1
|
Williams N, Silva F, Schmolke M. Harnessing host enhancers of SARS-CoV-2 entry as novel targets for antiviral therapy. Antiviral Res 2024; 228:105951. [PMID: 38945485 DOI: 10.1016/j.antiviral.2024.105951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The WHO declared the official end of the SARS-CoV-2 caused public health emergency on May 5th, 2023, after two years in which the virus infected approximately 750 Mio individuals causing estimated up to 7 Mio deaths. Likely, the virus will continue to evolve in the human population as a seasonal respiratory pathogen. To now prevent severe infection outcomes in vulnerable individuals, effective antivirals are urgently needed to complement the protection provided by vaccines. SARS-CoV-2 enters its host cell via ACE2 mediated membrane fusion, either at the plasma membrane, if the protease TMPRSS2 is present or via the endosome, in a cathepsin dependent fashion. A small number of positive regulators of viral uptake were described in the literature, which are potentially useful targets for host directed antiviral therapy or biomarkers indicating increased or diminished susceptibility to infection. We identified here by cell surface proximity ligation novel proteins, required for efficient virion uptake. Importantly, chemical inhibition of one of these factors, SLC3A2, resulted in robust reduction of viral replication, to that achieved with a TMPRSS2 inhibitor. Our screen identified new host dependency factors for SARS-CoV-2 entry, which could be targeted by novel antiviral therapies.
Collapse
Affiliation(s)
- Nathalia Williams
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Filo Silva
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Liu S, Großkopf AK, Yang X, Mannheim ME, Backovic M, Scribano S, Schlagowski S, Ensser A, Hahn AS. Kaposi's sarcoma-associated herpesvirus glycoprotein K8.1 is critical for infection in a cell-specific manner and functions at the attachment step on keratinocytes. J Virol 2023; 97:e0083223. [PMID: 37796128 PMCID: PMC10617506 DOI: 10.1128/jvi.00832-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several B cell malignancies and Kaposi's sarcoma. We analyzed the function of K8.1, the major antigenic component of the KSHV virion in the infection of different cells. To do this, we deleted K8.1 from the viral genome. It was found that K8.1 is critical for the infection of certain epithelial cells, e.g., a skin model cell line but not for infection of many other cells. K8.1 was found to mediate attachment of the virus to cells where it plays a role in infection. In contrast, we did not find K8.1 or a related protein from a closely related monkey virus to activate fusion of the viral and cellular membranes, at least not under the conditions tested. These findings suggest that K8.1 functions in a highly cell-specific manner during KSHV entry, playing a crucial role in the attachment of KSHV to, e.g., skin epithelial cells.
Collapse
Affiliation(s)
- Shanchuan Liu
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
| | - Anna K. Großkopf
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
| | - Xiaoliang Yang
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
| | - Maximilian E. Mannheim
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Marija Backovic
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Stefano Scribano
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sarah Schlagowski
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
| | - Armin Ensser
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander S. Hahn
- Junior Research Group Herpesviruses, Infection Biology Unit, German Primate Center – Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
3
|
Viruses Binding to Host Receptors Interacts with Autophagy. Int J Mol Sci 2023; 24:ijms24043423. [PMID: 36834833 PMCID: PMC9968160 DOI: 10.3390/ijms24043423] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Viruses must cross the plasma membrane to infect cells, making them eager to overcome this barrier in order to replicate in hosts. They bind to cell surface receptors as the first step of initiating entry. Viruses can use several surface molecules that allow them to evade defense mechanisms. Various mechanisms are stimulated to defend against viruses upon their entry into cells. Autophagy, one of the defense systems, degrades cellular components to maintain homeostasis. The presence of viruses in the cytosol regulates autophagy; however, the mechanisms by which viral binding to receptors regulates autophagy have not yet been fully established. This review discusses recent findings on autophagy induced by interactions between viruses and receptors. It provides novel perspectives on the mechanism of autophagy as regulated by viruses.
Collapse
|
4
|
Iacobucci I, Monaco V, Canè L, Bibbò F, Cioffi V, Cozzolino F, Guarino A, Zollo M, Monti M. Spike S1 domain interactome in non-pulmonary systems: A role beyond the receptor recognition. Front Mol Biosci 2022; 9:975570. [PMID: 36225252 PMCID: PMC9550266 DOI: 10.3389/fmolb.2022.975570] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which, since 2019 in China, has rapidly become a worldwide pandemic. The aggressiveness and global spread were enhanced by the many SARS-CoV-2 variants that have been isolated up to now. These mutations affect mostly the viral glycoprotein Spike (S), the capsid protein mainly involved in the early stages of viral entry processes, through the recognition of specific receptors on the host cell surface. In particular, the subunit S1 of the Spike glycoprotein contains the Receptor Binding Domain (RBD) and it is responsible for the interaction with the angiotensin-converting enzyme 2 (ACE2). Although ACE2 is the primary Spike host receptor currently studied, it has been demonstrated that SARS-CoV-2 is also able to infect cells expressing low levels of ACE2, indicating that the virus may have alternative receptors on the host cells. The identification of the alternative receptors can better elucidate the pathogenicity and the tropism of SARS-CoV-2. Therefore, we investigated the Spike S1 interactomes, starting from host membrane proteins of non-pulmonary cell lines, such as human kidney (HK-2), normal colon (NCM460D), and colorectal adenocarcinoma (Caco-2). We employed an affinity purification-mass spectrometry (AP-MS) to pull down, from the membrane protein extracts of all cell lines, the protein partners of the recombinant form of the Spike S1 domain. The purified interactors were identified by a shotgun proteomics approach. The lists of S1 potential interacting proteins were then clusterized according to cellular localization, biological processes, and pathways, highlighting new possible S1 intracellular functions, crucial not only for the entrance mechanisms but also for viral replication and propagation processes.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Luisa Canè
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Francesca Bibbò
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies (DMMBM), University of Naples “Federico II”, Naples, Italy
| | - Valentina Cioffi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Massimo Zollo
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies (DMMBM), University of Naples “Federico II”, Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| |
Collapse
|
5
|
Casper C, Corey L, Cohen JI, Damania B, Gershon AA, Kaslow DC, Krug LT, Martin J, Mbulaiteye SM, Mocarski ES, Moore PS, Ogembo JG, Phipps W, Whitby D, Wood C. KSHV (HHV8) vaccine: promises and potential pitfalls for a new anti-cancer vaccine. NPJ Vaccines 2022; 7:108. [PMID: 36127367 PMCID: PMC9488886 DOI: 10.1038/s41541-022-00535-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023] Open
Abstract
Seven viruses cause at least 15% of the total cancer burden. Viral cancers have been described as the "low-hanging fruit" that can be potentially prevented or treated by new vaccines that would alter the course of global human cancer. Kaposi sarcoma herpesvirus (KSHV or HHV8) is the sole cause of Kaposi sarcoma, which primarily afflicts resource-poor and socially marginalized populations. This review summarizes a recent NIH-sponsored workshop's findings on the epidemiology and biology of KSHV as an overlooked but potentially vaccine-preventable infection. The unique epidemiology of this virus provides opportunities to prevent its cancers if an effective, inexpensive, and well-tolerated vaccine can be developed and delivered.
Collapse
Affiliation(s)
- Corey Casper
- Infectious Disease Research Institute, 1616 Eastlake Ave. East, Suite 400, Seattle, WA, 98102, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institutes of Health, Bldg. 50, Room 6134, 50 South Drive, MSC8007, Bethesda, MD, 20892-8007, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center & Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, US
| | - Anne A Gershon
- Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY10032, US
| | - David C Kaslow
- PATH Essential Medicines, PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, HHS, 9609 Medical Center Dr, Rm. 6E118 MSC 3330, Bethesda, MD, 20892, USA
| | | | - Patrick S Moore
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Javier Gordon Ogembo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Warren Phipps
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center; Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Denise Whitby
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Charles Wood
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
6
|
Alle M, Sharma G, Lee SH, Kim JC. Next-generation engineered nanogold for multimodal cancer therapy and imaging: a clinical perspectives. J Nanobiotechnology 2022; 20:222. [PMID: 35778747 PMCID: PMC9250257 DOI: 10.1186/s12951-022-01402-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the significant threats to human life. Although various latest technologies are currently available to treat cancer, it still accounts for millions of death each year worldwide. Thus, creating a need for more developed and novel technologies to combat this deadly condition. Nanoparticles-based cancer therapeutics have offered a promising approach to treat cancer effectively while minimizing adverse events. Among various nanoparticles, nanogold (AuNPs) are biocompatible and have proved their efficiency in treating cancer because they can reach tumors via enhanced permeability and retention effect. The size and shape of the AuNPs are responsible for their diverse therapeutic behavior. Thus, to modulate their therapeutic values, the AuNPs can be synthesized in various shapes, such as spheres, cages, flowers, shells, prisms, rods, clusters, etc. Also, attaching AuNPs with single or multiple targeting agents can facilitate the active targeting of AuNPs to the tumor tissue. The AuNPs have been much explored for photothermal therapy (PTT) to treat cancer. In addition to PTT, AuNPs-based nanoplatforms have been investigated for combinational multimodal therapies in the last few years, including photodynamic therapy, chemotherapy, radiotherapy, immunotherapy, etc., to ablate cancer cells. Thus, the present review focuses on the recent advancements in the functionalization of AuNPs-based nanoconstructs for cancer imaging and therapy using combinatorial multimodal approaches to treat various cancers.
Collapse
Affiliation(s)
- Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
7
|
Amrollahi-Nia R, Akbari V, Shafiee F. DFF40-iRGD, a novel chimeric protein with efficient cytotoxic and apoptotic effects against triple-negative breast cancer cells. Biotechnol Lett 2021; 43:1967-1976. [PMID: 34482510 DOI: 10.1007/s10529-021-03178-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE DNA fragmenting factor (DFF40), an endonuclease inducing irreversible apoptosis protein, is down-regulated in many types of tumor cells. iRGD is a tumor-penetrating peptide with high affinity to cancer cells overexpressing αVβ3 receptor. The aim of this study was to produce the recombinant DFF40-iRGD protein as a new molecule to selectively induce cytotoxicity in cancer cells and evaluate its biological effects. METHODS The three-dimensional structure of DFF40-iRGD was predicted using Modeller software and its interaction with αVβ3 receptor was evaluated by HADDOCK web-server. Recombinant DFF40 and DFF40-iRGD proteins were produced using intein fusion system in Escherichia coli BL21 (DE3). To improve the soluble expression, the inducer concentration, temperature and incubation time were optimized. After purification of DFF40 and DFF40-iRGD using chitin column, the cytotoxic and apoptotic effects of the proteins against MDA-MB-231 (αVβ3 positive) and MCF-7 (αVβ3 negative) cell lines were evaluated using cell viability assay and flow cytometric analysis. RESULTS The results of molecular docking indicated the proper interaction of DFF40-iRGD with the integrin receptor comparable to iRGD. The optimum conditions of soluble expression of proteins were the induction by 0.5 mM and 0.1 mM of IPTG for DFF40 and DFF40-iRGD, respectively, at 7 °C for 24 h. After 48 h of incubation, DFF40-iRGD exhibited significantly higher cytotoxic effect against MDA-MB-231 cells than MCF-7 cells as IC50 values of 19.25 and 41 nM were found for MDA-MB-231 and MCF-7 cells, respectively. However, DFF40 cytotoxicity was not significantly different in two cell lines. Furthermore, Flow cytometry results showed that the fusion protein can induce remarkably apoptotic cell death in cancer cells. CONCLUSION In this study, DFF40-iRGD protein was produced in soluble form and its inhibitory effects on cancer cell survival and induction of apoptosis were established; therefore, it has the potential to be used as a drug candidate for targeted treatment of breast cancer, especially Triple Negative Breast Cancer Cells.
Collapse
Affiliation(s)
- Raheleh Amrollahi-Nia
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave, Isfahan, Iran
| | - Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave, Isfahan, Iran.
| |
Collapse
|
8
|
Graceffa V. Physical and mechanical cues affecting biomaterial-mediated plasmid DNA delivery: insights into non-viral delivery systems. J Genet Eng Biotechnol 2021; 19:90. [PMID: 34142237 PMCID: PMC8211807 DOI: 10.1186/s43141-021-00194-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Whilst traditional strategies to increase transfection efficiency of non-viral systems aimed at modifying the vector or the polyplexes/lipoplexes, biomaterial-mediated gene delivery has recently sparked increased interest. This review aims at discussing biomaterial properties and unravelling underlying mechanisms of action, for biomaterial-mediated gene delivery. DNA internalisation and cytoplasmic transport are initially discussed. DNA immobilisation, encapsulation and surface-mediated gene delivery (SMD), the role of extracellular matrix (ECM) and topographical cues, biomaterial stiffness and mechanical stimulation are finally outlined. MAIN TEXT Endocytic pathways and mechanisms to escape the lysosomal network are highly variable. They depend on cell and DNA complex types but can be diverted using appropriate biomaterials. 3D scaffolds are generally fabricated via DNA immobilisation or encapsulation. Degradation rate and interaction with the vector affect temporal patterns of DNA release and transgene expression. In SMD, DNA is instead coated on 2D surfaces. SMD allows the incorporation of topographical cues, which, by inducing cytoskeletal re-arrangements, modulate DNA endocytosis. Incorporation of ECM mimetics allows cell type-specific transfection, whereas in spite of discordances in terms of optimal loading regimens, it is recognised that mechanical loading facilitates gene transfection. Finally, stiffer 2D substrates enhance DNA internalisation, whereas in 3D scaffolds, the role of stiffness is still dubious. CONCLUSION Although it is recognised that biomaterials allow the creation of tailored non-viral gene delivery systems, there still are many outstanding questions. A better characterisation of endocytic pathways would allow the diversion of cell adhesion processes and cytoskeletal dynamics, in order to increase cellular transfection. Further research on optimal biomaterial mechanical properties, cell ligand density and loading regimens is limited by the fact that such parameters influence a plethora of other different processes (e.g. cellular adhesion, spreading, migration, infiltration, and proliferation, DNA diffusion and release) which may in turn modulate gene delivery. Only a better understanding of these processes may allow the creation of novel robust engineered systems, potentially opening up a whole new area of biomaterial-guided gene delivery for non-viral systems.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland.
- Department of Life Sciences, Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland.
| |
Collapse
|
9
|
Lo WL, Lo SW, Chen SJ, Chen MW, Huang YR, Chen LC, Chang CH, Li MH. Molecular Imaging and Preclinical Studies of Radiolabeled Long-Term RGD Peptides in U-87 MG Tumor-Bearing Mice. Int J Mol Sci 2021; 22:ijms22115459. [PMID: 34064291 PMCID: PMC8196871 DOI: 10.3390/ijms22115459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 11/18/2022] Open
Abstract
The Arg–Gly–Asp (RGD) peptide shows a high affinity for αvβ3 integrin, which is overexpressed in new tumor blood vessels and many types of tumor cells. The radiolabeled RGD peptide has been studied for cancer imaging and radionuclide therapy. We have developed a long-term tumor-targeting peptide DOTA-EB-cRGDfK, which combines a DOTA chelator, a truncated Evans blue dye (EB), a modified linker, and cRGDfK peptide. The aim of this study was to evaluate the potential of indium-111(111In) radiolabeled DOTA-EB-cRGDfK in αvβ3 integrin-expressing tumors. The human glioblastoma cell line U-87 MG was used to determine the in vitro binding affinity of the radiolabeled peptide. The in vivo distribution of radiolabeled peptides in U-87 MG xenografts was investigated by biodistribution, nanoSPECT/CT, pharmacokinetic and excretion studies. The in vitro competition assay showed that 111In-DOTA-EB-cRGDfK had a significant binding affinity to U-87 MG cancer cells (IC50 = 71.7 nM). NanoSPECT/CT imaging showed 111In-DOTA-EB-cRGDfK has higher tumor uptake than control peptides (111In-DOTA-cRGDfK and 111In-DOTA-EB), and there is still a clear signal until 72 h after injection. The biodistribution results showed significant tumor accumulation (27.1 ± 2.7% ID/g) and the tumor to non-tumor ratio was 22.85 at 24 h after injection. In addition, the pharmacokinetics results indicated that the 111In-DOTA-EB-cRGDfK peptide has a long-term half-life (T1/2λz = 77.3 h) and that the calculated absorbed dose was safe for humans. We demonstrated that radiolabeled DOTA-EB-cRGDfK may be a promising agent for glioblastoma tumor imaging and has the potential as a theranostic radiopharmaceutical.
Collapse
Affiliation(s)
- Wei-Lin Lo
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan; (W.-L.L.); (S.-W.L.); (S.-J.C.); (M.-W.C.); (Y.-R.H.); (L.-C.C.)
| | - Shih-Wei Lo
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan; (W.-L.L.); (S.-W.L.); (S.-J.C.); (M.-W.C.); (Y.-R.H.); (L.-C.C.)
| | - Su-Jung Chen
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan; (W.-L.L.); (S.-W.L.); (S.-J.C.); (M.-W.C.); (Y.-R.H.); (L.-C.C.)
| | - Ming-Wei Chen
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan; (W.-L.L.); (S.-W.L.); (S.-J.C.); (M.-W.C.); (Y.-R.H.); (L.-C.C.)
| | - Yuan-Ruei Huang
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan; (W.-L.L.); (S.-W.L.); (S.-J.C.); (M.-W.C.); (Y.-R.H.); (L.-C.C.)
| | - Liang-Cheng Chen
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan; (W.-L.L.); (S.-W.L.); (S.-J.C.); (M.-W.C.); (Y.-R.H.); (L.-C.C.)
| | - Chih-Hsien Chang
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan; (W.-L.L.); (S.-W.L.); (S.-J.C.); (M.-W.C.); (Y.-R.H.); (L.-C.C.)
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: (C.-H.C.); (M.-H.L.)
| | - Ming-Hsin Li
- Division of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan; (W.-L.L.); (S.-W.L.); (S.-J.C.); (M.-W.C.); (Y.-R.H.); (L.-C.C.)
- Correspondence: (C.-H.C.); (M.-H.L.)
| |
Collapse
|
10
|
An Update of the Virion Proteome of Kaposi Sarcoma-Associated Herpesvirus. Viruses 2020; 12:v12121382. [PMID: 33276600 PMCID: PMC7761624 DOI: 10.3390/v12121382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
The virion proteins of Kaposi sarcoma-associated herpesvirus (KSHV) were initially characterized in 2005 in two separate studies that combined the detection of 24 viral proteins and a few cellular components via LC-MS/MS or MALDI-TOF. Despite considerable advances in the sensitivity and specificity of mass spectrometry instrumentation in recent years, leading to significantly higher yields in detections, the KSHV virion proteome has not been revisited. In this study, we have re-examined the protein composition of purified KSHV virions via ultra-high resolution Qq time-of-flight mass spectrometry (UHR-QqTOF). Our results confirm the detection of all previously reported virion proteins, in addition to 17 other viral proteins, some of which have been characterized as virion-associated using other methods, and 10 novel proteins identified as virion-associated for the first time in this study. These results add KSHV ORF9, ORF23, ORF35, ORF48, ORF58, ORF72/vCyclin, K3, K9/vIRF1, K10/vIRF4, and K10.5/vIRF3 to the list of KSHV proteins that can be incorporated into virions. The addition of these proteins to the KSHV virion proteome provides novel and important insight into early events in KSHV infection mediated by virion-associated proteins. Data are available via ProteomeXchange with identifier PXD022626.
Collapse
|
11
|
Zhang W, Teske N, Samadi M, Sarem M, Shastri VP. Unraveling the role of β1 integrin isoforms in cRGD-mediated uptake of nanoparticles bearing hydrophilized alkyne moieties in epithelial and endothelial cells. Acta Biomater 2020; 116:344-355. [PMID: 32871280 DOI: 10.1016/j.actbio.2020.08.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
The uptake and trafficking of NPs is impacted by several attributes such as size, shape, surface charge and importantly by surface ligands that can interact with the cell plasma membrane. We envision that NPs which can be readily modified in aqueous environments will be key to engineering patient-specific nanotherapeutics. Towards such systems that can be functionalized "on demand" in aqueous environments, an α-ω epoxy ester monomer that bears an alkyne group at the end of an oligoethylene glycol moiety was designed and synthesized. Copolymerization of this monomer with ε-caprolactone yielded polymers that present hydrophilized alkyne groups along the backbone. This enabled the direct modification of the surface of NPs, as suspensions in aqueous phase, with cell interaction peptides such cyclic-arginine-glycine-aspartic acid (cRGD) using the "click reaction". Uptake of cRGD modified NPs (cRGD-NPs) in human endothelial and tumor epithelial cells revealed that cRGD surprisingly diminished uptake in both tumor epithelial and microvascular endothelial cells by 40-50 percent in comparison to unmodified particles. Probing the mechanism of uptake revealed that the expression pattern of two isoforms of β1 integrin impacted the uptake of cRGD-NPs differently. While the expression of high molecular weight 140 kDa form of the β1 integrin enhanced NP uptake, the expression of low molecular 120 kDa form had an inhibitory effect. Furthermore, although, the expression of β3 integrin was enhanced in endothelial cells and breast cancer epithelial cells, no correlation between β3 integrin and NP uptake was observed. Additionally, in presence of clathrin and caveolae pathway inhibitors the uptake of cRGD-NPS was in general diminished with a 25-75% decrease in presence of Filipin, a caveolae inhibitor; suggesting a role for lipid rafts in the β1 integrin-mediated uptake of cRGD-NP NPs. In sum, the polymer system described can be readily adapted to engineer other targeting peptide-based nanotherapeutics, especially for the delivery across difficult penetrate biological barriers such as the blood brain barrier. The main findings of this study have significant implication for the development of integrin targeted nanotherapeutics for anti-tumor therapy.
Collapse
Affiliation(s)
- Weihai Zhang
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Nele Teske
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Mariam Samadi
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Melika Sarem
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
12
|
Ebenhan T, Kleynhans J, Zeevaart JR, Jeong JM, Sathekge M. Non-oncological applications of RGD-based single-photon emission tomography and positron emission tomography agents. Eur J Nucl Med Mol Imaging 2020; 48:1414-1433. [PMID: 32918574 DOI: 10.1007/s00259-020-04975-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Non-invasive imaging techniques (especially single-photon emission tomography and positron emission tomography) apply several RGD-based imaging ligands developed during a vast number of preclinical and clinical investigations. The RGD (Arg-Gly-Asp) sequence is a binding moiety for a large selection of adhesive extracellular matrix and cell surface proteins. Since the first identification of this sequence as the shortest sequence required for recognition in fibronectin during the 1980s, fundamental research regarding the molecular mechanisms of integrin action have paved the way for development of several pharmaceuticals and radiopharmaceuticals with clinical applications. Ligands recognizing RGD may be developed for use in the monitoring of these interactions (benign or pathological). Although RGD-based molecular imaging has been actively investigated for oncological purposes, their utilization towards non-oncology applications remains relatively under-exploited. METHODS AND SCOPE This review highlights the new non-oncologic applications of RGD-based tracers (with the focus on single-photon emission tomography and positron emission tomography). The focus is on the last 10 years of scientific literature (2009-2020). It is proposed that these imaging agents will be used for off-label indications that may provide options for disease monitoring where there are no approved tracers available, for instance Crohn's disease or osteoporosis. Fundamental science investigations have made progress in elucidating the involvement of integrin in various diseases not pertaining to oncology. Furthermore, RGD-based radiopharmaceuticals have been evaluated extensively for safety during clinical evaluations of various natures. CONCLUSION Clinical translation of non-oncological applications for RGD-based radiopharmaceuticals and other imaging tracers without going through time-consuming extensive development is therefore highly plausible. Graphical abstract.
Collapse
Affiliation(s)
- Thomas Ebenhan
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa. .,Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa.
| | - Janke Kleynhans
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa.,Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa.,DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520, South Africa
| | - Jae Min Jeong
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehangno Jongno-gu, Seoul, 110-744, South Korea
| | - Mike Sathekge
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
| |
Collapse
|
13
|
Chen J, Longnecker R. Epithelial cell infection by Epstein-Barr virus. FEMS Microbiol Rev 2020; 43:674-683. [PMID: 31584659 DOI: 10.1093/femsre/fuz023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr Virus (EBV) is etiologically associated with multiple human malignancies including Burkitt lymphoma and Hodgkin disease as well as nasopharyngeal and gastric carcinoma. Entry of EBV into target cells is essential for virus to cause disease and is mediated by multiple viral envelope glycoproteins and cell surface associated receptors. The target cells of EBV include B cells and epithelial cells. The nature and mechanism of EBV entry into these cell types are different, requiring different glycoprotein complexes to bind to specific receptors on the target cells. Compared to the B cell entry mechanism, the overall mechanism of EBV entry into epithelial cells is less well known. Numerous receptors have been implicated in this process and may also be involved in additional processes of EBV entry, transport, and replication. This review summarizes EBV glycoproteins, host receptors, signal molecules and transport machinery that are being used in the epithelial cell entry process and also provides a broad view for related herpesvirus entry mechanisms.
Collapse
Affiliation(s)
- Jia Chen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
14
|
The Kaposi's Sarcoma-Associated Herpesvirus (KSHV) gH/gL Complex Is the Predominant Neutralizing Antigenic Determinant in KSHV-Infected Individuals. Viruses 2020; 12:v12030256. [PMID: 32111001 PMCID: PMC7150787 DOI: 10.3390/v12030256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/14/2020] [Accepted: 02/23/2020] [Indexed: 12/24/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi’s sarcoma (KS), one of the most prevalent cancers of people living with HIV/AIDS in sub-Saharan Africa. The seroprevalence for KSHV is high in the region, and no prophylactic vaccine against the virus is available. In this study, we characterized the antigenic targets of KSHV-specific neutralizing antibodies (nAbs) in asymptomatic KSHV-infected individuals and KS patients with high nAbs titers. We quantified the extent to which various KSHV envelope glycoproteins (gB, ORF28, ORF68, gH, gL, gM, gN and gpK8.1) adsorbed/removed KSHV-specific nAbs from the plasma of infected individuals. Our study revealed that plasma from a majority of KSHV neutralizers recognizes multiple viral glycoproteins. Moreover, the breadth of nAbs responses against these viral glycoproteins varies among endemic KS, epidemic KS and asymptomatic KSHV-infected individuals. Importantly, among the KSHV glycoproteins, the gH/gL complex, but neither gH nor gL alone, showed the highest adsorption of KSHV-specific nAbs. This activity was detected in 80% of the KSHV-infected individuals regardless of their KS status. The findings suggest that the gH/gL complex is the predominant antigenic determinant of KSHV-specific nAbs. Therefore, gH/gL is a potential target for development of KSHV prophylactic vaccines.
Collapse
|
15
|
Kaposi's Sarcoma-Associated Herpesvirus Viral Interleukin-6 Signaling Upregulates Integrin β3 Levels and Is Dependent on STAT3. J Virol 2020; 94:JVI.01384-19. [PMID: 31801855 DOI: 10.1128/jvi.01384-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of two B-cell lymphoproliferative diseases and Kaposi's sarcoma, an endothelial-cell-driven cancer. KSHV viral interleukin-6 (vIL-6) is a viral homolog of human IL-6 (hIL-6) that is expressed in KSHV-associated malignancies. Previous studies have shown that the expression of the integrin β3 (ITGB3) subunit is induced upon KSHV infection. Here we report that KSHV vIL-6 is able to induce the expression of ITGB3 and increase surface expression of the αVβ3 integrin heterodimer. We demonstrated using small interfering RNA (siRNA) depletion and inhibitor studies that KSHV vIL-6 can increase ITGB3 by inducing STAT3 signaling. Furthermore, we found that secreted vIL-6 is capable of inducing ITGB3 in endothelial cells in a paracrine manner. Importantly, the ability to induce ITGB3 in endothelial cells seems to be specific to vIL-6, as overexpression of hIL-6 alone did not affect levels of this integrin. Our lab and others have previously shown that vIL-6 can induce angiogenesis, and we investigated whether ITGB3 was involved in this process. We found that siRNA depletion of ITGB3 in vIL-6-expressing endothelial cells resulted in a decrease in adhesion to extracellular matrix proteins. Moreover, depletion of ITGB3 hindered the ability of vIL-6 to promote angiogenesis. In conclusion, we found that vIL-6 can singularly induce ITGB3 and that this induction is dependent on vIL-6 activation of the STAT3 signaling pathway.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of three human malignancies: multicentric Castleman's disease, primary effusion lymphoma, and Kaposi's sarcoma. Kaposi's sarcoma is a highly angiogenic tumor that arises from endothelial cells. It has been previously reported that KSHV infection of endothelial cells leads to an increase of integrin αVβ3, a molecule observed to be involved in the angiogenic process of several malignancies. Our data demonstrate that the KSHV protein viral interleukin-6 (vIL-6) can induce integrin β3 in an intracellular and paracrine manner. Furthermore, we showed that this induction is necessary for vIL-6-mediated cell adhesion and angiogenesis, suggesting a potential role of integrin β3 in KSHV pathogenesis and development of Kaposi's sarcoma.
Collapse
|
16
|
Tripodi AAP, Ranđelović I, Biri-Kovács B, Szeder B, Mező G, Tóvári J. In Vivo Tumor Growth Inhibition and Antiangiogenic Effect of Cyclic NGR Peptide-Daunorubicin Conjugates Developed for Targeted Drug Delivery. Pathol Oncol Res 2019; 26:1879-1892. [PMID: 31820302 PMCID: PMC7297862 DOI: 10.1007/s12253-019-00773-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023]
Abstract
Among various homing devices, peptides containing the NGR tripeptide sequence represent a promising approach to selectively recognize CD13 receptor isoforms on the surface of tumor cells. They have been successfully used for the delivery of various chemotherapeutic drugs to tumor vessels. Here, we report on the murine plasma stability, in vitro and in vivo antitumor activity of our recently described bioconjugates containing daunorubicin as payload. Furthermore, CD13 expression of KS Kaposi’s Sarcoma cell line and HT-29 human colon carcinoma cell line was investigated. Flow cytometry studies confirm the fast cellular uptake resulting in the rapid delivery of the active metabolite Dau = Aoa-Gly-OH to tumor cells. The increased in vitro antitumor effect might be explained by the faster rearrangement from NGR to isoDGR in case of conjugate 2 (Dau = Aoa-GFLGK(c[NleNGRE]-GG)-NH2) in comparison with conjugate 1 (Dau = Aoa-GFLGK(c[KNGRE]-GG)-NH2). Nevertheless, results indicated that both conjugates showed significant effect on inhibition of proliferation in the primary tumor and also on blood vessel formation making them a potential candidate for targeting angiogenesis processes in tumors where CD13 and integrins are involved.
Collapse
Affiliation(s)
- Andrea Angelo Pierluigi Tripodi
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, Hungary.,Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Beáta Biri-Kovács
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, Hungary.,Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Bálint Szeder
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, Hungary.,Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
17
|
Zhang L, Shan X, Meng X, Gu T, Lu Q, Zhang J, Chen J, Jiang Q, Ning X. The first integrins β3-mediated cellular and nuclear targeting therapeutics for prostate cancer. Biomaterials 2019; 223:119471. [DOI: 10.1016/j.biomaterials.2019.119471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/25/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022]
|
18
|
Dollery SJ. Towards Understanding KSHV Fusion and Entry. Viruses 2019; 11:E1073. [PMID: 31752107 PMCID: PMC6893419 DOI: 10.3390/v11111073] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
How viruses enter cells is of critical importance to pathogenesis in the host and for treatment strategies. Over the last several years, the herpesvirus field has made numerous and thoroughly fascinating discoveries about the entry of alpha-, beta-, and gamma-herpesviruses, giving rise to knowledge of entry at the amino acid level and the realization that, in some cases, researchers had overlooked whole sets of molecules essential for entry into critical cell types. Herpesviruses come equipped with multiple envelope glycoproteins which have several roles in many aspects of infection. For herpesvirus entry, it is usual that a collective of glycoproteins is involved in attachment to the cell surface, specific interactions then take place between viral glycoproteins and host cell receptors, and then molecular interactions and triggers occur, ultimately leading to viral envelope fusion with the host cell membrane. The fact that there are multiple cell and virus molecules involved with the build-up to fusion enhances the diversity and specificity of target cell types, the cellular entry pathways the virus commandeers, and the final triggers of fusion. This review will examine discoveries relating to how Kaposi's sarcoma-associated herpesvirus (KSHV) encounters and binds to critical cell types, how cells internalize the virus, and how the fusion may occur between the viral membrane and the host cell membrane. Particular focus is given to viral glycoproteins and what is known about their mechanisms of action.
Collapse
|
19
|
Abstract
Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular matrix, these receptors have critical functions in intracellular signaling, but are also taking center stage in many physiological and pathological conditions. In this review, we provide some historical, structural, and physiological notes so that the diverse functions of these receptors can be appreciated and put into the context of the emerging field of mechanobiology. We propose that the exciting journey of the exploration of these receptors will continue for at least another new generation of researchers.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Sampo Kukkurainen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Vesa P Hytönen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| |
Collapse
|
20
|
Integrin αvβ3-Specific Hydrocyanine for Cooperative Targeting of Glioblastoma with High Sensitivity and Specificity. Anal Chem 2019; 91:12587-12595. [PMID: 31496223 DOI: 10.1021/acs.analchem.9b03725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glioblastoma is a highly malignant brain tumor with poor prognosis and survival rate because of a lack of effective diagnostic methods. Hydrocyanines are a type of reactive oxygen species (ROS)-responsive fluorescent probes, allowing for distinguishing tumor cells from normal cells based on their different intracellular levels of ROS. However, their diagnostic applications for glioblastoma have been limited because of the inability to discriminate between tumor cells and other tissues with high ROS production, leading to high false-positive diagnosis. Therefore, tumor-responsive and -specific hydrocyanines with cooperative targeting ability have great potential for improving the diagnosis and treatment of glioblastoma. Integrin αvβ3 plays a critical role in the progression and angiogenesis of glioblastoma and has become a promising target for diagnosing glioblastoma. Herein, we identify a specific peptide ligand for integrin αvβ3, Arg-Trp-(d-Arg)-Asn-Arg (RWrNR), which shows high binding affinity to human glioblastoma U87MG cells. Importantly, hydro-Cy5-RWrNR conjugation allowed for distinguishing U87MG cells from normal cells in response to intracellular ROS. Particularly, hydro-Cy5-RWrNR could not only selectively accumulate in orthotopic U87MG tumor with minimal background fluorescence but also effectively discriminate between glioblastoma and inflammatory tissues for the first time, leading to detection of glioblastoma in vivo with high target-to-background ratios and minimal background fluorescence. Therefore, hydro-Cy5-RWrNR is the first integrin αvβ3-specific hydrocyanine probe and has great potential in precise tumor diagnosis because of its cooperative targeting of integrin αvβ3 and ROS.
Collapse
|
21
|
Janani G, Kumar S, Mandal BB. Fiber-Reinforced Silk Composite for Enhanced Urokinase Production Using High-Density Perfusion Culture and Bioactive Molecule Supplementation. ACS Biomater Sci Eng 2019; 5:6137-6151. [DOI: 10.1021/acsbiomaterials.9b01162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- G. Janani
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Shivanshi Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Biman B. Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
22
|
Zhang L, Shan X, Meng X, Gu T, Guo L, An X, Jiang Q, Ge H, Ning X. Novel Integrin αvβ3-Specific Ligand for the Sensitive Diagnosis of Glioblastoma. Mol Pharm 2019; 16:3977-3984. [DOI: 10.1021/acs.molpharmaceut.9b00602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lei Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xue Shan
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
| | - Xia Meng
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
| | - Tingting Gu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
| | - Leilei Guo
- Center of Advanced Pharmaceuticals and Biomaterials, Collaborative Innovation Center of China Pharmaceutical University and National Center for Nanoscience and Technology, China Pharmaceutical University, 210093 Nanjing, China
| | - Xueying An
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Qing Jiang
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Haixiong Ge
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 Nanjing, China
| |
Collapse
|
23
|
Damania B, Münz C. Immunodeficiencies that predispose to pathologies by human oncogenic γ-herpesviruses. FEMS Microbiol Rev 2019; 43:181-192. [PMID: 30649299 PMCID: PMC6435449 DOI: 10.1093/femsre/fuy044] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022] Open
Abstract
Human γ-herpesviruses include the closely related tumor viruses Epstein Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV). EBV is the most growth-transforming pathogen known and is linked to at least seven human malignancies. KSHV is also associated with three human cancers. Most EBV- and KSHV-infected individuals fortunately remain disease-free despite persistent infection and this is likely due to the robustness of the immune control that they mount against these tumor viruses. However, upon immune suppression EBV- and KSHV-associated malignancies emerge at increased frequencies. Moreover, primary immunodeficiencies with individual mutations that predispose to EBV or KSHV disease allow us to gain insights into a catalog of molecules that are required for the immune control of these tumor viruses. Curiously, there is little overlap between the mutation targets that predispose individuals to EBV versus KSHV disease, even so both viruses can infect the same host cell, human B cells. These differences will be discussed in this review. A better understanding of the crucial components in the near-perfect life-long immune control of EBV and KSHV should allow us to target malignancies that are associated with these viruses, but also induce similar immune responses against other tumors.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Cancer Research Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
24
|
Künnapuu K, Veiman K, Porosk L, Rammul E, Kiisholts K, Langel Ü, Kurrikoff K. Tumor gene therapy by systemic delivery of plasmid DNA with cell-penetrating peptides. FASEB Bioadv 2019; 1:105-114. [PMID: 32123824 PMCID: PMC6996304 DOI: 10.1096/fba.1026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 08/30/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
Gene therapy is a prospective strategy for treating cancer. However, finding efficient and tumor-specific gene delivery vectors remains an issue. Tumor responsive cell-penetrating peptide (CPP) PepFect144 (PF144) has previously been shown to deliver reporter gene encoding plasmid DNA specifically into tumors upon systemic administration, but its capability to reduce tumor growth has not yet been evaluated. Here, we study the potential of PF144-based anti-angiogenic gene delivery to inhibit tumor growth by silencing vascular endothelial growth factor (VEGF) expression in tumors. This approach led to the inhibition of tumor growth in both the HT1080 fibrosarcoma model and orthotopic 4T1 breast tumor model. We additionally saw that the addition of αvβ3 integrin targeting did not further improve the tumor sensitive CPPs. Our results suggest that activatable cell-penetrating peptide PF144 is a promising nonviral plasmid DNA delivery vector for cancer treatment.
Collapse
Affiliation(s)
| | | | - Ly Porosk
- Institute of TechnologyUniversity of TartuTartuEstonia
| | - Evelin Rammul
- Institute of TechnologyUniversity of TartuTartuEstonia
| | | | - Ülo Langel
- Institute of TechnologyUniversity of TartuTartuEstonia
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural SciencesStockholm UniversityStockholmSweden
| | | |
Collapse
|
25
|
Bruce AG, Barcy S, Staheli J, Bielefeldt-Ohmann H, Ikoma M, Howard K, Rose TM. Experimental co-transmission of Simian Immunodeficiency Virus (SIV) and the macaque homologs of the Kaposi Sarcoma-Associated Herpesvirus (KSHV) and Epstein-Barr Virus (EBV). PLoS One 2018; 13:e0205632. [PMID: 30444879 PMCID: PMC6239284 DOI: 10.1371/journal.pone.0205632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/02/2018] [Indexed: 12/29/2022] Open
Abstract
Macaque RFHV and LCV are close homologs of human KSHV and EBV, respectively. No experimental model of RFHV has been developed due to the lack of a source of culturable infectious virus. Screening of macaques at the Washington National Primate Research Center detected RFHV in saliva of SIV-infected macaques from previous vaccine studies. A pilot experimental infection of two naïve juvenile pig-tailed macaques was initiated by inoculation of saliva from SIV-infected pig-tailed and cynomolgus macaque donors, which contained high levels of DNA (> 10(6) genomes/ml) of the respective species-specific RFHV strain. Both juvenile recipients developed SIV and RFHV infections with RFHV DNA detected transiently in saliva and/or PBMC around week 16 post-infection. One juvenile macaque was infected with the homologous RFHVMn from whole saliva of a pig-tailed donor, which had been inoculated into the cheek pouch. This animal became immunosuppressed, developing simian AIDS and was euthanized 23 weeks after inoculation. The levels of RFHV DNA in saliva and PBMC remained below the level of detection after week 17, showing no reactivation of the RFHVMn infection during the rapid development of AIDS. The other juvenile macaque was infected with the heterologous RFHVMf from i.v. inoculation of purified virions from saliva of a cynomolgus donor. The juvenile recipient remained immunocompetent, developing high levels of persistent anti-RFHV and -SIV antibodies. After the initial presence of RFHVMf DNA in saliva and PBMC decreased to undetectable levels by week 19, all attempts to reactivate the infection through additional inoculations, experimental infection with purified SRV-2 or SIV, or immunosuppressive treatments with cyclosporine or dexamethasone were unsuccessful. An heterologous LCV transmission was also detected in this recipient, characterized by continual high levels of LCVMf DNA from the cynomolgus donor in both saliva (> 10(6) genomes/ml) and PBMC (> 10(4) genomes/million cells), coupled with high levels of anti-LCV antibodies. The macaque was sacrificed 209 weeks after the initial inoculation. Low levels of LCVMf DNA were detected in salivary glands, tonsils and other lymphoid organs, while RFHVMf DNA was below the level of detection. These results show successful co-transmission of RFHV and LCV from saliva and demonstrate differential lytic activation of the different gammaherpesvirus lineages due to presumed differences in biology and tropism and control by the host immune system. Although this initial pilot transmission study utilized only two macaques, it provides the first evidence for experimental transmission of the macaque homolog of KSHV, setting the stage for larger transmission studies to examine the differential activation of rhadinovirus and lymphocryptovirus infections and the pathological effects of immunosuppression.
Collapse
Affiliation(s)
- A. Gregory Bruce
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pathobiology, University of Washington, Seattle, Washington, United States of America
| | - Serge Barcy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Jeannette Staheli
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pathobiology, University of Washington, Seattle, Washington, United States of America
| | - Helle Bielefeldt-Ohmann
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Minako Ikoma
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Kellie Howard
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pathobiology, University of Washington, Seattle, Washington, United States of America
| | - Timothy M. Rose
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pathobiology, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
26
|
TerBush AA, Hafkamp F, Lee HJ, Coscoy L. A Kaposi's Sarcoma-Associated Herpesvirus Infection Mechanism Is Independent of Integrins α3β1, αVβ3, and αVβ5. J Virol 2018; 92:e00803-18. [PMID: 29899108 PMCID: PMC6096800 DOI: 10.1128/jvi.00803-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/08/2018] [Indexed: 12/24/2022] Open
Abstract
Host receptor usage by Kaposi's sarcoma-associated herpesvirus (KSHV) has been best studied using primary microvascular endothelial and fibroblast cells, although the virus infects a wide variety of cell types in culture and in natural infections. In these two infection models, KSHV adheres to the cell though heparan sulfate (HS) binding and then interacts with a complex of EphA2, xCT, and integrins α3β1, αVβ3, and αVβ5 to catalyze viral entry. We dissected this receptor complex at the genetic level with CRISPR-Cas9 to precisely determine receptor usage in two epithelial cell lines. Surprisingly, we discovered an infection mechanism that requires HS and EphA2 but is independent of αV- and β1-family integrin expression. Furthermore, infection appears to be independent of the EphA2 intracellular domain. We also demonstrated that while two other endogenous Eph receptors were dispensable for KSHV infection, transduced EphA4 and EphA5 significantly enhanced infection of cells lacking EphA2.IMPORTANCE Our data reveal an integrin-independent route of KSHV infection and suggest that multiple Eph receptors besides EphA2 can promote and regulate infection. Since integrins and Eph receptors are large protein families with diverse expression patterns across cells and tissues, we propose that KSHV may engage with several proteins from both families in different combinations to negotiate successful entry into diverse cell types.
Collapse
Affiliation(s)
- Allison Alwan TerBush
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Florianne Hafkamp
- Graduate School of Life Sciences, Utrecht University, Utrecht, Netherlands
| | - Hee Jun Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Laurent Coscoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
27
|
Bielefeldt-Ohmann H, Bruce AG, Howard K, Ikoma M, Thouless ME, Rose TM. Macaque homologs of Kaposi's sarcoma-associated herpesvirus (KSHV) infect germinal center lymphoid cells, epithelial cells in skin and gastrointestinal tract and gonadal germ cells in naturally infected macaques. Virology 2018; 519:106-120. [PMID: 29689462 DOI: 10.1016/j.virol.2018.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/12/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
We developed a set of rabbit antisera to characterize infections by the macaque RV2 rhadinovirus homologs of KSHV. We analyzed tissues from rhesus and pig-tailed macaques naturally infected with rhesus rhadinovirus (RRV) or Macaca nemestrina rhadinovirus 2 (MneRV2). Our study demonstrates that RV2 rhadinoviruses have a tropism for epithelial cells, lymphocytes and gonadal germ cells in vivo. We observed latent infections in both undifferentiated and differentiated epithelial cells with expression of the latency marker, LANA. Expression of the early (ORF59) and late (glycoprotein B) lytic markers were detected in highly differentiated cells in epithelial ducts in oral, renal, dermal and gastric mucosal tissue as well as differentiated germ cells in male and female gonads. Our data provides evidence that epithelial and germ cell differentiation in vivo induces rhadinovirus reactivation and suggests that infected epithelial and germ cells play a role in transmission and dissemination of RV2 rhadinovirus infections in vivo.
Collapse
Affiliation(s)
| | - A Gregory Bruce
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pathobiology, University of Washington, Seattle, WA, USA.
| | - Kellie Howard
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pathobiology, University of Washington, Seattle, WA, USA.
| | - Minako Ikoma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | | | - Timothy M Rose
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pathobiology, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
28
|
Hussein HAM, Abdel-Raouf UM, Akula SM. Membrane-Associated Kaposi Sarcoma-Associated Herpesvirus Glycoprotein B Promotes Cell Adhesion and Inhibits Migration of Cells via Upregulating IL-1β and TNF-α. Intervirology 2018; 60:217-226. [PMID: 29597230 DOI: 10.1159/000487596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/12/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Kaposi sarcoma-associated herpesvirus (KSHV) glycoprotein B (gB) is expressed on the viral envelope as well as on the cytoplasmic membrane of infected cells. In the current study, we aimed to decipher the impact of membrane-associated gB on adhesion and migration of cells via modulating the expression of cytokines. METHODS A combination of polymerase chain reaction array, cell adhesion assay, and wound-healing migration assay was conducted to study the influence of the gB-induced cytokines on cell adhesion and migration. RESULTS Membrane-associated gB was demonstrated to significantly upregulate the expression of IL-1β and TNF-α. Elevated levels of these cytokines were observed in conditioned medium (CM) collected from gB-expressing cells (gB-CM) compared to CM collected from untransfected cells or cells transfected with empty vector. KSHV gB-induced IL-1β and TNF-α play a role in the ability of gB-CM to mediate cell adhesion while inhibiting migration. CONCLUSION Our results provide novel evidence that demonstrates full-length gB expressed on cell membrane to mediate adhesion and inhibit migration of cells not only by autocrine mechanism mediated by RGD-based interactions [Hussein et al.: BMC Cancer 2016; 16: 148], but also by paracrine mechanism mediated by gB-induced IL-1β and TNF-α.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | | | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
29
|
Großkopf AK, Ensser A, Neipel F, Jungnickl D, Schlagowski S, Desrosiers RC, Hahn AS. A conserved Eph family receptor-binding motif on the gH/gL complex of Kaposi's sarcoma-associated herpesvirus and rhesus monkey rhadinovirus. PLoS Pathog 2018; 14:e1006912. [PMID: 29432452 PMCID: PMC5825162 DOI: 10.1371/journal.ppat.1006912] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/23/2018] [Accepted: 01/30/2018] [Indexed: 02/05/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a human oncogenic virus associated with Kaposi’s sarcoma and two B-cell malignancies. The rhesus monkey rhadinovirus (RRV) is a virus of nonhuman primates that is closely related to KSHV. Eph family receptor tyrosine kinases (Ephs) are cellular receptors for the gH/gL glycoprotein complexes of both KSHV and RRV. Through sequence analysis and mutational screens, we identified conserved residues in the N-terminal domain of KSHV and RRV glycoprotein H that are critical for Eph-binding in vitro. Homology-based structural predictions of the KSHV and RRV gH/gL complexes based on the Epstein-Barr-Virus gH/gL crystal structure located these amino acids in a beta-hairpin on gH, which is likely stabilized by gL and is optimally positioned for protein-protein interactions. Guided by these predictions, we generated recombinant RRV and KSHV strains mutated in the conserved motif as well as an RRV gL null mutant. Inhibition experiments using these mutants confirmed that disruption of the identified Eph-interaction motif or of gL expression resulted in complete detargeting from Ephs. However, all mutants were infectious on all cell types tested, exhibiting normal attachment but a reduction in infectivity of up to one log order of magnitude. While Eph-binding-negative RRV mutants were replication-competent on fibroblasts, their infectivity was comparatively more reduced on endothelial cells with a substantial subpopulation of endothelial cells remaining resistant to infection. Together, this provides evidence for a cell type-specific use of Ephs by RRV. Furthermore, our results demonstrate that gL is dispensable for infection by RRV. Its deletion caused a reduction in infectivity similar to that observed after mutation of Eph-binding residues in gH. Our findings would be compatible with an ability of KSHV and RRV to use other, less efficient entry mediators in lieu of Ephs, although these host factors may not be uniformly expressed by all cells. In immunocompromised individuals in general and in the context of HIV infection in particular, KSHV is a major cause of cancer and B-cell proliferative malignancies. We identified and mutated conserved residues in the N-terminal domain of the gH/gL glycoprotein complex of KSHV and the related monkey virus RRV that are critical for the interaction with cellular receptors from the Eph family. These findings provide important insight into the function of the γ-herpesviral entry machinery. Using recombinant KSHV and RRV carrying these mutations, we demonstrated that while not strictly essential, gH/gL-Eph interactions are important for efficient infection—for RRV also in a cell-specific manner—but not for attachment of KSHV and RRV. The Eph-detargeted virus mutants described in this study can be used to further dissect the requirements for KSHV and RRV entry and to identify potential alternative entry mediators. Domains and residues on the viral glycoproteins with critical roles in receptor recognition, such as the Eph-binding motif described in this paper, can be informative for the design of inhibitory monoclonal antibodies.
Collapse
Affiliation(s)
- Anna K. Großkopf
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Armin Ensser
- Universitätsklinikum Erlangen, Institute for Clinical and Molecular Virology, Erlangen, Germany
| | - Frank Neipel
- Universitätsklinikum Erlangen, Institute for Clinical and Molecular Virology, Erlangen, Germany
| | - Doris Jungnickl
- Universitätsklinikum Erlangen, Institute for Clinical and Molecular Virology, Erlangen, Germany
| | - Sarah Schlagowski
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | | | - Alexander S. Hahn
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- * E-mail:
| |
Collapse
|
30
|
Garrigues HJ, DeMaster LK, Rubinchikova YE, Rose TM. Corrigendum to: "KSHV attachment and entry are dependent on αVβ3 integrin localized to specific cell surface microdomains and do not correlate with the presence of heparan sulfate" [Virology 464-465 (2014) 118-133]. Virology 2018; 515:264-265. [PMID: 29407075 DOI: 10.1016/j.virol.2017.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- H Jacques Garrigues
- Seattle Children's Research Institute, 1900 Ninth Ave, 8(th) floor, Seattle, Washington, USA 98101
| | - Laura K DeMaster
- Seattle Children's Research Institute, 1900 Ninth Ave, 8(th) floor, Seattle, Washington, USA 98101; Department of Global Health, University of Washington, Seattle, Washington, USA 98195
| | - Yelena E Rubinchikova
- Seattle Children's Research Institute, 1900 Ninth Ave, 8(th) floor, Seattle, Washington, USA 98101
| | - Timothy M Rose
- Seattle Children's Research Institute, 1900 Ninth Ave, 8(th) floor, Seattle, Washington, USA 98101; Department of Pediatrics, University of Washington, Seattle, Washington, USA 98195
| |
Collapse
|
31
|
Beyond the Matrix: The Many Non-ECM Ligands for Integrins. Int J Mol Sci 2018; 19:ijms19020449. [PMID: 29393909 PMCID: PMC5855671 DOI: 10.3390/ijms19020449] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/21/2018] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
The traditional view of integrins portrays these highly conserved cell surface receptors as mediators of cellular attachment to the extracellular matrix (ECM), and to a lesser degree, as coordinators of leukocyte adhesion to the endothelium. These canonical activities are indispensable; however, there is also a wide variety of integrin functions mediated by non-ECM ligands that transcend the traditional roles of integrins. Some of these unorthodox roles involve cell-cell interactions and are engaged to support immune functions such as leukocyte transmigration, recognition of opsonization factors, and stimulation of neutrophil extracellular traps. Other cell-cell interactions mediated by integrins include hematopoietic stem cell and tumor cell homing to target tissues. Integrins also serve as cell-surface receptors for various growth factors, hormones, and small molecules. Interestingly, integrins have also been exploited by a wide variety of organisms including viruses and bacteria to support infectious activities such as cellular adhesion and/or cellular internalization. Additionally, the disruption of integrin function through the use of soluble integrin ligands is a common strategy adopted by several parasites in order to inhibit blood clotting during hematophagy, or by venomous snakes to kill prey. In this review, we strive to go beyond the matrix and summarize non-ECM ligands that interact with integrins in order to highlight these non-traditional functions of integrins.
Collapse
|
32
|
Rider PJF, Musarrat F, Nabil R, Naidu S, Kousoulas KG. First Impressions-the Potential of Altering Initial Host-Virus Interactions for Rational Design of Herpesvirus Vaccine Vectors. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:55-65. [PMID: 30560044 DOI: 10.1007/s40588-018-0082-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose The earliest host-virus interactions occur during virus attachment and entry into cells. These initial steps in the virus lifecycle influence the outcome of infection beyond delivery of the viral genome into the cell. Herpesviruses alter host signaling pathways and processes during attachment and entry to facilitate virus infection and modulate innate immune responses. We suggest in this review that understanding these early signaling events may inform the rational design of therapeutic and prevention strategies for herpesvirus infection, as well as the engineering of viral vectors for immunotherapy purposes. Recent Findings Recent reports demonstrate that modulation of Herpes Simplex Virus Type-1 (HSV-1) entry results in unexpected enhancement of antiviral immune responses. Summary A variety of evidence suggests that herpesviruses promote specific cellular signaling responses that facilitate viral replication after binding to cell surfaces, as well as during virus entry. Of particular interest is the ability of the virus to alter innate immune responses through these cellular signaling events. Uncovering the underlying immune evasion strategies may lead to the design of live-attenuated vaccines that can generate robust and protective anti-viral immune responses against herpesviruses. These adjuvant properties may be extended to a variety of heterologous antigens expressed by herpesviral vectors.
Collapse
Affiliation(s)
- Paul J F Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Farhana Musarrat
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Rafiq Nabil
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Shan Naidu
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| |
Collapse
|
33
|
Zhang Y, Li J, Li B, Wang J, Liu CH. Mycobacterium tuberculosisMce3C promotes mycobacteria entry into macrophages through activation of β2 integrin-mediated signalling pathway. Cell Microbiol 2017; 20. [DOI: 10.1111/cmi.12800] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Yong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Savaid Medical School; University of Chinese Academy of Sciences; Beijing China
| | - Jie Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
| | - Bingxi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Savaid Medical School; University of Chinese Academy of Sciences; Beijing China
| |
Collapse
|
34
|
Borst AJ, James ZM, Zagotta WN, Ginsberg M, Rey FA, DiMaio F, Backovic M, Veesler D. The Therapeutic Antibody LM609 Selectively Inhibits Ligand Binding to Human α Vβ 3 Integrin via Steric Hindrance. Structure 2017; 25:1732-1739.e5. [PMID: 29033288 DOI: 10.1016/j.str.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/20/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022]
Abstract
The LM609 antibody specifically recognizes αVβ3 integrin and inhibits angiogenesis, bone resorption, and viral infections in an arginine-glycine-aspartate-independent manner. LM609 entered phase II clinical trials for the treatment of several cancers and was also used for αVβ3-targeted radioimmunotherapy. To elucidate the mechanisms of recognition and inhibition of αVβ3 integrin, we solved the structure of the LM609 antigen-binding fragment by X-ray crystallography and determined its binding affinity for αVβ3. Using single-particle electron microscopy, we show that LM609 binds at the interface between the β-propeller domain of the αV chain and the βI domain of the β3 chain, near the RGD-binding site, of all observed integrin conformational states. Integrating these data with fluorescence size-exclusion chromatography, we demonstrate that LM609 sterically hinders access of large ligands to the RGD-binding pocket, without obstructing it. This work provides a structural framework to expedite future efforts utilizing LM609 as a diagnostic or therapeutic tool.
Collapse
Affiliation(s)
- Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Zachary M James
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Mark Ginsberg
- Department of Hematology and Oncology, University of California at San Diego, La Jolla, CA 92093-0726, USA
| | - Felix A Rey
- Unité de Virologie Structurale, Institut Pasteur, Paris, France; CNRS UMR 3569 Virologie, Paris, France
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marija Backovic
- Unité de Virologie Structurale, Institut Pasteur, Paris, France; CNRS UMR 3569 Virologie, Paris, France.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
35
|
Lipids, lipid metabolism and Kaposi's sarcoma-associated herpesvirus pathogenesis. Virol Sin 2017; 32:369-375. [PMID: 29019168 DOI: 10.1007/s12250-017-4027-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022] Open
Abstract
Lipids are essential for mammalian cells to maintain many physiological functions. Emerging evidence has shown that cancer cells can develop specific alterations in lipid biosynthesis and metabolism to facilitate their survival and various malignant behaviors. To date, the precise role of cellular lipids and lipid metabolism in viral oncogenesis is still largely unclear with only a handful of literature covering this topic to implicate lipid metabolism in oncogenic virus associated pathogenesis. In this review, we focus on the role of lipid biosynthesis and metabolism in the pathogenesis of the Kaposi's sarcoma-associated herpesvirus, a common causative factor for cancers arising in the immunocompromised settings.
Collapse
|
36
|
Rohrbeck A, Höltje M, Adolf A, Oms E, Hagemann S, Ahnert-Hilger G, Just I. The Rho ADP-ribosylating C3 exoenzyme binds cells via an Arg-Gly-Asp motif. J Biol Chem 2017; 292:17668-17680. [PMID: 28882889 PMCID: PMC5663871 DOI: 10.1074/jbc.m117.798231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
The Rho ADP-ribosylating C3 exoenzyme (C3bot) is a bacterial protein toxin devoid of a cell-binding or -translocation domain. Nevertheless, C3 can efficiently enter intact cells, including neurons, but the mechanism of C3 binding and uptake is not yet understood. Previously, we identified the intermediate filament vimentin as an extracellular membranous interaction partner of C3. However, uptake of C3 into cells still occurs (although reduced) in the absence of vimentin, indicating involvement of an additional host cell receptor. C3 harbors an Arg–Gly–Asp (RGD) motif, which is the major integrin-binding site, present in a variety of integrin ligands. To check whether the RGD motif of C3 is involved in binding to cells, we performed a competition assay with C3 and RGD peptide or with a monoclonal antibody binding to β1-integrin subunit and binding assays in different cell lines, primary neurons, and synaptosomes with C3-RGD mutants. Here, we report that preincubation of cells with the GRGDNP peptide strongly reduced C3 binding to cells. Moreover, mutation of the RGD motif reduced C3 binding to intact cells and also to recombinant vimentin. Anti-integrin antibodies also lowered the C3 binding to cells. Our results indicate that the RGD motif of C3 is at least one essential C3 motif for binding to host cells and that integrin is an additional receptor for C3 besides vimentin.
Collapse
Affiliation(s)
- Astrid Rohrbeck
- From the Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover and
| | - Markus Höltje
- the Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin, D-10115 Berlin, Germany
| | - Andrej Adolf
- the Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin, D-10115 Berlin, Germany
| | - Elisabeth Oms
- From the Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover and
| | - Sandra Hagemann
- From the Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover and
| | - Gudrun Ahnert-Hilger
- the Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin, D-10115 Berlin, Germany
| | - Ingo Just
- From the Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover and
| |
Collapse
|
37
|
Panikkanvalappil SR, Hooshmand N, El-Sayed MA. Intracellular Assembly of Nuclear-Targeted Gold Nanosphere Enables Selective Plasmonic Photothermal Therapy of Cancer by Shifting Their Absorption Wavelength toward Near-Infrared Region. Bioconjug Chem 2017; 28:2452-2460. [PMID: 28837765 DOI: 10.1021/acs.bioconjchem.7b00427] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite the important applications of near-infrared (NIR) absorbing nanomaterials in plasmonic photothermal therapy (PPT), their high yield synthesis and nonspecific heating during the active- and passive-targeted cancer therapeutic strategies remain challenging. In the present work, we systematically demonstrate that in situ aggregation of typical non-NIR absorbing plasmonic nanoparticles at the nuclear region of the cells could translate them into an effective NIR photoabsorber in plasmonic photothermal therapy of cancer due to a significant shift of the plasmonic absorption band to the NIR region. We evaluated the potential of nuclear-targeted AuNSs as photoabsorber at various stages of endocytosis by virtue of their inherent in situ assembling capabilities at the nuclear region of the cells, which has been considered as one of the most thermolabile structures within the cells, to selectively destruct cancer cells with minimal damage to healthy cells. Various plasmonic nanoparticles such as rods and cubes have been exploited to elucidate the role of plasmonic field coupling in assembled nanoparticles and their subsequent killing efficiency. The NIR absorbing capabilities of aggregated AuNSs have been further demonstrated both experimentally and theoretically using discrete dipolar approximation (DDA) techniques, which was in concordance with the observed results in plasmonic photothermal therapeutic studies. While the current work was able to demonstrate the utility of non-NIR absorbing plasmonic nanoparticles as a potential alternative for plasmonic photothermal therapy by inducing localized plasmonic heating at the nuclear region of the cells, these findings could potentially open up new possibilities in developing more efficient nanoparticles for efficient cancer treatment modalities.
Collapse
Affiliation(s)
- Sajanlal R Panikkanvalappil
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Mostafa A El-Sayed
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
38
|
Howard K, Cherezova L, DeMaster LK, Rose TM. ORF73 LANA homologs of RRV and MneRV2 contain an extended RGG/RG-rich nuclear and nucleolar localization signal that interacts directly with importin β1 for non-classical nuclear import. Virology 2017; 511:152-164. [PMID: 28850829 DOI: 10.1016/j.virol.2017.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 01/26/2023]
Abstract
The latency-associated nuclear antigens (LANA) of KSHV and macaque RFHVMn, members of the RV1 rhadinovirus lineage, are closely related with conservation of complex nuclear localization signals (NLS) containing bipartite KR-rich motifs and RG-rich domains, which interact distinctly with importins α and ß1 for nuclear import via classical and non-classical pathways, respectively. RV1 LANAs are expressed in the nucleus of latently-infected cells where they inhibit replication and establish a dominant RV1 latency. Here we show that LANA homologs of macaque RRV and MneRV2 from the more distantly-related RV2 lineage, lack the KR-rich NLS, and instead have a large RG-rich NLS with multiple RG dipeptides and a conserved RGG motif. The RG-NLS interacts uniquely with importin β1, which mediates nuclear import and accumulation of RV2 LANA in the nucleolus. The alternative nuclear import and localization of RV2 LANA homologs may contribute to the dominant RV2 lytic replication phenotype.
Collapse
Affiliation(s)
- Kellie Howard
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Lidia Cherezova
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Laura K DeMaster
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Timothy M Rose
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
39
|
Nurden AT. Should studies on Glanzmann thrombasthenia not be telling us more about cardiovascular disease and other major illnesses? Blood Rev 2017; 31:287-299. [PMID: 28395882 DOI: 10.1016/j.blre.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Glanzmann thrombasthenia (GT) is a rare inherited bleeding disorder caused by loss of αIIbβ3 integrin function in platelets. Most genetic variants of β3 also affect the widely expressed αvβ3 integrin. With brief mention of mouse models, I now look at the consequences of disease-causing ITGA2B and ITGB3 mutations on the non-hemostatic functions of platelets and other cells. Reports of arterial thrombosis in GT patients are rare, but other aspects of cardiovascular disease do occur including deep vein thrombosis and congenital heart defects. Thrombophilic and other risk factors for thrombosis and lessons from heterozygotes and variant forms of GT are discussed. Assessed for GT patients are reports of leukemia and cancer, loss of fertility, bone pathology, inflammation and wound repair, infections, kidney disease, autism and respiratory disease. This survey shows an urgent need for a concerted international effort to better determine how loss of αIIbβ3 and αvβ3 influences health and disease.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut de Rhythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France.
| |
Collapse
|
40
|
Quantitative Analysis of the KSHV Transcriptome Following Primary Infection of Blood and Lymphatic Endothelial Cells. Pathogens 2017; 6:pathogens6010011. [PMID: 28335496 PMCID: PMC5371899 DOI: 10.3390/pathogens6010011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 12/14/2022] Open
Abstract
The transcriptome of the Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV8) after primary latent infection of human blood (BEC), lymphatic (LEC) and immortalized (TIME) endothelial cells was analyzed using RNAseq, and compared to long-term latency in BCBL-1 lymphoma cells. Naturally expressed transcripts were obtained without artificial induction, and a comprehensive annotation of the KSHV genome was determined. A set of unique coding sequence (UCDS) features and a process to resolve overlapping transcripts were developed to accurately quantitate transcript levels from specific promoters. Similar patterns of KSHV expression were detected in BCBL-1 cells undergoing long-term latent infections and in primary latent infections of both BEC and LEC cultures. High expression levels of poly-adenylated nuclear (PAN) RNA and spliced and unspliced transcripts encoding the K12 Kaposin B/C complex and associated microRNA region were detected, with an elevated expression of a large set of lytic genes in all latently infected cultures. Quantitation of non-overlapping regions of transcripts across the complete KSHV genome enabled for the first time accurate evaluation of the KSHV transcriptome associated with viral latency in different cell types. Hierarchical clustering applied to a gene correlation matrix identified modules of co-regulated genes with similar correlation profiles, which corresponded with biological and functional similarities of the encoded gene products. Gene modules were differentially upregulated during latency in specific cell types indicating a role for cellular factors associated with differentiated and/or proliferative states of the host cell to influence viral gene expression.
Collapse
|
41
|
Viollet C, Davis DA, Tekeste SS, Reczko M, Ziegelbauer JM, Pezzella F, Ragoussis J, Yarchoan R. RNA Sequencing Reveals that Kaposi Sarcoma-Associated Herpesvirus Infection Mimics Hypoxia Gene Expression Signature. PLoS Pathog 2017; 13:e1006143. [PMID: 28046107 PMCID: PMC5234848 DOI: 10.1371/journal.ppat.1006143] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/13/2017] [Accepted: 12/19/2016] [Indexed: 01/09/2023] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) causes several tumors and hyperproliferative disorders. Hypoxia and hypoxia-inducible factors (HIFs) activate latent and lytic KSHV genes, and several KSHV proteins increase the cellular levels of HIF. Here, we used RNA sequencing, qRT-PCR, Taqman assays, and pathway analysis to explore the miRNA and mRNA response of uninfected and KSHV-infected cells to hypoxia, to compare this with the genetic changes seen in chronic latent KSHV infection, and to explore the degree to which hypoxia and KSHV infection interact in modulating mRNA and miRNA expression. We found that the gene expression signatures for KSHV infection and hypoxia have a 34% overlap. Moreover, there were considerable similarities between the genes up-regulated by hypoxia in uninfected (SLK) and in KSHV-infected (SLKK) cells. hsa-miR-210, a HIF-target known to have pro-angiogenic and anti-apoptotic properties, was significantly up-regulated by both KSHV infection and hypoxia using Taqman assays. Interestingly, expression of KSHV-encoded miRNAs was not affected by hypoxia. These results demonstrate that KSHV harnesses a part of the hypoxic cellular response and that a substantial portion of hypoxia-induced changes in cellular gene expression are induced by KSHV infection. Therefore, targeting hypoxic pathways may be a useful way to develop therapeutic strategies for KSHV-related diseases.
Collapse
Affiliation(s)
- Coralie Viollet
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David A. Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shewit S. Tekeste
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martin Reczko
- Institute of Molecular Oncology, Alexander Fleming Biomedical Sciences Research Center, Vari, Greece
| | - Joseph M. Ziegelbauer
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Francesco Pezzella
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, United Kingdom
| | - Jiannis Ragoussis
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Institute of Molecular Oncology, Alexander Fleming Biomedical Sciences Research Center, Vari, Greece
- McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
42
|
Deidda G, Jonnalagadda SVR, Spies JW, Ranella A, Mossou E, Forsyth VT, Mitchell EP, Bowler MW, Tamamis P, Mitraki A. Self-Assembled Amyloid Peptides with Arg-Gly-Asp (RGD) Motifs As Scaffolds for Tissue Engineering. ACS Biomater Sci Eng 2016; 3:1404-1416. [DOI: 10.1021/acsbiomaterials.6b00570] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Graziano Deidda
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
- Institute
of Electronic Structure and Laser (IESL), Foundation for Research and Technology−Hellas (FORTH), Heraklion 70013, Greece
| | - Sai Vamshi R. Jonnalagadda
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Jacob W. Spies
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Anthi Ranella
- Institute
of Electronic Structure and Laser (IESL), Foundation for Research and Technology−Hellas (FORTH), Heraklion 70013, Greece
| | - Estelle Mossou
- Institut Laue Langevin, 6 rue
Jules Horowitz, 38042 Grenoble Cedex 9, France
- Faculty of
Natural Sciences/Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, United Kingdom
| | - V. Trevor Forsyth
- Institut Laue Langevin, 6 rue
Jules Horowitz, 38042 Grenoble Cedex 9, France
- Faculty of
Natural Sciences/Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, United Kingdom
| | - Edward P. Mitchell
- Faculty of
Natural Sciences/Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, United Kingdom
- European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex 9, France
| | - Matthew W. Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble, France
- Unit
for Virus Host Cell Interactions, Université Grenoble Alpes−EMBL-CNRS, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble, France
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
- Institute
of Electronic Structure and Laser (IESL), Foundation for Research and Technology−Hellas (FORTH), Heraklion 70013, Greece
| |
Collapse
|
43
|
Kumar B, Chandran B. KSHV Entry and Trafficking in Target Cells-Hijacking of Cell Signal Pathways, Actin and Membrane Dynamics. Viruses 2016; 8:v8110305. [PMID: 27854239 PMCID: PMC5127019 DOI: 10.3390/v8110305] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 11/03/2016] [Indexed: 01/27/2023] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV) is etiologically associated with human endothelial cell hyperplastic Kaposi's sarcoma and B-cell primary effusion lymphoma. KSHV infection of adherent endothelial and fibroblast cells are used as in vitro models for infection and KSHV enters these cells by host membrane bleb and actin mediated macropinocytosis or clathrin endocytosis pathways, respectively. Infection in endothelial and fibroblast cells is initiated by the interactions between multiple viral envelope glycoproteins and cell surface associated heparan sulfate (HS), integrins (α3β1, αVβ3 and αVβ5), and EphA2 receptor tyrosine kinase (EphA2R). This review summarizes the accumulated studies demonstrating that KSHV manipulates the host signal pathways to enter and traffic in the cytoplasm of the target cells, to deliver the viral genome into the nucleus, and initiate viral gene expression. KSHV interactions with the cell surface receptors is the key platform for the manipulations of host signal pathways which results in the simultaneous induction of FAK, Src, PI3-K, Rho-GTPase, ROS, Dia-2, PKC ζ, c-Cbl, CIB1, Crk, p130Cas and GEF-C3G signal and adaptor molecules that play critical roles in the modulation of membrane and actin dynamics, and in the various steps of the early stages of infection such as entry and trafficking towards the nucleus. The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins are also recruited to assist in viral entry and trafficking. In addition, KSHV interactions with the cell surface receptors also induces the host transcription factors NF-κB, ERK1/2, and Nrf2 early during infection to initiate and modulate viral and host gene expression. Nuclear delivery of the viral dsDNA genome is immediately followed by the host innate responses such as the DNA damage response (DDR), inflammasome and interferon responses. Overall, these studies form the initial framework for further studies of simultaneous targeting of KSHV glycoproteins, host receptor, signal molecules and trafficking machinery that would lead into novel therapeutic methods to prevent KSHV infection of target cells and consequently the associated malignancies.
Collapse
Affiliation(s)
- Binod Kumar
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Bala Chandran
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
44
|
Kumar B, Dutta D, Iqbal J, Ansari MA, Roy A, Chikoti L, Pisano G, Veettil MV, Chandran B. ESCRT-I Protein Tsg101 Plays a Role in the Post-macropinocytic Trafficking and Infection of Endothelial Cells by Kaposi's Sarcoma-Associated Herpesvirus. PLoS Pathog 2016; 12:e1005960. [PMID: 27764233 PMCID: PMC5072609 DOI: 10.1371/journal.ppat.1005960] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/28/2016] [Indexed: 11/19/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) binding to the endothelial cell surface heparan sulfate is followed by sequential interactions with α3β1, αVβ3 and αVβ5 integrins and Ephrin A2 receptor tyrosine kinase (EphA2R). These interactions activate host cell pre-existing FAK, Src, PI3-K and RhoGTPase signaling cascades, c-Cbl mediated ubiquitination of receptors, recruitment of CIB1, p130Cas and Crk adaptor molecules, and membrane bleb formation leading to lipid raft dependent macropinocytosis of KSHV into human microvascular dermal endothelial (HMVEC-d) cells. The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins, ESCRT-0, -I, -II, and-III, play a central role in clathrin-mediated internalized ubiquitinated receptor endosomal trafficking and sorting. ESCRT proteins have also been shown to play roles in viral egress. We have recently shown that ESCRT-0 component Hrs protein associates with the plasma membrane during macropinocytosis and mediates KSHV entry via ROCK1 mediated phosphorylation of NHE1 and local membrane pH change. Here, we demonstrate that the ESCRT-I complex Tsg101 protein also participates in the macropinocytosis of KSHV and plays a role in KSHV trafficking. Knockdown of Tsg101 did not affect virus entry in HMVEC-d and human umbilical vein endothelial (HUVEC) cells but significantly inhibited the KSHV genome entry into the nucleus and consequently viral gene expression in these cells. Double and triple immunofluorescence, proximity ligation immunofluorescence and co-immuoprecipitation studies revealed the association of Tsg101 with the KSHV containing macropinosomes, and increased levels of Tsg101 association/interactions with EphA2R, c-Cbl, p130Cas and Crk signal molecules, as well as with upstream and downstream ESCRT components such as Hrs (ESCRT-0), EAP45 (ESCRT-II), CHMP6 (ESCRT-III) and CHMP5 (ESCRT-III) in the KSHV infected cells. Tsg101 was also associated with early (Rab5) and late endosomal (Rab7) stages of KSHV intracellular trafficking, and CHMP5 (ESCRT-III) was also associated with Rab 5 and Rab 7. Knockdown of Tsg101 significantly inhibited the transition of virus from early to late endosomes. Collectively, our studies reveal that Tsg101 plays a role in the trafficking of macropinocytosed KSHV in the endothelial cells which is essential for the successful viral genome delivery into the nucleus, viral gene expression and infection. Thus, ESCRT molecules could serve as therapeutic targets to combat KSHV infection.
Collapse
Affiliation(s)
- Binod Kumar
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, United States Of America
| | - Dipanjan Dutta
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, United States Of America
| | - Jawed Iqbal
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, United States Of America
| | - Mairaj Ahmed Ansari
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, United States Of America
| | - Arunava Roy
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, United States Of America
| | - Leela Chikoti
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, United States Of America
| | - Gina Pisano
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, United States Of America
| | - Mohanan Valiya Veettil
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, United States Of America
| | - Bala Chandran
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, United States Of America
- * E-mail:
| |
Collapse
|
45
|
Campadelli-Fiume G, Collins-McMillen D, Gianni T, Yurochko AD. Integrins as Herpesvirus Receptors and Mediators of the Host Signalosome. Annu Rev Virol 2016; 3:215-236. [PMID: 27501260 DOI: 10.1146/annurev-virology-110615-035618] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The repertoire of herpesvirus receptors consists of nonintegrin and integrin molecules. Integrins interact with the conserved glycoproteins gH/gL or gB. This interaction is a conserved biology across the Herpesviridae family, likely directed to promote virus entry and endocytosis. Herpesviruses exploit this interaction to execute a range of critical functions that include (a) relocation of nonintegrin receptors (e.g., herpes simplex virus nectin1 and Kaposi's sarcoma-associated herpesvirus EphA2), or association with nonintegrin receptors (i.e., human cytomegalovirus EGFR), to dictate species-specific entry pathways; (b) activation of multiple signaling pathways (e.g., Ca2+ release, c-Src, FAK, MAPK, and PI3K); and (c) association with Rho GTPases, tyrosine kinase receptors, Toll-like receptors, which result in cytoskeletal remodeling, differential cell type targeting, and innate responses. In turn, integrins can be modulated by viral proteins (e.g., Epstein-Barr virus LMPs) to favor spread of transformed cells. We propose that herpesviruses evolved a multipartite entry system to allow interaction with multiple receptors, including integrins, required for their sophisticated life cycle.
Collapse
Affiliation(s)
- Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy;
| | - Donna Collins-McMillen
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130;
| | - Tatiana Gianni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy;
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130; .,Feist-Weiller Cancer Center and Center for Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| |
Collapse
|
46
|
Role for the αV Integrin Subunit in Varicella-Zoster Virus-Mediated Fusion and Infection. J Virol 2016; 90:7567-78. [PMID: 27279620 DOI: 10.1128/jvi.00792-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/03/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Varicella-zoster virus (VZV) is an alphaherpesvirus that causes varicella and herpes zoster. Membrane fusion is essential for VZV entry and the distinctive syncytium formation in VZV-infected skin and neuronal tissue. Herpesvirus fusion is mediated by a complex of glycoproteins gB and gH-gL, which are necessary and sufficient for VZV to induce membrane fusion. However, the cellular requirements of fusion are poorly understood. Integrins have been implicated to facilitate entry of several human herpesviruses, but their role in VZV entry has not yet been explored. To determine the involvement of integrins in VZV fusion, a quantitative cell-cell fusion assay was developed using a VZV-permissive melanoma cell line. The cells constitutively expressed a reporter protein and short hairpin RNAs (shRNAs) to knock down the expression of integrin subunits shown to be expressed in these cells by RNA sequencing. The αV integrin subunit was identified as mediating VZV gB/gH-gL fusion, as its knockdown by shRNAs reduced fusion levels to 60% of that of control cells. A comparable reduction in fusion levels was observed when an anti-αV antibody specific to its extracellular domain was tested in the fusion assay, confirming that the domain was important for VZV fusion. In addition, reduced spread was observed in αV knockdown cells infected with the VZV pOka strain relative to that of the control cells. This was demonstrated by reductions in plaque size, replication kinetics, and virion entry in the αV subunit knockdown cells. Thus, the αV integrin subunit is important for VZV gB/gH-gL fusion and infection. IMPORTANCE Varicella-zoster virus (VZV) is a highly infectious pathogen that causes chickenpox and shingles. A common complication of shingles is the excruciating condition called postherpetic neuralgia, which has proven difficult to treat. While a vaccine is now available, it is not recommended for immunocompromised individuals and its efficacy decreases with the recipient's age. These limitations highlight the need for new therapies. This study examines the role of integrins in membrane fusion mediated by VZV glycoproteins gB and gH-gL, a required process for VZV infection. This knowledge will further the understanding of VZV entry and provide insight into the development of better therapies.
Collapse
|
47
|
Bruce AG, Horst JA, Rose TM. Conservation of the glycoprotein B homologs of the Kaposi׳s sarcoma-associated herpesvirus (KSHV/HHV8) and old world primate rhadinoviruses of chimpanzees and macaques. Virology 2016; 494:29-46. [PMID: 27070755 DOI: 10.1016/j.virol.2016.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023]
Abstract
The envelope-associated glycoprotein B (gB) is highly conserved within the Herpesviridae and plays a critical role in viral entry. We analyzed the evolutionary conservation of sequence and structural motifs within the Kaposi׳s sarcoma-associated herpesvirus (KSHV) gB and homologs of Old World primate rhadinoviruses belonging to the distinct RV1 and RV2 rhadinovirus lineages. In addition to gB homologs of rhadinoviruses infecting the pig-tailed and rhesus macaques, we cloned and sequenced gB homologs of RV1 and RV2 rhadinoviruses infecting chimpanzees. A structural model of the KSHV gB was determined, and functional motifs and sequence variants were mapped to the model structure. Conserved domains and motifs were identified, including an "RGD" motif that plays a critical role in KSHV binding and entry through the cellular integrin αVβ3. The RGD motif was only detected in RV1 rhadinoviruses suggesting an important difference in cell tropism between the two rhadinovirus lineages.
Collapse
Affiliation(s)
- A Gregory Bruce
- Center for Global Infectious Disease Research, Seattle Children׳s Research Institute, Seattle, WA, United States
| | - Jeremy A Horst
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Timothy M Rose
- Center for Global Infectious Disease Research, Seattle Children׳s Research Institute, Seattle, WA, United States; Department of Pediatrics, University of Washington, Seattle, WA, United States.
| |
Collapse
|
48
|
ESCRT-0 Component Hrs Promotes Macropinocytosis of Kaposi's Sarcoma-Associated Herpesvirus in Human Dermal Microvascular Endothelial Cells. J Virol 2016; 90:3860-3872. [PMID: 26819309 DOI: 10.1128/jvi.02704-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/21/2016] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) enters human dermal microvascular endothelial cells (HMVEC-d), its naturalin vivotarget cells, by lipid raft-dependent macropinocytosis. The internalized viral envelope fuses with the macropinocytic membrane, and released capsid is transported to the nuclear vicinity, resulting in the nuclear entry of viral DNA. The endosomal sorting complexes required for transport (ESCRT) proteins, which include ESCRT-0, -I, -II, and -III, play a central role in endosomal trafficking and sorting of internalized and ubiquitinated receptors. Here, we examined the role of ESCRT-0 component Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) in KSHV entry into HMVEC-d by macropinocytosis. Knockdown of Hrs by short hairpin RNA (shRNA) transduction resulted in significant decreases in KSHV entry and viral gene expression. Immunofluorescence analysis (IFA) and plasma membrane isolation and proximity ligation assay (PLA) demonstrated the translocation of Hrs from the cytosol to the plasma membrane of infected cells and association with α-actinin-4. In addition, infection induced the plasma membrane translocation and activation of the serine/threonine kinase ROCK1, a downstream target of the RhoA GTPase. Hrs knockdown reduced these associations, suggesting that the recruitment of ROCK1 is an Hrs-mediated event. Interaction between Hrs and ROCK1 is essential for the ROCK1-induced phosphorylation of NHE1 (Na(+)/H(+)exchanger 1), which is involved in the regulation of intracellular pH. Thus, our studies demonstrate the plasma membrane association of ESCRT protein Hrs during macropinocytosis and suggest that KSHV entry requires both Hrs- and ROCK1-dependent mechanisms and that ROCK1-mediated phosphorylation of NHE1 and pH change is an essential event required for the macropinocytosis of KSHV. IMPORTANCE Macropinocytosis is the major entry pathway of KSHV in human dermal microvascular endothelial cells, the natural target cells of KSHV. Although the role of ESCRT protein Hrs has been extensively studied with respect to endosomal movement and sorting of ubiquitinated proteins into lysosomes, its function in macropinocytosis is not known. In the present study, we demonstrate for the first time that upon KSHV infection, the endogenous Hrs localizes to the plasma membrane and the membrane-associated Hrs facilitates assembly of signaling molecules, macropinocytosis, and virus entry. Hrs recruits ROCK1 to the membrane, which is required for the activation of NHE1 and an increase in submembranous intracellular pH occurring during macropinocytosis. These studies demonstrate that the localization of Hrs from the cytosol to the plasma membrane is important for coupling membrane dynamics to the cytosolic signaling events during macropinocytosis of KSHV.
Collapse
|
49
|
Walker LR, Hussein HAM, Akula SM. Subcellular fractionation method to study endosomal trafficking of Kaposi's sarcoma-associated herpesvirus. Cell Biosci 2016; 6:1. [PMID: 26779333 PMCID: PMC4714431 DOI: 10.1186/s13578-015-0066-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/30/2015] [Indexed: 01/09/2023] Open
Abstract
Background Virus entry involves multiple steps and is a highly orchestrated process on which successful infection collectively depends. Entry processes are commonly analyzed by monitoring internalized virus particles via Western blotting, polymerase chain reaction, and imaging techniques that allow scientist to track the intracellular location of the pathogen. Such studies have provided abundant direct evidence on how viruses interact with receptor molecules on the cell surface, induce cell signaling at the point of initial contact with the cell to facilitate internalization, and exploit existing endocytic mechanisms of the cell for their ultimate infectious agenda. However, there is dearth of knowledge in regards to trafficking of a virus via endosomes. Herein, we describe an optimized laboratory procedure to isolate individual organelles during different stages of endocytosis by performing subcellular fractionation. This methodology is established using Kaposi’s sarcoma-associated herpesvirus (KSHV) infection of human foreskin fibroblast (HFF) cells as a model. With KSHV and other herpesviruses alike, envelope glycoproteins have been widely reported to physically engage target cell surface receptors, such as integrins, in interactions leading to entry and subsequent infection. Results Subcellular fractionation was used to isolate early and late endosomes (EEs and LEs) by performing a series of centrifugations steps. Specifically, a centrifugation step post-homogenization was utilized to obtain the post-nuclear supernatant containing intact intracellular organelles in suspension. Successive fractionation via sucrose density gradient centrifugation was performed to isolate specific organelles including EEs and LEs. Intracellular KSHV trafficking was directly traced in the isolated endosomal fractions. Additionally, the subcellular fractionation approach demonstrates a key role for integrins in the endosomal trafficking of KSHV. The results obtained from fractionation studies corroborated those obtained by traditional imaging studies. Conclusions This study is the first of its kind to employ a sucrose flotation gradient assay to map intracellular KSHV trafficking in HFF cells. We are confident that such an approach will serve as a powerful tool to directly study intracellular trafficking of a virus, signaling events occurring on endosomal membranes, and dynamics of molecular events within endosomes that are crucial for uncoating and virus escape into the cytosol.
Collapse
Affiliation(s)
- Lia R Walker
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| | - Hosni A M Hussein
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| |
Collapse
|
50
|
Laval K, Favoreel HW, Van Cleemput J, Poelaert KCK, Brown IK, Verhasselt B, Nauwynck HJ. Entry of equid herpesvirus 1 into CD172a+ monocytic cells. J Gen Virol 2015; 97:733-746. [PMID: 26684016 DOI: 10.1099/jgv.0.000375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Equid herpesvirus 1 (EHV-1) causes respiratory disease, abortion and neurological disorders in horses. Cells from the myeloid lineage (CD172a+) are one of the main target cells of EHV-1 during primary infection. Recently, we showed that EHV-1 restricts and delays its replication in CD172a+ cells as part of an immune-evasive strategy to disseminate to target organs. Here, we hypothesize that a low efficiency of EHV-1 binding to and entry in CD172a+ cells is responsible for this restriction. Thus, we characterized EHV-1 binding and entry into CD172a+ cells, and showed that EHV-1 only bound to 15-20 % of CD172a+ cells compared with 70 % of RK-13 control cells. Enzymic removal of heparan sulphate did not reduce EHV-1 infection, suggesting that EHV-1 does not use heparan sulphate to bind and enter CD172a+ cells. In contrast, we found that treatment of cells with neuraminidase (NA) reduced infection by 85-100 % compared with untreated cells, whilst NA treatment of virus had no effect on infection. This shows that sialic acid residues present on CD172a+ cells are essential in the initiation of EHV-1 infection. We found that αVβ3 integrins are involved in the post-binding stage of CD172a+ cell infection. Using pharmacological inhibitors, we showed that EHV-1 does not enter CD172a+ cells via a clathrin- or caveolae-dependent endocytic pathway, nor by macropinocytosis, but requires cholesterol, tyrosine kinase, actin, dynamin and endosomal acidification, pointing towards a phagocytic mechanism. Overall, these results show that the narrow tropism of EHV-1 amongst CD172a+ cells is determined by the presence of specific cellular receptors.
Collapse
Affiliation(s)
- Kathlyn Laval
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Jolien Van Cleemput
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Katrien C K Poelaert
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Ivy K Brown
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Bruno Verhasselt
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185, 9000 Gent, Belgium
| | - Hans J Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|