1
|
Al-alem U, Al-Saruri A, Bamahros H, Mahmoud AM, Sible E, Hasan UA. Understanding the Role of Toll-Like Receptors 9 in Breast Cancer. Cancers (Basel) 2024; 16:2679. [PMID: 39123407 PMCID: PMC11311448 DOI: 10.3390/cancers16152679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/14/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Breast cancer is a significant global issue, ranking as the second most common cancer among women worldwide and a leading cause of cancer-related deaths. Although the exact causes of this increase remain unclear, factors such as genetics, epigenetics, obesity, sedentary lifestyle, tobacco use, and vitamin D deficiency have been implicated. The Toll-like receptor 9 (TLR9) is recognized for its role in inflammation and innate immunity; however, its specific involvement in breast cancer pathogenesis requires further investigation. This study aims to systematically review the existing literature on TLR9 expression in normal and cancerous breast tissue, providing current knowledge and identifying gaps. Relevant articles in English were from PubMed, Scopus, and Google Scholar, with the inclusion criteria focusing on studies evaluating TLR9 mRNA and protein expression. The review found that TLR9 mRNA and protein exhibit variable expressions in both normal and cancerous breast tissue, highlighting the need for further research to clarify TLR9's role in breast cancer.
Collapse
Affiliation(s)
- Umaima Al-alem
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alaa Al-Saruri
- Department Psychologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Hasan Bamahros
- College of Business Administration, University of Hail, Hail 55471, Saudi Arabia;
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Emily Sible
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, 69007 Lyon, France; (E.S.); (U.A.H.)
| | - Uzma A. Hasan
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, 69007 Lyon, France; (E.S.); (U.A.H.)
- Cancer Research Centre of Lyon, CRCL, INSERM U1052-CNRS UMR5286, 69008 Lyon, France
| |
Collapse
|
2
|
Sharma S, Chauhan D, Kumar S, Kumar R. Impact of HPV strains on molecular mechanisms of cervix cancer. Microb Pathog 2024; 186:106465. [PMID: 38036109 DOI: 10.1016/j.micpath.2023.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE Cervical cancer accounts for a high number of deaths worldwide. Risk factors are extensive for cervix cancer but Human papillomavirus (HPV) plays a prime role in its development. Different strains of HPV are prevalent globally, which show different grades of mortality and morbidity among women. This study is planned to evaluate the molecular mechanism of different strains of HPV infection and progression leading to cervix cancer. METHODS This review includes different research articles on cervix cancer progression reported from India and all over the world. RESULTS HPV 16 and 18 are prevalent strains using heparan sulfate-independent and dependent pathways for viral replication inside the cell. It also uses transcription mechanisms through NF-kappa B, FOXA-1, and AP-1 genes while strains like HPV-35, 45, and 52 are also predominant in India, which showed a very slow mechanism of progression due to which mortality rate is low after their infection with these strains. CONCLUSION HPV uses E6 and E7 proteins which activate NF-kappa B and AP-1 pathway which suppresses the tumor suppressor gene and activates cytokine production, causing inflammation and leading to a decrease in apoptosis due to Caspase-3 activation. In contrast, the E7 protein involves HOXA genes and decreases apoptotic factors due to which mortality and incidence rates are low in viruses that use E7 motifs. Some HPV strains employ the cap-dependent pathway, which is also associated with lower mortality and infection rates.
Collapse
Affiliation(s)
- Sunidhi Sharma
- Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, 176215, India.
| | - Disha Chauhan
- Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, 176215, India.
| | - Sunil Kumar
- Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, 176215, India.
| | - Ranjit Kumar
- Nagaland University, Lumami, Nagaland, 798627, India.
| |
Collapse
|
3
|
Jain M, Yadav D, Jarouliya U, Chavda V, Yadav AK, Chaurasia B, Song M. Epidemiology, Molecular Pathogenesis, Immuno-Pathogenesis, Immune Escape Mechanisms and Vaccine Evaluation for HPV-Associated Carcinogenesis. Pathogens 2023; 12:1380. [PMID: 38133265 PMCID: PMC10745624 DOI: 10.3390/pathogens12121380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Human papillomavirus (HPV) is implicated in over 90% of cervical cancer cases, with factors like regional variability, HPV genotype, the population studied, HPV vaccination status, and anatomical sample collection location influencing the prevalence and pathology of HPV-induced cancer. HPV-16 and -18 are mainly responsible for the progression of several cancers, including cervix, anus, vagina, penis, vulva, and oropharynx. The oncogenic ability of HPV is not only sufficient for the progression of malignancy, but also for other tumor-generating steps required for the production of invasive cancer, such as coinfection with other viruses, lifestyle factors such as high parity, smoking, tobacco chewing, use of contraceptives for a long time, and immune responses such as stimulation of chronic stromal inflammation and immune deviation in the tumor microenvironment. Viral evasion from immunosurveillance also supports viral persistence, and virus-like particle-based prophylactic vaccines have been licensed, which are effective against high-risk HPV types. In addition, vaccination awareness programs and preventive strategies could help reduce the rate and incidence of HPV infection. In this review, we emphasize HPV infection and its role in cancer progression, molecular and immunopathogenesis, host immune response, immune evasion by HPV, vaccination, and preventive schemes battling HPV infection and HPV-related cancers.
Collapse
Affiliation(s)
- Meenu Jain
- Department of Microbiology, Viral Research and Diagnostic Laboratory, Gajra Raja Medical College, Gwalior 474009, Madhya Pradesh, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Urmila Jarouliya
- SOS in Biochemistry, Jiwaji University, Gwalior 474011 Madhya Pradesh, India;
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Palo Alto, CA 94305, USA;
| | - Arun Kumar Yadav
- Department of Microbiology, Guru Gobind Singh Medical College and Hospital, Baba Farid University of Health Sciences, Faridkot 151203, Punjab, India;
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal;
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
4
|
Skelin J, Tomaić V. Comparative Analysis of Alpha and Beta HPV E6 Oncoproteins: Insights into Functional Distinctions and Divergent Mechanisms of Pathogenesis. Viruses 2023; 15:2253. [PMID: 38005929 PMCID: PMC10674601 DOI: 10.3390/v15112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Human papillomaviruses (HPVs) represent a diverse group of DNA viruses that infect epithelial cells of mucosal and cutaneous tissues, leading to a wide spectrum of clinical outcomes. Among various HPVs, alpha (α) and beta (β) types have garnered significant attention due to their associations with human health. α-HPVs are primarily linked to infections of the mucosa, with high-risk subtypes, such as HPV16 and HPV18, being the major etiological agents of cervical and oropharyngeal cancers. In contrast, β-HPVs are predominantly associated with cutaneous infections and are commonly found on healthy skin. However, certain β-types, notably HPV5 and HPV8, have been implicated in the development of non-melanoma skin cancers in immunocompromised individuals, highlighting their potential role in pathogenicity. In this review, we comprehensively analyze the similarities and differences between α- and β-HPV E6 oncoproteins, one of the major drivers of viral replication and cellular transformation, and how these impact viral fitness and the capacity to induce malignancy. In particular, we compare the mechanisms these oncoproteins use to modulate common cellular processes-apoptosis, DNA damage repair, cell differentiation, and the immune response-further shedding light on their shared and distinct features, which enable them to replicate at divergent locations of the human body and cause different types of cancer.
Collapse
Affiliation(s)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| |
Collapse
|
5
|
Gaghan C, Browning M, Fares AM, Abdul-Careem MF, Gimeno IM, Kulkarni RR. In Ovo Vaccination with Recombinant Herpes Virus of the Turkey-Laryngotracheitis Vaccine Adjuvanted with CpG-Oligonucleotide Provides Protection against a Viral Challenge in Broiler Chickens. Viruses 2023; 15:2103. [PMID: 37896880 PMCID: PMC10612038 DOI: 10.3390/v15102103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Infectious laryngotracheitis (ILT) is an economically important disease in chickens. We previously showed that an in ovo adjuvantation of recombinant herpesvirus of the turkey-Laryngotracheitis (rHVT-LT) vaccine with CpG-oligonucleotides (ODN) can boost vaccine-induced responses in one-day-old broiler chickens. Here, we evaluated the protective efficacy of in ovo administered rHVT-LT + CpG-ODN vaccination against a wild-type ILT virus (ILTV) challenge at 28 days of age and assessed splenic immune gene expression as well as cellular responses. A chicken-embryo-origin (CEO)-ILT vaccine administered in water at 14 days of age was also used as a comparative control for the protection assessment. The results showed that the rHVT-LT + CpG-ODN or the CEO vaccinations provided significant protection against the ILTV challenge and that the level of protection induced by both the vaccines was statistically similar. The protected birds had a significantly upregulated expression of interferon (IFN)γ or interleukin (IL)-12 cytokine genes. Furthermore, the chickens vaccinated with the rHVT-LT + CpG-ODN or CEO vaccine had a significantly higher frequency of γδ T cells and activated CD4+ or CD8+ T cells, compared to the unvaccinated-ILTV challenge control. Collectively, our findings suggest that CpG-ODN can be used as an effective adjuvant for rHVT-LT in ovo vaccination to induce protective immunity against ILT in broiler chickens.
Collapse
Affiliation(s)
- Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA (A.M.F.)
| | - Matthew Browning
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA (A.M.F.)
| | - Abdelhamid M. Fares
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA (A.M.F.)
| | - Mohamed Faizal Abdul-Careem
- Health Research Innovation Center 2C58, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Isabel M. Gimeno
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA (A.M.F.)
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA (A.M.F.)
| |
Collapse
|
6
|
Margul D, Yu C, AlHilli MM. Tumor Immune Microenvironment in Gynecologic Cancers. Cancers (Basel) 2023; 15:3849. [PMID: 37568665 PMCID: PMC10417375 DOI: 10.3390/cancers15153849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Gynecologic cancers have varying response rates to immunotherapy due to the heterogeneity of each cancer's molecular biology and features of the tumor immune microenvironment (TIME). This article reviews key features of the TIME and its role in the pathophysiology and treatment of ovarian, endometrial, cervical, vulvar, and vaginal cancer. Knowledge of the role of the TIME in gynecologic cancers has been rapidly developing with a large body of preclinical studies demonstrating an intricate yet dichotomous role that the immune system plays in either supporting the growth of cancer or opposing it and facilitating effective treatment. Many targets and therapeutics have been identified including cytokines, antibodies, small molecules, vaccines, adoptive cell therapy, and bacterial-based therapies but most efforts in gynecologic cancers to utilize them have not been effective. However, with the development of immune checkpoint inhibitors, we have started to see the rapid and successful employment of therapeutics in cervical and endometrial cancer. There remain many challenges in utilizing the TIME, particularly in ovarian cancer, and further studies are needed to identify and validate efficacious therapeutics.
Collapse
Affiliation(s)
| | | | - Mariam M. AlHilli
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Cleveland Clinic, Cleveland, OH 44195, USA; (D.M.); (C.Y.)
| |
Collapse
|
7
|
Hufbauer M, Rattay S, Hagen C, Quaas A, Pfister H, Hartmann G, Coch C, Akgül B. Poly(I:C) Treatment Prevents Skin Tumor Formation in the Preclinical HPV8 Transgenic Mouse Model. J Invest Dermatol 2023; 143:1197-1207.e3. [PMID: 36584911 DOI: 10.1016/j.jid.2022.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/21/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022]
Abstract
Actinic keratoses and cutaneous squamous cell carcinomas are associated with infections with human papillomavirus of genus beta (betaHPV) in immunosuppressed patients. To date, targeted therapy against betaHPV-associated skin cancer does not exist because of the large number of betaHPV without defined high-risk types. In this study, we hypothesized that the activation of innate antiviral immunity in the skin, asymptomatically infected with betaHPV, induces an antitumor response by in situ autovaccination and prevents the formation of betaHPV-associated skin cancer. To test this, we used the preclinical keratin-14-HPV8 transgenic mouse model, which develops skin tumors after mechanical wounding. Remarkably, treatment with the antiviral immune response activating polyinosinic-polycytidylic acid (poly[I:C]) completely prevented cutaneous tumor growth. The induction of the IFN-induced genes Cxcl10 and Ifit1 by poly(I:C) depended on MDA5 activation. Increased numbers of total and activated CD4 and CD8 T cells were detected in poly(I:C)-treated skin. T cells were found in the skin of poly(I:C)-treated mice but not in the skin tumors of untreated mice. T-cell depletion showed a predominant role of CD4 T cells in poly(I:C)-mediated tumor prevention. Our findings identify the MDA5 ligand poly(I:C) as a promising candidate for in situ autovaccination approaches, which might serve as a treatment strategy against betaHPV-related skin diseases.
Collapse
Affiliation(s)
- Martin Hufbauer
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Stephanie Rattay
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Christian Hagen
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany
| | - Alexander Quaas
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Herbert Pfister
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany; nextevidence GmbH, Munich, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Rimini M, Franco P, Bertolini F, Berardino DB, Giulia ZM, Stefano V, Andrikou K, Arcadipane F, Napolitano M, Buno LV, Alessandra GM, Olivero F, Ferreri F, Ricardi U, Cascinu S, Casadei-Gardini A. The Prognostic Role of Baseline Eosinophils in HPV-Related Cancers: a Multi-institutional Analysis of Anal SCC and OPC Patients Treated with Radical CT-RT. J Gastrointest Cancer 2023; 54:662-671. [PMID: 35915202 PMCID: PMC9342937 DOI: 10.1007/s12029-022-00850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND AIM Anal squamous cell carcinoma (SCC) and oropharyngeal cancer (OPC) are rare tumors associated with HPV infection. Bioumoral predictors of response to chemoradiation (CT-RT) are lacking in these settings. With the aim to find new biomarkers, we investigated the role of eosinophils in both HPV-positive anal SCC and HPV-related oropharyngeal cancer (OPC). METHODS We retrieved clinical and laboratory data of patients with HPV-positive anal SCC treated with CT-RT in 5 institutions, and patients with locally advanced OPC SCC treated with CT-RT in 2 institutions. We examined the association between baseline eosinophil count (the best cutoff has been evaluated by ROC curve analysis: 100 × 10^9/L) and disease-free survival (DFS). Unadjusted and adjusted hazard ratios by baseline characteristics were calculated using the Cox proportional hazards model. RESULTS Three hundred four patients with HPV-positive anal SCCs and 168 patients with OPCs (122 HPV-positive, 46 HPV-negative diseases) were analyzed. In anal SCC, low eosinophil count (< 100 × 10^9/L) correlates to a better DFS (HR = 0.59; p = 0.0392); likewise, in HPV-positive OPC, low eosinophil count correlates to a better DFS (HR = 0.50; p = 0.0428). In HPV-negative OPC, low eosinophil count confers worse DFS compared to high eosinophil count (HR = 3.53; p = 0.0098). After adjustment for age and sex, eosinophils were confirmed to be independent prognostic factors for DFS (HR = 4.55; p = 0.0139). CONCLUSION Eosinophil count could be used as a prognostic factor in anal HPV-positive SCC. The worse prognosis showed in HPV-positive patients with high eosinophil count is likely to derive from an unfavorable interaction between the HPV-induced immunomodulation and eosinophils, which may hamper the curative effect of RT.
Collapse
Affiliation(s)
- Margherita Rimini
- Oncologic Department, IRCCS San Raffaele Scientific Institute Hospital, 20019, Milan, Italy
| | - Pierfrancesco Franco
- Department of Oncology - Radiation Oncology, University of Turin School of Medicine, Via Genova 3, 10126, Turin, Italy.
| | - Federica Bertolini
- Department of Oncology and Hematology, Division of Oncology, University Hospital Modena, Modena, Italy
| | - De Bari Berardino
- Radiation Oncology, Centre Hospitalier Universitaire de Besançon, 25000, Besançon cedex, France
- Radiation Oncology, Réseau Hospitalier Neuchâtelois, CH-2300, La Chaux-de-Fonds, Switzerland
| | - Zampino Maria Giulia
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Vegge Stefano
- Radiation Oncology Department, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Kalliopi Andrikou
- Oncologic Department, Istituto Scientifico Romagnolo per lo Studio e la Cura Dei Tumori, IRCCS, Meldola (Forlì), Italy
| | - Francesca Arcadipane
- Department of Oncology - Radiation Oncology, University of Turin School of Medicine, Via Genova 3, 10126, Turin, Italy
| | - Martina Napolitano
- Department of Oncology and Hematology, Division of Oncology, University Hospital Modena, Modena, Italy
| | - Lavajo Vieira Buno
- Radiation Oncology, Centre Hospitalier Universitaire de Besançon, 25000, Besançon cedex, France
| | | | - Francesco Olivero
- Department of Oncology - Radiation Oncology, University of Turin School of Medicine, Via Genova 3, 10126, Turin, Italy
| | - Filippo Ferreri
- Department of Oncology - Radiation Oncology, University of Turin School of Medicine, Via Genova 3, 10126, Turin, Italy
| | - Umberto Ricardi
- Department of Oncology - Radiation Oncology, University of Turin School of Medicine, Via Genova 3, 10126, Turin, Italy
| | - Stefano Cascinu
- Oncologic Department, IRCCS San Raffaele Scientific Institute Hospital, 20019, Milan, Italy
| | - Andrea Casadei-Gardini
- Oncologic Department, IRCCS San Raffaele Scientific Institute Hospital, 20019, Milan, Italy
| |
Collapse
|
9
|
Zhang C, Yang Z, Luo P, Ye M, Gong P, Gong Q, Mei B. Association of TLR4 and TLR9 gene polymorphisms with the risk and progression of cervical lesions in HPV-infected women. Biomark Med 2023; 17:133-142. [PMID: 37097031 DOI: 10.2217/bmm-2022-0702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Aim: Toll-like receptors involved in tumor-associated inflammatory response, this study aimed to investigate the role of TLR4 and TLR9 gene polymorphisms in the risk and progression of HPV-related cervical lesions. Materials & methods: A total of 220 cervical lesion patients and 227 healthy controls were enrolled. Single-nucleotide polymorphisms were genotyped using PCR-restriction fragment length polymorphism. Results: A significantly decreased risk of cervical lesions was observed to be associated with the TLR4 rs10116253 (C), rs1927911 (T) and rs10759931 (G) mutant alleles. rs187084-rs1927911-HPV-16/18 was the best interaction model to affect cervical lesion risk. Conclusion: TLR4 rs10116253, rs1927911 and rs10759931 were potential biomarkers for cervical lesion susceptibility.
Collapse
Affiliation(s)
- Chunlin Zhang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434000, China
| | - Zhiping Yang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434000, China
| | - Ping Luo
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434000, China
| | - Mengxia Ye
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434000, China
| | - Ping Gong
- Department of Pathology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434000, China
| | - Quan Gong
- Department of Immunology, Health Science Center, Yangtze University, Jingzhou, Hubei, 434000, China
| | - Bing Mei
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434000, China
| |
Collapse
|
10
|
Andrei EC, Munteanu MC, Busuioc CJ, Pisoschi CG, Mateescu GO, Drăcea SA, Baniţă IM. Involvement of TLR9 in priming the immune response in oral papillomatosis induced by low-risk HPV. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2023; 64:181-188. [PMID: 37518875 PMCID: PMC10520400 DOI: 10.47162/rjme.64.2.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Oral papillomatosis represents a benign lesion of the oral mucosa often induced by human papillomavirus (HPV) or having a non-infection local or general etiology. HPVs are very well adapted and efficient viruses able to produce changes in the immune system, endowed with the ability to replicate in the keratinocytes and to remain silent. The natural evolution of HPV infection is different, depending on the efficiency of the innate immune system. The purpose of this study was to explore Toll-like receptor 9 (TLR9) immunohistochemical expression in low-risk (LR)-HPV oral infection and its ability to facilitate an efficient immune response by activating the macrophages, which serve as main antigen-presenting cells. Samples of two groups of oral mucosae - LR-HPV-positive and HPV-negative - were processed for immunohistochemistry technique and incubated with antibody against TLR9 and cluster of differentiation 68 (CD68). Image analysis and morphometry were conducted to assess the intensity of TLR9 immune signal in the epithelium and the number of macrophages labeled by CD68. We found a statistically significant difference between macrophage count for the subjects in HPV-positive and HPV-negative groups; thought no significant differences of TLR9 immune signal was noted, which demonstrates a diminished immune response in HPV-positive group, probably influencing the time of lesion's clearance.
Collapse
Affiliation(s)
| | - Maria Cristina Munteanu
- Department of Oro-Maxillary Surgery, University of Medicine and Pharmacy of Craiova, Romania
| | | | | | | | - Sanda Amelia Drăcea
- Department of Biophysics, University of Medicine and Pharmacy of Craiova, Romania
| | - Ileana Monica Baniţă
- Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
11
|
Gaghan C, Browning M, Cortes AL, Gimeno IM, Kulkarni RR. Effect of CpG-Oligonucleotide in Enhancing Recombinant Herpes Virus of Turkey-Laryngotracheitis Vaccine-Induced Immune Responses in One-Day-Old Broiler Chickens. Vaccines (Basel) 2023; 11:vaccines11020294. [PMID: 36851171 PMCID: PMC9965839 DOI: 10.3390/vaccines11020294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Infectious laryngotracheitis (ILT) is an economically important disease of chickens. While the recombinant vaccines can reduce clinical disease severity, the associated drawbacks are poor immunogenicity and delayed onset of immunity. Here, we used CpG-oligonucleotides (ODN) as an in ovo adjuvant in boosting recombinant herpesvirus of turkey-laryngotracheitis (rHVT-LT) vaccine-induced responses in one-day-old broiler chickens. Two CpG-ODN doses (5 and 10 μg/egg) with no adverse effect on the vaccine-virus replication or chick hatchability were selected for immune-response evaluation. Results showed that while CpG-ODN adjuvantation induced an increased transcription of splenic IFNγ and IL-1β, and lung IFNγ genes, the IL-1β gene expression in the lung was significantly downregulated compared to the control. Additionally, the transcription of toll-like receptor (TLR)21 in the spleen and lung and inducible nitric oxide synthase (iNOS) in the spleen of all vaccinated groups was significantly reduced. Furthermore, splenic cellular immunophenotyping showed that the CpG-ODN-10μg adjuvanted vaccination induced a significantly higher number of macrophages, TCRγδ+, and CD4+ T cells as well as a higher frequency of activated T cells (CD4+CD44+) when compared to the control. Collectively, the findings suggested that CpG-ODN can boost rHVT-LT-induced immune responses in day-old chicks, which may help in anti-ILT defense during their later stages of life.
Collapse
Affiliation(s)
| | | | | | - Isabel M. Gimeno
- Correspondence: (I.M.G.); (R.R.K.); Tel.: +1-919-513-6852 (I.M.G.); +1-919-513-6277 (R.R.K.)
| | - Raveendra R. Kulkarni
- Correspondence: (I.M.G.); (R.R.K.); Tel.: +1-919-513-6852 (I.M.G.); +1-919-513-6277 (R.R.K.)
| |
Collapse
|
12
|
King KM, Rajadhyaksha EV, Tobey IG, Van Doorslaer K. Synonymous nucleotide changes drive papillomavirus evolution. Tumour Virus Res 2022; 14:200248. [PMID: 36265836 PMCID: PMC9589209 DOI: 10.1016/j.tvr.2022.200248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Papillomaviruses have been evolving alongside their hosts for at least 450 million years. This review will discuss some of the insights gained into the evolution of this diverse family of viruses. Papillomavirus evolution is constrained by pervasive purifying selection to maximize viral fitness. Yet these viruses need to adapt to changes in their environment, e.g., the host immune system. It has long been known that these viruses evolved a codon usage that doesn't match the infected host. Here we discuss how papillomavirus genomes evolve by acquiring synonymous changes that allow the virus to avoid detection by the host innate immune system without changing the encoded proteins and associated fitness loss. We discuss the implications of studying viral evolution, lifecycle, and cancer progression.
Collapse
Affiliation(s)
- Kelly M King
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Esha Vikram Rajadhyaksha
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA; Department of Physiology and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Isabelle G Tobey
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA; The BIO5 Institute, The Department of Immunobiology, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, Arizona, USA.
| |
Collapse
|
13
|
Dai W, Gui L, Du H, Li S, Wu R. The association of cervicovaginal Langerhans cells with clearance of human papillomavirus. Front Immunol 2022; 13:918190. [PMID: 36311788 PMCID: PMC9596771 DOI: 10.3389/fimmu.2022.918190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022] Open
Abstract
Human papillomavirus (HPV) clearance is important in eliminating cervical cancer which contributes to high morbidity and mortality in women. Nevertheless, it remains largely unknown about key players in clearing pre-existing HPV infections. HPV antigens can be detected by the most important cervical antigen-presenting cells (Langerhans cells, LCs), of which the activities can be affected by cervicovaginal microbiota. In this review, we first introduce persistent HPV infections and then describe HPV-suppressed LCs activities, including but not limited to antigen uptake and presentation. Given specific transcriptional profiling of LCs in cervical epithelium, we also discuss the impact of cervicovaginal microbiota on LCs activation as well as the promise of exploring key microbial players in activating LCs and HPV-specific cellular immunity.
Collapse
Affiliation(s)
- Wenkui Dai
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Liming Gui
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hui Du
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Shuaicheng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ruifang Wu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
- *Correspondence: Ruifang Wu,
| |
Collapse
|
14
|
Human Virome in Cervix Controlled by the Domination of Human Papillomavirus. Viruses 2022; 14:v14092066. [PMID: 36146871 PMCID: PMC9503738 DOI: 10.3390/v14092066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022] Open
Abstract
Although other co-viral infections could also be considered influencing factors, cervical human papillomavirus (HPV) infection is the main cause of cervical cancer. Metagenomics have been employed in the NGS era to study the microbial community in each habitat. Thus, in this investigation, virome capture sequencing was used to examine the virome composition in the HPV-infected cervix. Based on the amount of HPV present in each sample, the results revealed that the cervical virome of HPV-infected individuals could be split into two categories: HPV-dominated (HD; ≥60%) and non-HPV-dominated (NHD; <60%). Cervical samples contained traces of several human viral species, including the molluscum contagiosum virus (MCV), human herpesvirus 4 (HHV4), torque teno virus (TTV), and influenza A virus. When compared to the HD group, the NHD group had a higher abundance of several viruses. Human viral diversity appears to be influenced by HPV dominance. This is the first proof that the diversity of human viruses in the cervix is impacted by HPV abundance. However, more research is required to determine whether human viral variety and the emergence of cancer are related.
Collapse
|
15
|
Zare R, Anvari K, Mohajertehran F, Farshbaf A, Pakfetrat A, Ansari AH, Ghelichli M, Mohtasham N. Association between Tissue Expression of Toll-Like Receptor and Some Clinicopathological Indices in Oral Squamous Cell Carcinoma. Rep Biochem Mol Biol 2022; 11:200-208. [PMID: 36164625 PMCID: PMC9455186 DOI: 10.52547/rbmb.11.2.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 06/16/2023]
Abstract
BACKGROUND The oral squamous cell carcinoma (OSCC) composes about 90% of all head and neck cancers. The toll-like receptor (TLR)+ immune cells have potential of invasion and malignancy transformation. The aim of this study was assessment of possible associations between clinicopathological indices and TLR2 and TLR9 gene expression in OSCC. METHODS Forty-two OSCC samples with related healthy margins including 25 early and 17 advanced stages were gathered. The samples were classified histologically from grade I to II. The expression of TLR2 and TLR2 was evaluated by Real-time PCR. The patient's disease-free survival (DFS) and overall survival (OS) were analyzed using SPSS V.23 software. RESULTS The expression of TLR2 and TLR9 genes in tumor tissues (especially in grade I and II) were higher than healthy surgical margin tissue (p< 0.001). TLR9 expression in grade II was statistically significant than grade I in tumor tissue (p< 0.001). TLR9 expression in advanced stage was statistically significant in compare to early stage (p= 0.012). In advanced stage both overall survival (p= 0.029) and disease-free survival (p= 0.012) were statistically lower than early stage. The follow-up time to recurrence in advanced stage was statistically lower than early stage (p= 0.007). CONCLUSION Overexpression of TLRs 2, 9 play role in the pathogenesis and tumor development of OSCC and can be applied as biomarker in prognostic approaches.
Collapse
Affiliation(s)
- Reza Zare
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Kazem Anvari
- Department of Radiotherapy Oncology and Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farnaz Mohajertehran
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alieh Farshbaf
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Atessa Pakfetrat
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Houshang Ansari
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Ghelichli
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Douzandeh-Mobarrez B, Kariminik A, Kazemi Arababadi M, Kheirkhah B. TLR9 in the Human Papilloma Virus Infections: Friend or Foe? Viral Immunol 2022; 35:457-464. [PMID: 35588473 DOI: 10.1089/vim.2021.0223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Immune system plays dual roles during human papilloma virus (HPV) infections, from defense against the virus to induction or stimulation of the HPV-related cancers. It appears that various differences within the immune-related genes and the functions of the immunological parameters of the patients are the main factors responsible for the roles played by immune system during HPV infections. Toll-like receptors (TLRs) play key roles in the recognition of viruses and activation of immune responses. The molecules also can alter the target cell intracellular signaling and may participate in the transformation of the infected cells. TLR9 is the unique intracellular member of TLRs that recognize foreign DNA, including viral DNA. Thus, TLR9 may play significant roles in the defense against HPV and its related cancers. This review article discusses TLR9 antiviral and pathological roles during HPV infection.
Collapse
Affiliation(s)
| | - Ashraf Kariminik
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Babak Kheirkhah
- Department of Veterinary Medicine, Baft Branch, Islamic Azad University, Baft, Iran
| |
Collapse
|
17
|
Abstract
Upon infection, DNA viruses can be sensed by pattern recognition receptors (PRRs), leading to the activation of type I and III interferons to block infection. Therefore, viruses must inhibit these signaling pathways, avoid being detected, or both. Papillomavirus virions are trafficked from early endosomes to the Golgi apparatus and wait for the onset of mitosis to complete nuclear entry. This unique subcellular trafficking strategy avoids detection by cytoplasmic PRRs, a property that may contribute to the establishment of infection. However, as the capsid uncoats within acidic endosomal compartments, the viral DNA may be exposed to detection by Toll-like receptor 9 (TLR9). In this study, we characterized two new papillomaviruses from bats and used molecular archeology to demonstrate that their genomes altered their nucleotide compositions to avoid detection by TLR9, providing evidence that TLR9 acts as a PRR during papillomavirus infection. Furthermore, we showed that TLR9, like other components of the innate immune system, is under evolutionary selection in bats, providing the first direct evidence for coevolution between papillomaviruses and their hosts. Finally, we demonstrated that the cancer-associated human papillomaviruses show a reduction in CpG dinucleotides within a TLR9 recognition complex.
Collapse
|
18
|
Vanajothi R, Srikanth N, Vijayakumar R, Palanisamy M, Bhavaniramya S, Premkumar K. HPV-mediated Cervical Cancer: A Systematic review on Immunological Basis, Molecular Biology and Immune evasion mechanisms. Curr Drug Targets 2021; 23:782-801. [PMID: 34939539 DOI: 10.2174/1389450123666211221160632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human papillomavirus (HPV), one of the most frequently transmitted viruses globally, causing several malignancies including cervical cancer. AIM Owing to their unique pathogenicity HPV viruses can persist in the host organism for a longer duration than other virus types, to complete their lifecycle. During its association with the host, HPV causes various pathological conditions affecting the immune system by evading the host immune- mechanisms leading to the progression of various diseases, including cancer. METHOD To date, ~ 150 serotypes were identified, and certain high-risk HPV types are known to be associated with genital warts and cervical cancer. As of now, two prophylactic vaccines are in use for the treatment of HPV infection, however, no effective antiviral drug is available for HPV-associated disease/infections. Numerous clinical and laboratory studies are being investigated to formulate an effective and specific vaccine again HPV infections and associated diseases. RESULT As the immunological basis of HPV infection and associated disease progress persist indistinctly, deeper insights on immune evasion mechanism and molecular biology of disease would aid in developing an effective vaccine. CONCLUSION Thus this review focuses, aiming a systematic review on the immunological aspects of HPV-associated cervical cancer by uncovering immune evasion strategies adapted by HPV.
Collapse
Affiliation(s)
- Ramar Vanajothi
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli-620024. India
| | - Natarajan Srikanth
- Department of Integrative Biology, Vellore Institute of Technology, Vellore. India
| | - Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952. Saudi Arabia
| | - Manikandan Palanisamy
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952. Saudi Arabia
| | - Sundaresan Bhavaniramya
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences, University, Chennai-600052, Tamil Nadu. India
| | - Kumpati Premkumar
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli-620024. India
| |
Collapse
|
19
|
Jak HPV wysokiego ryzyka indukuje optymalne środowisko dla własnej replikacji w różnicującym się nabłonku. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Wirusy brodawczaka ludzkiego (HPV) są często czynnikami wywołującymi niegroźne dla człowieka infekcje, ale przetrwałe zakażenie niektórymi typami HPV jest poważnym zagrożeniem dla zdrowia, ponieważ jest związane z wieloma nowotworami, w tym z rakiem szyjki macicy oraz rosnącą liczbą nowotworów głowy i szyi. Cykl replikacyjny HPV jest ściśle zależny od różnicowania komórek wielowarstwowego nabłonka, co oznacza, że genom wirusa musi być replikowany za pomocą różnych mechanizmów na różnych etapach różnicowania komórek. Ustanowienie infekcji i utrzymywanie genomu wirusa zachodzi w proliferujących komórkach nabłonka, gdzie dostępność czynników replikacji jest optymalna dla wirusa. Jednak produktywna faza cyklu rozwojowego wirusa, w tym produktywna replikacja, późna ekspresja genów i wytwarzanie wirionów, zachodzi w wyniku różnicowania się nabłonka w komórkach, które prawidłowo opuszczają cykl komórkowy. Wirus wykorzystuje wiele szlaków sygnalizacyjnych komórki, w tym odpowiedź na uszkodzenia DNA (DDR, DNA damage response) do realizacji produktywnej replikacji własnego genomu. Zrozumienie mechanizmów związanych z cyklem replikacyjnym HPV jest potrzebne do ustalenia właściwego podejścia terapeutycznego do zwalczania chorób powodowanych przez HPV.
Collapse
|
20
|
Sahu U, Khare P. Role of interleukin-17 in human papillomavirus infection and associated malignancies. Microb Pathog 2021; 161:105294. [PMID: 34798279 DOI: 10.1016/j.micpath.2021.105294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023]
Abstract
Human papillomavirus infection is among the leading viral infections in the world, causing severe mortality and morbidity. The virus mainly targets the female genital tract-cervix, vulva, anus but it is also reported to infect the lungs and oropharyngeal region of the body. The host immune response plays a vital role in the persistence of viral infection. Interleukin 17 (IL-17) is mainly secreted by Th17 cells and mediates the immune response that enhances the disease severity in HPV infection. IL-17 is reported to promote lesions and tumour progression by creating a hyperinflammatory condition leading to cancer. The current minireview summarizes the pathogenic role of IL-17 in HPV infection and HPV-induced malignancies. Further study on IL-17 associated pathology of HPV infection would be useful in developing therapeutic measures.
Collapse
Affiliation(s)
- Utkarsha Sahu
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Prashant Khare
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
21
|
Vats A, Trejo-Cerro O, Thomas M, Banks L. Human papillomavirus E6 and E7: What remains? Tumour Virus Res 2021; 11:200213. [PMID: 33716206 PMCID: PMC7972986 DOI: 10.1016/j.tvr.2021.200213] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Decades of research on the human papillomavirus oncogenes, E6 and E7, have given us huge amounts of data on their expression, functions and structures. We know much about the very many cellular proteins and pathways that they influence in one way or another. However, much of this information is quite discrete, referring to one activity examined under one condition. It is now time to join the dots to try to understand a larger picture: how, where and when do all these interactions occur... and why? Examining these questions will also show how many of the yet obscure cellular processes work together for cellular and tissue homeostasis in health and disease.
Collapse
Affiliation(s)
- Arushi Vats
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Oscar Trejo-Cerro
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Miranda Thomas
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy.
| | - Lawrence Banks
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| |
Collapse
|
22
|
Shang J, Zheng Y, Mo J, Wang W, Luo Z, Li Y, Chen X, Zhang Q, Wu K, Liu W, Wu J. Sox4 represses host innate immunity to facilitate pathogen infection by hijacking the TLR signaling networks. Virulence 2021; 12:704-722. [PMID: 33517839 PMCID: PMC7894441 DOI: 10.1080/21505594.2021.1882775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) are essential for the protection of the host from pathogen infections by initiating the integration of contextual cues to regulate inflammation and immunity. However, without tightly controlled immune responses, the host will be subjected to detrimental outcomes. Therefore, it is important to balance the positive and negative regulations of TLRs to eliminate pathogen infection, yet avert harmful immunological consequences. This study revealed a distinct mechanism underlying the regulation of the TLR network. The expression of sex-determining region Y-box 4 (Sox4) is induced by virus infection in viral infected patients and cultured cells, which subsequently represses the TLR signaling network to facilitate viral replication at multiple levels by a distinct mechanism. Briefly, Sox4 inhibits the production of myeloid differentiation primary response gene 88 (MyD88) and most of the TLRs by binding to their promoters to attenuate gene transcription. In addition, Sox4 blocks the activities of the TLR/MyD88/IRAK4/TAK1 and TLR/TRIF/TRAF3/TBK1 pathways by repressing their key components. Moreover, Sox4 represses the activation of the nuclear factor kappa-B (NF-κB) through interacting with IKKα/α, and attenuates NF-kB and IFN regulatory factors 3/7 (IRF3/7) abundances by promoting protein degradation. All these contributed to the down-regulation of interferons (IFNs) and IFN-stimulated gene (ISG) expression, leading to facilitate the viral replications. Therefore, we reveal a distinct mechanism by which viral pathogens evade host innate immunity and discover a key regulator in host defense.
Collapse
Affiliation(s)
- Jian Shang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University , Guangzhou, China
| | - Yuan Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University , Wuhan, China
| | - Jiayin Mo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University , Wuhan, China
| | - Wenbiao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University , Guangzhou, China
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University , Guangzhou, China
| | - Yongkui Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University , Guangzhou, China
| | - Xulin Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University , Guangzhou, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University , Guangzhou, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University , Wuhan, China
| | - Weiyong Liu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University , Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University , Guangzhou, China.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University , Wuhan, China
| |
Collapse
|
23
|
Jee B, Yadav R, Pankaj S, Shahi SK. Immunology of HPV-mediated cervical cancer: current understanding. Int Rev Immunol 2020; 40:359-378. [PMID: 32853049 DOI: 10.1080/08830185.2020.1811859] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human papilloma virus (HPV) has emerged as a primary cause of cervical cancer worldwide. HPV is a relatively small (55 nm in diameter) and non-enveloped virus containing approximately 8 kb long double stranded circular DNA genome. To date, 228 genotypes of HPV have been identified. Although all HPV infections do not lead to the development of malignancy of cervix, only persistent infection of high-risk types of HPV (mainly with HPV16 and HPV18) results in the disease. In addition, the immunity of the patients also acts as a key determinant in the carcinogenesis. Since, no HPV type specific medication is available for the patient suffering with cervical cancer, hence, a deep understanding of the disease etiology may be vital for developing an effective strategy for its prevention and management. From the immunological perspectives, the entire mechanisms of disease progression still remain unclear despite continuous efforts. In the present review, the recent developments in immunology of HPV-mediated cervix carcinoma were discussed. At the end, the prevention of disease using HPV type specific recombinant vaccines was also highlighted.
Collapse
Affiliation(s)
- Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Renu Yadav
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Sangeeta Pankaj
- Department of Gynecological Oncology, Regional Cancer Centre, Indira Gandhi Institute of Medical Sciences, Patna, India
| | - Shivendra Kumar Shahi
- Department of Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, India
| |
Collapse
|
24
|
Yadav S, Verma V, Singh Dhanda R, Yadav M. Insights into the toll-like receptors in sexually transmitted infections. Scand J Immunol 2020; 93:e12954. [PMID: 32762084 DOI: 10.1111/sji.12954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/10/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are like soldiers of an innate immune system, which protects vital biological processes against invading pathogens. TLR signalling pathways help in the removal of pathogens and mediate well-established inflammatory processes. However, these processes may also aid in the development or augmentation of an infection or an autoimmune disease. Recent studies have delineated TLR polymorphism's role in the loss of function, making hosts more resistant or vulnerable to the development of an infection. In this review, we have discussed the association of TLRs with sexually transmitted infections (STIs), especially to the pathogen-specific ligands. We have also assessed the impact on TLR downstream signalling and the maintenance of cellular homeostasis during immune responses. Besides, we have discussed the role of TLRs single nucleotide polymorphisms in various STIs. Since TLRs are known to play a part in defence mechanisms and in aiding infections therefore, a thorough understanding of TLRs structure and molecular mechanisms is required to explain how they can influence the outcome of an STI. Such a strategy may lead to the development of novel and useful immunotherapeutic approaches to control pathogen progression and prevent transmission.
Collapse
Affiliation(s)
- Sonal Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | - Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | | | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi, India.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
25
|
Rai KR, Chen B, Zhao Z, Chen Y, Hu J, Liu S, Maarouf M, Li Y, Xiao M, Liao Y, Chen JL. Robust expression of p27Kip1 induced by viral infection is critical for antiviral innate immunity. Cell Microbiol 2020; 22:e13242. [PMID: 32596986 DOI: 10.1111/cmi.13242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022]
Abstract
Influenza A virus (IAV) infection regulates the expression of numerous host genes. However, the precise mechanism underlying implication of these genes in IAV pathogenesis remains largely unknown. Here, we employed isobaric tags for relative and absolute quantification (iTRAQ) to identify host proteins regulated by IAV infection. iTRAQ analysis of mouse lungs infected or uninfected with IAV showed a total of 167 differentially upregulated proteins in response to the viral infection. Interestingly, we observed that p27Kip1, a potent cyclin-dependent kinase inhibitor, was markedly induced by IAV both at mRNA and protein levels through in vitro and in vivo studies. Furthermore, it was shown that innate immune signalling positively regulated p27Kip1 expression in response to IAV infection. Ectopic expression of p27Kip1 in A549 cells dramatically inhibited IAV replication, whereas, p27Kip1 knockdown significantly enhanced the virus replication. in vivo experiments demonstrated that p27Kip1 knockout (KO) mice were more susceptible to IAV than wild-type (WT) mice: exhibiting higher viral load in lung tissue, faster body-weight loss, reduced survival rate and more severe organ damage. Moreover, we found that p27Kip1 overexpression facilitated the degradation of viral NS1 protein, caused a dramatic STAT1 activation and promoted the expression of IFN-β and several critical antiviral interferon-stimulated genes (ISGs). Increased p27Kip1 expression also restricted infections of several other viruses. Conversely, IAV-infected p27Kip1 KO mice exhibited a sharp increase in NS1 protein accumulation, reduced level of STAT1 activation and decreased expression of IFN-β and the ISGs in the lung compared to WT animals. These findings reveal a key role of p27Kip1 in enhancing antiviral innate immunity.
Collapse
Affiliation(s)
- Kul Raj Rai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghui Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiayue Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yingying Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meng Xiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Liao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
26
|
Ferreira AR, Ramalho AC, Marques M, Ribeiro D. The Interplay between Antiviral Signalling and Carcinogenesis in Human Papillomavirus Infections. Cancers (Basel) 2020; 12:cancers12030646. [PMID: 32164347 PMCID: PMC7139948 DOI: 10.3390/cancers12030646] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
Human papillomaviruses (HPV) are the causative agents of the most common sexually transmitted infection worldwide. While infection is generally asymptomatic and can be cleared by the host immune system, when persistence occurs, HPV can become a risk factor for malignant transformation. Progression to cancer is actually an unintended consequence of the complex HPV life cycle. Different antiviral defence mechanisms recognize HPV early in infection, leading to the activation of the innate immune response. However, the virus has evolved several specific strategies to efficiently evade the antiviral immune signalling. Here, we review and discuss the interplay between HPV and the host cell innate immunity. We further highlight the evasion strategies developed by different HPV to escape this cellular response and focus on the correlation with HPV-induced persistence and tumorigenesis.
Collapse
Affiliation(s)
| | | | | | - Daniela Ribeiro
- Correspondence: ; Tel.: +351-234-247 014; Fax: +351-234-372-587
| |
Collapse
|
27
|
Human Papillomavirus and carcinogenesis: Novel mechanisms of cell communication involving extracellular vesicles. Cytokine Growth Factor Rev 2020; 51:92-98. [PMID: 31973992 PMCID: PMC7108386 DOI: 10.1016/j.cytogfr.2019.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
A group of mucosal HPVs are the causative agents of cervical cancer and are associated to other cancers. Certain cutaneous HPVs are involved in the development of cutaneous squamous cell carcinoma. EVs released by HPV+ cells convey a specific cargo of mRNAs and microRNAs. The EV delivery from HPV+ cells to non-infected recipient cells may represent a novel mechanism of tumorigenesis promotion.
A small group of mucosal Human Papillomaviruses are the causative agents of cervical cancer and are also associated with other types of cancers. Certain cutaneous Human Papillomaviruses seem to have a role as co-factors in the UV-induced carcinogenesis of the skin. The main mechanism of the tumorigenesis induced by Human Papillomaviruses is linked to the transforming activity of the viral E6 and E7 oncoproteins. However, other mechanisms, such as the gene expression control by specific microRNAs expression and deregulation of immune inflammatory mediators, may be important in the process of transformation. In this context, the release of Extracellular Vesicles with a specific cargo (microRNAs involved in tumorigenesis, mRNAs of viral oncoproteins, cytokines, chemokines) appears to play a key role.
Collapse
|
28
|
Zhou C, Tuong ZK, Frazer IH. Papillomavirus Immune Evasion Strategies Target the Infected Cell and the Local Immune System. Front Oncol 2019; 9:682. [PMID: 31428574 PMCID: PMC6688195 DOI: 10.3389/fonc.2019.00682] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with human papillomavirus (HPV) initiates ~5% of all human cancers, and particularly cervical and oropharyngeal cancers. HPV vaccines prevent HPV infection, but do not eliminate existing HPV infections. Papillomaviruses induce hyperproliferation of epithelial cells. In this review we discuss how hyperproliferation renders epithelial cells less sensitive to immune attack, and impacts upon the efficiency of the local immune system. These observations have significance for the design of therapeutic HPV cancer immunotherapies.
Collapse
Affiliation(s)
- Chenhao Zhou
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Zewen Kelvin Tuong
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.,Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ian Hector Frazer
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
29
|
Rezasoltani S, Khatibi S, Pezeshkiyan Z, Nazemalhosseini-Mojarad E, Sharafkhah M, Sadeghi A, Asadzadeh Aghdaei H, Zali MR. Investigating the TLR9 mRNA Expression Level in Different Histological Types of Colorectal Polyps. Asian Pac J Cancer Prev 2019; 20:2299-2302. [PMID: 31450898 PMCID: PMC6852833 DOI: 10.31557/apjcp.2019.20.8.2299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Indexed: 01/14/2023] Open
Abstract
Toll-like receptor 9 (TLR9) is a cellular DNA receptor of the innate immune system which plays a pivotal role in inflammatory response. Recently, changing expression levels of TLR9 has been observed in a wide range of cancer cells; however, there is little information about colorectal polyps. Herein, we assessed the mRNA expression of TLR9 in different colorectal polyp types compared to normal group in order to investigate its expression level during CRC initiation. Fifty-four biopsy samples from colorectal polyp patients and from 20 healthy subjects were collected. The mucosal mRNA expression level of TLR9 gene was identified by real time PCR. Fold change of gene expression was evaluated by 2-ΔΔct method. There was a significant relationship between the lower expression of TLR9 gene in the polyp cases compared to normal individuals (P value = 0.0005), Also, decreased TLR9 mRNA expression was obtained in adenomas in contrast to hyperplastic and normal groups (P value = 0.0008). Based on the current results, we hypothesized that aberrant surface expression of TLR9 on tumor cells may promote the growth and invasion of colorectal polyps. Further, TLR9 modulation may have an important impact on the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sama Rezasoltani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Khatibi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Pezeshkiyan
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Sharafkhah
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Venuti A, Lohse S, Tommasino M, Smola S. Cross-talk of cutaneous beta human papillomaviruses and the immune system: determinants of disease penetrance. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180287. [PMID: 30955489 PMCID: PMC6501898 DOI: 10.1098/rstb.2018.0287] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Human papillomaviruses (HPVs) infect the epithelia of skin or mucosa, where they can induce hyperproliferative lesions. More than 220 different HPV types have been characterized and classified into five different genera. Mucosal high-risk HPVs are causative for cancers of the anogenital region and oropharynx. Clinical data from patients with the rare genetic disorder epidermodysplasia verruciformis (EV) indicate that genus beta-HPVs cooperate with ultraviolet (UV) radiation in the development of cutaneous squamous cell carcinoma. In addition, epidemiological and biological findings indicate that beta-HPV types play a role in UV-mediated skin carcinogenesis also in non-EV individuals. However, the mechanisms used by these cutaneous viruses to promote epithelial carcinogenesis differ significantly from those of mucosal HPVs. Recent studies point to a delicate cross-talk of beta-HPVs with the cell-autonomous immunity of the host keratinocytes and the local immune microenvironment that eventually determines the fate of cutaneous HPV infection and the penetrance of disease. This review gives an overview of the critical interactions of genus beta-HPVs with the local immune system that allow the virus to complete its life cycle, to escape from extrinsic immunity, and eventually to cause chronic inflammation contributing to skin carcinogenesis. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Assunta Venuti
- 1 Infections and Cancer Biology Group, International Agency for Research on Cancer , 150 Cours Albert Thomas, Lyon 69008 , France
| | - Stefan Lohse
- 2 Institute of Virology, Saarland University Medical Center , Kirrbergerstr. Building 47, 66421 Homburg/Saar , Germany
| | - Massimo Tommasino
- 1 Infections and Cancer Biology Group, International Agency for Research on Cancer , 150 Cours Albert Thomas, Lyon 69008 , France
| | - Sigrun Smola
- 2 Institute of Virology, Saarland University Medical Center , Kirrbergerstr. Building 47, 66421 Homburg/Saar , Germany
| |
Collapse
|
31
|
Topoisomerase IIβ-binding protein 1 activates expression of E2F1 and p73 in HPV-positive cells for genome amplification upon epithelial differentiation. Oncogene 2019; 38:3274-3287. [PMID: 30631149 PMCID: PMC6486426 DOI: 10.1038/s41388-018-0633-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Abstract
High-risk human papillomaviruses (HPVs) constitutively activate the ataxia telangiectasia mutated (ATM) and the ataxia telangiectasia and Rad3-related (ATR) DNA damage repair pathways for viral genome amplification. HPVs activate these pathways through the immune regulator STAT-5. For the ATR pathway, STAT-5 increases expression of the topoisomerase IIβ-binding protein 1 (TopBP1), a scaffold protein that binds ATR and recruits it to sites of DNA damage. TopBP1 also acts as a transcriptional regulator and we investigated how this activity influenced the HPV life cycle. We determined that TopBP1 levels are increased in cervical intraepithelial neoplasias as well as cervical carcinomas, consistent with studies in HPV-positive cell lines. Suppression of TopBP1 by shRNAs impairs HPV genome amplification and activation of the ATR pathway but does not affect the total levels of ATR and CHK1. In contrast, knockdown reduces the expression of other DNA damage factors such as RAD51 and Mre11 but not BRCA2 or NBS1. Interestingly, TopBP1 positively regulates the expression of E2F1, a TopBP1 binding partner, and p73, in HPV positive cells in contrast to effects in other cell types. TopBP1 transcriptional activity is regulated by AKT and treatment with AKT inhibitors suppresses expression of E2F1 and p73 without interfering with ATR signaling. Importantly, the levels of p73 are elevated in HPV-positive cells and knockdown impairs HPV genome amplification. This demonstrates that p73, like p63 and p53, is an important regulator of the HPV life cycle that is controlled by the transcriptional activating properties of the multifunctional TopBP1 protein.
Collapse
|
32
|
Modulation of radiation sensitivity and antitumor immunity by viral pathogenic factors: Implications for radio-immunotherapy. Biochim Biophys Acta Rev Cancer 2018; 1871:126-137. [PMID: 30605716 DOI: 10.1016/j.bbcan.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/17/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Several DNA viruses including Human Papillomavirus (HPV), Epstein-Barr virus (EBV), and Human cytomegalovirus (HCMV) are mechanistically associated with the development of human cancers (HPV, EBV) and/or modulation of the immune system (HCMV). Moreover, a number of distinct mechanisms have been described regarding the modulation of tumor cell response to ionizing radiation and evasion from the host immune system by viral factors. There is further accumulating interest in the treatment with immune-modulatory therapies such as immune checkpoint inhibitors for malignancies with a viral etiology. Also, patients with HPV-positive tumors have a significantly improved prognosis that is attributable to increased intrinsic radiation sensitivity and may also arise from modulation of a cytotoxic T cell response in the tumor microenvironment (TME). In this review, we will highlight recent advances in the understanding of the biological basis of radiation response mediated by viral pathogenic factors and evasion from and modulation of the immune system by viruses.
Collapse
|
33
|
Beta and gamma human papillomaviruses in anal and genital sites among men: prevalence and determinants. Sci Rep 2018; 8:8241. [PMID: 29844517 PMCID: PMC5974254 DOI: 10.1038/s41598-018-26589-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/05/2018] [Indexed: 02/08/2023] Open
Abstract
Data regarding the anogenital distribution of and type-specific concordance for cutaneous β- and γ-HPV types in men who have sex with women is limited and geographically narrow. Knowledge of determinants of anogenital detection of cutaneous HPV types in different regions is needed for better understanding of the natural history and transmission dynamics of HPV, and its potential role in the development of anogenital diseases. Genital and anal canal samples obtained from 554 Russian men were screened for 43 β-HPVs and 29 γ-HPVs, using a multiplex PCR combined with Luminex technology. Both β- and γ-HPVs were more prevalent in the anal (22.8% and 14.1%) samples than in the genital (16.8% and 12.3%) samples. Low overall and type-specific concordance for β-HPVs (3.5% and 1.1%) and γ-HPVs (1.3% and 0.6%) were observed between genital and anal samples. HIV-positive men had higher anal β- (crude OR = 12.2, 95% CI: 5.3–28.1) and γ-HPV (crude OR = 7.2, 95% CI: 3.3–15.4) prevalence than HIV-negative men. Due to the lack of genital samples from the HIV-positive men, no comparison was possible for HIV status in genital samples. The lack of type-specific positive concordance between genital and anal sites for cutaneous β- and γ-HPV types in heterosexual men posits the needs for further studies on transmission routes to discriminate between contamination and true HPV infection. HIV-positive status may favor the anal acquisition or modify the natural history of cutaneous HPV types.
Collapse
|
34
|
Wittekindt C, Wagner S, Sharma SJ, Würdemann N, Knuth J, Reder H, Klußmann JP. [HPV - A different view on Head and Neck Cancer]. Laryngorhinootologie 2018; 97:S48-S113. [PMID: 29905354 PMCID: PMC6540966 DOI: 10.1055/s-0043-121596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Head and neck cancer is the sixth most common cancer with over 500000 annually reported incident cases worldwide. Besides major risk factors tobacco and alcohol, oropharyngeal squamous cell carcinomas (OSCC) show increased association with human papillomavirus (HPV). HPV-associated and HPV-negative OSCC are 2 different entities regarding biological characteristics, therapeutic response, and patient prognosis. In HPV OSCC, viral oncoprotein activity, as well as genetic (mutations and chromosomal aberrations) and epigenetic alterations plays a key role during carcinogenesis. Based on improved treatment response, the introduction of therapy de-intensification and targeted therapy is discussed for patients with HPV OSCC. A promising targeted therapy concept is immunotherapy. The use of checkpoint inhibitors (e.g. anti-PD1) is currently investigated. By means of liquid biopsies, biomarkers such as viral DNA or tumor mutations in the will soon be available for disease monitoring, as well as detection of treatment failure. By now, primary prophylaxis of HPV OSCC can be achieved by vaccination of girls and boys.
Collapse
Affiliation(s)
- Claus Wittekindt
- Klinik für HNO-Heilkunde, Kopf-/Halschirurgie, Plastische Operationen, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen
| | - Steffen Wagner
- Klinik für HNO-Heilkunde, Kopf-/Halschirurgie, Plastische Operationen, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen
| | - Shachi Jenny Sharma
- Klinik für HNO-Heilkunde, Kopf-/Halschirurgie, Plastische Operationen, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen
| | - Nora Würdemann
- Klinik für HNO-Heilkunde, Kopf-/Halschirurgie, Plastische Operationen, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen
| | - Jennifer Knuth
- Klinik für HNO-Heilkunde, Kopf-/Halschirurgie, Plastische Operationen, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen
| | - Henrike Reder
- Klinik für HNO-Heilkunde, Kopf-/Halschirurgie, Plastische Operationen, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen
| | - Jens Peter Klußmann
- Klinik für HNO-Heilkunde, Kopf-/Halschirurgie, Plastische Operationen, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen
| |
Collapse
|
35
|
Morale MG, da Silva Abjaude W, Silva AM, Villa LL, Boccardo E. HPV-transformed cells exhibit altered HMGB1-TLR4/MyD88-SARM1 signaling axis. Sci Rep 2018; 8:3476. [PMID: 29472602 PMCID: PMC5823898 DOI: 10.1038/s41598-018-21416-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/30/2018] [Indexed: 12/27/2022] Open
Abstract
Cervical cancer is one of the leading causes of cancer death in women worldwide. Persistent infection with high-risk human papillomavirus (HPV) types is the main risk factor for the development of cervical cancer precursor lesions. HPV persistence and tumor development is usually characterized by innate immune system evasion. Alterations in Toll-like receptors (TLR) expression and activation may be important for the control of HPV infections and could play a role in the progression of lesions and tumors. In the present study, we analyzed the mRNA expression of 84 genes involved in TLR signaling pathways. We observed that 80% of the differentially expressed genes were downregulated in cervical cancer cell lines relative to normal keratinocytes. Major alterations were detected in genes coding for several proteins of the TLR signaling axis, including TLR adaptor molecules and genes associated with MAPK pathway, NFκB activation and antiviral immune response. In particular, we observed major alterations in the HMGB1-TLR4 signaling axis. Functional analysis also showed that HMGB1 expression is important for the proliferative and tumorigenic potential of cervical cancer cell lines. Taken together, these data indicate that alterations in TLR signaling pathways may play a role in the oncogenic potential of cells expressing HPV oncogenes.
Collapse
Affiliation(s)
- Mirian Galliote Morale
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil.,Centre of Translational Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
| | - Walason da Silva Abjaude
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Aline Montenegro Silva
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Luisa Lina Villa
- Centre of Translational Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil.,Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Enrique Boccardo
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
36
|
Kuo P, Tuong ZK, Teoh SM, Frazer IH, Mattarollo SR, Leggatt GR. HPV16E7-Induced Hyperplasia Promotes CXCL9/10 Expression and Induces CXCR3 + T-Cell Migration to Skin. J Invest Dermatol 2017; 138:1348-1359. [PMID: 29277541 DOI: 10.1016/j.jid.2017.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 11/25/2022]
Abstract
Chemokines regulate tissue immunity by recruiting specific subsets of immune cells. Mice expressing the E7 protein of human papilloma virus 16 as a transgene from a keratin 14 promoter (K14.E7) show increased epidermal and dermal lymphocytic infiltrates, epidermal hyperplasia, and suppressed local immunity. Here, we show that CXCL9 and CXCL10 are overexpressed in non-hematopoietic cells in skin of K14.E7 mice when compared with non-transgenic animals, and recruit CXCR3+ lymphocytes to the hyperplastic skin. Overexpression of CXCL9 and CXCL10 is not observed in E7 transgenic mice with mutated Rb gene whose protein product cannot interact with E7 (K14.E7xRbΔL/ΔL) and in consequence lack hyperplastic epithelium. CXCR3+ T cells are preferentially recruited by CXCL9 and CXCL10 in supernatants of K14.E7 but not K14.E7xRbΔL/ΔL skin cultures in vitro. CXCR3 signalling promotes infiltration of a subset of effector T lymphocytes that enables donor lymphocyte deficient, E7-expressing skin graft rejection. Taken together, this suggests that recruitment of CXCR3+ T cells can be an important factor in the rejection of precancerous skin epithelium providing they can overcome local immunosuppressive mechanisms driven by skin-resident lymphocytes.
Collapse
Affiliation(s)
- Paula Kuo
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Zewen K Tuong
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Siok Min Teoh
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia.
| | - Stephen R Mattarollo
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Graham R Leggatt
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
37
|
Bashaw AA, Leggatt GR, Chandra J, Tuong ZK, Frazer IH. Modulation of antigen presenting cell functions during chronic HPV infection. PAPILLOMAVIRUS RESEARCH (AMSTERDAM, NETHERLANDS) 2017; 4:58-65. [PMID: 29179871 PMCID: PMC5883240 DOI: 10.1016/j.pvr.2017.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022]
Abstract
High-risk human papillomaviruses (HR-HPV) infect basal keratinocytes, where in some individuals they evade host immune responses and persist. Persistent HR-HPV infection of the cervix causes precancerous neoplasia that can eventuate in cervical cancer. Dendritic cells (DCs) are efficient in priming/cross-priming antigen-specific T cells and generating antiviral and antitumor cytotoxic CD8+ T cells. However, HR-HPV have adopted various immunosuppressive strategies, with modulation of DC function crucial to escape from the host adaptive immune response. HPV E6 and E7 oncoproteins alter recruitment and localization of epidermal DCs, while soluble regulatory factors derived from HPV-induced hyperplastic epithelium change DC development and influence initiation of specific cellular immune responses. This review focuses on current evidence for HR-HPV manipulation of antigen presentation in dendritic cells and escape from host immunity.
Collapse
Affiliation(s)
- Abate Assefa Bashaw
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Graham R Leggatt
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Janin Chandra
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Zewen K Tuong
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland 4102, Australia.
| |
Collapse
|
38
|
Liao Y, Jiang J, Liang B, Wei F, Huang J, Pan P, Su J, Zhou B, Zang N, Ye L, Liang H. Opiate use inhibits TLR9 signaling pathway in vivo: possible role in pathogenesis of HIV-1 infection. Sci Rep 2017; 7:13071. [PMID: 29026137 PMCID: PMC5638828 DOI: 10.1038/s41598-017-12066-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 07/28/2017] [Indexed: 01/06/2023] Open
Abstract
The molecular mechanism of opiate use promoting HIV-1 infection is not fully understood. TLR9 is expressed in many immune cells, including monocytes, macrophages, which can recognize viruses and viral products and consequently induce the production of antiviral factors and initiate immune responses. Previous studies have shown that chronic viral infections can overcome and impair TLR9 pathway. We aimed to explore whether opiate use enhances HIV infection through inhibition of TLR9 pathway via a population-based study. A total of 200 subjects were enrolled and divided into four groups as follows: Opiate+ HIV+ (50), Opiate- HIV+ (50), Opiate+ HIV- (50), and healthy control (Opiate- HIV-, 50). All HIV-infected subjects did not receive antiretroviral therapy while they were enrolled in the study. The results showed that opiate use was associated with higher viral load and lower CD4+ T cell count. Opiate use alone led to lower expression of TLR9, IRF7, and IFN-α at the protein level in PBMCs. Combined with HIV-1 infection, opiate use resulted in lower expression of MyD88, ISG56, and MxA. In addition, morphine treatment promoted HIV-1 replication in macrophages via inhibition of TLR9 pathway. Our data reveal that opiate use plays a cofactor role in pathogenesis of HIV-1 infection through inhibition of TLR9 pathway.
Collapse
Affiliation(s)
- Yanyan Liao
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Bingyu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, China
| | - Fumei Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, China
| | - Peijiang Pan
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, China
| | - Bo Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Ning Zang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, China.
- Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, China.
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, China.
- Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, China.
| |
Collapse
|
39
|
Pacini L, Ceraolo MG, Venuti A, Melita G, Hasan UA, Accardi R, Tommasino M. UV Radiation Activates Toll-Like Receptor 9 Expression in Primary Human Keratinocytes, an Event Inhibited by Human Papillomavirus 38 E6 and E7 Oncoproteins. J Virol 2017; 91:e01123-17. [PMID: 28724760 PMCID: PMC5599736 DOI: 10.1128/jvi.01123-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023] Open
Abstract
Several lines of evidence indicate that cutaneous human papillomavirus (HPV) types belonging to the beta genus of the HPV phylogenetic tree synergize with UV radiation in the development of skin cancer. Accordingly, the E6 and E7 oncoproteins from some beta HPV types are able to deregulate pathways related to immune response and cellular transformation. Toll-like receptor 9 (TLR9), in addition to playing a role in innate immunity, has been shown to be involved in the cellular stress response. Using primary human keratinocytes as experimental models, we have shown that UV irradiation (and other cellular stresses) activates TLR9 expression. This event is closely linked to p53 activation. Silencing the expression of p53 or deleting its encoding gene affected the activation of TLR9 expression after UV irradiation. Using various strategies, we have also shown that the transcription factors p53 and c-Jun are recruited onto a specific region of the TLR9 promoter after UV irradiation. Importantly, the E6 and E7 oncoproteins from beta HPV38, by inducing the accumulation of the p53 antagonist ΔNp73α, prevent the UV-mediated recruitment of these transcription factors onto the TLR9 promoter, with subsequent impairment of TLR9 gene expression. This study provides new insight into the mechanism that mediates TLR9 upregulation in response to cellular stresses. In addition, we show that HPV38 E6 and E7 are able to interfere with this mechanism, providing another explanation for the possible cooperation of beta HPV types with UV radiation in skin carcinogenesis.IMPORTANCE Beta HPV types have been suggested to act as cofactors in UV-induced skin carcinogenesis by altering several cellular mechanisms activated by UV radiation. We show that the expression of TLR9, a sensor of damage-associated molecular patterns produced during cellular stress, is activated by UV radiation in primary human keratinocytes (PHKs). Two transcription factors known to be activated by UV radiation, p53 and c-Jun, play key roles in UV-activated TLR9 expression. The E6 and E7 oncoproteins from beta HPV38 strongly inhibit UV-activated TLR9 expression by preventing the recruitment of p53 and c-Jun to the TLR9 promoter. Our findings provide additional support for the role that beta HPV types play in skin carcinogenesis by preventing activation of specific pathways upon exposure of PHKs to UV radiation.
Collapse
Affiliation(s)
- Laura Pacini
- International Agency for Research on Cancer, Lyon, France
| | - Maria Grazia Ceraolo
- International Agency for Research on Cancer, Lyon, France
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Assunta Venuti
- International Agency for Research on Cancer, Lyon, France
- Division of Immunology, Transplantation, and Infectious Diseases (DIBIT), San Raffaele Scientific Institute, Milan, Italy
| | - Giusi Melita
- International Agency for Research on Cancer, Lyon, France
| | - Uzma A Hasan
- International Center for Infectiology Research (CIRI), Lyon, France
- INSERM U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS UMR5308, Lyon, France
- Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France
| | - Rosita Accardi
- International Agency for Research on Cancer, Lyon, France
| | | |
Collapse
|
40
|
Steinbach A, Riemer AB. Immune evasion mechanisms of human papillomavirus: An update. Int J Cancer 2017; 142:224-229. [PMID: 28865151 DOI: 10.1002/ijc.31027] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022]
Abstract
Human papillomavirus (HPV) is the most frequently sexually transmitted agent in the world. It can cause cervical and other anogenital malignancies, and oropharyngeal cancer. HPV has the unique ability to persist in the host's epithelium for a long time-longer than most viruses do-which is necessary to complete its replication cycle. To this end, HPV has developed a variety of immune evasion mechanisms, which unfortunately also favor the progression of the disease from infection to chronic dysplasia and eventually to cancer. This article summarizes the current knowledge about HPV immune evasion strategies. A special emphasis lies in HPV-mediated changes of the antigen processing machinery, which is generating epitopes for T cells and contributes to the detectability of infected cells.
Collapse
Affiliation(s)
- Alina Steinbach
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Angelika B Riemer
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
41
|
Ying Z, Wu Z, Li X, Dang H, Yin N, Gao C. NF-κB inhibition rescues Toll-like receptor 9 expression in human papillomavirus type 11 infected HaCaT cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9460-9467. [PMID: 31966819 PMCID: PMC6965996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/09/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVES Toll-like receptors (TLRs) are related to human papillomavirus (HPV) infections including condyloma acuminatum (CA). This study was designed to investigate the mechanism of TLR9 and nuclear factor κB (NF-κB) in CA. METHODS Expression of TLR9 protein in CA patients was detected and compared with those in CA relapse-free (CaRF) patients and normal control. HaCaT cells were transfected with HPV11 genome and NF-κB p65 siRNA or IκB kinase inhibitor BMS345541. Expression of NF-κB and TLR9 were detected using both PCR and Western blot methods. RESULTS TLR9 was downregulated in CA specimens as compared to CaRF and normal controls. HPV11 transfection into HaCaT (HPV11.HaCaT) cells reduced TLR9 expression and activated NF-κB p65 expression. However, administration of NF-κB p65 siRNA or IκB kinase inhibitor BMS345541 significantly inhibited NF-κB p65 expression and rescued the expression of TLR9. CONCLUSION Inhibition of NF-κB activation could rescue TLR9 expression in HPV11.HaCaT cells. TLR9/NF-κB mechanism may provide new target for clinical treatment of CA.
Collapse
Affiliation(s)
- Zuolin Ying
- Department of Dermatology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Xiaojie Li
- Department of Dermatology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Hong Dang
- Department of Dermatology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Na Yin
- Department of Dermatology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Chuang Gao
- Department of Dermatology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
42
|
Wu JH, Cohen DN, Rady PL, Tyring SK. BRAF inhibitor-associated cutaneous squamous cell carcinoma: new mechanistic insight, emerging evidence for viral involvement and perspectives on clinical management. Br J Dermatol 2017; 177:914-923. [PMID: 28129674 DOI: 10.1111/bjd.15348] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2017] [Indexed: 12/18/2022]
Abstract
Mutations in the BRAF proto-oncogene occur in the majority of cutaneous melanomas. The commonly detected valine (V) to glutamate (E) mutation (V600E) is known to drive melanomagenesis and has thus been the target of two highly selective chemotherapeutic agents: vemurafenib and dabrafenib. While BRAF inhibitor therapy has revolutionized the treatment of metastatic melanoma, unanticipated cutaneous toxicities, including the development of cutaneous squamous cell carcinomas (cSCCs), are frequently reported and hinder therapeutic durability. However, the mechanisms by which BRAF inhibitors induce cutaneous neoplasms are poorly understood, thus posing a challenge for specific therapies. In this review, we summarize the clinical and molecular profiles of BRAF inhibitor-associated cSCCs, with a focus on factors that may contribute to disease pathogenesis. In particular, we discuss the emerging evidence pointing towards viral involvement in BRAF inhibitor-induced cutaneous neoplasms and offer new perspectives on future therapeutic interventions. Continued clinical and mechanistic studies along this line will not only allow for better understanding of the pathogenic progression of BRAF inhibitor-induced cSCCs, but will also lead to development of new therapeutic and preventative options for patients receiving targeted cancer therapy.
Collapse
Affiliation(s)
- J H Wu
- Baylor College of Medicine, Houston, TX, U.S.A.,Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX, U.S.A
| | - D N Cohen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, U.S.A
| | - P L Rady
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX, U.S.A
| | - S K Tyring
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX, U.S.A
| |
Collapse
|
43
|
Martínez-Campos C, Bahena-Román M, Torres-Poveda K, Burguete-García AI, Madrid-Marina V. TLR9 gene polymorphism -1486T/C (rs187084) is associated with uterine cervical neoplasm in Mexican female population. J Cancer Res Clin Oncol 2017; 143:2437-2445. [PMID: 28819773 DOI: 10.1007/s00432-017-2495-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this work was to evaluate the association of single nucleotide polymorphisms in TLR9 (-1486 T/C [rs187084], -1237T/C [rs5743836] and G2848A [rs352140]) with HPV infection, squamous intraepithelial lesions, and uterine cervical neoplasm in a Mexican population. Additionally, the peripheral expression of TLR9 was evaluated to evaluate the differences in the TLR9 expression associated with every genotype in the locus -1486 of the TLR9 gene. The serum concentration of TLR9 was evaluated in a randomly selected subsample. METHODS Genotyping was performed using predesigned 5' endonuc lease assays and the association of the polymorphisms with the diagnosis groups were assessed by performing multinomial regression models. The relative expression of TLR9 in peripheral blood mononuclear cells was evaluated by real-time polymerase chain reaction and the association of the level of TLR9 expression with the diagnosis was evaluated by performing multinomial regression models. The serum concentration of TLR9 was evaluated in a subsample of patients diagnosed with uterine cervical neoplasm by ELISA. RESULTS The results showed that genotype TT in the -1486 locus of TLR9 was significantly associated with HPV infection (OR = 3.25, 95% CI 1.12-9.46), squamous intraepithelial cervical lesion (OR = 3.76, 95% CI 1.36-10.41), and uterine cervical neoplasm (OR = 5.30, 95% CI 1.81-15.55). Moreover, the highest level of TLR9 expression was significantly associated with a greater risk for developing squamous intraepithelial cervical lesion and uterine cervical neoplasm. The serum TLR9 concentration was higher in patients with uterine cervical cancer than in controls. CONCLUSION Our findings indicate that genotype TT in the -1486 locus of the TLR9 gene could comprise a risk genotype for HPV infection, squamous intraepithelial cervical lesion, and uterine cervical neoplasm in Mexican female population. Further studies with larger samples are needed to evaluate if the peripheral expression of TLR9 could be used as a biomarker of uterine cervical neoplasm progression.
Collapse
Affiliation(s)
- Cecilia Martínez-Campos
- Dirección de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Margarita Bahena-Román
- Dirección de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Kirvis Torres-Poveda
- Dirección de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico.,CONACyT Research Fellow-Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Ana I Burguete-García
- Dirección de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico.
| | - Vicente Madrid-Marina
- Dirección de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
44
|
The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. Clin Sci (Lond) 2017; 131:2201-2221. [DOI: 10.1042/cs20160786] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
HPVs (human papillomaviruses) infect epithelial cells and their replication cycle is intimately linked to epithelial differentiation. There are over 200 different HPV genotypes identified to date and each displays a strict tissue specificity for infection. HPV infection can result in a range of benign lesions, for example verrucas on the feet, common warts on the hands, or genital warts. HPV infects dividing basal epithelial cells where its dsDNA episomal genome enters the nuclei. Upon basal cell division, an infected daughter cell begins the process of keratinocyte differentiation that triggers a tightly orchestrated pattern of viral gene expression to accomplish a productive infection. A subset of mucosal-infective HPVs, the so-called ‘high risk’ (HR) HPVs, cause cervical disease, categorized as low or high grade. Most individuals will experience transient HR-HPV infection during their lifetime but these infections will not progress to clinically significant cervical disease or cancer because the immune system eventually recognizes and clears the virus. Cancer progression is due to persistent infection with an HR-HPV. HR-HPV infection is the cause of >99.7% cervical cancers in women, and a subset of oropharyngeal cancers, predominantly in men. HPV16 (HR-HPV genotype 16) is the most prevalent worldwide and the major cause of HPV-associated cancers. At the molecular level, cancer progression is due to increased expression of the viral oncoproteins E6 and E7, which activate the cell cycle, inhibit apoptosis, and allow accumulation of DNA damage. This review aims to describe the productive life cycle of HPV and discuss the roles of the viral proteins in HPV replication. Routes to viral persistence and cancer progression are also discussed.
Collapse
|
45
|
Vandeven N, Nghiem P. Rationale for immune-based therapies in Merkel polyomavirus-positive and -negative Merkel cell carcinomas. Immunotherapy 2017; 8:907-21. [PMID: 27381685 DOI: 10.2217/imt-2016-0009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare but often deadly skin cancer that is typically caused by the Merkel cell polyomavirus (MCPyV). Polyomavirus T-antigen oncoproteins are persistently expressed in virus-positive MCCs (˜80% of cases), while remarkably high numbers of tumor-associated neoantigens are detected in virus-negative MCCs, suggesting that both MCC subsets may be immunogenic. Here we review mechanisms by which these immunogenic tumors evade multiple levels of host immunity. Additionally, we summarize the exciting potential of diverse immune-based approaches to treat MCC. In particular, agents blocking the PD-1 axis have yielded strikingly high response rates in MCC as compared with other solid tumors, highlighting the potential for immune-mediated treatment of this disease.
Collapse
Affiliation(s)
- Natalie Vandeven
- Department of Medicine (Pathology & Dermatology), University of Washington, USA
| | - Paul Nghiem
- Department of Medicine (Pathology & Dermatology), University of Washington, USA
| |
Collapse
|
46
|
Wang X, Zhang Z, Cao H, Niu W, Li M, Xi X, Wang J. Human papillomavirus type 16 E6 oncoprotein promotes proliferation and invasion of non-small cell lung cancer cells through Toll-like receptor 3 signaling pathway. J Med Virol 2017; 89:1852-1860. [PMID: 28480962 DOI: 10.1002/jmv.24845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/08/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Xia Wang
- The Second Department of Respiratory and Critical Diseases; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province China
- The Fourth Department of Internal Medicine-Tuberculosis; The First Affiliated Hospital of Xinxiang Medical University; Wehui Xinxiang Henan Province China
| | - Zhiqiang Zhang
- The Second Department of Respiratory and Critical Diseases; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province China
- The Second Department of Respiratory and Critical Diseases; The First Affiliated Hospital of Xinxiang Medical University; Wehui Xinxiang Henan Province China
| | - Huimin Cao
- College of Public Health; Zhengzhou University; Zhengzhou Henan Province China
| | - Wenyi Niu
- The Fourth Department of Internal Medicine-Tuberculosis; The First Affiliated Hospital of Xinxiang Medical University; Wehui Xinxiang Henan Province China
| | - Mingying Li
- The Fourth Department of Internal Medicine-Tuberculosis; The First Affiliated Hospital of Xinxiang Medical University; Wehui Xinxiang Henan Province China
| | - Xiu'e Xi
- The Fourth Department of Internal Medicine-Tuberculosis; The First Affiliated Hospital of Xinxiang Medical University; Wehui Xinxiang Henan Province China
| | - Jing Wang
- The Second Department of Respiratory and Critical Diseases; The First Affiliated Hospital of Zhengzhou University; Zhengzhou Henan Province China
| |
Collapse
|
47
|
Santos C, Vilanova M, Medeiros R, Gil da Costa RM. HPV-transgenic mouse models: Tools for studying the cancer-associated immune response. Virus Res 2017; 235:49-57. [DOI: 10.1016/j.virusres.2017.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/01/2017] [Accepted: 04/01/2017] [Indexed: 12/29/2022]
|
48
|
Zhu Y, Wang Y, Hirschhorn J, Welsh KJ, Zhao Z, Davis MR, Feldman S. Human Papillomavirus and Its Testing Assays, Cervical Cancer Screening, and Vaccination. Adv Clin Chem 2017. [PMID: 28629588 DOI: 10.1016/bs.acc.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human papillomavirus (HPV) was found to be the causative agent for cervical cancer in the 1980s with almost 100% of cervical cancer cases testing positive for HPV. Since then, many studies have been conducted to elucidate the molecular basis of HPV, the mechanisms of carcinogenesis of the virus, and the risk factors for HPV infection. Traditionally, the Papanicolaou test was the primary screening method for cervical cancer. Because of the discovery and evolving understanding of the role of HPV in cervical dysplasia, HPV testing has been recommended as a new method for cervical cancer screening by major professional organizations including the American Cancer Society, American Society for Colposcopy and Cervical Pathology, and the American Society for Clinical Pathology. In order to detect HPV infections, many sensitive and specific HPV assays have been developed and used clinically. Different HPV assays with various principles have shown their unique advantages and limitations. In response to a clear causative relationship between high-risk HPV and cervical cancer, HPV vaccines have been developed which utilize virus-like particles to create an antibody response for the prevention of HPV infection. The vaccines have been shown in long-term follow-up studies to be effective for up to 8 years; however, how this may impact screening for vaccinated women remains uncertain. In this chapter, we will review the molecular basis of HPV, its pathogenesis, and the epidemiology of HPV infection and associated cervical cancer, discuss the methods of currently available HPV testing assays as well as recent guidelines for HPV screening, and introduce HPV vaccines as well as their impact on cervical cancer screening and treatments.
Collapse
Affiliation(s)
- Yusheng Zhu
- Pennsylvania State University Hershey Medical Center, Hershey, PA, United States.
| | - Yun Wang
- Medical University of South Carolina, Charleston, SC, United States
| | - Julie Hirschhorn
- Pennsylvania State University Hershey Medical Center, Hershey, PA, United States
| | - Kerry J Welsh
- National Institute of Health, Bethesda, MD, United States
| | - Zhen Zhao
- National Institute of Health, Bethesda, MD, United States
| | - Michelle R Davis
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah Feldman
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
49
|
Ma W, Melief CJ, van der Burg SH. Control of immune escaped human papilloma virus is regained after therapeutic vaccination. Curr Opin Virol 2017; 23:16-22. [PMID: 28282583 DOI: 10.1016/j.coviro.2017.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/20/2017] [Indexed: 11/15/2022]
Abstract
High-risk human papillomaviruses infect the basal cells of human epithelia. There it deploys several mechanisms to suppress pathogen receptor recognition signalling, impeding the immune system to control viral infection. Furthermore, infected cells become more resistant to type I and II interferon, tumour necrosis factor-α and CD40 activation, via interference with downstream programs halting viral replication or regulating the proliferation and cell death. Consequently, some infected individuals fail to raise early protein-specific T-cell responses that are strong enough to protect against virus-induced premalignant disease and ultimately cancer. Therapeutic vaccines triggering a strong T-cell response against the early proteins can successfully be used to treat patients at the premalignant stage but combinations of different treatment modalities are required for cancer therapy.
Collapse
Affiliation(s)
- Wenbo Ma
- Department of Medical Oncology, Building 1, C7-141, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | - Sjoerd H van der Burg
- Department of Medical Oncology, Building 1, C7-141, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
50
|
Westrich JA, Warren CJ, Pyeon D. Evasion of host immune defenses by human papillomavirus. Virus Res 2017; 231:21-33. [PMID: 27890631 PMCID: PMC5325784 DOI: 10.1016/j.virusres.2016.11.023] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 12/13/2022]
Abstract
A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses.
Collapse
Affiliation(s)
- Joseph A Westrich
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Cody J Warren
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Current address: BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Dohun Pyeon
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|