adjuvants can drive vaccine elicited antibody effector activity towards potent phagocytic responses in both macaques and humans and these responses correlate with protection. Future protein vaccination strategies aiming to improve functional humoral responses may benefit from such adjuvants.
Collapse
Affiliation(s)
- Kier Om
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Dominic Paquin-Proulx
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Maria Montero
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Kristina Peachman
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Lindsay Wieczorek
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Zoltan Beck
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Joshua A. Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Dohoon Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Yifan Li
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Thembi Mdluli
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Zhanna Shubin
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | | | - Vishakha Sharma
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Andrey Tokarev
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Peter Dawson
- EMMES, Rockville, Maryland, United States of America
| | - Yohann White
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Oliver Appelbe
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - Nichole R. Klatt
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - Sodsai Tovanabutra
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Gary R. Matyas
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Carl R. Alving
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Merlin L. Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Victoria Polonis
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Morgane Rolland
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Michael A. Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Mangala Rao
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Diane L. Bolton
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| |
Collapse
|
10
|
Barry MA, Rubin JD, Lu SC. Retargeting adenoviruses for therapeutic applications and vaccines. FEBS Lett 2020; 594:1918-1946. [PMID: 31944286 PMCID: PMC7311308 DOI: 10.1002/1873-3468.13731] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022]
Abstract
Adenoviruses (Ads) are robust vectors for therapeutic applications and vaccines, but their use can be limited by differences in their in vitro and in vivo pharmacologies. This review emphasizes that there is not just one Ad, but a whole virome of diverse viruses that can be used as therapeutics. It discusses that true vector targeting involves not only retargeting viruses, but importantly also detargeting the viruses from off-target cells.
Collapse
Affiliation(s)
- Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey D Rubin
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| | - Shao-Chia Lu
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Helmold Hait S, Hogge CJ, Rahman MA, Ko EJ, Hunegnaw R, Mushtaq Z, Enyindah-Asonye G, Hoang T, Miller Jenkins LM, Appella E, Appella DH, Robert-Guroff M. An SAMT-247 Microbicide Provides Potent Protection against Intravaginal Simian Immunodeficiency Virus Infection of Rhesus Macaques, whereas an Added Vaccine Component Elicits Mixed Outcomes. THE JOURNAL OF IMMUNOLOGY 2020; 204:3315-3328. [PMID: 32393514 DOI: 10.4049/jimmunol.2000165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Because of microbicide noncompliance and lack of a durable, highly effective vaccine, a combined approach might improve HIV prophylaxis. We tested whether a vaccine-microbicide combination would enhance protection against SIV infection in rhesus macaques. Four macaque groups included vaccine only, vaccine-microbicide, microbicide only, and controls. Vaccine groups were primed twice mucosally with replicating adenovirus type 5 host range mutant SIV env/rev, gag, and nef recombinants and boosted twice i.m. with SIV gp120 proteins in alum. Controls and the microbicide-only group received adenovirus type 5 host range mutant empty vector and alum. The microbicide was SAMT-247, a 2-mercaptobenzamide thioester that targets the viral nucleocapsid protein NCp7, causing zinc ejection and preventing RNA encapsidation. Following vaccination, macaques were challenged intravaginally with repeated weekly low doses of SIVmac251 administered 3 h after application of 0.8% SAMT-247 gel (vaccine-microbicide and microbicide groups) or placebo gel (vaccine-only and control groups). The microbicide-only group exhibited potent protection; 10 of 12 macaques remained uninfected following 15 SIV challenges. The vaccine-only group developed strong mucosal and systemic humoral and cellular immunity but did not exhibit delayed acquisition compared with adjuvant controls. However, the vaccine-microbicide group exhibited significant acquisition delay compared with both control and vaccine-only groups, indicating further exploration of the combination strategy is warranted. Impaired protection in the vaccine-microbicide group compared with the microbicide-only group was not attributed to a vaccine-induced increase in SIV target cells. Possible Ab-dependent enhancement will be further investigated. The potent protection provided by SAMT-247 encourages its movement into human clinical trials.
Collapse
Affiliation(s)
- Sabrina Helmold Hait
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5065
| | - Christopher James Hogge
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5065
| | - Mohammad Arif Rahman
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5065
| | - Eun-Ju Ko
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5065
| | - Ruth Hunegnaw
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5065
| | - Zuena Mushtaq
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5065
| | - Gospel Enyindah-Asonye
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5065
| | - Tanya Hoang
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5065
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256; and
| | - Ettore Appella
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256; and
| | - Daniel H Appella
- Laboratory of Bioorganic Chemistry, Synthetic Bioactive Molecules Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0820
| | - Marjorie Robert-Guroff
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5065;
| |
Collapse
|
12
|
Matchett WE, Malewana GBR, Mudrick H, Medlyn MJ, Barry MA. Genetic Adjuvants in Replicating Single-Cycle Adenovirus Vectors Amplify Systemic and Mucosal Immune Responses against HIV-1 Envelope. Vaccines (Basel) 2020; 8:E64. [PMID: 32024265 PMCID: PMC7158672 DOI: 10.3390/vaccines8010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Most infections occur at mucosal surfaces. Providing a barrier of protection at these surfaces may be a useful strategy to combat the earliest events in infection when there are relatively few pathogens to address. The majority of vaccines are delivered systemically by the intramuscular (IM) route. While IM vaccination can drive mucosal immune responses, mucosal immunization at intranasal (IN) or oral sites can lead to better immune responses at mucosal sites of viral entry. In macaques, IN immunization with replicating single-cycle adenovirus (SC-Ads) and protein boosts generated favorable mucosal immune responses. However, there was an apparent "distance effect" in generating mucosal immune responses. IN immunization generated antibodies against HIV envelope (env) nearby in the saliva, but weaker responses in samples collected from the distant vaginal samples. To improve on this, we tested here if SC-Ads expressing genetic adjuvants could be used to amplify antibody responses in distant vaginal samples when they are codelivered with SC-Ads expressing clade C HIV env immunogen. SC-Ads env 1157 was coadministered with SC-Ads expressing 4-1BBL, granulocyte macrophage colony-stimulating factor (GMCSF), IL-21, or Clostridoides difficile (C. diff.) toxin fragments by IN or IM routes. These data show that vaginal antibody responses were markedly amplified after a single immunization by the IN or IM routes, with SC-Ad expressing HIV env if this vaccine is complemented with SC-Ads expressing genetic adjuvants. Furthermore, the site and combination of adjuvants appear to "tune" these antibody responses towards an IgA or IgG isotype bias. Boosting these priming SC-Ad responses with another SC-Ad or with SOSIP native-like env proteins markedly amplifies env antibody levels in vaginal washes. Together, this data may be useful in informing the choice of route of delivery adenovirus and peptide vaccines against HIV-1.
Collapse
Affiliation(s)
- William E. Matchett
- Virology and Gene Therapy (VGT) Graduate Program, Mayo Clinic, Rochester, MN 55905, USA;
| | | | - Haley Mudrick
- Molecular Pharmacology and Experimental Therapeutics (MPET) Graduate Program, Mayo Clinic, Rochester, MN 55905, USA;
| | | | - Michael A. Barry
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
13
|
Mielke D, Bandawe G, Pollara J, Abrahams MR, Nyanhete T, Moore PL, Thebus R, Yates NL, Kappes JC, Ochsenbauer C, Garrett N, Abdool Karim S, Tomaras GD, Montefiori D, Morris L, Ferrari G, Williamson C. Antibody-Dependent Cellular Cytotoxicity (ADCC)-Mediating Antibodies Constrain Neutralizing Antibody Escape Pathway. Front Immunol 2019; 10:2875. [PMID: 31921139 PMCID: PMC6919271 DOI: 10.3389/fimmu.2019.02875] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/22/2019] [Indexed: 01/13/2023] Open
Abstract
Both neutralization and antibody-dependent cellular cytotoxicity (ADCC) may be required for effective protection against HIV-1 infection. While there is extensive information on the targets of early neutralizing antibody (nAb) responses, much less is known about the targets of ADCC responses, which are more difficult to characterize. In four individuals recruited during acute HIV-infection, ADCC responses were detected 3-7 weeks prior to nAb responses. To determine the relative influence of ADCC and nAb responses on virus evolution, we performed an in-depth investigation of one individual (CAP63) who showed the highest nAb and ADCC responses. Both nAbs and ADCC antibodies targeted the V4 region of the Env, although there were some differences in epitope recognition. We identified accelerated viral evolution in this region concurrent with emergence of nAb activity, but not ADCC activity. Deep sequencing demonstrated that most nAb escape mutations were strongly selected for, however one nAb escape mutation that rendered the virus highly susceptible to autologous ADCC responses, was suppressed despite not affecting viral fitness. This escape mutation also rendered the virus more sensitive to autologous responses, as well as monoclonal antibodies targeting CD4-induced epitopes, compared to the wildtype virus. In conclusion, ADCC responses and nAbs in donor CAP63 recognized overlapping but unique epitopes in the V4 region, and while ADCC activity was present prior to nAbs, it did not drive viral evolution during this time. However, ADCC responses may select against nAb escape pathways that expose other common ADCC epitopes thereby restricting viral replication and expansion.
Collapse
Affiliation(s)
- Dieter Mielke
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Gama Bandawe
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Justin Pollara
- Duke University Medical Center, Durham, NC, United States
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Penny L Moore
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa.,National Health Laboratory Service, Johannesburg, South Africa.,MRC Antibody Immunity Research Unit, University of Witwaterstrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| | - Ruwayhida Thebus
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicole L Yates
- Duke University Medical Center, Durham, NC, United States
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Research Service, Birmingham Veterans Affairs Medical Center, Birmingham, AL, United States
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa.,Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu Natal, Durban, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa.,Department of Epidemiology, Columbia University, New York, NY, United States
| | | | | | - Lynn Morris
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa.,National Health Laboratory Service, Johannesburg, South Africa.,MRC Antibody Immunity Research Unit, University of Witwaterstrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| | - Guido Ferrari
- Duke University Medical Center, Durham, NC, United States
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
14
|
Zolla-Pazner S, Alvarez R, Kong XP, Weiss S. Vaccine-induced V1V2-specific antibodies control and or protect against infection with HIV, SIV and SHIV. Curr Opin HIV AIDS 2019; 14:309-317. [PMID: 30994501 PMCID: PMC6542703 DOI: 10.1097/coh.0000000000000551] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW In humans, only one independent immunologic correlate of reduced risk of HIV infection has been identified: a robust antibody (Ab) response to the V1V2 domain of the gp120 envelope (Env) protein. In recent years, the presence and level of V1V2-specific Abs has also been correlated with protection from SIV and SHIV infections. Here, we review the multitude of studies showing the in-vivo protective effects of V1V2 Abs and review their immunologic characteristics and antiviral functions. RECENT FINDINGS Structural and immunologic studies have defined four epitope families in the V1V2 domain: one epitope family, V2q, which preferentially presents as a quaternary structure of the Env trimer, and another epitope family (V2qt) which requires the quaternary trimeric Env structure; these two epitope types are recognized by two families of monoclonal Abs (mAbs)-V2q-specific and V2qt-specific mAbs-which display broad and potent neutralizing activity. A third epitope family, V2i, is present as a discontinuous conformational structure that overlays the α4β7 integrin binding motif, and a fourth epitope family (V2p) exists on V2 peptides. Antibodies specific for V2i and V2p epitopes display only poor neutralizing activity but effectively mediate other antiviral activities and have been correlated with control of and/or protection from HIV, SIV and SHIV. Notably, V2q and V2qt Abs have not been induced by any vaccines, but V2p and V2i Abs have been readily induced with various vaccines in nonhuman primates and humans. SUMMARY The correlation of vaccine-induced V2p and V2i Abs with protection from HIV, SIV and SHIV suggests that these Ab types are extremely important to induce with prophylactic vaccines.
Collapse
Affiliation(s)
- Susan Zolla-Pazner
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Raymond Alvarez
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Svenja Weiss
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
15
|
Matchett WE, Anguiano-Zarate SS, Nehete PN, Shelton K, Nehete BP, Yang G, Dorta-Estremera S, Barnette P, Xiao P, Byrareddy SN, Villinger F, Hessell AJ, Haigwood NL, Sastry KJ, Barry MA. Divergent HIV-1-Directed Immune Responses Generated by Systemic and Mucosal Immunization with Replicating Single-Cycle Adenoviruses in Rhesus Macaques. J Virol 2019; 93:e02016-18. [PMID: 30842321 PMCID: PMC6498041 DOI: 10.1128/jvi.02016-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Most human immunodeficiency virus type 1 (HIV-1) infections begin at mucosal surfaces. Providing a barrier of protection at these may assist in combating the earliest events in infection. Systemic immunization by intramuscular (i.m.) injection can drive mucosal immune responses, but there are data suggesting that mucosal immunization can better educate these mucosal immune responses. To test this, rhesus macaques were immunized with replicating single-cycle adenovirus (SC-Ad) vaccines expressing clade B HIV-1 gp160 by the intranasal (i.n.) and i.m. routes to compare mucosal and systemic routes of vaccination. SC-Ad vaccines generated significant circulating antibody titers against Env after a single i.m. immunization. Switching the route of second immunization with the same SC-Ad serotype allowed a significant boost in these antibody levels. When these animals were boosted with envelope protein, envelope-binding antibodies were amplified 100-fold, but qualitatively different immune responses were generated. Animals immunized by only the i.m. route had high peripheral T follicular helper (pTfh) cell counts in blood but low Tfh cell counts in lymph nodes. Conversely, animals immunized by the i.n. route had high Tfh cell counts in lymph nodes but low pTfh cell counts in the blood. Animals immunized by only the i.m. route had lower antibody-dependent cellular cytotoxicity (ADCC) antibody activity, whereas animals immunized by the mucosal i.n. route had higher ADCC antibody activity. When these Env-immunized animals were challenged rectally with simian-human immunodeficiency virus (SHIV) strain SF162P3 (SHIVSF162P3), they all became infected. However, mucosally SC-Ad-immunized animals had lower viral loads in their gastrointestinal tracts. These data suggest that there may be benefits in educating the immune system at mucosal sites during HIV vaccination.IMPORTANCE HIV-1 infections usually start at a mucosal surface after sexual contact. Creating a barrier of protection at these mucosal sites may be a good strategy for to protect against HIV-1 infections. While HIV-1 enters at mucosa, most vaccines are not delivered here. Most are instead injected into the muscle, a site well distant and functionally different than mucosal tissues. This study tested if delivering HIV vaccines at mucosa or in the muscle makes a difference in the quality, quantity, and location of immune responses against the virus. These data suggest that there are indeed advantages to educating the immune system at mucosal sites with an HIV-1 vaccine.
Collapse
Affiliation(s)
- William E Matchett
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Pramod N Nehete
- Department of Comparative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| | - Kathryn Shelton
- Department of Comparative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
| | - Bharti P Nehete
- Department of Comparative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
| | - Guojun Yang
- Department of Oncology Research for Biologics and Immunotherapy Translation, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
| | - Stephanie Dorta-Estremera
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
| | - Philip Barnette
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Peng Xiao
- Department of Biology, New Iberia Research Center, Lafayette, Louisiana, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Francois Villinger
- Department of Biology, New Iberia Research Center, Lafayette, Louisiana, USA
| | - Ann J Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Nancy L Haigwood
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - K Jagannadha Sastry
- Department of Comparative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
- Department of Oncology Research for Biologics and Immunotherapy Translation, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| | - Michael A Barry
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Crowley AR, Ackerman ME. Mind the Gap: How Interspecies Variability in IgG and Its Receptors May Complicate Comparisons of Human and Non-human Primate Effector Function. Front Immunol 2019; 10:697. [PMID: 31024542 PMCID: PMC6463756 DOI: 10.3389/fimmu.2019.00697] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
The field of HIV research relies heavily on non-human primates, particularly the members of the macaque genus, as models for the evaluation of candidate vaccines and monoclonal antibodies. A growing body of research suggests that successful protection of humans will not solely rely on the neutralization activity of an antibody's antigen binding fragment. Rather, immunological effector functions prompted by the interaction of the immunoglobulin G constant region and its cognate Fc receptors help contribute to favorable outcomes. Inherent differences in the sequences, expression, and activities of human and non-human primate antibody receptors and immunoglobulins have the potential to produce disparate results in the observations made in studies conducted in differing species. Having a more complete understanding of these differences, however, should permit the more fluent translation of observations between model organisms and the clinic. Here we present a guide to such translations that encompasses not only what is presently known regarding the affinity of the receptor-ligand interactions but also the influence of expression patterns and allelic variation, with a focus on insights gained from use of this model in HIV vaccines and passive antibody therapy and treatment.
Collapse
Affiliation(s)
- Andrew R. Crowley
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, United States
| | - Margaret E. Ackerman
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
17
|
Williams KL, Stumpf M, Naiman NE, Ding S, Garrett M, Gobillot T, Vézina D, Dusenbury K, Ramadoss NS, Basom R, Kim PS, Finzi A, Overbaugh J. Identification of HIV gp41-specific antibodies that mediate killing of infected cells. PLoS Pathog 2019; 15:e1007572. [PMID: 30779811 PMCID: PMC6396944 DOI: 10.1371/journal.ppat.1007572] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/01/2019] [Accepted: 01/08/2019] [Indexed: 11/19/2022] Open
Abstract
Antibodies that mediate killing of HIV-infected cells through antibody-dependent cellular cytotoxicity (ADCC) have been implicated in protection from HIV infection and disease progression. Despite these observations, these types of HIV antibodies are understudied compared to neutralizing antibodies. Here we describe four monoclonal antibodies (mAbs) obtained from one individual that target the HIV transmembrane protein, gp41, and mediate ADCC activity. These four mAbs arose from independent B cell lineages suggesting that in this individual, multiple B cell responses were induced by the gp41 antigen. Competition and phage peptide display mapping experiments suggested that two of the mAbs target epitopes in the cysteine loop that are highly conserved and a common target of HIV gp41-specific antibodies. The amino acid sequences that bind these mAbs are overlapping but distinct. The two other mAbs were competed by mAbs that target the C-terminal heptad repeat (CHR) and the fusion peptide proximal region (FPPR) and appear to both target a similar unique conformational epitope. These gp41-specific mAbs mediated killing of infected cells that express high levels of Env due to either pre-treatment with interferon or deletion of vpu to increase levels of BST-2/Tetherin. They also mediate killing of target cells coated with various forms of the gp41 protein, including full-length gp41, gp41 ectodomain or a mimetic of the gp41 stump. Unlike many ADCC mAbs that target HIV gp120, these gp41-mAbs are not dependent on Env structural changes associated with membrane-bound CD4 interaction. Overall, the characterization of these four new mAbs that target gp41 and mediate ADCC provides evidence for diverse gp41 B cell lineages with overlapping but distinct epitopes within an individual. Such antibodies that can target various forms of envelope protein could represent a common response to a relatively conserved HIV epitope for a vaccine.
Collapse
Affiliation(s)
- Katherine L. Williams
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
| | - Megan Stumpf
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
| | - Nicole Elise Naiman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA United States of America
- Medical Scientist Training Program, University of Washington, Seattle WA, United States of America
| | - Shilei Ding
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Meghan Garrett
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA United States of America
| | - Theodore Gobillot
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA United States of America
- Medical Scientist Training Program, University of Washington, Seattle WA, United States of America
| | - Dani Vézina
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Katharine Dusenbury
- Medical Scientist Training Program, University of Washington, Seattle WA, United States of America
- Divisions of Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Nitya S. Ramadoss
- Stanford ChEM-H and Department of Biochemistry, Stanford University, Stanford, CA, United States of America
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Peter S. Kim
- Stanford ChEM-H and Department of Biochemistry, Stanford University, Stanford, CA, United States of America
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| | - Andrés Finzi
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
| |
Collapse
|
18
|
Kozlowski PA, Aldovini A. Mucosal Vaccine Approaches for Prevention of HIV and SIV Transmission. CURRENT IMMUNOLOGY REVIEWS 2019; 15:102-122. [PMID: 31452652 PMCID: PMC6709706 DOI: 10.2174/1573395514666180605092054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/19/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Optimal protective immunity to HIV will likely require that plasma cells, memory B cells and memory T cells be stationed in mucosal tissues at portals of viral entry. Mucosal vaccine administration is more effective than parenteral vaccine delivery for this purpose. The challenge has been to achieve efficient vaccine uptake at mucosal surfaces, and to identify safe and effective adjuvants, especially for mucosally administered HIV envelope protein immunogens. Here, we discuss strategies used to deliver potential HIV vaccine candidates in the intestine, respiratory tract, and male and female genital tract of humans and nonhuman primates. We also review mucosal adjuvants, including Toll-like receptor agonists, which may adjuvant both mucosal humoral and cellular immune responses to HIV protein immunogens.
Collapse
Affiliation(s)
- Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anna Aldovini
- Department of Medicine, and Harvard Medical School, Boston Children’s Hospital, Department of Pediatrics, Boston MA, 02115, USA
| |
Collapse
|
19
|
Abstract
: Interactions between the Fc segment of IgG and its receptors (FcγRs) found on cells such as natural killer cells, monocytes, macrophages and neutrophils can potentially mediate antiviral effects in the setting of HIV and related infections. We review the potential role of FcγR interactions in HIV, SIV and SHIV infections, with an emphasis on antibody-dependent cellular cytotoxicity (ADCC). Notably, these viruses employ various strategies, including CD4 down-regulation and BST-2/tetherin antagonism to limit the effect of ADCC. Although correlative data suggest that ADCC participates in both protection and control of established infection, there is little direct evidence in support of either role. Direct evidence does, however, implicate an FcγR-dependent function in augmenting the beneficial in vivo activity of neutralizing antibodies.
Collapse
|
20
|
Viral control in chronic HIV-1 subtype C infection is associated with enrichment of p24 IgG1 with Fc effector activity. AIDS 2018; 32:1207-1217. [PMID: 29620716 DOI: 10.1097/qad.0000000000001812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Postinfection HIV viral control and immune correlates analysis of the RV144 vaccine trial indicate a potentially critical role for Fc receptor-mediated antibody functions. However, the influence of functional antibodies in clade C infection is largely unknown. DESIGN Plasma samples from 361 chronic subtype C-infected, antiretroviral therapy-naive participants were tested for their HIV-specific isotype and subclass distributions, along with their Fc receptor-mediated functional potential. METHOD Total IgG, IgG subclasses and IgA binding to p24 clade B/C and gp120 consensus C proteins were assayed by multiplex. Antibody-dependent uptake of antigen-coated beads and Fc receptor-mediated natural killer cell degranulation were evaluated as surrogates for antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent cellular cytotoxicity (ADCC), respectively. RESULTS p24 IgG1 was the only subclass associated with viral control (P = 0.01), with higher p24-specific ADCP and ADCC responses detected in individuals with high p24 IgG1. Although p24 IgG1 levels were enriched in patients with elevated Gag-specific T-cell responses, these levels remained an independent predictor of low-viral loads (P = 0.04) and high CD4+ cell counts (P = 0.004) after adjusting for Gag-specific T-cell responses and for protective HLA class I alleles. CONCLUSION p24 IgG1 levels independently predict viral control in HIV-1 clade C infection. Whether these responses contribute to direct antiviral control via the recruited killing of infected cells via the innate immune system or simply mark a qualitatively superior immune response to HIV, is uncertain, but highlights the role of p24-specific antibodies in control of clade C HIV-1 infection.
Collapse
|
21
|
Matchett WE, Anguiano-Zarate SS, Barry MA. Comparison of systemic and mucosal immunization with replicating Single cycle Adenoviruses. ACTA ACUST UNITED AC 2018; 3. [PMID: 30740532 PMCID: PMC6368267 DOI: 10.15761/gvi.1000128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HIV-1 infections occur during sexual contact at mucosal surfaces. Vaccines need to provide mucosal barrier protection and stimulate systemic immune responses to control HIV spread. Most vaccines are delivered by systemic immunization via intramuscular (IM) injection route. While this can drive systemic and mucosal immune responses, there are data show that mucosal immunization may be superior at driving responses at mucosal barriers. To explore this question, we immunized mice with replicating single-cycle adenovirus (SC Ad) vaccines expressing clade B HIV-1 envelope (Env) by intramuscular (IM), intranasal (IN), or intravaginal (IVAG) routes to compare vaccine responses. SC-Ads generated significant antibodies against Env after only a single immunization by the IN route, but not the other routes. These animals were boosted by the same route or by the mucosal IVAG routes. IM and IN primed animals generated strong antibody responses regardless of the boosting route. In contrast, IVAG primed animals failed to generate robust antibodies whether they were boosted by the IVAG or IM routes. These data suggest there may be benefits in first educating the immune system at mucosal sites during HIV vaccination. IN and IM prime-boost were then compared in Syrian hamsters which support SC-Ad DNA replication. In this case, IN immunization again was the only route that generated significant Env antibodies after a single immunization. Following a boost by IN or IM routes, IN primed animals had significantly higher antibody responses than the IM primed animals. Env antibodies could still be detected one year after immunization, but only in animals that received at least one mucosal IN immunization. These data suggest that there is merit in vaccination by mucosal routes.
Collapse
Affiliation(s)
- William E Matchett
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA
| | - Stephanie S Anguiano-Zarate
- Clinical and Translational Science Graduate Program, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael A Barry
- Division of Infectious Diseases, Department of Immunology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
Reduced Cell-Associated DNA and Improved Viral Control in Macaques following Passive Transfer of a Single Anti-V2 Monoclonal Antibody and Repeated Simian/Human Immunodeficiency Virus Challenges. J Virol 2018. [PMID: 29514914 DOI: 10.1128/jvi.02198-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A high level of V1V2-specific IgG antibodies (Abs) in vaccinees' sera was the only independent variable that correlated with a reduced risk of human immunodeficiency virus (HIV) acquisition in the RV144 clinical trial. In contrast, IgG avidity, antibody neutralization, and antibody-dependent cellular cytotoxicity each failed as independent correlates of infection. Extended analyses of RV144 samples demonstrated the antiviral activities of V1V2-specific vaccine-induced antibodies. V2-specific antibodies have also been associated with protection from simian immunodeficiency virus (SIV), and the V2i-specific subset of human monoclonal antibodies (MAbs), while poor neutralizers, mediates Fc-dependent antiviral functions in vitro The objective of this study was to determine the protective efficacy of a V2i-specific human MAb, 830A, against mucosal simian/human immunodeficiency virus (SHIV) challenge. V2i MAb binding sites overlap the integrin binding site in the V2 region and are similar to the epitopes bound by antibodies associated with reduced HIV infection rates in RV144. Because the IgG3 subclass was a correlate of reduced infection rates in RV144, we compared passive protection by both IgG1 and IgG3 subclasses of V2i MAb 830A. This experiment represents the first in vivo test of the hypothesis emanating from RV144 and SIV studies that V2i Abs can reduce the risk of infection. The results show that passive transfer with a single V2i MAb, IgG1 830A, reduced plasma and peripheral blood mononuclear cell (PBMC) virus levels and decreased viral DNA in lymphoid tissues compared to controls, but too few animals remained uninfected to achieve significance in reducing the risk of infection. Based on these findings, we conclude that V2i antibodies can impede virus seeding following mucosal challenge, resulting in improved virus control.IMPORTANCE Since the results of the HIV RV144 clinical trial were reported, there has been significant interest in understanding how protection was mediated. Antibodies directed to a subregion of the envelope protein called V1V2 were directly correlated with a reduced risk, and surprisingly low virus neutralization was observed. To determine whether these antibodies alone could mediate protection, we used a human monoclonal antibody directed to V2 with properties similar to those elicited in the vaccine trial for passive infusions in rhesus macaques and challenge with SHIV. The single V2 antibody at the dose given did not significantly reduce the number of infections, but there was a significant reduction in the seeding of virus to the lymph nodes and a decrease in plasma viremia in the HIV antibody-infused macaques compared with the control antibody-infused animals. This finding shows that V2 antibodies mediate antiviral activities in vivo that could contribute to a protective HIV vaccine.
Collapse
|
23
|
HIV-vaccines: lessons learned and the way forward. ASIAN BIOMED 2018. [DOI: 10.2478/abm-2010-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
A safe and efficacious preventive HIV vaccine, as part of a comprehensive prevention program, remains among the highest public health priorities. It would be the best tool that could reduce the spread of HIV significantly in the long run. Current AIDS vaccine candidates are unable to induce neutralizing antibodies against primary HIV isolates or only to a very limited and narrow extent, representing a major obstacle in the development of an efficacious HIV vaccine. Clinical efforts have mainly focused on T-cell vaccines such as DNA and various recombinant vectors alone or in prime-boost regimens. The Merck Ad5 vaccine not only failed to show efficacy but also was associated with increased risk of HIV acquisition in vaccinees in a Phase IIb trial. While gp120 alone was not efficacious, the ALVAC prime and gp120 boost regimen showed 31% efficacy in a Phase III trial in Thailand. These contrasting results illustrate the limitations of available laboratory assays to assess the vaccine-induced immune responses and the lack of understanding of immune correlates of protection. Efforts should therefore focus on developing vaccine candidates inducing broadly neutralizing antibodies. Similarly, new vector strategies such as replicating vectors should be explored to induce strong and broad T-cell responses in the systemic and mucosal compartments. Innovation in immune assay development and testing algorithms is critically needed. The standardization of more relevant and predictive non-human primate models for immunogenicity and efficacy studies will contribute to better and faster vaccine assessment. HIV vaccine development requires innovative ideas and a sustained long-term commitment of the scientific community, civil society, politicians, and donors and participants for clinical research.
Collapse
|
24
|
Karlsson I, Borggren M, Jensen SS, Heyndrickx L, Stewart-Jones G, Scarlatti G, Fomsgaard A, on behalf of the NGIN Consortium. Immunization with Clinical HIV-1 Env Proteins Induces Broad Antibody Dependent Cellular Cytotoxicity-Mediating Antibodies in a Rabbit Vaccination Model. AIDS Res Hum Retroviruses 2018; 34:206-217. [PMID: 28982260 DOI: 10.1089/aid.2017.0140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKRCCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.
Collapse
Affiliation(s)
- Ingrid Karlsson
- Department of Virology and Special Microbial Diagnostic, Statens Serum Institut, Copenhagen, Denmark
| | - Marie Borggren
- Department of Virology and Special Microbial Diagnostic, Statens Serum Institut, Copenhagen, Denmark
| | - Sanne Skov Jensen
- Department of Virology and Special Microbial Diagnostic, Statens Serum Institut, Copenhagen, Denmark
- Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Leo Heyndrickx
- Biomedical Department, Virology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Guillaume Stewart-Jones
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Anders Fomsgaard
- Department of Virology and Special Microbial Diagnostic, Statens Serum Institut, Copenhagen, Denmark
- Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
25
|
Abstract
INTRODUCTION Traditional inactivated and protein vaccines generate strong antibodies, but struggle to generate T cell responses. Attenuated pathogen vaccines generate both, but risk causing the disease they aim to prevent. Newer gene-based vaccines drive both responses and avoid the risk of infection. While these replication-defective (RD) vaccines work well in small animals, they can be weak in humans because they do not replicate antigen genes like more potent replication-competent (RC) vaccines. RC vaccines generate substantially stronger immune responses, but also risk causing their own infections. To circumvent these problems, we developed single-cycle adenovirus (SC-Ad) vectors that amplify vaccine genes, but that avoid the risk of infection. This review will discuss these vectors and their prospects for use as vaccines. AREAS COVERED This review provides a background of different types of vaccines. The benefits of gene-based vaccines and their ability to replicate antigen genes are described. Adenovirus vectors are discussed and compared to other vaccine types. Replication-defective, single-cycle, and replication-competent Ad vaccines are compared. EXPERT COMMENTARY The potential utility of these vaccines are discussed when used against infectious diseases and as cancer vaccines. We propose a move away from replication-defective vaccines towards more robust replication-competent or single-cycle vaccines.
Collapse
Affiliation(s)
- Michael Barry
- a Division of Infectious Diseases, Department of Medicine, Department of Immunology, Department of Molecular Medicine , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
26
|
Bernard NF, Kiani Z, Tremblay-McLean A, Kant SA, Leeks CE, Dupuy FP. Natural Killer (NK) Cell Education Differentially Influences HIV Antibody-Dependent NK Cell Activation and Antibody-Dependent Cellular Cytotoxicity. Front Immunol 2017; 8:1033. [PMID: 28883824 PMCID: PMC5574056 DOI: 10.3389/fimmu.2017.01033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/10/2017] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy using broadly neutralizing antibodies (bNAbs) endowed with Fc-mediated effector functions has been shown to be critical for protecting or controlling viral replication in animal models. In human, the RV144 Thai trial was the first trial to demonstrate a significant protection against HIV infection following vaccination. Analysis of the correlates of immune protection in this trial identified an association between the presence of antibody-dependent cellular cytotoxicity (ADCC) mediated by immunoglobulin G (IgG) antibodies (Abs) to HIV envelope (Env) V1/V2 loop structures and protection from infection, provided IgA Abs with competing specificity were not present. Systems serology analyses implicated a broader range of Ab-dependent functions in protection from HIV infection, including but not limited to ADCC and Ab-dependent NK cell activation (ADNKA) for secretion of IFN-γ and CCL4 and expression of the degranulation marker CD107a. The existence of such correlations in the absence of bNAbs in the RV144 trial suggest that NK cells could be instrumental in protecting against HIV infection by limiting viral spread through Fc-mediated functions such as ADCC and the production of antiviral cytokines/chemokines. Beside the engagement of FcγRIIIa or CD16 by the Fc portion of anti-Env IgG1 and IgG3 Abs, natural killer (NK) cells are also able to directly kill infected cells and produce cytokines/chemokines in an Ab-independent manner. Responsiveness of NK cells depends on the integration of activating and inhibitory signals through NK receptors, which is determined by a process during their development known as education. NK cell education requires the engagement of inhibitory NK receptors by their human leukocyte antigen ligands to establish tolerance to self while allowing NK cells to respond to self cells altered by virus infection, transformation, stress, and to allogeneic cells. Here, we review recent findings regarding the impact of inter-individual differences in NK cell education on Ab-dependent functions such as ADCC and ADNKA, including what is known about the HIV Env epitope specificity of ADCC competent Abs and the conformation of HIV Env on target cells used for ADCC assays.
Collapse
Affiliation(s)
- Nicole F Bernard
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada
| | - Zahra Kiani
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Alexandra Tremblay-McLean
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Sanket A Kant
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Christopher E Leeks
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Franck P Dupuy
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
27
|
Intrasubtype B HIV-1 Superinfection Correlates with Delayed Neutralizing Antibody Response. J Virol 2017; 91:JVI.00475-17. [PMID: 28615205 DOI: 10.1128/jvi.00475-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/05/2017] [Indexed: 11/20/2022] Open
Abstract
Understanding whether the neutralizing antibody (NAb) response impacts HIV-1 superinfection and how superinfection subsequently modulates the NAb response can help clarify correlates of protection from HIV exposures and better delineate pathways of NAb development. We examined associations between the development of NAb and the occurrence of superinfection in a well-characterized, antiretroviral therapy (ART)-naive, primary infection cohort of men who have sex with men. Deep sequencing was applied to blood plasma samples from the cohort to detect cases of superinfection. We compared the NAb activity against autologous and heterologous viruses between 10 participants with intrasubtype B superinfection and 19 monoinfected controls, matched to duration of infection and risk behavior. Three to 6 months after primary infection, individuals who would later become superinfected had significantly weaker NAb activity against tier 1 subtype B viruses (P = 0.003 for SF-162 and P = 0.017 for NL4-3) and marginally against autologous virus (P = 0.054). Lower presuperinfection NAb responses correlated with weaker gp120 binding and lower plasma total IgG titers. Soon after superinfection, the NAb response remained lower, but between 2 and 3 years after primary infection, NAb levels strengthened and reached those of controls. Superinfecting viruses were typically not susceptible to neutralization by presuperinfection plasma. These observations suggest that recently infected individuals with a delayed NAb response against primary infecting and tier 1 subtype B viruses are more susceptible to superinfection.IMPORTANCE Our findings suggest that within the first year after HIV infection, a relatively weak neutralizing antibody response against primary and subtype-specific neutralization-sensitive viruses increases susceptibility to superinfection in the face of repeated exposures. As natural infection progresses, the immune response strengthens significantly in some superinfected individuals. These findings will inform HIV vaccine design by providing testable correlates of protection from initial HIV infection.
Collapse
|
28
|
Horwitz JA, Bar-On Y, Lu CL, Fera D, Lockhart AAK, Lorenzi JCC, Nogueira L, Golijanin J, Scheid JF, Seaman MS, Gazumyan A, Zolla-Pazner S, Nussenzweig MC. Non-neutralizing Antibodies Alter the Course of HIV-1 Infection In Vivo. Cell 2017; 170:637-648.e10. [PMID: 28757252 DOI: 10.1016/j.cell.2017.06.048] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/21/2017] [Accepted: 06/29/2017] [Indexed: 11/26/2022]
Abstract
Non-neutralizing antibodies (nnAbs) to HIV-1 show little measurable activity in prevention or therapy in animal models yet were the only correlate of protection in the RV144 vaccine trial. To investigate the role of nnAbs on HIV-1 infection in vivo, we devised a replication-competent HIV-1 reporter virus that expresses a heterologous HA-tag on the surface of infected cells and virions. Anti-HA antibodies bind to, but do not neutralize, the reporter virus in vitro. However, anti-HA protects against infection in humanized mice and strongly selects for nnAb-resistant viruses in an entirely Fc-dependent manner. Similar results were also obtained with tier 2 HIV-1 viruses using a human anti-gp41 nnAb, 246D. While nnAbs are demonstrably less effective than broadly neutralizing antibodies (bNAbs) against HIV-1 in vitro and in vivo, the data show that nnAbs can protect against and alter the course of HIV-1 infection in vivo. PAPERCLIP.
Collapse
Affiliation(s)
- Joshua A Horwitz
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Laboratory of Structural Cell Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Whelan Laboratory, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yotam Bar-On
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ching-Lan Lu
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Daniela Fera
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Ainsley A K Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Johannes F Scheid
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center/Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Susan Zolla-Pazner
- Zolla-Pazner Laboratory, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.
| |
Collapse
|
29
|
Monoclonal Antibodies Specific for the V2, V3, CD4-Binding Site, and gp41 of HIV-1 Mediate Phagocytosis in a Dose-Dependent Manner. J Virol 2017; 91:JVI.02325-16. [PMID: 28122974 DOI: 10.1128/jvi.02325-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/13/2017] [Indexed: 11/20/2022] Open
Abstract
In light of the weak or absent neutralizing activity mediated by anti-V2 monoclonal antibodies (MAbs), we tested whether they can mediate Ab-dependent cellular phagocytosis (ADCP), which is an important element of anti-HIV-1 immunity. We tested six anti-V2 MAbs and compared them with 21 MAbs specific for V3, the CD4-binding site (CD4bs), and gp41 derived from chronically HIV-1-infected individuals and produced by hybridoma cells. ADCP activity was measured by flow cytometry using uptake by THP-1 monocytic cells of fluorescent beads coated with gp120, gp41, BG505 SOSIP.664, or BG505 DS-SOSIP.664 complexed with MAbs. The measurement of ADCP activity by the area under the curve showed significantly higher activity of anti-gp41 MAbs than of the members of the three other groups of MAbs tested using beads coated with monomeric gp41 or gp120; anti-V2 MAbs were dominant compared to anti-V3 and anti-CD4bs MAbs against clade C gp120ZM109 ADCP activity mediated by V2 and V3 MAbs was positive against stabilized DS-SOSIP.664 trimer but negligible against SOSIP.664 targets, suggesting that a closed envelope conformation better exposes the variable loops. Two IgG3 MAbs against the V2 and V3 regions displayed dominant ADCP activity compared to a panel of IgG1 MAbs. This superior ADCP activity was confirmed when two of three recombinant IgG3 anti-V2 MAbs were compared to their IgG1 counterparts. The study demonstrated dominant ADCP activity of anti-gp41 against monomers but not trimers, with some higher activity of anti-V2 MAbs than of anti-V3 and anti-CD4bs MAbs. The ability to mediate ADCP suggests a mechanism by which anti-HIV-1 envelope Abs can contribute to protective efficacy.IMPORTANCE Anti-V2 antibodies (Abs) correlated with reduced risk of HIV-1 infection in recipients of the RV144 vaccine, suggesting that they play a protective role, but a mechanism providing such protection remains to be determined. The rare and weak neutralizing activities of anti-V2 MAbs prompted us to study Fc-mediated activities. We compared anti-V2 MAbs with other MAbs specific for V3, CD4bs, and gp41 for Ab-dependent cellular phagocytosis (ADCP) activity, implicated in protective immunity. The anti-V2 MAbs displayed stronger activity than other anti-gp120 MAbs in screening against one of two gp120s and against DS-SOSIP, which mimics the native trimer. The activity of anti-gp41 MAbs was superior in targeting monomeric gp41 but was comparable to that seen against trimers, which may not adequately expose gp41 epitopes. While anti-envelope MAbs in general mediated ADCP activity, anti-V2 MAbs displayed some dominance compared to other MAbs. Our demonstration that anti-V2 MAbs mediate ADCP activity suggests a functional mechanism for their contribution to protective efficacy.
Collapse
|
30
|
Lack of ADCC Breadth of Human Nonneutralizing Anti-HIV-1 Antibodies. J Virol 2017; 91:JVI.02440-16. [PMID: 28122982 DOI: 10.1128/jvi.02440-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/19/2017] [Indexed: 01/23/2023] Open
Abstract
Anti-human immunodeficiency virus type 1 (HIV-1) nonneutralizing antibodies (nnAbs) capable of antibody-dependent cellular cytotoxicity (ADCC) have been identified as a protective immune correlate in the RV144 vaccine efficacy trial. Broadly neutralizing antibodies (bNAbs) also mediate ADCC in cell culture and rely on their Fc region for optimal efficacy in animal models. Here, we selected 9 monoclonal nnAbs and 5 potent bNAbs targeting various epitopes and conformations of the gp120/41 complex and analyzed the potency of the two types of antibodies to bind and eliminate HIV-1-infected cells in culture. Regardless of their neutralizing activity, most of the selected antibodies recognized and killed cells infected with two laboratory-adapted HIV-1 strains. Some nnAbs also bound bystander cells that may have captured viral proteins. However, in contrast to the bNAbs, the nnAbs bound poorly to reactivated infected cells from 8 HIV-positive individuals and did not mediate effective ADCC against these cells. The nnAbs also inefficiently recognize cells infected with 8 different transmitted-founder (T/F) isolates. The addition of a synthetic CD4 mimetic enhanced the binding and killing efficacy of some of the nnAbs in an epitope-dependent manner without reaching the levels achieved by the most potent bNAbs. Overall, our data reveal important qualitative and quantitative differences between nnAbs and bNAbs in their ADCC capacity and strongly suggest that the breadth of recognition of HIV-1 by nnAbs is narrow.IMPORTANCE Most of the anti-HIV antibodies generated by infected individuals do not display potent neutralizing activities. These nonneutralizing antibodies (nnAbs) with antibody-dependent cellular cytotoxicity (ADCC) have been identified as a protective immune correlate in the RV144 vaccine efficacy trial. However, in primate models, the nnAbs do not protect against simian-human immunodeficiency virus (SHIV) acquisition. Thus, the role of nnAbs with ADCC activity in protection from infection remains debatable. In contrast, broadly neutralizing antibodies (bNAbs) neutralize a large array of viral strains and mediate ADCC in cell culture. We analyzed the capacities of 9 nnAbs and 5 bNAbs to eliminate infected cells. We selected 18 HIV-1 strains, including virus reactivated from the reservoir of HIV-positive individuals and transmitted-founder isolates. We report that the nnAbs bind poorly to cells infected with primary HIV-1 strains and do not mediate potent ADCC. Overall, our data show that the breadth of recognition of HIV-1 by nnAbs is narrow.
Collapse
|
31
|
Brown EP, Dowell KG, Boesch AW, Normandin E, Mahan AE, Chu T, Barouch DH, Bailey-Kellogg C, Alter G, Ackerman ME. Multiplexed Fc array for evaluation of antigen-specific antibody effector profiles. J Immunol Methods 2017; 443:33-44. [PMID: 28163018 PMCID: PMC5333794 DOI: 10.1016/j.jim.2017.01.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 01/09/2023]
Abstract
Antibodies are widely considered to be a frequent primary and often mechanistic correlate of protection of approved vaccines; thus evaluating the antibody response is of critical importance in attempting to understand and predict the efficacy of novel vaccine candidates. Historically, antibody responses have been analyzed by determining the titer of the humoral response using measurements such as an ELISA, neutralization, or agglutination assays. In the simplest case, sufficiently high titers of antibody against vaccine antigen(s) are sufficient to predict protection. However, antibody titer provides only a partial measure of antibody function, which is dependent on both the variable region (Fv) to bind the antigen target, and the constant region (Fc) to elicit an effector response from the innate arm of the immune system. In the case of some diseases, such as HIV, for which an effective vaccine has proven elusive, antibody effector function has been shown to be an important driver of monoclonal antibody therapy outcomes, of viral control in infected patients, and of vaccine-mediated protection in preclinical and clinical studies. We sought to establish a platform for the evaluation of the Fc domain characteristics of antigen-specific antibodies present in polyclonal samples in order to better develop insights into Fc receptor-mediated antibody effector activity, more fully understand how antibody responses may differ in association with disease progression and between subject groups, and differentiate protective from non-protective responses. To this end we have developed a high throughput biophysical platform capable of simultaneously evaluating many dimensions of the antibody effector response. High-throughput array-based characterization platform for polyclonal antibodies. Development of a biophysical proxy for antibody effector function. Antigen and Fc receptor recognition characteristics are captured. Enables systematic serologic studies of NHP and human antibody samples.
Collapse
Affiliation(s)
- Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Karen G Dowell
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| | - Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Erica Normandin
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Alison E Mahan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Thach Chu
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Dan H Barouch
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
32
|
Abstract
It is clear that antibodies can play a pivotal role in preventing the transmission of HIV-1 and large efforts to identify an effective antibody-based vaccine to quell the epidemic. Shortly after HIV-1 was discovered as the cause of AIDS, the search for epitopes recognized by neutralizing antibodies became the driving strategy for an antibody-based vaccine. Neutralization escape variants were discovered shortly thereafter, and, after almost three decades of investigation, it is now known that autologous neutralizing antibody responses and their selection of neutralization resistant HIV-1 variants can lead to broadly neutralizing antibodies in some infected individuals. This observation drives an intensive effort to identify a vaccine to elicit broadly neutralizing antibodies. In contrast, there has been less systematic study of antibody specificities that must rely mainly or exclusively on other protective mechanisms, although non-human primate (NHP) studies as well as the RV144 vaccine trial indicate that non-neutralizing antibodies can contribute to protection. Here we propose a novel strategy to identify new epitope targets recognized by these antibodies for which viral escape is unlikely or impossible.
Collapse
Affiliation(s)
- George K Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marzena Pazgier
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anthony L DeVico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Boesch AW, Osei-Owusu NY, Crowley AR, Chu TH, Chan YN, Weiner JA, Bharadwaj P, Hards R, Adamo ME, Gerber SA, Cocklin SL, Schmitz JE, Miles AR, Eckman JW, Belli AJ, Reimann KA, Ackerman ME. Biophysical and Functional Characterization of Rhesus Macaque IgG Subclasses. Front Immunol 2016; 7:589. [PMID: 28018355 PMCID: PMC5153528 DOI: 10.3389/fimmu.2016.00589] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Antibodies raised in Indian rhesus macaques [Macaca mulatta (MM)] in many preclinical vaccine studies are often evaluated in vitro for titer, antigen-recognition breadth, neutralization potency, and/or effector function, and in vivo for potential associations with protection. However, despite reliance on this key animal model in translation of promising candidate vaccines for evaluation in first in man studies, little is known about the properties of MM immunoglobulin G (IgG) subclasses and how they may compare to human IgG subclasses. Here, we evaluate the binding of MM IgG1, IgG2, IgG3, and IgG4 to human Fc gamma receptors (FcγR) and their ability to elicit the effector functions of human FcγR-bearing cells, and unlike in humans, find a notable absence of subclasses with dramatically silent Fc regions. Biophysical, in vitro, and in vivo characterization revealed MM IgG1 exhibited the greatest effector function activity followed by IgG2 and then IgG3/4. These findings in rhesus are in contrast with the canonical understanding that IgG1 and IgG3 dominate effector function in humans, indicating that subclass-switching profiles observed in rhesus studies may not strictly recapitulate those observed in human vaccine studies.
Collapse
Affiliation(s)
- Austin W Boesch
- Thayer School of Engineering, Dartmouth College , Hanover, NH , USA
| | - Nana Yaw Osei-Owusu
- Molecular and Cellular Biology Program, Dartmouth College , Hanover, NH , USA
| | - Andrew R Crowley
- Molecular and Cellular Biology Program, Dartmouth College , Hanover, NH , USA
| | - Thach H Chu
- Thayer School of Engineering, Dartmouth College , Hanover, NH , USA
| | - Ying N Chan
- Thayer School of Engineering, Dartmouth College , Hanover, NH , USA
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College , Hanover, NH , USA
| | - Pranay Bharadwaj
- Molecular and Cellular Biology Program, Dartmouth College , Hanover, NH , USA
| | - Rufus Hards
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA; Department of Genetics and Biochemistry, Geisel School of Medicine, Hanover, NH, USA
| | - Mark E Adamo
- Norris Cotton Cancer Center, Geisel School of Medicine , Lebanon, NH , USA
| | - Scott A Gerber
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA; Department of Genetics and Biochemistry, Geisel School of Medicine, Hanover, NH, USA; Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH, USA
| | - Sarah L Cocklin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Joern E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Adam R Miles
- Wasatch Microfluidics , Salt Lake City, UT , USA
| | | | - Aaron J Belli
- Non-Human Primate Reagent Resource, MassBiologics of the University of Massachusetts Medical School , Boston, MA , USA
| | - Keith A Reimann
- Non-Human Primate Reagent Resource, MassBiologics of the University of Massachusetts Medical School , Boston, MA , USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
34
|
Williams KL, Cortez V, Dingens AS, Gach JS, Rainwater S, Weis JF, Chen X, Spearman P, Forthal DN, Overbaugh J. HIV-specific CD4-induced Antibodies Mediate Broad and Potent Antibody-dependent Cellular Cytotoxicity Activity and Are Commonly Detected in Plasma From HIV-infected humans. EBioMedicine 2016; 2:1464-77. [PMID: 26629541 PMCID: PMC4634620 DOI: 10.1016/j.ebiom.2015.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 01/12/2023] Open
Abstract
HIV-specific antibodies (Abs) can reduce viral burden by blocking new rounds of infection or by destroying infected cells via activation of effector cells through Fc–FcR interaction. This latter process, referred to as antibody-dependent cellular cytotoxicity (ADCC), has been associated with viral control and improved clinical outcome following both HIV and SIV infections. Here we describe an HIV viral-like particle (VLP)-based sorting strategy that led to identification of HIV-specificmemory B cells encoding Abs that mediate ADCC froma subtype A-infected Kenyan woman at 914 days post-infection. Using this strategy, 12 HIV-envelope-specific monoclonal antibodies (mAbs) were isolated and three mediated potent ADCC activitywhen compared to well-characterized ADCC mAbs. The ADCC-mediating Abs also mediated antibody-dependent cell-mediated virus inhibition (ADCVI), which provides a net measure of Fc receptor-triggered effects against replicating virus. Two of the three ADCC-mediating Abs targeted a CD4-induced (CD4i) epitope also bound by the mAb C11; the third antibody targeted the N-terminus of V3. Both CD4i Abs identified here demonstrated strong cross-clade breadth with activity against 10 of 11 envelopes tested, including those from clades A, B, C, A/D and C/D, whereas the V3-specific antibody showed more limited breadth. Variants of these CD4i, C11-like mAbs engineered to interrupt binding to FcγRs inhibited a measurable percentage of the donor's ADCC activity starting as early as 189 days post-infection. C11-like antibodies also accounted for between 18–78% of ADCC activity in 9 chronically infected individuals from the same cohort study. Further, the two CD4i Abs originated from unique B cells, suggesting that antibodies targeting this epitope can be commonly produced. Taken together, these data provide strong evidence that CD4i, C11-like antibodies develop within the first 6 months of infection and they can arise fromunique B-cell lineages in the same individual. Further, thesemAbsmediate potent plasma IgG-specificADCC breadth and potency and contribute to ADCC activity in other HIV-infected individuals.
Collapse
|
35
|
Hua CK, Ackerman ME. Engineering broadly neutralizing antibodies for HIV prevention and therapy. Adv Drug Deliv Rev 2016; 103:157-173. [PMID: 26827912 DOI: 10.1016/j.addr.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/15/2023]
Abstract
A combination of advances spanning from isolation to delivery of potent HIV-specific antibodies has begun to revolutionize understandings of antibody-mediated antiviral activity. As a result, the set of broadly neutralizing and highly protective antibodies has grown in number, diversity, potency, and breadth of viral recognition and neutralization. These antibodies are now being further enhanced by rational engineering of their anti-HIV activities and coupled to cutting edge gene delivery and strategies to optimize their pharmacokinetics and biodistribution. As a result, the prospects for clinical use of HIV-specific antibodies to treat, clear, and prevent HIV infection are gaining momentum. Here we discuss the diverse methods whereby antibodies are being optimized for neutralization potency and breadth, biodistribution, pharmacokinetics, and effector function with the aim of revolutionizing HIV treatment and prevention options.
Collapse
|
36
|
Comparison of Antibody-Dependent Cell-Mediated Cytotoxicity and Virus Neutralization by HIV-1 Env-Specific Monoclonal Antibodies. J Virol 2016; 90:6127-6139. [PMID: 27122574 DOI: 10.1128/jvi.00347-16] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/16/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Although antibodies to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein have been studied extensively for their ability to block viral infectivity, little data are currently available on nonneutralizing functions of these antibodies, such as their ability to eliminate virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 Env-specific antibodies of diverse specificities, including potent broadly neutralizing and nonneutralizing antibodies, were therefore tested for ADCC against cells infected with a lab-adapted HIV-1 isolate (HIV-1NL4-3), a primary HIV-1 isolate (HIV-1JR-FL), and a simian-human immunodeficiency virus (SHIV) adapted for pathogenic infection of rhesus macaques (SHIVAD8-EO). In accordance with the sensitivity of these viruses to neutralization, HIV-1NL4-3-infected cells were considerably more sensitive to ADCC, both in terms of the number of antibodies and magnitude of responses, than cells infected with HIV-1JR-FL or SHIVAD8-EO ADCC activity generally correlated with antibody binding to Env on the surfaces of virus-infected cells and with viral neutralization; however, neutralization was not always predictive of ADCC, as instances of ADCC in the absence of detectable neutralization, and vice versa, were observed. These results reveal incomplete overlap in the specificities of antibodies that mediate these antiviral activities and provide insights into the relationship between ADCC and neutralization important for the development of antibody-based vaccines and therapies for combating HIV-1 infection. IMPORTANCE This study provides fundamental insights into the relationship between antibody-dependent cell-mediated cytotoxicity (ADCC) and virus neutralization that may help to guide the development of antibody-based vaccines and immunotherapies for the prevention and treatment of HIV-1 infection.
Collapse
|
37
|
Potential To Streamline Heterologous DNA Prime and NYVAC/Protein Boost HIV Vaccine Regimens in Rhesus Macaques by Employing Improved Antigens. J Virol 2016; 90:4133-4149. [PMID: 26865719 DOI: 10.1128/jvi.03135-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/02/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In a follow-up to the modest efficacy observed in the RV144 trial, researchers in the HIV vaccine field seek to substantiate and extend the results by evaluating other poxvirus vectors and combinations with DNA and protein vaccines. Earlier clinical trials (EuroVacc trials 01 to 03) evaluated the immunogenicity of HIV-1 clade C GagPolNef and gp120 antigens delivered via the poxviral vector NYVAC. These showed that a vaccination regimen including DNA-C priming prior to a NYVAC-C boost considerably enhanced vaccine-elicited immune responses compared to those with NYVAC-C alone. Moreover, responses were improved by using three as opposed to two DNA-C primes. In the present study, we assessed in nonhuman primates whether such vaccination regimens can be streamlined further by using fewer and accelerated immunizations and employing a novel generation of improved DNA-C and NYVAC-C vaccine candidates designed for higher expression levels and more balanced immune responses. Three different DNA-C prime/NYVAC-C+ protein boost vaccination regimens were tested in rhesus macaques. All regimens elicited vigorous and well-balanced CD8(+)and CD4(+)T cell responses that were broad and polyfunctional. Very high IgG binding titers, substantial antibody-dependent cellular cytotoxicity (ADCC), and modest antibody-dependent cell-mediated virus inhibition (ADCVI), but very low neutralization activity, were measured after the final immunizations. Overall, immune responses elicited in all three groups were very similar and of greater magnitude, breadth, and quality than those of earlier EuroVacc vaccines. In conclusion, these findings indicate that vaccination schemes can be simplified by using improved antigens and regimens. This may offer a more practical and affordable means to elicit potentially protective immune responses upon vaccination, especially in resource-constrained settings. IMPORTANCE Within the EuroVacc clinical trials, we previously assessed the immunogenicity of HIV clade C antigens delivered in a DNA prime/NYVAC boost regimen. The trials showed that the DNA prime crucially improved the responses, and three DNA primes with a NYVAC boost appeared to be optimal. Nevertheless, T cell responses were primarily directed toward Env, and humoral responses were modest. The aim of this study was to assess improved antigens for the capacity to elicit more potent and balanced responses in rhesus macaques, even with various simpler immunization regimens. Our results showed that the novel antigens in fact elicited larger numbers of T cells with a polyfunctional profile and a good Env-GagPolNef balance, as well as high-titer and Fc-functional antibody responses. Finally, comparison of the different schedules indicates that a simpler regimen of only two DNA primes and one NYVAC boost in combination with protein may be very efficient, thus showing that the novel antigens allow for easier immunization protocols.
Collapse
|
38
|
Musich T, Robert-Guroff M. New developments in an old strategy: heterologous vector primes and envelope protein boosts in HIV vaccine design. Expert Rev Vaccines 2016; 15:1015-27. [PMID: 26910195 DOI: 10.1586/14760584.2016.1158108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prime/boost vaccination strategies for HIV/SIV vaccine development have been used since the early 1990s and have become an established method for eliciting cell and antibody mediated immunity. Here we focus on induction of protective antibodies, both broadly neutralizing and non-neutralizing, with the viral envelope being the key target antigen. Prime/boost approaches are complicated by the diversity of autologous and heterologous priming vectors, and by various forms of envelope booster immunogens, many still in development as structural studies aim to design stable constructs with exposure of critical epitopes for protective antibody elicitation. This review discusses individual vaccine components, reviews recent prime/boost strategies and their outcomes, and highlights complicating factors arising as greater knowledge concerning induction of adaptive, protective immunity is acquired.
Collapse
Affiliation(s)
- Thomas Musich
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| | - Marjorie Robert-Guroff
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
39
|
Chamcha V, Kannanganat S, Gangadhara S, Nabi R, Kozlowski PA, Montefiori DC, LaBranche CC, Wrammert J, Keele BF, Balachandran H, Sahu S, Lifton M, Santra S, Basu R, Moss B, Robinson HL, Amara RR. Strong, but Age-Dependent, Protection Elicited by a Deoxyribonucleic Acid/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine. Open Forum Infect Dis 2016; 3:ofw034. [PMID: 27006959 PMCID: PMC4800464 DOI: 10.1093/ofid/ofw034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/09/2016] [Indexed: 11/12/2022] Open
Abstract
Background. In this study, we analyzed the protective efficacy of a simian immunodeficiency virus (SIV) macaque 239 (SIVmac239) analogue of the clinically tested GOVX-B11 deoxyribonucleic acid (DNA)/modified vaccinia Ankara (MVA) human immunodeficiency virus vaccine. Methods. The tested vaccine used a DNA immunogen mutated to mimic the human vaccine and a regimen with DNA deliveries at weeks 0 and 8 and MVA deliveries at weeks 16 and 32. Twelve weekly rectal challenges with 0.3 animal infectious doses of SIV sootey mangabey E660 (SIVsmE660) were administered starting at 6 months after the last immunization. Results. Over the first 6 rectal exposures to SIVsmE660, <10-year-old tripartite motif-containing protein 5 (TRIM5)α-permissive rhesus macaques showed an 80% reduction in per-exposure risk of infection as opposed to a 46% reduction in animals over 10 years old; and, over the 12 challenges, they showed a 72% as opposed to a 10% reduction. Analyses of elicited immune responses suggested that higher antibody responses in the younger animals had played a role in protection. Conclusions. The simian analogue of the GOVX-B11 HIV provided strong protection against repeated rectal challenges in young adult macaques.
Collapse
Affiliation(s)
| | - Sunil Kannanganat
- Yerkes National Primate Research Center, Emory University , Atlanta, Georgia
| | - Sailaja Gangadhara
- Yerkes National Primate Research Center, Emory University , Atlanta, Georgia
| | - Rafiq Nabi
- Department of Microbiology , Immunology and Parasitology, Louisiana State University Health Sciences Center , New Orleans
| | - Pamela A Kozlowski
- Department of Microbiology , Immunology and Parasitology, Louisiana State University Health Sciences Center , New Orleans
| | | | | | - Jens Wrammert
- Department of Pediatrics , Emory University School of Medicine , Atlanta, Georgia
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc. , Frederick National Laboratory for Cancer Research , Maryland
| | | | - Sujata Sahu
- Harvard Medical School, Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Michelle Lifton
- Harvard Medical School, Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Sampa Santra
- Harvard Medical School, Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | | | - Bernard Moss
- Laboratory of Viral Diseases , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland
| | | | - Rama Rao Amara
- Yerkes National Primate Research Center, Emory University , Atlanta, Georgia
| |
Collapse
|
40
|
Oral Immunization with Recombinant Vaccinia Virus Prime and Intramuscular Protein Boost Provides Protection against Intrarectal Simian-Human Immunodeficiency Virus Challenge in Macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 23:204-12. [PMID: 26718849 DOI: 10.1128/cvi.00597-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) acquisition occurs predominantly through mucosal transmission. We hypothesized that greater mucosal immune responses and protective efficacy against mucosal HIV-1 infection may be achieved by prime-boost immunization at mucosal sites. We used a macaque model to determine the safety, immunogenicity, and protective efficacy of orally delivered, replication-competent but attenuated recombinant vaccinia viruses expressing full-length HIV-1 SF162 envelope (Env) or simian immunodeficiency virus (SIV) Gag-Pol proteins. We examined the dose and route that are suitable for oral immunization with recombinant vaccinia viruses. We showed that sublingual inoculation of two vaccinia virus-naive pigtailed macaques with 5 × 10(8) PFU of recombinant vaccinia viruses was safe. However, sublingual inoculation with a higher dose or tonsillar inoculation resulted in secondary oral lesions, indicating the need to optimize the dose and route for oral immunization with replication-competent vaccinia virus vectors. Oral priming alone elicited antibody responses to vaccinia virus and to the SF162 Env protein. Intramuscular immunization with the SF162 gp120 protein at either 20 or 21 weeks postpriming resulted in a significant boost in antibody responses in both systemic and mucosal compartments. Furthermore, we showed that immune responses induced by recombinant vaccinia virus priming and intramuscular protein boosting provided protection against intrarectal challenge with the simian-human immunodeficiency virus SHIV-SF162-P4.
Collapse
|
41
|
Joachim A, Nilsson C, Aboud S, Bakari M, Lyamuya EF, Robb ML, Marovich MA, Earl P, Moss B, Ochsenbauer C, Wahren B, Mhalu F, Sandström E, Biberfeld G, Ferrari G, Polonis VR. Potent functional antibody responses elicited by HIV-I DNA priming and boosting with heterologous HIV-1 recombinant MVA in healthy Tanzanian adults. PLoS One 2015; 10:e0118486. [PMID: 25874723 PMCID: PMC4396991 DOI: 10.1371/journal.pone.0118486] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 01/18/2015] [Indexed: 12/19/2022] Open
Abstract
Vaccine-induced HIV antibodies were evaluated in serum samples collected from healthy Tanzanian volunteers participating in a phase I/II placebo-controlled double blind trial using multi-clade, multigene HIV-DNA priming and recombinant modified vaccinia Ankara (HIV-MVA) virus boosting (HIVIS03). The HIV-DNA vaccine contained plasmids expressing HIV-1 gp160 subtypes A, B, C, Rev B, Gag A, B and RTmut B, and the recombinant HIV-MVA boost expressed CRF01_AE HIV-1 Env subtype E and Gag-Pol subtype A. While no neutralizing antibodies were detected using pseudoviruses in the TZM-bl cell assay, this prime-boost vaccination induced neutralizing antibodies in 83% of HIVIS03 vaccinees when a peripheral blood mononuclear cell (PBMC) assay using luciferase reporter-infectious molecular clones (LucR-IMC) was employed. The serum neutralizing activity was significantly (but not completely) reduced upon depletion of natural killer (NK) cells from PBMC (p=0.006), indicating a role for antibody-mediated Fcγ-receptor function. High levels of antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies against CRF01_AE and/or subtype B were subsequently demonstrated in 97% of the sera of vaccinees. The magnitude of ADCC-mediating antibodies against CM235 CRF01_AE IMC-infected cells correlated with neutralizing antibodies against CM235 in the IMC/PBMC assay. In conclusion, HIV-DNA priming, followed by two HIV-MVA boosts elicited potent ADCC responses in a high proportion of Tanzanian vaccinees. Our findings highlight the potential of HIV-DNA prime HIV-MVA boost vaccines for induction of functional antibody responses and suggest this vaccine regimen and ADCC studies as potentially important new avenues in HIV vaccine development.
Collapse
Affiliation(s)
- Agricola Joachim
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Charlotta Nilsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Said Aboud
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Muhammad Bakari
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Eligius F. Lyamuya
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Merlin L. Robb
- The Military HIV Research Program, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Mary A. Marovich
- The Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Patricia Earl
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bernard Moss
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fred Mhalu
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Eric Sandström
- Venhälsan, Karolinska Institutet at Södersjukhuset, Stockholm, Sweden
| | - Gunnel Biberfeld
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Victoria R. Polonis
- The Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| |
Collapse
|
42
|
Brown J, Excler JL, Kim JH. New prospects for a preventive HIV-1 vaccine. J Virus Erad 2015; 1:78-88. [PMID: 26523292 PMCID: PMC4625840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The immune correlates of risk analysis and recent non-human primate (NHP) challenge studies have generated hypotheses that suggest HIV-1 envelope may be essential and, perhaps, sufficient to induce protective antibody responses against HIV-1 acquisition at the mucosal entry. New prime-boost mosaic and conserved-sequence, together with replicating vector immunisation strategies aiming at inducing immune responses or greater breadth, as well as the development of immunogens inducing broadly neutralising antibodies and mucosal responses, should be actively pursued and tested in humans. Whether the immune correlates of risk identified in RV144 can be extended to other vaccines, other populations, or different modes and intensity of transmission, and against increasing HIV-1 genetic diversity, remains to be demonstrated. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key for answering the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
Affiliation(s)
| | - Jean-Louis Excler
- US Military HIV Research Program,
Bethesda,
MD,
USA,The Henry M Jackson Foundation for the Advancement of Military Medicine,
Bethesda,
MD,
USA,Corresponding author: Jean-Louis Excler,
US Military HIV Research Program,
6720-A Rockledge Drive, Suite 400Bethesda,
MD20817,
USA
| | - Jerome H Kim
- US Military HIV Research Program,
Walter Reed Army Institute of Research,
Silver Spring,
MD,
USA
| |
Collapse
|
43
|
Musich T, Demberg T, Morgan IL, Estes JD, Franchini G, Robert-Guroff M. Purification and functional characterization of mucosal IgA from vaccinated and SIV-infected rhesus macaques. Clin Immunol 2015; 158:127-39. [PMID: 25840105 DOI: 10.1016/j.clim.2015.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/04/2015] [Accepted: 03/24/2015] [Indexed: 12/30/2022]
Abstract
Vaccine-induced mucosal antibodies are often evaluated using small volumes of secretory fluids. However, fecal matter containing mucosal IgA is abundant. We purified fecal IgA from five SIV-vaccinated and five SIV-infected rhesus macaques by sequential affinity chromatography. The purified IgA was dimeric by native PAGE, contained secretory component, and was analogous to IgA in colostrum and vaginal fluid by western blot. IgA from one infected and four vaccinated animals neutralized H9-derived SIV(mac)251 with IC(50)s as low as 1 μg/mL. Purified IgAs inhibited transcytosis and exhibited phagocytic activity, the latter significantly correlated with SIV(mac)251 Env-specific IgA in the purified samples. Among different affinity resins, peptide M was optimal compared to jacalin, anti-monkey IgA and SSL7 for IgA purification, as confirmed using tandem peptide M/anti-monkey IgA columns. Fecal IgA provided material sufficient for several assays relevant to protective efficacy, and was shown to be multifunctional. Our approach is potentially applicable to human clinical studies.
Collapse
Affiliation(s)
| | | | | | - Jacob D Estes
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | |
Collapse
|
44
|
Mengistu M, Ray K, Lewis GK, DeVico AL. Antigenic properties of the human immunodeficiency virus envelope glycoprotein gp120 on virions bound to target cells. PLoS Pathog 2015; 11:e1004772. [PMID: 25807494 PMCID: PMC4373872 DOI: 10.1371/journal.ppat.1004772] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/02/2015] [Indexed: 12/17/2022] Open
Abstract
The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step. The elucidation of these epitope exposure patterns during viral entry will help clarify antibody-mediated inhibition of HIV-1 as it is measured in vitro and in vivo. A major strategy for blocking HIV-1 infection is to target antiviral antibodies or drugs to sites of vulnerability on the surface proteins of the virus. It is a relatively straightforward matter to explore these sites on the surfaces of free HIV-1 particles or on isolated viral envelope antigens. However, one difficulty presented by HIV-1 is that its surface proteins are flexible and change shape once the virus has attached to its host cell. To date, it has been difficult to predict how cell-bound HIV-1 exposes its sites of vulnerability. Yet the antiviral activities of certain antibodies indirectly suggest that there must be unique sites on cell-bound HIV-1 that are not found on free virus. Here, we use new techniques and tools to determine how HIV-1 exposes unique sites of vulnerability after attaching to host cells. We find that the virus exposes a remarkable array of these sites, including ones previously believed hidden. These exposure patterns explain the antiviral activities of various anti-HIV-1 antibodies and provide a new view of how HIV-1 might interact with the immune system. Our study also provides insights for how to target HIV-1 with antiviral antibodies, vaccines, or antiviral agents.
Collapse
Affiliation(s)
- Meron Mengistu
- The Institute of Human Virology of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (MM); (ALD)
| | - Krishanu Ray
- Center for Fluorescence Spectroscopy of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - George K. Lewis
- The Institute of Human Virology of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Anthony L. DeVico
- The Institute of Human Virology of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (MM); (ALD)
| |
Collapse
|
45
|
Asmal M, Luedemann C, Lavine CL, Mach LV, Balachandran H, Brinkley C, Denny TN, Lewis MG, Anderson H, Pal R, Sok D, Le K, Pauthner M, Hahn BH, Shaw GM, Seaman MS, Letvin NL, Burton DR, Sodroski JG, Haynes BF, Santra S. Infection of monkeys by simian-human immunodeficiency viruses with transmitted/founder clade C HIV-1 envelopes. Virology 2015; 475:37-45. [PMID: 25462344 PMCID: PMC4280322 DOI: 10.1016/j.virol.2014.10.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
Simian-human immunodeficiency viruses (SHIVs) that mirror natural transmitted/founder (T/F) viruses in man are needed for evaluation of HIV-1 vaccine candidates in nonhuman primates. Currently available SHIVs contain HIV-1 env genes from chronically-infected individuals and do not reflect the characteristics of biologically relevant HIV-1 strains that mediate human transmission. We chose to develop clade C SHIVs, as clade C is the major infecting subtype of HIV-1 in the world. We constructed 10 clade C SHIVs expressing Env proteins from T/F viruses. Three of these ten clade C SHIVs (SHIV KB9 C3, SHIV KB9 C4 and SHIV KB9 C5) replicated in naïve rhesus monkeys. These three SHIVs are mucosally transmissible and are neutralized by sCD4 and several HIV-1 broadly neutralizing antibodies. However, like natural T/F viruses, they exhibit low Env reactivity and a Tier 2 neutralization sensitivity. Of note, none of the clade C T/F SHIVs elicited detectable autologous neutralizing antibodies in the infected monkeys, even though antibodies that neutralized a heterologous Tier 1 HIV-1 were generated. Challenge with these three new clade C SHIVs will provide biologically relevant tests for vaccine protection in rhesus macaques.
Collapse
Affiliation(s)
- Mohammed Asmal
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Corinne Luedemann
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Linh V Mach
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Harikrishnan Balachandran
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christie Brinkley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | - Ranajit Pal
- Advanced BioScience Laboratories, Inc., Rockville, MD 20850, USA
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Khoa Le
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthias Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Beatrice H Hahn
- University of Pennsylvania, Department of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George M Shaw
- University of Pennsylvania, Department of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Norman L Letvin
- University of Pennsylvania, Department of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joseph G Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
46
|
The role of HIV-specific antibody-dependent cellular cytotoxicity in HIV prevention and the influence of the HIV-1 Vpu protein. AIDS 2015; 29:137-44. [PMID: 25396265 DOI: 10.1097/qad.0000000000000523] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is growing interest in the role of anti-HIV antibody-dependent cellular cytotoxicity (ADCC) antibodies in the prevention and control of HIV infection. Passive transfer studies in macaques support a role for the Fc region of antibodies in assisting in the prevention of simian-human immunodeficiency virus (SHIV) infection. The Thai RV144 HIV-1 vaccine trial induced anti-HIV ADCC antibodies that may have played a role in the partial protection observed. Several observational studies support a role for ADCC antibodies in slowing HIV disease progression. However, HIV evolves to escape ADCC antibodies and chronic HIV infections causes dysfunction of effector cells such as natural killer (NK) cells that mediate the ADCC functions. Further, four recent studies show that the HIV-1 Vpu protein, by promoting release of virions, reduces the capacity of ADCC antibodies to recognize HIV-infected cells. The review dissects some of the recent research on HIV-specific ADCC antibodies and discusses mechanisms to further harness ADCC antibodies in the prevention and control of HIV infection.
Collapse
|
47
|
Poles J, Alvarez Y, Hioe CE. Induction of intestinal immunity by mucosal vaccines as a means of controlling HIV infection. AIDS Res Hum Retroviruses 2014; 30:1027-40. [PMID: 25354023 DOI: 10.1089/aid.2014.0233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD4(+) T cells in the mucosa of the gastrointestinal (GI) tract are preferentially targeted and depleted by HIV. As such, the induction of an effective anti-HIV immune response in the mucosa of the GI tract-through vaccination-could protect this vulnerable population of cells. Mucosal vaccination provides a promising means of inducing robust humoral and cellular responses in the GI tract. Here we review data from the literature about the effectiveness of various mucosal vaccination routes--oral (intraintestinal/tonsilar/sublingual), intranasal, and intrarectal--with regard to the induction of immune responses mediated by cytotoxic T cells and antibodies in the GI mucosa, as well as protective efficacy in challenge models. We present data from the literature indicating that mucosal routes have the potential to effectively elicit GI mucosal immunity and protect against challenge. Given their capacity for the induction of anti-HIV immune responses in the GI mucosa, we propose that mucosal routes, including the nonconventional sublingual, tonsilar, and intrarectal routes, be considered for the delivery of the next generation HIV vaccines. However, further studies are necessary to determine the ideal vectors and vaccination regimens for these routes of immunization and to validate their efficacy in controlling HIV infection.
Collapse
Affiliation(s)
- Jordan Poles
- Department of Microbiology, New York University School of Medicine, New York, New York
| | - Yelina Alvarez
- VA New York Harbor Healthcare System–Manhattan Campus and Department of Pathology, New York University School of Medicine, New York, New York
| | - Catarina E. Hioe
- VA New York Harbor Healthcare System–Manhattan Campus and Department of Pathology, New York University School of Medicine, New York, New York
| |
Collapse
|
48
|
Structural definition of an antibody-dependent cellular cytotoxicity response implicated in reduced risk for HIV-1 infection. J Virol 2014; 88:12895-906. [PMID: 25165110 DOI: 10.1128/jvi.02194-14] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The RV144 vaccine trial implicated epitopes in the C1 region of gp120 (A32-like epitopes) as targets of potentially protective antibody-dependent cellular cytotoxicity (ADCC) responses. A32-like epitopes are highly immunogenic, as infected or vaccinated individuals frequently produce antibodies specific for these determinants. Antibody titers, as measured by enzyme-linked immunosorbent assay (ELISA) against these epitopes, however, do not consistently correlate with protection. Here, we report crystal structures of CD4-stabilized gp120 cores complexed with the Fab fragments of two nonneutralizing, A32-like monoclonal antibodies (MAbs), N5-i5 and 2.2c, that compete for antigen binding and have similar antigen-binding affinities yet exhibit a 75-fold difference in ADCC potency. We find that these MAbs recognize overlapping epitopes formed by mobile layers 1 and 2 of the gp120 inner domain, including the C1 and C2 regions, but bind gp120 at different angles via juxtaposed VH and VL contact surfaces. A comparison of structural and immunological data further showed that antibody orientation on bound antigen and the capacity to form multivalent antigen-antibody complexes on target cells were key determinants of ADCC potency, with the latter process having the greater impact. These studies provide atomic-level definition of A32-like epitopes implicated as targets of protective antibodies in RV144. Moreover, these studies establish that epitope structure and mode of antibody binding can dramatically affect the potency of Fc-mediated effector function against HIV-1. These results provide key insights for understanding, refining, and improving the outcome of HIV vaccine trials, in which relevant immune responses are facilitated by A32-like elicited responses. IMPORTANCE HIV-1 Env is a primary target for antibodies elicited during infection. Although a small number of infected individuals elicit broadly neutralizing antibodies, the bulk of the humoral response consists of antibodies that do not neutralize or do so with limited breadth but may effect protection through Fc receptor-dependent processes, such as antibody-dependent cellular cytotoxicity (ADCC). Understanding these nonneutralizing responses is an important aspect of elucidating the complete spectrum of immune response against HIV-1 infection. With this report, we provide the first atomic-level definition of nonneutralizing CD4-induced epitopes in the N-terminal region of the HIV-1 gp120 (A32-like epitopes). Further, our studies point to the dominant role of precise epitope targeting and mode of antibody attachment in ADCC responses even when largely overlapping epitopes are involved. Such information provides key insights into the mechanisms of Fc-mediated function of antibodies to HIV-1 and will help us understand the outcome of vaccine trials based on humoral immunity.
Collapse
|
49
|
Tuero I, Robert-Guroff M. Challenges in mucosal HIV vaccine development: lessons from non-human primate models. Viruses 2014; 6:3129-58. [PMID: 25196380 PMCID: PMC4147690 DOI: 10.3390/v6083129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/23/2022] Open
Abstract
An efficacious HIV vaccine is urgently needed to curb the AIDS pandemic. The modest protection elicited in the phase III clinical vaccine trial in Thailand provided hope that this goal might be achieved. However, new approaches are necessary for further advances. As HIV is transmitted primarily across mucosal surfaces, development of immunity at these sites is critical, but few clinical vaccine trials have targeted these sites or assessed vaccine-elicited mucosal immune responses. Pre-clinical studies in non-human primate models have facilitated progress in mucosal vaccine development by evaluating candidate vaccine approaches, developing methodologies for collecting and assessing mucosal samples, and providing clues to immune correlates of protective immunity for further investigation. In this review we have focused on non-human primate studies which have provided important information for future design of vaccine strategies, targeting of mucosal inductive sites, and assessment of mucosal immunity. Knowledge gained in these studies will inform mucosal vaccine design and evaluation in human clinical trials.
Collapse
Affiliation(s)
- Iskra Tuero
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Marjorie Robert-Guroff
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
50
|
IIIa deleted adenovirus as a single-cycle genome replicating vector. Virology 2014; 462-463:158-65. [PMID: 24996029 DOI: 10.1016/j.virol.2014.05.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 12/30/2022]
Abstract
Replication competent adenovirus (RC-Ad) vectors mediate robust transgene expression by virtue of amplifying transgenes by replication but also put patients at a risk of frank adenovirus infection. In contrast, E1-deleted replication defective Ad (RD-Ad) vectors are safer but produce substantially less transgene product. To generate a robust, but safer adenoviral vector, we created a "single cycle" adenovirus (SC-Ad) vector that replicates its genome and transgene, but that does not cause adenovirus infections by deleting the capsid cement protein IIIa in low seroprevalence adenovirus serotype 6. Ad6-ΔIIIa can be produced in IIIa-expressing cell lines. In normal cells, Ad6-ΔIIIa replicates its genome and transgene but fails to package its DNA or form mature virus. SC-Ad and RC-Ad expressed transgenes hundreds of times higher than RD-Ad in human and mouse cells in vitro and in vivo in mice. These data suggest that SC-Ads may be safer amplifying vectors for vaccine and therapeutic applications.
Collapse
|