1
|
Metko M, Tonne J, Veliz Rios A, Thompson J, Mudrick H, Masopust D, Diaz RM, Barry MA, Vile RG. Intranasal Prime-Boost with Spike Vectors Generates Antibody and T-Cell Responses at the Site of SARS-CoV-2 Infection. Vaccines (Basel) 2024; 12:1191. [PMID: 39460356 PMCID: PMC11511174 DOI: 10.3390/vaccines12101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Long-lived, re-activatable immunity to SARS-CoV-2 and its emerging variants will rely on T cells recognizing conserved regions of viral proteins across strains. Heterologous prime-boost regimens can elicit elevated levels of circulating CD8+ T cells that provide a reservoir of first responders upon viral infection. Although most vaccines are currently delivered intramuscularly (IM), the initial site of infection is the nasal cavity. METHODS Here, we tested the hypothesis that a heterologous prime and boost vaccine regimen delivered intranasally (IN) will generate improved immune responses locally at the site of virus infection compared to intramuscular vaccine/booster regimens. RESULTS In a transgenic human ACE2 murine model, both a Spike-expressing single-cycle adenovirus (SC-Ad) and an IFNß safety-enhanced replication-competent Vesicular Stomatitis Virus (VSV) platform generated anti-Spike antibody and T-cell responses that diminished with age. Although SC-Ad-Spike boosted a prime with VSV-Spike-mIFNß, SC-Ad-Spike alone induced maximal levels of IgG, IgA, and CD8+ T-cell responses. CONCLUSIONS There were significant differences in T-cell responses in spleens compared to lungs, and the intranasal boost was significantly superior to the intramuscular boost in generating sentinel immune effectors at the site of the virus encounter in the lungs. These data show that serious consideration should be given to intranasal boosting with anti-SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Muriel Metko
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Alexa Veliz Rios
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Haley Mudrick
- Molecular Pharmacology and Experimental Therapeutics Program, Mayo Clinic, Rochester, MN 55905, USA;
| | - David Masopust
- Department of Microbiology & Immunology, University of Minnesota Medical School, 2101 6th St. SE, Minneapolis, MN 55455, USA;
| | - Rosa Maria Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Michael A. Barry
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
- Department of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Henríquez R, Muñoz-Barroso I. Viral vector- and virus-like particle-based vaccines against infectious diseases: A minireview. Heliyon 2024; 10:e34927. [PMID: 39144987 PMCID: PMC11320483 DOI: 10.1016/j.heliyon.2024.e34927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
To overcome the limitations of conventional vaccines, new platforms for vaccine design have emerged such as those based on viral vectors and virus-like particles (VLPs). Viral vector vaccines are highly efficient and the onset of protection is quick. Many recombinant vaccine candidates for humans are based on viruses belonging to different families such as Adenoviridae, Retroviridae, Paramyxoviridae, Rhabdoviridae, and Parvoviridae. Also, the first viral vector vaccine licensed for human vaccination was the Japanese encephalitis virus vaccine. Since then, several viral vectors have been approved for vaccination against the viruses of Lassa fever, Ebola, hepatitis B, hepatitis E, SARS-CoV-2, and malaria. VLPs are nanoparticles that mimic viral particles formed from the self-assembly of structural proteins and VLP-based vaccines against hepatitis B and E viruses, human papillomavirus, and malaria have been commercialized. As evidenced by the accelerated production of vaccines against COVID-19, these new approaches are important tools for vaccinology and for generating rapid responses against pathogens and emerging pandemic threats.
Collapse
Affiliation(s)
- Ruth Henríquez
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina S/n, 37007, Salamanca, Spain
| | - Isabel Muñoz-Barroso
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina S/n, 37007, Salamanca, Spain
| |
Collapse
|
3
|
Elahi SM, Nazemi-Moghaddam N, Gilbert R. Protease-deleted adenovirus as an alternative for replication-competent adenovirus vector. Virology 2023; 586:67-75. [PMID: 37487327 DOI: 10.1016/j.virol.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
For cancer therapy and vaccination an amplified expression of the therapeutic gene is desired. Previously, we have developed a single-cycle adenovirus vector (SC-AdV) by deleting the adenovirus protease (PS) gene. In order to keep the E1 region intact within the PS-deleted adenoviruses, we examined the insertion of two transgenes under the control of a constitutive or inducible promoters. These were inserted between E4 and the right inverted terminal repeat in a wide variety of backbones with various combinations of PS, E3 and E4 deletion. Our data showed that PS-deleted adenoviruses, expressed transgenes as strongly as replication-competent AdVs in HEK293A and a variant of HeLa cells. In a head-to-head comparison in four human cell lines, we demonstrated that SC-AdV, was comparable for transgene expression efficacy with its replication-competent counterpart. However, the SC-AdV expresses its transgene 10 to 16,000 times higher than its replication-defective counterpart.
Collapse
Affiliation(s)
- S Mehdy Elahi
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montreal, Canada.
| | - Nazila Nazemi-Moghaddam
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montreal, Canada.
| | - Rénald Gilbert
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montreal, Canada; Department of Bioengineering McGill University, Montréal, Canada.
| |
Collapse
|
4
|
Gong M, Wang Y, Liu S, Li B, Du E, Gao Y. Rapid Construction of an Infectious Clone of Fowl Adenovirus Serotype 4 Isolate. Viruses 2023; 15:1657. [PMID: 37632000 PMCID: PMC10459658 DOI: 10.3390/v15081657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Adenovirus vectors possess a good safety profile, an extensive genome, a range of host cells, high viral yield, and the ability to elicit broad humoral and cellular immune responses. Adenovirus vectors are widely used in infectious disease research for future vaccine development and gene therapy. In this study, we obtained a fowl adenovirus serotype 4 (FAdV-4) isolate from sick chickens with hepatitis-hydropericardium syndrome (HHS) and conducted animal regression text to clarify biological pathology. We amplified the transfer vector and extracted viral genomic DNA from infected LMH cells, then recombined the mixtures via the Gibson assembly method in vitro and electroporated them into EZ10 competent cells to construct the FAdV-4 infectious clone. The infectious clones were successfully rescued in LMH cells within 15 days of transfection. The typical cytopathic effect (CPE) and propagation titer of FAdV-4 infectious clones were also similar to those for wild-type FAdV-4. To further construct the single-cycle adenovirus (SC-Ad) vector, we constructed SC-Ad vectors by deleting the gene for IIIa capsid cement protein. The FAdV4 infectious clone vector was introduced into the ccdB cm expression cassette to replace the IIIa gene using a λ-red homologous recombination technique, and then the ccdB cm expression cassette was excised by PmeI digestion and self-ligation to obtain the resulting plasmids as SC-Ad vectors.
Collapse
Affiliation(s)
- Minzhi Gong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (M.G.); (Y.W.); (S.L.); (B.L.)
| | - Yating Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (M.G.); (Y.W.); (S.L.); (B.L.)
| | - Shijia Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (M.G.); (Y.W.); (S.L.); (B.L.)
| | - Boshuo Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (M.G.); (Y.W.); (S.L.); (B.L.)
| | - Enqi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (M.G.); (Y.W.); (S.L.); (B.L.)
- Yangling Carey Biotechnology Co., Ltd., Yangling 712100, China
| | - Yupeng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (M.G.); (Y.W.); (S.L.); (B.L.)
| |
Collapse
|
5
|
Wang H, Georgakopoulou A, Zhang W, Kim J, Gil S, Ehrhardt A, Lieber A. HDAd6/35++ - A new helper-dependent adenovirus vector platform for in vivo transduction of hematopoietic stem cells. Mol Ther Methods Clin Dev 2023; 29:213-226. [PMID: 37081854 PMCID: PMC10111954 DOI: 10.1016/j.omtm.2023.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/16/2023] [Indexed: 04/03/2023]
Abstract
In previous studies, we achieved safe and efficient in vivo hematopoietic stem cell (HSC) transduction in mobilized mice and macaques with intravenously injected helper-dependent adenovirus HDAd5/35++ vectors. These vectors are derivatives of serotype Ad5-containing CD46-affinity enhanced Ad35 fiber knob domains. Considering the impact of anti-Ad5/HDAd5/35++ neutralizing serum antibodies present in the human population, we generated HSC-retargeted HDAd6/35++ vectors derived from serotype 6. We found a lower prevalence and titers of serum anti-HDAd6/35++ in human samples compared with HDAd5/35++. HDAd6/35++ vectors efficiently transduced human and rhesus CD34+ cells in vitro. Intravenous injection of HDAd5/35++-GFP or HDAd6/35++-GFP vectors after G-CSF/AMD3100 mobilization of mice with established human hematopoiesis or human CD46 transgenic mice resulted in comparable GFP marking rates in HSCs in the bone marrow and spleen. In long-term in vivo HSC transduction and selection studies with integrating vectors, stable GFP expression in >75% of PBMCs was show for both vectors. In contrast with HDAd5/35++, undesired transduction of hepatocytes was minimal with HDAd6/35++. Furthermore, HDAd6/35++ allowed for efficient in vivo HSC transduction in Ad5-pre-immune mice. These features, together with the straightforward production of HDAd6/35++ vectors at high yield, make this new HDAd vector platform attractive for clinical translation of the in vivo approach.
Collapse
Affiliation(s)
- Hongjie Wang
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Aphrodite Georgakopoulou
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Jiho Kim
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Sucheol Gil
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - André Lieber
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
- University of Washington, Department of Laboratory Medicine & Pathology and Lab, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Mudrick HE, Massey S, McGlinch EB, Parrett BJ, Hemsath JR, Barry ME, Rubin JD, Uzendu C, Hansen MJ, Erskine CL, Van Keulen VP, Drelich A, Panos JA, Fida M, Suh GA, Peikert T, Block MS, Tseng CTK, Olivier GR, Barry MA. Comparison of replicating and nonreplicating vaccines against SARS-CoV-2. SCIENCE ADVANCES 2022; 8:eabm8563. [PMID: 36001674 PMCID: PMC9401629 DOI: 10.1126/sciadv.abm8563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Most gene-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are nonreplicating vectors. They deliver the gene or messenger RNA to the cell to express the spike protein but do not replicate to amplify antigen production. This study tested the utility of replication in a vaccine by comparing replication-defective adenovirus (RD-Ad) and replicating single-cycle adenovirus (SC-Ad) vaccines that express the SARS-CoV-2 spike protein. SC-Ad produced 100 times more spike protein than RD-Ad and generated significantly higher antibodies against the spike protein than RD-Ad after single immunization of Ad-permissive hamsters. SC-Ad-generated antibodies climbed over 14 weeks after single immunization and persisted for more than 10 months. When the hamsters were challenged 10.5 months after single immunization, a single intranasal or intramuscular immunization with SC-Ad-Spike reduced SARS-CoV-2 viral loads and damage in the lungs and preserved body weight better than vaccination with RD-Ad-Spike. This demonstrates the utility of harnessing replication in vaccines to amplify protection against infectious diseases.
Collapse
Affiliation(s)
- Haley E. Mudrick
- Molecular Pharmacology and Experimental Therapeutics (MPET) Graduate Program, Mayo Clinic, Rochester, MN, USA
| | - Shane Massey
- Center of Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, TX, USA
| | - Erin B. McGlinch
- Graduate Research Education Program (GREP), Mayo Clinic, Rochester, MN, USA
- Virology and Gene Therapy (VGT) Graduate Program, Mayo Clinic, Rochester, MN, USA
| | - Brian J. Parrett
- Graduate Research Education Program (GREP), Mayo Clinic, Rochester, MN, USA
- Virology and Gene Therapy (VGT) Graduate Program, Mayo Clinic, Rochester, MN, USA
| | - Jack R. Hemsath
- Graduate Research Education Program (GREP), Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | - Mary E. Barry
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey D. Rubin
- Virology and Gene Therapy (VGT) Graduate Program, Mayo Clinic, Rochester, MN, USA
| | - Chisom Uzendu
- Virology and Gene Therapy (VGT) Graduate Program, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Aleksandra Drelich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Joseph A. Panos
- Rehabilitation Medicine Research Center, Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | - Madiha Fida
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | - Gina A. Suh
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | - Tobias Peikert
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Division of Pulmonary Care, Mayo Clinic, Rochester, MN, USA
| | - Matthew S. Block
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Chien-Te Kent Tseng
- Center of Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Michael A. Barry
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
7
|
McCann N, O'Connor D, Lambe T, Pollard AJ. Viral vector vaccines. Curr Opin Immunol 2022; 77:102210. [PMID: 35643023 PMCID: PMC9612401 DOI: 10.1016/j.coi.2022.102210] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/06/2023]
Abstract
Over the past two years, the SARS-CoV-2 pandemic has highlighted the impact that emerging pathogens can have on global health. The development of new and effective vaccine technologies is vital in the fight against such threats. Viral vectors are a relatively new vaccine platform that relies on recombinant viruses to deliver selected immunogens into the host. In response to the SARS-CoV-2 pandemic, the development and subsequent rollout of adenoviral vector vaccines has shown the utility, impact, scalability and efficacy of this platform. Shown to elicit strong cellular and humoral immune responses in diverse populations, these vaccine vectors will be an important approach against infectious diseases in the future.
Collapse
Affiliation(s)
- Naina McCann
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Daniel O'Connor
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
8
|
Alagheband Bahrami A, Azargoonjahromi A, Sadraei S, Aarabi A, Payandeh Z, Rajabibazl M. An overview of current drugs and prophylactic vaccines for coronavirus disease 2019 (COVID-19). Cell Mol Biol Lett 2022; 27:38. [PMID: 35562685 PMCID: PMC9100302 DOI: 10.1186/s11658-022-00339-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Designing and producing an effective vaccine is the best possible way to reduce the burden and spread of a disease. During the coronavirus disease 2019 (COVID-19) pandemic, many large pharmaceutical and biotechnology companies invested a great deal of time and money in trying to control and combat the disease. In this regard, due to the urgent need, many vaccines are now available earlier than scheduled. Based on their manufacturing technology, the vaccines available for COVID-19 (severe acute respiratory syndrome coronavirus 2 (SAR-CoV2)) infection can be classified into four platforms: RNA vaccines, adenovirus vector vaccines, subunit (protein-based) vaccines, and inactivated virus vaccines. Moreover, various drugs have been deemed to negatively affect the progression of the infection via various actions. However, adaptive variants of the SARS-CoV-2 genome can alter the pathogenic potential of the virus and increase the difficulty of both drug and vaccine development. In this review, along with drugs used in COVID-19 treatment, currently authorized COVID-19 vaccines as well as variants of the virus are described and evaluated, considering all platforms.
Collapse
Affiliation(s)
- Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Samin Sadraei
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Aarabi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
COVID-19 vaccine development based on recombinant viral and bacterial vector systems: combinatorial effect of adaptive and trained immunity. J Microbiol 2022; 60:321-334. [PMID: 35157221 PMCID: PMC8853094 DOI: 10.1007/s12275-022-1621-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) infection, which causes coronavirus disease 2019 (COVID-19), has led to many cases and deaths worldwide. Therefore, a number of vaccine candidates have been developed to control the COVID-19 pandemic. Of these, to date, 21 vaccines have received emergency approval for human use in at least one country. However, the recent global emergence of SARS-CoV-2 variants has compromised the efficacy of the currently available vaccines. To protect against these variants, the use of vaccines that modulate T cell-mediated immune responses or innate immune cell memory function, termed trained immunity, is needed. The major advantage of a vaccine that uses bacteria or viral systems for the delivery of COVID-19 antigens is the ability to induce both T cell-mediated and humoral immune responses. In addition, such vaccine systems can also exert off-target effects via the vector itself, mediated partly through trained immunity; compared to other vaccine platforms, suggesting that this approach can provide better protection against even vaccine escape variants. This review presents the current status of the development of COVID-19 vaccines based on recombinant viral and bacterial delivery systems. We also discuss the current status of the use of licensed live vaccines for other infections, including BCG, oral polio and MMR vaccines, to prevent COVID-19 infections.
Collapse
|
10
|
Adenovirus Type 6: Subtle Structural Distinctions from Adenovirus Type 5 Result in Essential Differences in Properties and Perspectives for Gene Therapy. Pharmaceutics 2021; 13:pharmaceutics13101641. [PMID: 34683934 PMCID: PMC8540711 DOI: 10.3390/pharmaceutics13101641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/22/2023] Open
Abstract
Adenovirus vectors are the most frequently used agents for gene therapy, including oncolytic therapy and vaccine development. It’s hard to overestimate the value of adenoviruses during the COVID-19 pandemic as to date four out of four approved viral vector-based SARS-CoV-2 vaccines are developed on adenovirus platform. The vast majority of adenoviral vectors are based on the most studied human adenovirus type 5 (HAdV-C5), however, its immunogenicity often hampers the clinical translation of HAdV-C5 vectors. The search of less seroprevalent adenovirus types led to another species C adenovirus, Adenovirus type 6 (HAdV-C6). HAdV-C6 possesses high oncolytic efficacy against multiple cancer types and remarkable ability to induce the immune response towards carrying antigens. Being genetically very close to HAdV-C5, HAdV-C6 differs from HAdV-C5 in structure of the most abundant capsid protein, hexon. This leads to the ability of HAdV-C6 to evade the uptake by Kupffer cells as well as to distinct opsonization by immunoglobulins and other blood proteins, influencing the overall biodistribution of HAdV-C6 after systemic administration. This review describes the structural features of HAdV-C6, its interaction with liver cells and blood factors, summarizes the previous experiences using HAdV-C6, and provides the rationale behind the use of HAdV-C6 for vaccine and anticancer drugs developments.
Collapse
|
11
|
Alhashimi M, Elkashif A, Sayedahmed EE, Mittal SK. Nonhuman Adenoviral Vector-Based Platforms and Their Utility in Designing Next Generation of Vaccines for Infectious Diseases. Viruses 2021; 13:1493. [PMID: 34452358 PMCID: PMC8402644 DOI: 10.3390/v13081493] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Several human adenoviral (Ad) vectors have been developed for vaccine delivery owing to their numerous advantages, including the feasibility of different vector designs, the robustness of elicited immune responses, safety, and scalability. To expand the repertoire of Ad vectors for receptor usage and circumvention of Ad vector immunity, the use of less prevalent human Ad types or nonhuman Ads were explored for vector design. Notably, many nonhuman Ad vectors have shown great promise in preclinical and clinical studies as vectors for vaccine delivery. This review describes the key features of several nonhuman Ad vector platforms and their implications in developing effective vaccines against infectious diseases.
Collapse
Affiliation(s)
| | | | | | - Suresh K. Mittal
- Immunology and Infectious Disease, and Purdue University Center for Cancer Research, Department of Comparative Pathobiology, Purdue Institute for Inflammation, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907-2027, USA; (M.A.); (A.E.); (E.E.S.)
| |
Collapse
|
12
|
Phillips LM, Li S, Gumin J, Daou M, Ledbetter D, Yang J, Singh S, Parker Kerrigan BC, Hossain A, Yuan Y, Gomez-Manzano C, Fueyo J, Lang FF. An immune-competent, replication-permissive Syrian Hamster glioma model for evaluating Delta-24-RGD oncolytic adenovirus. Neuro Oncol 2021; 23:1911-1921. [PMID: 34059921 DOI: 10.1093/neuonc/noab128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Oncolytic adenoviruses are promising new treatments against solid tumors, particularly for glioblastoma (GBM), and preclinical models are required to evaluate the mechanisms of efficacy. However, due to the species selectivity of adenovirus, there is currently no single animal model that supports viral replication, tumor oncolysis, and a virus-mediated immune response. To address this gap, we took advantage of the Syrian hamster to develop the first intracranial glioma model that is both adenovirus replication-permissive and immunocompetent. METHODS We generated hamster glioma stem-like cells (hamGSCs) by transforming hamster neural stem cells with hTERT, simian virus 40 large T antigen, and h-RasV12. Using a guide-screw system, we generated an intracranial tumor model in the hamster. The efficacy of the oncolytic adenovirus Delta-24-RGD was assessed by survival studies, and tumor-infiltrating lymphocytes were evaluated by flow cytometry. RESULTS In vitro, hamster GSCs supported viral replication and were susceptible to Delta-24-RGD mediated cell death. In vivo, hamster GSCs consistently developed into highly proliferative tumors resembling high-grade glioma. Flow cytometric analysis of hamster gliomas revealed significantly increased T cell infiltration in Delta-24-RGD infected tumors, indicative of immune activation. Treating tumor-bearing hamsters with Delta-24-RGD led to significantly increased survival compared to hamsters treated with PBS. CONCLUSIONS This adenovirus-permissive, immunocompetent hamster glioma model overcomes the limitations of previous model systems and provides a novel platform in which to study the interactions between tumor cells, the host immune system, and oncolytic adenoviral therapy; understanding of which will be critical to implementing oncolytic adenovirus in the clinic.
Collapse
Affiliation(s)
- Lynette M Phillips
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shoudong Li
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marc Daou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel Ledbetter
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jing Yang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sanjay Singh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Brittany C Parker Kerrigan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anwar Hossain
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Candelaria Gomez-Manzano
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Juan Fueyo
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX.,The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
13
|
Giménez-Roig J, Núñez-Manchón E, Alemany R, Villanueva E, Fillat C. Codon Usage and Adenovirus Fitness: Implications for Vaccine Development. Front Microbiol 2021; 12:633946. [PMID: 33643266 PMCID: PMC7902882 DOI: 10.3389/fmicb.2021.633946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/20/2021] [Indexed: 02/03/2023] Open
Abstract
Vaccination is the most effective method to date to prevent viral diseases. It intends to mimic a naturally occurring infection while avoiding the disease, exposing our bodies to viral antigens to trigger an immune response that will protect us from future infections. Among different strategies for vaccine development, recombinant vaccines are one of the most efficient ones. Recombinant vaccines use safe viral vectors as vehicles and incorporate a transgenic antigen of the pathogen against which we intend to generate an immune response. These vaccines can be based on replication-deficient viruses or replication-competent viruses. While the most effective strategy involves replication-competent viruses, they must be attenuated to prevent any health hazard while guaranteeing a strong humoral and cellular immune response. Several attenuation strategies for adenoviral-based vaccine development have been contemplated over time. In this paper, we will review them and discuss novel approaches based on the principle that protein synthesis from individual genes can be modulated by codon usage bias manipulation. We will summarize vaccine approaches that consider recoding of viral proteins to produce adenoviral attenuation and recoding of the transgene antigens for both viral attenuation and efficient viral epitope expression.
Collapse
Affiliation(s)
- Judit Giménez-Roig
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Estela Núñez-Manchón
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ramon Alemany
- Procure Program, Institut Català d’Oncologia- Oncobell Program, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
14
|
Vrba SM, Kirk NM, Brisse ME, Liang Y, Ly H. Development and Applications of Viral Vectored Vaccines to Combat Zoonotic and Emerging Public Health Threats. Vaccines (Basel) 2020; 8:E680. [PMID: 33202961 PMCID: PMC7712223 DOI: 10.3390/vaccines8040680] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Vaccination is arguably the most cost-effective preventative measure against infectious diseases. While vaccines have been successfully developed against certain viruses (e.g., yellow fever virus, polio virus, and human papilloma virus HPV), those against a number of other important public health threats, such as HIV-1, hepatitis C, and respiratory syncytial virus (RSV), have so far had very limited success. The global pandemic of COVID-19, caused by the SARS-CoV-2 virus, highlights the urgency of vaccine development against this and other constant threats of zoonotic infection. While some traditional methods of producing vaccines have proven to be successful, new concepts have emerged in recent years to produce more cost-effective and less time-consuming vaccines that rely on viral vectors to deliver the desired immunogens. This review discusses the advantages and disadvantages of different viral vaccine vectors and their general strategies and applications in both human and veterinary medicines. A careful review of these issues is necessary as they can provide important insights into how some of these viral vaccine vectors can induce robust and long-lasting immune responses in order to provide protective efficacy against a variety of infectious disease threats to humans and animals, including those with zoonotic potential to cause global pandemics.
Collapse
Affiliation(s)
- Sophia M. Vrba
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA; (S.M.V.); (Y.L.)
| | - Natalie M. Kirk
- Comparative Molecular Biosciences Graduate Program, Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA;
| | - Morgan E. Brisse
- Biochemistry, Molecular Biology and Biophysics Graduate Program, Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA;
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA; (S.M.V.); (Y.L.)
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA; (S.M.V.); (Y.L.)
| |
Collapse
|
15
|
Lofano G, Mallett CP, Bertholet S, O’Hagan DT. Technological approaches to streamline vaccination schedules, progressing towards single-dose vaccines. NPJ Vaccines 2020; 5:88. [PMID: 33024579 PMCID: PMC7501859 DOI: 10.1038/s41541-020-00238-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Vaccines represent the most successful medical intervention in history, with billions of lives saved. Although multiple doses of the same vaccine are typically required to reach an adequate level of protection, it would be advantageous to develop vaccines that induce protective immunity with fewer doses, ideally just one. Single-dose vaccines would be ideal to maximize vaccination coverage, help stakeholders to greatly reduce the costs associated with vaccination, and improve patient convenience. Here we describe past attempts to develop potent single dose vaccines and explore the reasons they failed. Then, we review key immunological mechanisms of the vaccine-specific immune responses, and how innovative technologies and approaches are guiding the preclinical and clinical development of potent single-dose vaccines. By modulating the spatio-temporal delivery of the vaccine components, by providing the appropriate stimuli to the innate immunity, and by designing better antigens, the new technologies and approaches leverage our current knowledge of the immune system and may synergize to enable the rational design of next-generation vaccination strategies. This review provides a rational perspective on the possible development of future single-dose vaccines.
Collapse
Affiliation(s)
- Giuseppe Lofano
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Corey P. Mallett
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Sylvie Bertholet
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Derek T. O’Hagan
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| |
Collapse
|
16
|
Matchett WE, Anguiano-Zarate S, Malewana GBR, Mudrick H, Weldy M, Evert C, Khoruts A, Sadowsky M, Barry MA. A Replicating Single-Cycle Adenovirus Vaccine Effective against Clostridium difficile. Vaccines (Basel) 2020; 8:vaccines8030470. [PMID: 32842679 PMCID: PMC7564163 DOI: 10.3390/vaccines8030470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 01/24/2023] Open
Abstract
Clostridium difficile causes nearly 500,000 infections and nearly 30,000 deaths each year in the U.S., which is estimated to cost $4.8 billion. C. difficile infection (CDI) arises from bacteria colonizing the large intestine and releasing two toxins, toxin A (TcdA) and toxin B (TcdB). Generating humoral immunity against C. difficile’s toxins provides protection against primary infection and recurrence. Thus, a vaccine may offer the best opportunity for sustained, long-term protection. We developed a novel single-cycle adenovirus (SC-Ad) vaccine against C. difficile expressing the receptor-binding domains from TcdA and TcdB. The single immunization of mice generated sustained toxin-binding antibody responses and protected them from lethal toxin challenge for up to 38 weeks. Immunized Syrian hamsters produced significant toxin-neutralizing antibodies that increased over 36 weeks. Single intramuscular immunization provided complete protection against lethal BI/NAP1/027 spore challenge 45 weeks later. These data suggest that this replicating vaccine may prove useful against CDI in humans.
Collapse
Affiliation(s)
- William E. Matchett
- Virology and Gene Therapy (VGT) Graduate Program, Mayo Clinic, Rochester, MN 55905, USA;
| | | | | | - Haley Mudrick
- Molecular Pharmacology and Experimental Therapeutics (MPET) Graduate Program, Mayo Clinic, Rochester, MN 55905, USA;
| | - Melissa Weldy
- Inflammatory Bowel Program, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, MN 55454, USA; (M.W.); (C.E.); (A.K.); (M.S.)
- BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Clayton Evert
- Inflammatory Bowel Program, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, MN 55454, USA; (M.W.); (C.E.); (A.K.); (M.S.)
- BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Alexander Khoruts
- Inflammatory Bowel Program, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, MN 55454, USA; (M.W.); (C.E.); (A.K.); (M.S.)
- BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Michael Sadowsky
- Inflammatory Bowel Program, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, MN 55454, USA; (M.W.); (C.E.); (A.K.); (M.S.)
- BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Soil, Water, and Climate Department of Plant and Microbial Biology, University of Minnesota, University of Minnesota, St Paul, MN 55108, USA
| | - Michael A. Barry
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-266-9090
| |
Collapse
|
17
|
Barry MA, Rubin JD, Lu SC. Retargeting adenoviruses for therapeutic applications and vaccines. FEBS Lett 2020; 594:1918-1946. [PMID: 31944286 PMCID: PMC7311308 DOI: 10.1002/1873-3468.13731] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022]
Abstract
Adenoviruses (Ads) are robust vectors for therapeutic applications and vaccines, but their use can be limited by differences in their in vitro and in vivo pharmacologies. This review emphasizes that there is not just one Ad, but a whole virome of diverse viruses that can be used as therapeutics. It discusses that true vector targeting involves not only retargeting viruses, but importantly also detargeting the viruses from off-target cells.
Collapse
Affiliation(s)
- Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey D Rubin
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| | - Shao-Chia Lu
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
18
|
Matchett WE, Malewana GBR, Mudrick H, Medlyn MJ, Barry MA. Genetic Adjuvants in Replicating Single-Cycle Adenovirus Vectors Amplify Systemic and Mucosal Immune Responses against HIV-1 Envelope. Vaccines (Basel) 2020; 8:E64. [PMID: 32024265 PMCID: PMC7158672 DOI: 10.3390/vaccines8010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Most infections occur at mucosal surfaces. Providing a barrier of protection at these surfaces may be a useful strategy to combat the earliest events in infection when there are relatively few pathogens to address. The majority of vaccines are delivered systemically by the intramuscular (IM) route. While IM vaccination can drive mucosal immune responses, mucosal immunization at intranasal (IN) or oral sites can lead to better immune responses at mucosal sites of viral entry. In macaques, IN immunization with replicating single-cycle adenovirus (SC-Ads) and protein boosts generated favorable mucosal immune responses. However, there was an apparent "distance effect" in generating mucosal immune responses. IN immunization generated antibodies against HIV envelope (env) nearby in the saliva, but weaker responses in samples collected from the distant vaginal samples. To improve on this, we tested here if SC-Ads expressing genetic adjuvants could be used to amplify antibody responses in distant vaginal samples when they are codelivered with SC-Ads expressing clade C HIV env immunogen. SC-Ads env 1157 was coadministered with SC-Ads expressing 4-1BBL, granulocyte macrophage colony-stimulating factor (GMCSF), IL-21, or Clostridoides difficile (C. diff.) toxin fragments by IN or IM routes. These data show that vaginal antibody responses were markedly amplified after a single immunization by the IN or IM routes, with SC-Ad expressing HIV env if this vaccine is complemented with SC-Ads expressing genetic adjuvants. Furthermore, the site and combination of adjuvants appear to "tune" these antibody responses towards an IgA or IgG isotype bias. Boosting these priming SC-Ad responses with another SC-Ad or with SOSIP native-like env proteins markedly amplifies env antibody levels in vaginal washes. Together, this data may be useful in informing the choice of route of delivery adenovirus and peptide vaccines against HIV-1.
Collapse
Affiliation(s)
- William E. Matchett
- Virology and Gene Therapy (VGT) Graduate Program, Mayo Clinic, Rochester, MN 55905, USA;
| | | | - Haley Mudrick
- Molecular Pharmacology and Experimental Therapeutics (MPET) Graduate Program, Mayo Clinic, Rochester, MN 55905, USA;
| | | | - Michael A. Barry
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Oral Vaccination with Replication-Competent Adenovirus in Mice Reveals Dissemination of the Viral Vaccine beyond the Gastrointestinal Tract. J Virol 2019; 93:JVI.00237-19. [PMID: 30996103 DOI: 10.1128/jvi.00237-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/13/2019] [Indexed: 01/11/2023] Open
Abstract
Since the 1970s, replication-competent human adenoviruses 4 and 7 have been used as oral vaccines to protect U.S. soldiers against the severe respiratory diseases caused by these viruses. These vaccines are thought to establish a digestive tract infection conferring protection against respiratory challenge through antibodies. The success of these vaccines makes replication-competent adenoviruses attractive candidates for use as oral vaccine vectors. However, the inability of human adenoviruses to replicate efficiently in laboratory animals has hampered the study of such vectors. Here, we used mouse adenovirus type 1 (MAV-1) in mice to study oral replication-competent adenovirus-based vaccines. We show that MAV-1 oral administration provides protection that recapitulates the protection against homologous respiratory challenge observed with adenovirus 4 and 7 vaccines. Moreover, live oral MAV-1 vaccine better protected against a respiratory challenge than inactivated vaccines. This protection was linked not only with the presence of MAV-1-specific antibodies but also with a better recruitment of effector CD8 T cells. However, unexpectedly, we found that such oral replication-competent vaccine systemically spread all over the body. Our results therefore support the use of MAV-1 to study replication-competent oral adenovirus-based vaccines but also highlight the fact that those vaccines can disseminate widely in the body.IMPORTANCE Replication-competent adenoviruses appear to be promising vectors for the development of oral vaccines in humans. However, the study and development of these vaccines suffer from the lack of any reliable animal model. In this study, mouse adenovirus type 1 was used to develop a small-animal model for oral replication-competent adenovirus vaccines. While this model reproduced in mice what is observed with human adenovirus oral vaccines, it also highlighted that oral immunization with such a replication-competent vaccine is associated with the systemic spread of the virus. This study is therefore of major importance for the future development of such vaccine platforms and their use in large human populations.
Collapse
|
20
|
Matchett WE, Anguiano-Zarate SS, Nehete PN, Shelton K, Nehete BP, Yang G, Dorta-Estremera S, Barnette P, Xiao P, Byrareddy SN, Villinger F, Hessell AJ, Haigwood NL, Sastry KJ, Barry MA. Divergent HIV-1-Directed Immune Responses Generated by Systemic and Mucosal Immunization with Replicating Single-Cycle Adenoviruses in Rhesus Macaques. J Virol 2019; 93:e02016-18. [PMID: 30842321 PMCID: PMC6498041 DOI: 10.1128/jvi.02016-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Most human immunodeficiency virus type 1 (HIV-1) infections begin at mucosal surfaces. Providing a barrier of protection at these may assist in combating the earliest events in infection. Systemic immunization by intramuscular (i.m.) injection can drive mucosal immune responses, but there are data suggesting that mucosal immunization can better educate these mucosal immune responses. To test this, rhesus macaques were immunized with replicating single-cycle adenovirus (SC-Ad) vaccines expressing clade B HIV-1 gp160 by the intranasal (i.n.) and i.m. routes to compare mucosal and systemic routes of vaccination. SC-Ad vaccines generated significant circulating antibody titers against Env after a single i.m. immunization. Switching the route of second immunization with the same SC-Ad serotype allowed a significant boost in these antibody levels. When these animals were boosted with envelope protein, envelope-binding antibodies were amplified 100-fold, but qualitatively different immune responses were generated. Animals immunized by only the i.m. route had high peripheral T follicular helper (pTfh) cell counts in blood but low Tfh cell counts in lymph nodes. Conversely, animals immunized by the i.n. route had high Tfh cell counts in lymph nodes but low pTfh cell counts in the blood. Animals immunized by only the i.m. route had lower antibody-dependent cellular cytotoxicity (ADCC) antibody activity, whereas animals immunized by the mucosal i.n. route had higher ADCC antibody activity. When these Env-immunized animals were challenged rectally with simian-human immunodeficiency virus (SHIV) strain SF162P3 (SHIVSF162P3), they all became infected. However, mucosally SC-Ad-immunized animals had lower viral loads in their gastrointestinal tracts. These data suggest that there may be benefits in educating the immune system at mucosal sites during HIV vaccination.IMPORTANCE HIV-1 infections usually start at a mucosal surface after sexual contact. Creating a barrier of protection at these mucosal sites may be a good strategy for to protect against HIV-1 infections. While HIV-1 enters at mucosa, most vaccines are not delivered here. Most are instead injected into the muscle, a site well distant and functionally different than mucosal tissues. This study tested if delivering HIV vaccines at mucosa or in the muscle makes a difference in the quality, quantity, and location of immune responses against the virus. These data suggest that there are indeed advantages to educating the immune system at mucosal sites with an HIV-1 vaccine.
Collapse
Affiliation(s)
- William E Matchett
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Pramod N Nehete
- Department of Comparative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| | - Kathryn Shelton
- Department of Comparative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
| | - Bharti P Nehete
- Department of Comparative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
| | - Guojun Yang
- Department of Oncology Research for Biologics and Immunotherapy Translation, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
| | - Stephanie Dorta-Estremera
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
| | - Philip Barnette
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Peng Xiao
- Department of Biology, New Iberia Research Center, Lafayette, Louisiana, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Francois Villinger
- Department of Biology, New Iberia Research Center, Lafayette, Louisiana, USA
| | - Ann J Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Nancy L Haigwood
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - K Jagannadha Sastry
- Department of Comparative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
- Department of Oncology Research for Biologics and Immunotherapy Translation, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| | - Michael A Barry
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Schmidt ME, Oomens AGP, Varga SM. Vaccination with a Single-Cycle Respiratory Syncytial Virus Is Immunogenic and Protective in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 202:3234-3245. [PMID: 31004010 DOI: 10.4049/jimmunol.1900050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe respiratory tract infection in infants and young children, but no vaccine is currently available. Live-attenuated vaccines represent an attractive immunization approach; however, balancing attenuation while retaining sufficient immunogenicity and efficacy has prevented the successful development of such a vaccine. Recently, a recombinant RSV strain lacking the gene that encodes the matrix (M) protein (RSV M-null) was developed. The M protein is required for virion assembly following infection of a host cell but is not necessary for either genome replication or gene expression. Therefore, infection with RSV M-null produces all viral proteins except M but does not generate infectious virus progeny, resulting in a single-cycle infection. We evaluated RSV M-null as a potential vaccine candidate by determining its pathogenicity, immunogenicity, and protective capacity in BALB/c mice compared with its recombinant wild-type control virus (RSV recWT). RSV M-null-infected mice exhibited significantly reduced lung viral titers, weight loss, and pulmonary dysfunction compared with mice infected with RSV recWT. Despite its attenuation, RSV M-null infection induced robust immune responses of similar magnitude to that elicited by RSV recWT. Additionally, RSV M-null infection generated serum Ab and memory T cell responses that were similar to those induced by RSV recWT. Importantly, RSV M-null immunization provided protection against secondary viral challenge by reducing lung viral titers as efficiently as immunization with RSV recWT. Overall, our results indicate that RSV M-null combines attenuation with high immunogenicity and efficacy and represents a promising novel live-attenuated RSV vaccine candidate.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Antonius G P Oomens
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242; .,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242; and.,Department of Pathology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
22
|
Anguiano-Zarate SS, Matchett WE, Nehete PN, Sastry JK, Marzi A, Barry MA. A Replicating Single-Cycle Adenovirus Vaccine Against Ebola Virus. J Infect Dis 2018; 218:1883-1889. [PMID: 29982595 PMCID: PMC6217725 DOI: 10.1093/infdis/jiy411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/29/2018] [Indexed: 11/12/2022] Open
Abstract
Recent West African Ebola virus (EBOV) epidemics have led to testing different anti-EBOV vaccines, including a replication-defective adenovirus (RD-Ad) vector (ChAd3-EBOV) and an infectious, replication-competent recombinant vesicular stomatitis virus expressing the EBOV glycoprotein (rVSV-EBOV; also known as rVSV-ZEBOV). While RD-Ads elicit protection, when scaled up to human trials, the level of protection may be much lower than that of vaccines containing viruses that can replicate. Although a replication-competent Ad (RC-Ad) vaccine might generate a level of protection approximating that of rVSV, this infectious vector would also risk causing adenovirus disease. We recently described a "single-cycle" adenovirus (SC-Ad) vector that amplifies antigen genes like RC-Ad, but that avoids the risk of adenovirus infection. Here we have tested an SC-Ad6 vector expressing the glycoprotein (GP) from a 2014 EBOV strain in mice, hamsters, and rhesus macaques. We show that SC-Ad6-EBOV GP induces a high level of serum antibodies in all species and mediates significant protection against pseudo-challenge with rVSV-EBOV expressing luciferase in mice and hamsters. These data suggest that SC-Ad6-EBOV GP may be useful during future EBOV outbreaks.
Collapse
Affiliation(s)
| | - William E Matchett
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota
| | - Pramod N Nehete
- Department of Immunology, University of Texas M. D. Anderson Cancer Center, Houston and Bastrop, Texas
- Department of Veterinary Sciences, University of Texas M. D. Anderson Cancer Center, Houston and Bastrop, Texas
| | - Jagannadha K Sastry
- Department of Immunology, University of Texas M. D. Anderson Cancer Center, Houston and Bastrop, Texas
- Department of Veterinary Sciences, University of Texas M. D. Anderson Cancer Center, Houston and Bastrop, Texas
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Michael A Barry
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
23
|
Holbrook MR. Will a Single-Cycle Adenovirus Vaccine Be Effective Against Ebola Virus? J Infect Dis 2018; 218:1858-1860. [PMID: 29982527 PMCID: PMC6217716 DOI: 10.1093/infdis/jiy412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Michael R Holbrook
- Battelle Memorial Institute, National Institute of Allergy and Infectious Diseases Integrated Research Facility, Fort Detrick, Maryland
| |
Collapse
|
24
|
Kumar D, Gauthami S, Uma M, Nagalekshmi K, Rao PP, Basu A, Ella KM, Hegde NR. Immunogenicity of a Candidate Ebola Hemorrhagic Fever Vaccine in Mice Based on Controlled In Vitro Expression of Ebolavirus Glycoprotein. Viral Immunol 2018; 31:500-512. [PMID: 30095362 DOI: 10.1089/vim.2017.0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ebolavirus (EBOV) is the etiology of Ebola hemorrhagic fever (EHF). A major EHF outbreak in 2014-2015 in West Africa claimed >11,000 lives. A licensed vaccine is not available for EHF, although several vaccines have undergone clinical trials. We developed a human adenovirus (Ad) serotype 5-based candidate EHF vaccine based on controlled expression of the EBOV (Makona strain) glycoprotein (GP) as the immunogen. Two clones, AdGP72 and AdGP75, and a control Ad515 vector, were generated and tested for protein expression in vitro and immunogenicity in mice. Eight groups of mice were immunized with three doses of buffer, Ad515, AdGP72, and AdGP75, by two different dose regimens. Three different antigens (AdGP75-infected Vero E6 cell extract and two baculovirus expressed EBOV GP antigens, namely, GP alone or GP with EBOV VP40) were used to evaluate the immune response. Expression studies indicated that full-length GP was cleaved into its component subunits when expressed in mammalian cells through the Ad vectors. Moreover, in coimmunoprecipitation studies, EBOV GP was found to be associated with VP40 when expressed in baculoviruses. The candidate vaccines were immunogenic in mice, as evaluated by enzyme-linked immunosorbent assay using mammalian- or baculovirus-derived antigens. Further characterization and development of the candidate vaccines are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | - Atanu Basu
- 2 National Institute of Virology , Pune, India
| | | | | |
Collapse
|
25
|
Matchett WE, Anguiano-Zarate SS, Barry MA. Comparison of systemic and mucosal immunization with replicating Single cycle Adenoviruses. ACTA ACUST UNITED AC 2018; 3. [PMID: 30740532 PMCID: PMC6368267 DOI: 10.15761/gvi.1000128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HIV-1 infections occur during sexual contact at mucosal surfaces. Vaccines need to provide mucosal barrier protection and stimulate systemic immune responses to control HIV spread. Most vaccines are delivered by systemic immunization via intramuscular (IM) injection route. While this can drive systemic and mucosal immune responses, there are data show that mucosal immunization may be superior at driving responses at mucosal barriers. To explore this question, we immunized mice with replicating single-cycle adenovirus (SC Ad) vaccines expressing clade B HIV-1 envelope (Env) by intramuscular (IM), intranasal (IN), or intravaginal (IVAG) routes to compare vaccine responses. SC-Ads generated significant antibodies against Env after only a single immunization by the IN route, but not the other routes. These animals were boosted by the same route or by the mucosal IVAG routes. IM and IN primed animals generated strong antibody responses regardless of the boosting route. In contrast, IVAG primed animals failed to generate robust antibodies whether they were boosted by the IVAG or IM routes. These data suggest there may be benefits in first educating the immune system at mucosal sites during HIV vaccination. IN and IM prime-boost were then compared in Syrian hamsters which support SC-Ad DNA replication. In this case, IN immunization again was the only route that generated significant Env antibodies after a single immunization. Following a boost by IN or IM routes, IN primed animals had significantly higher antibody responses than the IM primed animals. Env antibodies could still be detected one year after immunization, but only in animals that received at least one mucosal IN immunization. These data suggest that there is merit in vaccination by mucosal routes.
Collapse
Affiliation(s)
- William E Matchett
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA
| | - Stephanie S Anguiano-Zarate
- Clinical and Translational Science Graduate Program, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael A Barry
- Division of Infectious Diseases, Department of Immunology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
26
|
Abstract
INTRODUCTION Traditional inactivated and protein vaccines generate strong antibodies, but struggle to generate T cell responses. Attenuated pathogen vaccines generate both, but risk causing the disease they aim to prevent. Newer gene-based vaccines drive both responses and avoid the risk of infection. While these replication-defective (RD) vaccines work well in small animals, they can be weak in humans because they do not replicate antigen genes like more potent replication-competent (RC) vaccines. RC vaccines generate substantially stronger immune responses, but also risk causing their own infections. To circumvent these problems, we developed single-cycle adenovirus (SC-Ad) vectors that amplify vaccine genes, but that avoid the risk of infection. This review will discuss these vectors and their prospects for use as vaccines. AREAS COVERED This review provides a background of different types of vaccines. The benefits of gene-based vaccines and their ability to replicate antigen genes are described. Adenovirus vectors are discussed and compared to other vaccine types. Replication-defective, single-cycle, and replication-competent Ad vaccines are compared. EXPERT COMMENTARY The potential utility of these vaccines are discussed when used against infectious diseases and as cancer vaccines. We propose a move away from replication-defective vaccines towards more robust replication-competent or single-cycle vaccines.
Collapse
Affiliation(s)
- Michael Barry
- a Division of Infectious Diseases, Department of Medicine, Department of Immunology, Department of Molecular Medicine , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
27
|
Humphreys IR, Sebastian S. Novel viral vectors in infectious diseases. Immunology 2018; 153:1-9. [PMID: 28869761 PMCID: PMC5721250 DOI: 10.1111/imm.12829] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/17/2017] [Indexed: 12/17/2022] Open
Abstract
Since the development of vaccinia virus as a vaccine vector in 1984, the utility of numerous viruses in vaccination strategies has been explored. In recent years, key improvements to existing vectors such as those based on adenovirus have led to significant improvements in immunogenicity and efficacy. Furthermore, exciting new vectors that exploit viruses such as cytomegalovirus (CMV) and vesicular stomatitis virus (VSV) have emerged. Herein, we summarize these recent developments in viral vector technologies, focusing on novel vectors based on CMV, VSV, measles and modified adenovirus. We discuss the potential utility of these exciting approaches in eliciting protection against infectious diseases.
Collapse
Affiliation(s)
- Ian R. Humphreys
- Institute of Infection and Immunity/Systems Immunity University Research InstituteCardiff UniversityCardiffUK
- The Wellcome Trust Sanger InstituteHinxtonUK
| | | |
Collapse
|
28
|
|
29
|
Tollefson AE, Ying B, Spencer JF, Sagartz JE, Wold WSM, Toth K. Pathology in Permissive Syrian Hamsters after Infection with Species C Human Adenovirus (HAdV-C) Is the Result of Virus Replication: HAdV-C6 Replicates More and Causes More Pathology than HAdV-C5. J Virol 2017; 91:e00284-17. [PMID: 28250128 PMCID: PMC5411597 DOI: 10.1128/jvi.00284-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
Syrian hamsters are permissive for the replication of species C human adenoviruses (HAdV-C). The virus replicates to high titers in the liver of these animals after intravenous infection, while respiratory infection results in virus replication in the lung. Here we show that two types belonging to species C, HAdV-C5 and HAdV-C6, replicate to significantly different extents and cause pathology with significantly different severities, with HAdV-C6 replicating better and inducing more severe and more widespread lesions. The virus burdens in the livers of HAdV-C6-infected hamsters are higher than the virus burdens in HAdV-C5-infected ones because more of the permissive hepatocytes get infected. Furthermore, when hamsters are infected intravenously with HAdV-C6, live, infectious virus can be isolated from the lung and the kidney, which is not seen with HAdV-C5. Similarly to mouse models, in hamsters, HAdV-C6 is sequestered by macrophages to a lesser degree than HAdV-C5. Depletion of Kupffer cells from the liver greatly increases the replication of HAdV-C5 in the liver, while it has only a modest effect on the replication of HAdV-C6. Elimination of Kupffer cells also dramatically increases the pathology induced by HAdV-C5. These findings indicate that in hamsters, pathology resulting from intravenous infection with adenoviruses is caused mostly by replication in hepatocytes and not by the abortive infection of Kupffer cells and the following cytokine storm.IMPORTANCE Immunocompromised human patients can develop severe, often lethal adenovirus infections. Respiratory adenovirus infection among military recruits is a serious problem, in some cases requiring hospitalization of the patient. Furthermore, adenovirus-based vectors are frequently used as experimental viral therapeutic agents. Thus, it is imperative that we investigate the pathogenesis of adenoviruses in a permissive animal model. Syrian hamsters are susceptible to infection with certain human adenoviruses, and the pathology accompanying these infections is similar to what is observed with adenovirus-infected human patients. We demonstrate that replication in permissive cells in a susceptible host animal is a major part of the mechanism by which systemic adenovirus infection induces pathology, as opposed to the chiefly immune-mediated pathology observed in nonsusceptible hosts. These findings support the use of compounds inhibiting adenovirus replication as a means to block adenovirus-induced pathology.
Collapse
Affiliation(s)
- Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Baoling Ying
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Jacqueline F Spencer
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - John E Sagartz
- Department of Comparative Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - William S M Wold
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
30
|
Fougeroux C, Holst PJ. Future Prospects for the Development of Cost-Effective Adenovirus Vaccines. Int J Mol Sci 2017; 18:ijms18040686. [PMID: 28420073 PMCID: PMC5412272 DOI: 10.3390/ijms18040686] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 01/13/2023] Open
Abstract
Vaccination is one of the most efficient tools for disease prevention, and a continuously growing field of research. However, despite progress, we still need more efficient and cost-effective vaccines that would improve access to those in need. In this review, we will describe the status of virus-vectored vaccine technology with a focus on adenoviral-based vaccines. Adenovirus (Ad) vaccines have proven to be efficient in military vaccinations against Ad4 and Ad7 and as highly efficient vectored vaccines against rabies. The question of how other adenovirus-based vaccines can become as efficient as the rabies vaccine is the underlying theme in this review. Here, we will first give an overview of the basic properties of vectored vaccines, followed by an introduction to the characteristics of adenoviral vectors and previously tested modifications of the vector backbone and expression cassettes, with a focus on how they can contribute to increased vaccine cost-effectiveness. Finally, we will highlight a few successful examples of research that have attempted to improve the use of adenoviral-based vaccines by improving the transgene immunogenicity.
Collapse
Affiliation(s)
- Cyrielle Fougeroux
- Department of Immunology and Microbiology, Copenhagen University, København K 1014, Denmark.
| | - Peter J Holst
- Department of Immunology and Microbiology, Copenhagen University, København K 1014, Denmark.
| |
Collapse
|
31
|
Transgene Expression and Host Cell Responses to Replication-Defective, Single-Cycle, and Replication-Competent Adenovirus Vectors. Genes (Basel) 2017; 8:genes8020079. [PMID: 28218713 PMCID: PMC5333068 DOI: 10.3390/genes8020079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/03/2017] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
Most adenovirus (Ad) vectors are E1 gene deleted replication defective (RD-Ad) vectors that deliver one transgene to the cell and all expression is based on that one gene. In contrast, E1-intact replication-competent Ad (RC-Ad) vectors replicate their DNA and their transgenes up to 10,000-fold, amplifying transgene expression markedly higher than RD-Ad vectors. While RC-Ad are more potent, they run the real risk of causing adenovirus infections in vector recipients and those that administer them. To gain the benefits of transgene amplification, but avoid the risk of Ad infections, we developed “single cycle” Ad (SC-Ad) vectors. SC-Ads amplify transgene expression and generated markedly stronger and more persistent immune responses than RD-Ad as expected. However, they also unexpectedly generated stronger immune responses than RC-Ad vectors. To explore the basis of this potency here, we compared gene expression and the cellular responses to infection to these vectors in vitro and in vivo. In vitro, in primary human lung epithelial cells, SC- and RC-Ad amplified their genomes more than 400-fold relative to RD-Ad with higher replication by SC-Ad. This replication translated into higher green fluorescent protein (GFP) expression for 48 h by SC- and RC-Ad than by RD-Ad. In vitro, in the absence of an immune system, RD-Ad expression became higher by 72 h coincident with cell death mediated by SC- and RC-Ad and release of transgene product from the dying cells. When the vectors were compared in human THP-1 Lucia- interferon-stimulated gene (ISG) cells, which are a human monocyte cell line that have been modified to quantify ISG activity, RC-Ad6 provoked significantly stronger ISG responses than RD- or SC-Ad. In mice, intravenous or intranasal injection produced up to 100-fold genome replication. Under these in vivo conditions in the presence of the immune system, luciferase expression by RC and SC-Ad was markedly higher than that by RD-Ad. In immunodeficient mice, SC-Ad drove stronger luciferase expression than RC- or RD-Ad. These data demonstrate better transgene expression by SC- and RC-Ad in vitro and in vivo than RD-Ad. This higher expression by the replicating vectors results in a peak of expression within 1 to 2 days followed by cell death of infected cells and release of transgene products. While SC- and RC-Ad expression were similar in mice and in Syrian hamsters, RC-Ad provoked much stronger ISG induction which may explain in part SC-Ad′s ability to generate stronger and more persistent immune responses than RC-Ad in Ad permissive hamsters.
Collapse
|
32
|
Crosby CM, Matchett WE, Anguiano-Zarate SS, Parks CA, Weaver EA, Pease LR, Webby RJ, Barry MA. Replicating Single-Cycle Adenovirus Vectors Generate Amplified Influenza Vaccine Responses. J Virol 2017; 91:e00720-16. [PMID: 27807231 PMCID: PMC5215357 DOI: 10.1128/jvi.00720-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 10/22/2016] [Indexed: 12/14/2022] Open
Abstract
Head-to-head comparisons of conventional influenza vaccines with adenovirus (Ad) gene-based vaccines demonstrated that these viral vectors can mediate more potent protection against influenza virus infection in animal models. In most cases, Ad vaccines are engineered to be replication-defective (RD-Ad) vectors. In contrast, replication-competent Ad (RC-Ad) vaccines are markedly more potent but risk causing adenovirus diseases in vaccine recipients and health care workers. To harness antigen gene replication but avoid production of infectious virions, we developed "single-cycle" adenovirus (SC-Ad) vectors. Previous work demonstrated that SC-Ads amplify transgene expression 100-fold and produce markedly stronger and more persistent immune responses than RD-Ad vectors in Syrian hamsters and rhesus macaques. To test them as potential vaccines, we engineered RD and SC versions of adenovirus serotype 6 (Ad6) to express the hemagglutinin (HA) gene from influenza A/PR/8/34 virus. We show here that it takes approximately 33 times less SC-Ad6 than RD-Ad6 to produce equal amounts of HA antigen in vitro SC-Ad produced markedly higher HA binding and hemagglutination inhibition (HAI) titers than RD-Ad in Syrian hamsters. SC-Ad-vaccinated cotton rats had markedly lower influenza titers than RD-Ad-vaccinated animals after challenge with influenza A/PR/8/34 virus. These data suggest that SC-Ads may be more potent vaccine platforms than conventional RD-Ad vectors and may have utility as "needle-free" mucosal vaccines. IMPORTANCE Most adenovirus vaccines that are being tested are replication-defective adenoviruses (RD-Ads). This work describes testing newer single-cycle adenovirus (SC-Ad) vectors that replicate transgenes to amplify protein production and immune responses. We show that SC-Ads generate markedly more influenza virus hemagglutinin protein and require substantially less vector to generate the same immune responses as RD-Ad vectors. SC-Ads therefore hold promise to be more potent vectors and vaccines than current RD-Ad vectors.
Collapse
Affiliation(s)
- Catherine M Crosby
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
| | - William E Matchett
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Eric A Weaver
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Larry R Pease
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
33
|
Kim JW, Auffinger B, Spencer DA, Miska J, Chang AL, Kane JR, Young JS, Kanojia D, Qiao J, Mann JF, Zhang L, Wu M, Ahmed AU, Aboody KS, Strong TV, Hébert CD, Lesniak MS. Single dose GLP toxicity and biodistribution study of a conditionally replicative adenovirus vector, CRAd-S-pk7, administered by intracerebral injection to Syrian hamsters. J Transl Med 2016; 14:134. [PMID: 27184224 PMCID: PMC4868110 DOI: 10.1186/s12967-016-0895-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/05/2016] [Indexed: 11/11/2022] Open
Abstract
Background CRAd-S-pk7 is a conditionally replicative oncolytic adenoviral vector that contains a survivin promoter and a pk7 fiber modification that confer tumor-specific transcriptional targeting and preferential replication in glioma while sparing the surrounding normal brain parenchyma. Methods This IND-enabling study performed under GLP conditions evaluated the toxicity and biodistribution of CRAd-S-pk7 administered as a single intracerebral dose to Syrian hamsters, a permissive model of adenoviral replication. Two hundred and forty animals were stereotactically administered either vehicle (n = 60) or CRAd-S-pk7 at 2.5 × 107, 2.5 × 108, or 2.5 × 109 viral particles (vp)/animal (each n = 60) on day 1. The animals were closely monitored for toxicology evaluation, assessment of viral distribution, and immunogenicity of CRAd-S-pk7. Results Changes in hematology, clinical chemistry, and coagulation parameters were minor and transient, and consistent with the inflammatory changes observed microscopically. These changes were considered to be of little toxicological significance. The vector remained localized primarily in the brain and to some degree in the tissues at the incision site. Low levels of vector DNA were detected in other tissues in a few animals suggesting systemic circulation of the virus. Viral DNA was detected in brains of hamsters for up to 62 days. However, microscopic changes and virus-related toxicity to the central nervous system were considered minor and decreased in incidence and severity over time. Such changes are not uncommon in studies using adenoviral vectors. Conclusion This study provides safety and toxicology data justifying a clinical trial of CRAd-S-pk7 loaded in FDA-approved HB1.F3.CD neural stem cell carriers administered at the tumor resection bed in humans with recurrent malignant glioma. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0895-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julius Woongki Kim
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Brenda Auffinger
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Drew A Spencer
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Alan L Chang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Joshua Robert Kane
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Jacob S Young
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Jian Qiao
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Jill F Mann
- Southern Research Institute, Birmingham, AL, USA
| | - Lingjiao Zhang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Meijing Wu
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | | | | | | | - Maciej S Lesniak
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA.
| |
Collapse
|
34
|
Musich T, Robert-Guroff M. New developments in an old strategy: heterologous vector primes and envelope protein boosts in HIV vaccine design. Expert Rev Vaccines 2016; 15:1015-27. [PMID: 26910195 DOI: 10.1586/14760584.2016.1158108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prime/boost vaccination strategies for HIV/SIV vaccine development have been used since the early 1990s and have become an established method for eliciting cell and antibody mediated immunity. Here we focus on induction of protective antibodies, both broadly neutralizing and non-neutralizing, with the viral envelope being the key target antigen. Prime/boost approaches are complicated by the diversity of autologous and heterologous priming vectors, and by various forms of envelope booster immunogens, many still in development as structural studies aim to design stable constructs with exposure of critical epitopes for protective antibody elicitation. This review discusses individual vaccine components, reviews recent prime/boost strategies and their outcomes, and highlights complicating factors arising as greater knowledge concerning induction of adaptive, protective immunity is acquired.
Collapse
Affiliation(s)
- Thomas Musich
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| | - Marjorie Robert-Guroff
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
35
|
Comparison of the Life Cycles of Genetically Distant Species C and Species D Human Adenoviruses Ad6 and Ad26 in Human Cells. J Virol 2015; 89:12401-17. [PMID: 26423951 DOI: 10.1128/jvi.01534-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/25/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Our understanding of adenovirus (Ad) biology is largely extrapolated from human species C Ad5. Most humans are immune to Ad5, so lower-seroprevalence viruses like human Ad6 and Ad26 are being tested as therapeutic vectors. Ad6 and Ad26 differ at the DNA level by 34%. To better understand how this might impact their biology, we examined the life cycle of the two viruses in human lung cells in vitro. Both viruses infected A549 cells with similar efficiencies, executed DNA replication with identical kinetics within 12 h, and began killing cells within 72 h. While Ad6-infected cells remained adherent until death, Ad26-infected cells detached within 12 h of infection but remained viable. Next-generation sequencing (NGS) of mRNA from infected cells demonstrated that viral transcripts constituted 1% of cellular mRNAs within 6 h and 8 to 16% within 12 h. Quantitative PCR and NGS revealed the activation of key early genes at 6 h and transition to late gene activation by 12 h by both viruses. There were marked differences in the balance of E1A and E1B activation by the two viruses and in the expression of E3 immune evasion mRNAs. Ad6 was markedly more effective at suppressing major histocompatibility complex class I (MHC I) display on the cell surface and in evading TRAIL-mediated apoptosis than was Ad26. These data demonstrate shared as well as divergent life cycles in these genetically distant human adenoviruses. An understanding of these differences expands the knowledge of alternative Ad species and may inform the selection of related Ads for therapeutic development. IMPORTANCE A burgeoning number of adenoviruses (Ads) are being harnessed as therapeutics, yet the biology of these viruses is generally extrapolated from Ad2 and Ad5. Here, we are the first to compare the transcriptional programs of two genetically distant Ads by mRNA next-generation sequencing (NGS). Species C Ad6 and Ad26 are being pursued as lower-seroprevalence Ad vectors but differ at the DNA level by 34%. Head-to-head comparison in human lung cells by NGS revealed that the two viruses generally conform to our general understanding of the Ad transcriptional program. However, fine mapping revealed subtle and strong differences in how these two viruses execute these programs, including differences in the balance of E1A and E1B mRNAs and in E3 immune evasion genes. This suggests that not all adenoviruses behave like Ad2 and Ad5 and that they may have unique strategies to infect cells and evade the immune system.
Collapse
|