1
|
Liu S, Lin M, Zhou X. T4 Phage Displaying Dual Antigen Clusters Against H3N2 Influenza Virus Infection. Vaccines (Basel) 2025; 13:70. [PMID: 39852849 PMCID: PMC11769387 DOI: 10.3390/vaccines13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND The current H3N2 influenza subunit vaccine exhibits weak immunogenicity, which limits its effectiveness in preventing and controlling influenza virus infections. METHODS In this study, we aimed to develop a T4 phage-based nanovaccine designed to enhance the immunogenicity of two antigens by displaying the HA1 and M2e antigens of the H3N2 influenza virus on each phage nanoparticle. Specifically, we fused the Soc protein with the HA1 antigen and the Hoc protein with the M2e antigen, assembling them onto a T4 phage that lacks Soc and Hoc proteins (Soc-Hoc-T4), thereby constructing a nanovaccine that concurrently presents both HA1 and M2e antigens. RESULTS The analysis of the optical density of the target protein bands indicated that each particle could display approximately 179 HA1 and 68 M2e antigen molecules. Additionally, animal experiments demonstrated that this nanoparticle vaccine displaying dual antigen clusters induced a stronger specific immune response, higher antibody titers, a more balanced Th1/Th2 immune response, and enhanced CD4+ and CD8+ T cell effects compared to immunization with HA1 and M2e antigen molecules alone. Importantly, mice immunized with the T4 phage displaying dual antigen clusters achieved full protection (100% protection) against the H3N2 influenza virus, highlighting its robust protective efficacy. CONCLUSIONS In summary, our findings indicate that particles based on a T4 phage displaying antigen clusters exhibit ideal immunogenicity and protective effects, providing a promising strategy for the development of subunit vaccines against various viruses beyond influenza.
Collapse
Affiliation(s)
- Shenglong Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
| | - Mengzhou Lin
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
| |
Collapse
|
2
|
Khudainazarova NS, Granovskiy DL, Kondakova OA, Ryabchevskaya EM, Kovalenko AO, Evtushenko EA, Arkhipenko MV, Nikitin NA, Karpova OV. Prokaryote- and Eukaryote-Based Expression Systems: Advances in Post-Pandemic Viral Antigen Production for Vaccines. Int J Mol Sci 2024; 25:11979. [PMID: 39596049 PMCID: PMC11594041 DOI: 10.3390/ijms252211979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
This review addresses the ongoing global challenge posed by emerging and evolving viral diseases, underscoring the need for innovative vaccine development strategies. It focuses on the modern approaches to creating vaccines based on recombinant proteins produced in different expression systems, including bacteria, yeast, plants, insects, and mammals. This review analyses the advantages, limitations, and applications of these expression systems for producing vaccine antigens, as well as strategies for designing safer, more effective, and potentially 'universal' antigens. The review discusses the development of vaccines for a range of viral diseases, excluding SARS-CoV-2, which has already been extensively studied. The authors present these findings with the aim of contributing to ongoing research and advancing the development of antiviral vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nikolai A. Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (D.L.G.); (O.A.K.); (E.M.R.); (A.O.K.); (E.A.E.); (M.V.A.); (O.V.K.)
| | | |
Collapse
|
3
|
Nilchan N, Kraivong R, Luangaram P, Phungsom A, Tantiwatcharakunthon M, Traewachiwiphak S, Prommool T, Punyadee N, Avirutnan P, Duangchinda T, Malasit P, Puttikhunt C. An Engineered N-Glycosylated Dengue Envelope Protein Domain III Facilitates Epitope-Directed Selection of Potently Neutralizing and Minimally Enhancing Antibodies. ACS Infect Dis 2024; 10:2690-2704. [PMID: 38943594 PMCID: PMC11320570 DOI: 10.1021/acsinfecdis.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
The envelope protein of dengue virus (DENV) is a primary target of the humoral immune response. The domain III of the DENV envelope protein (EDIII) is known to be the target of multiple potently neutralizing antibodies. One such antibody is 3H5, a mouse antibody that binds strongly to EDIII and potently neutralizes DENV serotype 2 (DENV-2) with unusually minimal antibody-dependent enhancement (ADE). To selectively display the binding epitope of 3H5, we strategically modified DENV-2 EDIII by shielding other known epitopes with engineered N-glycosylation sites. The modifications resulted in a glycosylated EDIII antigen termed "EDIII mutant N". This antigen was successfully used to sift through a dengue-immune scFv-phage library to select for scFv antibodies that bind to or closely surround the 3H5 epitope. The selected scFv antibodies were expressed as full-length human antibodies and showed potent neutralization activity to DENV-2 with low or negligible ADE resembling 3H5. These findings not only demonstrate the capability of the N-glycosylated EDIII mutant N as a tool to drive an epitope-directed antibody selection campaign but also highlight its potential as a dengue immunogen. This glycosylated antigen shows promise in focusing the antibody response toward a potently neutralizing epitope while reducing the risk of antibody-dependent enhancement.
Collapse
Affiliation(s)
- Napon Nilchan
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Romchat Kraivong
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Prasit Luangaram
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Anunyaporn Phungsom
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Mongkhonphan Tantiwatcharakunthon
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Somchoke Traewachiwiphak
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Tanapan Prommool
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Nuntaya Punyadee
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
- Division
of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj
Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Panisadee Avirutnan
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
- Division
of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj
Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thaneeya Duangchinda
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Medical
Biotechnology Research Unit, National Center for Genetic Engineering
and Biotechnology (BIOTEC), National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Prida Malasit
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
- Division
of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj
Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chunya Puttikhunt
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Medical
Biotechnology Research Unit, National Center for Genetic Engineering
and Biotechnology (BIOTEC), National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| |
Collapse
|
4
|
Wang G, Verma AK, Shi J, Guan X, Meyerholz DK, Bu F, Wen W, Liu B, Li F, Perlman S, Du L. Universal subunit vaccine protects against multiple SARS-CoV-2 variants and SARS-CoV. NPJ Vaccines 2024; 9:133. [PMID: 39054338 PMCID: PMC11272943 DOI: 10.1038/s41541-024-00922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Although Omicron RBD of SARS-CoV-2 accumulates many mutations, the backbone region (truncated RBD) of spike protein is highly conserved. Here, we designed several subunit vaccines by keeping the conserved spike backbone region of SARS-CoV-2 Omicron BA.1 subvariant (S-6P-no-RBD), or inserting the RBD of Delta variant (S-6P-Delta-RBD), Omicron (BA.5) variant (S-6P-BA5-RBD), or ancestral SARS-CoV-2 (S-6P-WT-RBD) to the above backbone construct, and evaluated their ability to induce immune responses and cross-protective efficacy against various SARS-CoV-2 variants and SARS-CoV. Among the four subunit vaccines, S-6P-Delta-RBD protein elicited broad and potent neutralizing antibodies against all SARS-CoV-2 variants tested, including Alpha, Beta, Gamma, and Delta variants, the BA.1, BA.2, BA.2.75, BA.4.6, and BA.5 Omicron subvariants, and the ancestral strain of SARS-CoV-2. This vaccine prevented infection and replication of SARS-CoV-2 Omicron, and completely protected immunized mice against lethal challenge with the SARS-CoV-2 Delta variant and SARS-CoV. Sera from S-6P-Delta-RBD-immunized mice protected naive mice against challenge with the Delta variant, with significantly reduced viral titers and without pathological effects. Protection correlated positively with the serum neutralizing antibody titer. Overall, the designed vaccine has potential for development as a universal COVID-19 vaccine and/or a pan-sarbecovirus subunit vaccine that will prevent current and future outbreaks caused by SARS-CoV-2 variants and SARS-related CoVs.
Collapse
Affiliation(s)
- Gang Wang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Abhishek K Verma
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Juan Shi
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Xiaoqing Guan
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | | | - Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Coronavirus Research, University of Minnesota, Minneapolis, MN, USA
| | - Wei Wen
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Coronavirus Research, University of Minnesota, Minneapolis, MN, USA
| | - Bin Liu
- Hormel Institute, University of Minnesota, Austin, MN, USA.
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Center for Coronavirus Research, University of Minnesota, Minneapolis, MN, USA.
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA.
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Malik S, Muhammad K, Ahsan O, Khan MT, Sah R, Waheed Y. Advances in Zika virus vaccines and therapeutics: A systematic review. ASIAN PAC J TROP MED 2024; 17:97-109. [DOI: 10.4103/apjtm.apjtm_680_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/15/2024] [Indexed: 12/06/2024] Open
Abstract
Zika virus (ZIKV) is the causative agent of a viral infection that causes neurological complications in newborns and adults worldwide. Its wide transmission route and alarming spread rates are of great concern to the scientific community. Numerous trials have been conducted to develop treatment options for ZIKV infection. This review highlights the latest developments in the fields of vaccinology and pharmaceuticals developments for ZIKV infection. A systematic and comprehensive approach was used to gather relevant and up-to-date data so that inferences could be made about the gaps in therapeutic development. The results indicate that several therapeutic interventions are being tested against ZIKV infection, such as DNA vaccines, subunit vaccines, live-attenuated vaccines, virus-vector-based vaccines, inactivated vaccines, virus-like particles, and mRNA-based vaccines. In addition, approved anti-ZIKV drugs that can reduce the global burden are discussed. Although many vaccine candidates for ZIKV are at different stages of development, none of them have received Food and Drug Authority approval for use up to now. The issue of side effects associated with these drugs in vulnerable newborns and pregnant women is a major obstacle in the therapeutic pathway.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Sciences, UAE University, 15551, Al Ain, United Arab Emirates
| | - Omar Ahsan
- Department of Medicine, Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan
| | - Muhammad Tahir Khan
- INTI International University, Persiaran Perdana BBN Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
- Institute of Molecular Biology and Biotechnology, the University of Lahore, KM Defence Road, Lahore 58810, Pakistan
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nanyang 473006, China
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
| | - Yasir Waheed
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
6
|
Elliott KC, Mattapallil JJ. Zika Virus-A Reemerging Neurotropic Arbovirus Associated with Adverse Pregnancy Outcomes and Neuropathogenesis. Pathogens 2024; 13:177. [PMID: 38392915 PMCID: PMC10892292 DOI: 10.3390/pathogens13020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Zika virus (ZIKV) is a reemerging flavivirus that is primarily spread through bites from infected mosquitos. It was first discovered in 1947 in sentinel monkeys in Uganda and has since been the cause of several outbreaks, primarily in tropical and subtropical areas. Unlike earlier outbreaks, the 2015-2016 epidemic in Brazil was characterized by the emergence of neurovirulent strains of ZIKV strains that could be sexually and perinatally transmitted, leading to the Congenital Zika Syndrome (CZS) in newborns, and Guillain-Barre Syndrome (GBS) along with encephalitis and meningitis in adults. The immune response elicited by ZIKV infection is highly effective and characterized by the induction of both ZIKV-specific neutralizing antibodies and robust effector CD8+ T cell responses. However, the structural similarities between ZIKV and Dengue virus (DENV) lead to the induction of cross-reactive immune responses that could potentially enhance subsequent DENV infection, which imposes a constraint on the development of a highly efficacious ZIKV vaccine. The isolation and characterization of antibodies capable of cross-neutralizing both ZIKV and DENV along with cross-reactive CD8+ T cell responses suggest that vaccine immunogens can be designed to overcome these constraints. Here we review the structural characteristics of ZIKV along with the evidence of neuropathogenesis associated with ZIKV infection and the complex nature of the immune response that is elicited by ZIKV infection.
Collapse
Affiliation(s)
- Kenneth C. Elliott
- Department of Microbiology & Immunology, The Henry M Jackson Foundation for Military Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- Department of Microbiology & Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Joseph J. Mattapallil
- Department of Microbiology & Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
7
|
Giri R, Bhardwaj T, Kapuganti SK, Saumya KU, Sharma N, Bhardwaj A, Joshi R, Verma D, Gadhave K. Widespread amyloid aggregates formation by Zika virus proteins and peptides. Protein Sci 2023; 32:e4833. [PMID: 37937856 PMCID: PMC10682691 DOI: 10.1002/pro.4833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/09/2023]
Abstract
Viral pathogenesis typically involves numerous molecular mechanisms. Protein aggregation is a relatively unknown characteristic of viruses, despite the fact that viral proteins have been shown to form terminally misfolded forms. Zika virus (ZIKV) is a neurotropic one with the potential to cause neurodegeneration. Its protein amyloid aggregation may link the neurodegenerative component to the pathogenicity associated with the viral infection. Therefore, we investigated protein aggregation in the ZIKV proteome as a putative pathogenic route and one of the alternate pathways. We discovered that it contains numerous anticipated aggregation-prone regions in this investigation. To validate our prediction, we used a combination of supporting experimental techniques routinely used for morphological characterization and study of amyloid aggregates. Several ZIKV proteins and peptides, including the full-length envelope protein, its domain III (EDIII) and fusion peptide, Pr N-terminal peptide, NS1 β-roll peptide, membrane-embedded signal peptide 2K, and cytosolic region of NS4B protein, were shown to be highly aggregating in our study. Because our findings show that viral proteins can form amyloids in vitro, we need to do a thorough functional study of these anticipated APRs to understand better the role of amyloids in the pathophysiology of ZIKV infection.
Collapse
Affiliation(s)
- Rajanish Giri
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Taniya Bhardwaj
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Shivani K. Kapuganti
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Kumar Udit Saumya
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Nitin Sharma
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Aparna Bhardwaj
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Richa Joshi
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Deepanshu Verma
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Kundlik Gadhave
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
8
|
Martina CE, Crowe JE, Meiler J. Glycan masking in vaccine design: Targets, immunogens and applications. Front Immunol 2023; 14:1126034. [PMID: 37033915 PMCID: PMC10076883 DOI: 10.3389/fimmu.2023.1126034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Glycan masking is a novel technique in reverse vaccinology in which sugar chains (glycans) are added on the surface of immunogen candidates to hide regions of low interest and thus focus the immune system on highly therapeutic epitopes. This shielding strategy is inspired by viruses such as influenza and HIV, which are able to escape the immune system by incorporating additional glycosylation and preventing the binding of therapeutic antibodies. Interestingly, the glycan masking technique is mainly used in vaccine design to fight the same viruses that naturally use glycans to evade the immune system. In this review we report the major successes obtained with the glycan masking technique in epitope-focused vaccine design. We focus on the choice of the target antigen, the strategy for immunogen design and the relevance of the carrier vector to induce a strong immune response. Moreover, we will elucidate the different applications that can be accomplished with glycan masking, such as shifting the immune response from hyper-variable epitopes to more conserved ones, focusing the response on known therapeutic epitopes, broadening the response to different viral strains/sub-types and altering the antigen immunogenicity to elicit higher or lower immune response, as desired.
Collapse
Affiliation(s)
- Cristina E. Martina
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| |
Collapse
|
9
|
Zhu W, Zhou B, Chen L, Zhao J, Rao H. Combinations but Not a Single PlpE Epitope Induces Host Protective Immunity against Pasteurella multocida. Infect Immun 2023; 91:e0027222. [PMID: 36815793 PMCID: PMC10016081 DOI: 10.1128/iai.00272-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Pasteurella multocida is the causative agent of a wide range of diseases (pasteurellosis) and a zoonotic pathogen in humans. Recombinant subunit vaccines are hot spots in recent pasteurellosis vaccine development. A chimeric vaccine is also constructed for rabbit hemorrhagic disease virus (RHDV) protective antigen VP60 chimeric with fragments of Pasteurella multocida protective antigen PlpE. The protective efficacy of the chimeric vaccine against P. multocida is not as high as that of PlpE, and the reason is not well known. In this study, we analyzed the linear B-cell epitopes of PlpE and then assessed the protective efficacy of these epitopes and their combinations. It was found that the immunodominant region of PlpE was mainly located in the region between the 21st to the 185th amino acids from the N terminus. Overlapping peptide scanning results demonstrated that this region contained six nonoverlapping epitopes, and epitope E was the predominant epitope. Chimeric protein antigens were constructed of single nonoverlapping PlpE epitopes or their combinations chimeric with the RHDV VP60 P domain. Immunization with recombinant antigen chimeric with a single PlpE epitope exhibited poor immunoprotection, whereas immunization with recombinant antigen chimeric with PlpE epitope combinations (epitopes A and E; epitopes C and E; epitopes A, C, and E; and epitopes B, D, and F) exhibited significant immunoprotection. In a word, P. multocida protective antigen PlpE contained six nonoverlapping linear B-cell epitopes, and combinations but not a single epitope induced host protective immunity. Our work will give help for future chimeric vaccine design.
Collapse
Affiliation(s)
- Weifeng Zhu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Banghui Zhou
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Lu Chen
- College of Animal Science, Tibetan Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Juan Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huaqin Rao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Kale A, Joshi D, Menon I, Bagwe P, Patil S, Vijayanand S, Braz Gomes K, Uddin MN, D'Souza MJ. Zika Vaccine Microparticles (MPs)-Loaded Dissolving Microneedles (MNs) Elicit a Significant Immune Response in a Pre-Clinical Murine Model. Vaccines (Basel) 2023; 11:vaccines11030583. [PMID: 36992167 DOI: 10.3390/vaccines11030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Although the global Zika epidemic in 2015–16 fueled vaccine development efforts, there is no approved Zika vaccine or treatment available to date. Current vaccine platforms in clinical trials are administered via either subcutaneous or intramuscular injections, which are painful and decrease compliance. Therefore, in the present study, we explored Zika vaccine microparticles (MPs)-loaded dissolving microneedles (MNs) with adjuvant MPs encapsulating Alhydrogel® and MPL-A® administered via the transdermal route as a pain-free vaccine strategy. We characterized the MNs for needle length, pore formation, and dissolvability when applied to murine skin. Further, we evaluated the in vivo efficacy of vaccine MPs-loaded MNs with or without adjuvants by measuring the immune response after transdermal immunization. The vaccine MPs-loaded dissolving MNs with adjuvants induced significant IgG, IgG1, and IgG2a titers in immunized mice compared to the untreated control group. After the dosing regimen, the animals were challenged with Zika virus, monitored for seven days, and sacrificed to collect spleen and lymph nodes. The lymphocytes and splenocytes from the immunized mice showed significant expressions of helper (CD4) and cytotoxic (CD8a) cell surface markers compared to the control group. Thus, this study puts forth a ‘proof-of-concept’ for a pain-free transdermal vaccine strategy against Zika.
Collapse
Affiliation(s)
- Akanksha Kale
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, Mercer University College of Pharmacy, Atlanta, GA 30341, USA
| | - Devyani Joshi
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, Mercer University College of Pharmacy, Atlanta, GA 30341, USA
| | - Ipshita Menon
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, Mercer University College of Pharmacy, Atlanta, GA 30341, USA
| | - Priyal Bagwe
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, Mercer University College of Pharmacy, Atlanta, GA 30341, USA
| | - Smital Patil
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, Mercer University College of Pharmacy, Atlanta, GA 30341, USA
| | - Sharon Vijayanand
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, Mercer University College of Pharmacy, Atlanta, GA 30341, USA
| | - Keegan Braz Gomes
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, Mercer University College of Pharmacy, Atlanta, GA 30341, USA
| | - Mohammad N Uddin
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, Mercer University College of Pharmacy, Atlanta, GA 30341, USA
| | - Martin J D'Souza
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, Mercer University College of Pharmacy, Atlanta, GA 30341, USA
| |
Collapse
|
11
|
Bayani F, Hashkavaei NS, Arjmand S, Rezaei S, Uskoković V, Alijanianzadeh M, Uversky VN, Ranaei Siadat SO, Mozaffari-Jovin S, Sefidbakht Y. An overview of the vaccine platforms to combat COVID-19 with a focus on the subunit vaccines. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:32-49. [PMID: 36801471 PMCID: PMC9938630 DOI: 10.1016/j.pbiomolbio.2023.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus that has caused the recent coronavirus disease (COVID-19) global pandemic. The current approved COVID-19 vaccines have shown considerable efficiency against hospitalization and death. However, the continuation of the pandemic for more than two years and the likelihood of new strain emergence despite the global rollout of vaccination highlight the immediate need for the development and improvement of vaccines. mRNA, viral vector, and inactivated virus vaccine platforms were the first members of the worldwide approved vaccine list. Subunit vaccines. which are vaccines based on synthetic peptides or recombinant proteins, have been used in lower numbers and limited countries. The unavoidable advantages of this platform, including safety and precise immune targeting, make it a promising vaccine with wider global use in the near future. This review article summarizes the current knowledge on different vaccine platforms, focusing on the subunit vaccines and their clinical trial advancements against COVID-19.
Collapse
Affiliation(s)
- Fatemeh Bayani
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Shokouh Rezaei
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA; TardigradeNano LLC, Irvine, CA, 92604, USA
| | - Mahdi Alijanianzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | | | - Sina Mozaffari-Jovin
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
12
|
Effective vaccination strategy using SARS-CoV-2 spike cocktail against Omicron and other variants of concern. NPJ Vaccines 2022; 7:169. [PMID: 36535987 PMCID: PMC9762654 DOI: 10.1038/s41541-022-00580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 Omicron variant harbors more than 30 mutations in its spike (S) protein. Circulating Omicron subvariants, particularly BA5 and other variants of concern (VOCs), show increased resistance to COVID-19 vaccines that target the original S protein, calling for an urgent need for effective vaccines to prevent multiple SARS-CoV-2 VOCs. Here, we evaluated the neutralizing activity and protection conferred by a BA1-S subunit vaccine when combined with or used as booster doses after, administration of wild-type S protein (WT-S). A WT-S/BA1-S cocktail, or WT-S prime and BA1-S boost, induced significantly higher neutralizing antibodies against pseudotyped Omicron BA1, BA2, BA2.12.1, and BA5 subvariants, and similar or higher neutralizing antibodies against the original SARS-CoV-2, than the WT-S protein alone. The WT-S/BA1-S cocktail also elicited higher or significantly higher neutralizing antibodies than the WT-S-prime-BA1-S boost, WT-S alone, or BA1-S alone against pseudotyped SARS-CoV-2 Alpha, Beta, Gamma, and Delta VOCs, and SARS-CoV, a closely related beta-coronavirus using the same receptor as SARS-CoV-2 for viral entry. By contrast, WT-S or BA1-S alone failed to induce potent neutralizing antibodies against all these viruses. Similar to the WT-S-prime-BA1-S boost, the WT-S/BA1-S cocktail completely protected mice against the lethal challenge of a Delta variant with negligible weight loss. Thus, we have identified an effective vaccination strategy that elicits potent, broadly, and durable neutralizing antibodies against circulating SARS-CoV-2 Omicron subvariants, other VOCs, original SARS-CoV-2, and SARS-CoV. These results will provide useful guidance for developing efficacious vaccines that inhibit current and future SARS-CoV-2 variants to control the COVID-19 pandemic.
Collapse
|
13
|
A Glycosylated RBD Protein Induces Enhanced Neutralizing Antibodies against Omicron and Other Variants with Improved Protection against SARS-CoV-2 Infection. J Virol 2022; 96:e0011822. [PMID: 35972290 PMCID: PMC9472618 DOI: 10.1128/jvi.00118-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
SARS-CoV-2 has mutated frequently since its first emergence in 2019. Numerous variants, including the currently emerging Omicron variant, have demonstrated high transmissibility or increased disease severity, posing serious threats to global public health. This study describes the identification of an immunodominant non-neutralizing epitope on SARS-CoV-2 receptor-binding domain (RBD). A subunit vaccine against this mutant RBD, constructed by masking this epitope with a glycan probe, did not significantly affect RBD’s receptor-binding affinity or antibody-binding affinity, or its ability to induce antibody production. However, this vaccine enhanced the neutralizing activity of this RBD and its protective efficacy in immunized mice. Specifically, this vaccine elicited significantly higher-titer neutralizing antibodies than the prototypic RBD protein against Alpha (B.1.1.7 lineage), Beta (B.1.351 lineage), Gamma (P.1 lineage), and Epsilon (B.1.427 or B.1.429 lineage) variant pseudoviruses containing single or combined mutations in the spike (S) protein, albeit the neutralizing antibody titers against some variants were slightly lower than against original SARS-CoV-2. This vaccine also significantly improved the neutralizing activity of the prototypic RBD against pseudotyped and authentic Delta (B.1.617.2 lineage) and Omicron (B.1.1.529 lineage) variants, although the neutralizing antibody titers were lower than against original SARS-CoV-2. In contrast to the prototypic RBD, the mutant RBD completely protected human ACE2 (hACE2)-transgenic mice from lethal challenge with a prototype SARS-CoV-2 strain and a Delta variant without weight loss. Overall, these findings indicate that this RBD vaccine has broad-spectrum activity against multiple SARS-CoV-2 variants, as well as the potential to be effective and have improved efficacy against Omicron and other pandemic variants. IMPORTANCE Several SARS-CoV-2 variants have shown increased transmissibility, calling for a need to develop effective vaccines with broadly neutralizing activity against multiple variants. This study identified a non-neutralizing epitope on the receptor-binding domain (RBD) of SARS-CoV-2 spike protein, and further shielded it with a glycan probe. A subunit vaccine based on this mutant RBD significantly enhanced the ability of prototypic RBD against multiple SARS-CoV-2 variants, including the Delta and Omicron strains, although the neutralizing antibody titers against some of these variants were lower than those against original SARS-CoV-2. This mutant vaccine also enhanced the protective efficacy of the prototypic RBD vaccine against SARS-CoV-2 infection in immunized animals. In conclusion, this study identified an engineered RBD vaccine against Omicron and other SARS-CoV-2 variants that induced stronger neutralizing antibodies and protection than the original RBD vaccine. It also highlights the need to improve the effectiveness of current COVID-19 vaccines to prevent pandemic SARS-CoV-2 variants.
Collapse
|
14
|
Miller NL, Raman R, Clark T, Sasisekharan R. Complexity of Viral Epitope Surfaces as Evasive Targets for Vaccines and Therapeutic Antibodies. Front Immunol 2022; 13:904609. [PMID: 35784339 PMCID: PMC9247215 DOI: 10.3389/fimmu.2022.904609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
The dynamic interplay between virus and host plays out across many interacting surfaces as virus and host evolve continually in response to one another. In particular, epitope-paratope interactions (EPIs) between viral antigen and host antibodies drive much of this evolutionary race. In this review, we describe a series of recent studies examining aspects of epitope complexity that go beyond two interacting protein surfaces as EPIs are typically understood. To structure our discussion, we present a framework for understanding epitope complexity as a spectrum along a series of axes, focusing primarily on 1) epitope biochemical complexity (e.g., epitopes involving N-glycans) and 2) antigen conformational/dynamic complexity (e.g., epitopes with differential properties depending on antigen state or fold-axis). We highlight additional epitope complexity factors including epitope tertiary/quaternary structure, which contribute to epistatic relationships between epitope residues within- or adjacent-to a given epitope, as well as epitope overlap resulting from polyclonal antibody responses, which is relevant when assessing antigenic pressure against a given epitope. Finally, we discuss how these different forms of epitope complexity can limit EPI analyses and therapeutic antibody development, as well as recent efforts to overcome these limitations.
Collapse
Affiliation(s)
- Nathaniel L. Miller
- Harvard Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rahul Raman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Thomas Clark
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ram Sasisekharan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
15
|
Gao Y, Tai W, Wang X, Jiang S, Debnath AK, Du L, Chen S. A gossypol derivative effectively protects against Zika and dengue virus infection without toxicity. BMC Biol 2022; 20:143. [PMID: 35706035 PMCID: PMC9202104 DOI: 10.1186/s12915-022-01344-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Background Zika virus (ZIKV) and dengue virus (DENV) cause microcephaly and dengue hemorrhagic fever, respectively, leading to severe problems. No effective antiviral agents are approved against infections of these flaviviruses, calling for the need to develop potent therapeutics. We previously identified gossypol as an effective inhibitor against ZIKV and DENV infections, but this compound is toxic and not suitable for in vivo treatment. Results In this study, we showed that gossypol derivative ST087010 exhibited potent and broad-spectrum in vitro inhibitory activity against infections of at least ten ZIKV strains isolated from different hosts, time periods, and countries, as well as DENV-1-4 serotypes, and significantly reduced cytotoxicity compared to gossypol. It presented broad-spectrum in vivo protective efficacy, protecting ZIKV-infected Ifnar1−/− mice from lethal challenge, with increased survival and reduced weight loss. Ifnar1−/− mice treated with this gossypol derivative decreased viral titers in various tissues, including the brain and testis, after infection with ZIKV at different human isolates. Moreover, ST087010 potently blocked ZIKV vertical transmission in pregnant Ifnar1−/− mice, preventing ZIKV-caused fetal death, and it was safe for pregnant mice and their pups. It also protected DENV-2-challenged Ifnar1−/− mice against viral replication by reducing the viral titers in the brain, kidney, heart, and sera. Conclusions Overall, our data indicate the potential for further development of this gossypol derivative as an effective and safe broad-spectrum therapeutic agent to treat ZIKV and DENV diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01344-w.
Collapse
Affiliation(s)
- Yaning Gao
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Xinyi Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.,Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Asim K Debnath
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.
| | - Shizhong Chen
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
16
|
Georgiev GI, Malonis RJ, Wirchnianski AS, Wessel AW, Jung HS, Cahill SM, Nyakatura EK, Vergnolle O, Dowd KA, Cowburn D, Pierson TC, Diamond MS, Lai JR. Resurfaced ZIKV EDIII nanoparticle immunogens elicit neutralizing and protective responses in vivo. Cell Chem Biol 2022; 29:811-823.e7. [PMID: 35231399 DOI: 10.1016/j.chembiol.2022.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/10/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
Abstract
Zika virus (ZIKV) is a flavivirus that can cause severe disease, but there are no approved treatments or vaccines. A complication for flavivirus vaccine development is the potential of immunogens to enhance infection via antibody-dependent enhancement (ADE), a process mediated by poorly neutralizing and cross-reactive antibodies. Thus, there is a great need to develop immunogens that minimize the potential to elicit enhancing antibodies. Here we utilized structure-based protein engineering to develop "resurfaced" (rs) ZIKV immunogens based on E glycoprotein domain III (ZDIIIs), in which epitopes bound by variably neutralizing antibodies were masked by combinatorial mutagenesis. We identified one resurfaced ZDIII immunogen (rsZDIII-2.39) that elicited a protective but immune-focused response. Compared to wild type ZDIII, immunization with resurfaced rsZDIII-2.39 protein nanoparticles produced fewer numbers of ZIKV EDIII antigen-reactive B cells and elicited serum that had a lower magnitude of induced ADE against dengue virus serotype 1 (DENV1) Our findings enhance our understanding of the structural and functional determinants of antibody protection against ZIKV.
Collapse
Affiliation(s)
- George I Georgiev
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ryan J Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ariel S Wirchnianski
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alex W Wessel
- Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Helen S Jung
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sean M Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Elisabeth K Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kimberly A Dowd
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Theodore C Pierson
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael S Diamond
- Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
17
|
Abernathy ME, Dam KMA, Esswein SR, Jette CA, Bjorkman PJ. How Antibodies Recognize Pathogenic Viruses: Structural Correlates of Antibody Neutralization of HIV-1, SARS-CoV-2, and Zika. Viruses 2021; 13:2106. [PMID: 34696536 PMCID: PMC8537525 DOI: 10.3390/v13102106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
The H1N1 pandemic of 2009-2010, MERS epidemic of 2012, Ebola epidemics of 2013-2016 and 2018-2020, Zika epidemic of 2015-2016, and COVID-19 pandemic of 2019-2021, are recent examples in the long history of epidemics that demonstrate the enormous global impact of viral infection. The rapid development of safe and effective vaccines and therapeutics has proven vital to reducing morbidity and mortality from newly emerging viruses. Structural biology methods can be used to determine how antibodies elicited during infection or vaccination target viral proteins and identify viral epitopes that correlate with potent neutralization. Here we review how structural and molecular biology approaches have contributed to our understanding of antibody recognition of pathogenic viruses, specifically HIV-1, SARS-CoV-2, and Zika. Determining structural correlates of neutralization of viruses has guided the design of vaccines, monoclonal antibodies, and small molecule inhibitors in response to the global threat of viral epidemics.
Collapse
Affiliation(s)
- Morgan E. Abernathy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| | - Kim-Marie A. Dam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| | - Shannon R. Esswein
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA;
| | - Claudia A. Jette
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| |
Collapse
|
18
|
Geng Q, Tai W, Baxter VK, Shi J, Wan Y, Zhang X, Montgomery SA, Taft-Benz SA, Anderson EJ, Knight AC, Dinnon KH, Leist SR, Baric RS, Shang J, Hong SW, Drelich A, Tseng CTK, Jenkins M, Heise M, Du L, Li F. Novel virus-like nanoparticle vaccine effectively protects animal model from SARS-CoV-2 infection. PLoS Pathog 2021; 17:e1009897. [PMID: 34492082 PMCID: PMC8448314 DOI: 10.1371/journal.ppat.1009897] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/17/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
The key to battling the COVID-19 pandemic and its potential aftermath is to develop a variety of vaccines that are efficacious and safe, elicit lasting immunity, and cover a range of SARS-CoV-2 variants. Recombinant viral receptor-binding domains (RBDs) are safe vaccine candidates but often have limited efficacy due to the lack of virus-like immunogen display pattern. Here we have developed a novel virus-like nanoparticle (VLP) vaccine that displays 120 copies of SARS-CoV-2 RBD on its surface. This VLP-RBD vaccine mimics virus-based vaccines in immunogen display, which boosts its efficacy, while maintaining the safety of protein-based subunit vaccines. Compared to the RBD vaccine, the VLP-RBD vaccine induced five times more neutralizing antibodies in mice that efficiently blocked SARS-CoV-2 from attaching to its host receptor and potently neutralized the cell entry of variant SARS-CoV-2 strains, SARS-CoV-1, and SARS-CoV-1-related bat coronavirus. These neutralizing immune responses induced by the VLP-RBD vaccine did not wane during the two-month study period. Furthermore, the VLP-RBD vaccine effectively protected mice from SARS-CoV-2 challenge, dramatically reducing the development of clinical signs and pathological changes in immunized mice. The VLP-RBD vaccine provides one potentially effective solution to controlling the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Qibin Geng
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
- Center for Coronavirus Research, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Wanbo Tai
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Victoria K. Baxter
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Juan Shi
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Yushun Wan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
- Center for Coronavirus Research, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Xiujuan Zhang
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sharon A. Taft-Benz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Elizabeth J. Anderson
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Audrey C. Knight
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kenneth H. Dinnon
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sarah R. Leist
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ralph S. Baric
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jian Shang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
- Center for Coronavirus Research, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Sung-Wook Hong
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chien-Te K. Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Marc Jenkins
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mark Heise
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lanying Du
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
- Center for Coronavirus Research, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
19
|
Gambino F, Tai W, Voronin D, Zhang Y, Zhang X, Shi J, Wang X, Wang N, Du L, Qiao L. A vaccine inducing solely cytotoxic T lymphocytes fully prevents Zika virus infection and fetal damage. Cell Rep 2021; 35:109107. [PMID: 33979612 PMCID: PMC8742672 DOI: 10.1016/j.celrep.2021.109107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/20/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
As vaccine-induced non-neutralizing antibodies may cause antibody-dependent enhancement of Zika virus (ZIKV) infection, we test a vaccine that induces only specific cytotoxic T lymphocytes (CTLs) without specific antibodies. We construct a DNA vaccine expressing a ubiquitinated and rearranged ZIKV non-structural protein 3 (NS3). The protein is immediately degraded and processed in the proteasome for presentation via major histocompatibility complex (MHC) class I for CTL generation. We immunize Ifnar1-/- adult mice with the ubiquitin/NS3 vaccine, impregnate them, and challenge them with ZIKV. Our data show that the vaccine greatly reduces viral titers in reproductive organs and other tissues of adult mice. All mice immunized with the vaccine survived after ZIKV challenge. The vaccine remarkably reduces placenta damage and levels of pro-inflammatory cytokines, and it fully protects fetuses from damage. CD8+ CTLs are essential in protection, as demonstrated via depletion experiments. Our study provides a strategy to develop safe and effective vaccines against viral infections.
Collapse
Affiliation(s)
- Frank Gambino
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA,These authors contributed equally
| | - Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA,These authors contributed equally
| | - Denis Voronin
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiujuan Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Juan Shi
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Xinyi Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Ning Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA,Senior author,Correspondence: (L.D.), (L.Q.)
| | - Liang Qiao
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA,Senior author,Lead contact,Correspondence: (L.D.), (L.Q.)
| |
Collapse
|
20
|
Cibulski S, Varela APM, Teixeira TF, Cancela MP, Sesterheim P, Souza DO, Roehe PM, Silveira F. Zika Virus Envelope Domain III Recombinant Protein Delivered With Saponin-Based Nanoadjuvant From Quillaja brasiliensis Enhances Anti-Zika Immune Responses, Including Neutralizing Antibodies and Splenocyte Proliferation. Front Immunol 2021; 12:632714. [PMID: 33746970 PMCID: PMC7969523 DOI: 10.3389/fimmu.2021.632714] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022] Open
Abstract
Nanoadjuvants that combine immunostimulatory properties and delivery systems reportedly bestow major improvements on the efficacy of recombinant, protein-based vaccines. Among these, self-assembled micellar formulations named ISCOMs (immune stimulating complexes) show a great ability to trigger powerful immunological responses against infectious pathogens. Here, a nanoadjuvant preparation, based on saponins from Quillaja brasiliensis, was evaluated together with an experimental Zika virus (ZIKV) vaccine (IQB80-zEDIII) and compared to an equivalent vaccine with alum as the standard adjuvant. The preparations were administered to mice in two doses (on days zero and 14) and immune responses were evaluated on day 28 post-priming. Serum levels of anti-Zika virus IgG, IgG1, IgG2b, IgG2c, IgG3 were significantly increased by the nanoadjuvant vaccine, compared to the mice that received the alum-adjuvanted vaccine or the unadjuvanted vaccine. In addition, a robust production of neutralizing antibodies and in vitro splenocyte proliferative responses were observed in mice immunized with IQB80-zEDIII nanoformulated vaccine. Therefore, the IQB80-zEDIII recombinant preparation seems to be a suitable candidate vaccine for ZIKV. Overall, this study identified saponin-based delivery systems as an adequate adjuvant for recombinant ZIKV vaccines and has important implications for recombinant protein-based vaccine formulations against other flaviviruses and possibly enveloped viruses.
Collapse
Affiliation(s)
- Samuel Cibulski
- Laboratório de Biotecnologia Celular e Molecular, Centro de Biotecnologia-CBiotec, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Ana Paula Muterle Varela
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thais Fumaco Teixeira
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Martín Pablo Cancela
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Sesterheim
- Centro de Cardiologia Experimental, Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paulo Michel Roehe
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Silveira
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
21
|
Yang R, Liu Q, Pang W, Gao F, Liang H, Zhang W, Lin Y, Li M, Liu Z, Gao GF, Zhang L, Xiao H, Zheng Y, Huang Z, Jin X. Two immunogenic recombinant protein vaccine candidates showed disparate protective efficacy against Zika virus infection in rhesus macaques. Vaccine 2021; 39:915-925. [PMID: 33451779 DOI: 10.1016/j.vaccine.2020.12.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/27/2022]
Abstract
Zika virus (ZIKV) infection has caused major public health problems recently. To develop subunit vaccines for ZIKV, we have previously constructed recombinant ZIKV envelope protein domain III (EDIII), and the entire ectodomain (E80, which comprises EDI, EDII and EDIII), as vaccine candidates and showed both of them being immunogenic and protective in murine models. In this follow-up study, we compared these vaccine candidates in non-human primates. Both of them elicited neutralizing antibody responses, but only E80 immunization inhibited ZIKV infection in both peripheral blood and monkey tissues, whereas EDIII increased blood ZIKV RNA through possibly antibody-dependent enhancement. Further investigations revealed that the virion-binding antibody response in E80 immunized monkeys persisted longer and stronger than in EDIII immunized monkeys. These results demonstrate that E80 is superior to EDIII as a vaccine candidate, and that the magnitude, quality and durability of virion-binding neutralizing antibodies are correlates of protection.
Collapse
Affiliation(s)
- Ruoheng Yang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Qingwei Liu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Fei Gao
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Huabin Liang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yalong Lin
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Min Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhihua Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - George F Gao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hui Xiao
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yongtang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhong Huang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| | - Xia Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Wan S, Cao S, Wang X, Zhou Y, Yan W, Gu X, Wu TC, Pang X. Generation and preliminary characterization of vertebrate-specific replication-defective Zika virus. Virology 2021; 552:73-82. [PMID: 33075709 PMCID: PMC7733535 DOI: 10.1016/j.virol.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 01/07/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that replicates in both vertebrate and insect cells, whereas insect-specific flaviviruses (ISF) replicate only in insect cells. We sought to convert ZIKV, from a dual-tropic flavivirus, into an insect-specific virus for the eventual development of a safe ZIKV vaccine. Reverse genetics was used to introduce specific mutations into the furin cleavage motif within the ZIKV pre-membrane protein (prM). Mutant clones were selected, which replicated well in C6/36 insect cells but exhibited reduced replication in non-human primate (Vero) cells. Further characterization of the furin cleavage site mutants indicated they replicated poorly in both human (HeLa, U251), and baby hamster kidney (BHK-21) cells. One clone with the induced mutation in the prM protein and at positions 291and 452 within the NS3 protein was totally and stably replication-defective in vertebrate cells (VSRD-ZIKV). Preliminary studies in ZIKV sensitive, immunodeficient mice demonstrated that VSRD-ZIKV-infected mice survived and were virus-negative. Our study indicates that a reverse genetic approach targeting the furin cleavage site in prM can be used to select an insect-specific ZIKV with the potential utility as a vaccine strain.
Collapse
Affiliation(s)
- Shengfeng Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA; Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, 450003, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xugang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | - Weidong Yan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA
| | - Xinbin Gu
- Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA
| | - Tzyy-Choou Wu
- Department of Molecular Microbiology & Immunology, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Xiaowu Pang
- Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA.
| |
Collapse
|
23
|
Brisse M, Vrba SM, Kirk N, Liang Y, Ly H. Emerging Concepts and Technologies in Vaccine Development. Front Immunol 2020; 11:583077. [PMID: 33101309 PMCID: PMC7554600 DOI: 10.3389/fimmu.2020.583077] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 01/05/2023] Open
Abstract
Despite the success of vaccination to greatly mitigate or eliminate threat of diseases caused by pathogens, there are still known diseases and emerging pathogens for which the development of successful vaccines against them is inherently difficult. In addition, vaccine development for people with compromised immunity and other pre-existing medical conditions has remained a major challenge. Besides the traditional inactivated or live attenuated, virus-vectored and subunit vaccines, emerging non-viral vaccine technologies, such as viral-like particle and nanoparticle vaccines, DNA/RNA vaccines, and rational vaccine design, offer innovative approaches to address existing challenges of vaccine development. They have also significantly advanced our understanding of vaccine immunology and can guide future vaccine development for many diseases, including rapidly emerging infectious diseases, such as COVID-19, and diseases that have not traditionally been addressed by vaccination, such as cancers and substance abuse. This review provides an integrative discussion of new non-viral vaccine development technologies and their use to address the most fundamental and ongoing challenges of vaccine development.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota Twin Cities, St. Paul, MN, United States
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Sophia M. Vrba
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Natalie Kirk
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
- Comparative Molecular Biosciences Graduate Program, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| |
Collapse
|
24
|
Passive immunisation of convalescent human anti-Zika plasma protects against challenge with New World Zika virus in cynomolgus macaques. NPJ Vaccines 2020; 5:86. [PMID: 33014434 PMCID: PMC7492244 DOI: 10.1038/s41541-020-00234-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) causes neurological complications in susceptible individuals, highlighted in the recent South American epidemic. Natural ZIKV infection elicits host responses capable of preventing subsequent re-infection, raising expectations for effective vaccination. Defining protective immune correlates will inform viral intervention strategies, particularly vaccine development. Non-human primate (NHP) species are susceptible to ZIKV and represent models for vaccine development. The protective efficacy of a human anti-ZIKV convalescent plasma pool (16/320-14) developed as a candidate reference material for a WHO International Standard was evaluated in macaques. Convalescent plasma administered to four cynomolgus macaques (Macaca fascicularis) intra-peritoneally 24 hrs prior to sub-cutaneous challenge with 103 pfu ZIKVPRVABC59 protected against detectable infection, with absence of detectable ZIKV RNA in blood and lymphoid tissues. Passively immunised anti-ZIKV immunoglobulin administered prior to time of challenge remained present only at very low levels 42 days post-challenge. Absence of de novo antibody responses in passively immunised macaques indicate sterilising immunity compared with naïve challenge controls that exhibited active ZIKV-specific IgM and IgG responses post-challenge. Demonstration that the presence of convalescent anti-ZIKV at levels of 400 IU/mL neutralising antibody protects against virus challenge provides a scientific framework for development of anti-ZIKV vaccines and facilitates regulatory approval.
Collapse
|
25
|
Abstract
COVID-19 emerged in late 2019 and has rapidly spread through many countries globally. The causative SARS-CoV-2 virus was not known until recently, and there is little or no natural immunity in human populations. There is an urgent need for vaccines and drugs to combat this new pandemic. In just a few months, huge efforts and resources by government, academia, and industry have been thrown into the race to develop a vaccine. This brief review summarizes and discusses the array of technologies being applied to vaccine development, highlighting the strengths and weaknesses of the various approaches.
Collapse
Affiliation(s)
- Wern Hann Ng
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University (Gold Coast Campus), Queensland, Australia
| | - Xiang Liu
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University (Gold Coast Campus), Queensland, Australia
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University (Gold Coast Campus), Queensland, Australia
| |
Collapse
|
26
|
Pattnaik A, Sahoo BR, Pattnaik AK. Current Status of Zika Virus Vaccines: Successes and Challenges. Vaccines (Basel) 2020; 8:vaccines8020266. [PMID: 32486368 PMCID: PMC7349928 DOI: 10.3390/vaccines8020266] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
The recently emerged Zika virus (ZIKV) spread to the Americas, causing a spectrum of congenital diseases including microcephaly in newborn and Guillain-Barré syndrome (GBS) in adults. The unprecedented nature of the epidemic and serious diseases associated with the viral infections prompted the global research community to understand the immunopathogenic mechanisms of the virus and rapidly develop safe and efficacious vaccines. This has led to a number of ZIKV vaccine candidates that have shown significant promise in human clinical trials. These candidates include nucleic acid vaccines, inactivated vaccines, viral-vectored vaccines, and attenuated vaccines. Additionally, a number of vaccine candidates have been shown to protect animals in preclinical studies. However, as the epidemic has waned in the last three years, further development of the most promising vaccine candidates faces challenges in clinical efficacy trials, which is needed before a vaccine is brought to licensure. It is important that a coalition of government funding agencies and private sector companies is established to move forward with a safe and effective vaccine ready for deployment when the next ZIKV epidemic occurs.
Collapse
Affiliation(s)
- Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bikash R. Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-402-472-1067
| |
Collapse
|
27
|
Hariharan V, Kane RS. Glycosylation as a tool for rational vaccine design. Biotechnol Bioeng 2020; 117:2556-2570. [PMID: 32330286 DOI: 10.1002/bit.27361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022]
Abstract
The discovery of broadly neutralizing antibodies that can neutralize multiple strains or subtypes of a pathogen has renewed interest in the development of broadly protective vaccines. To that end, there has been an interest in designing immunofocusing strategies to direct the immune response to specific, conserved regions on antigenic proteins. Modulation of glycosylation is one such immunofocusing strategy; extensive glycosylation is often exploited by pathogens for immune evasion. Masking epitopes on protein immunogens with "self" glycans can also shield the underlying protein surface from humoral immune surveillance. We review recent advances in applying glycosylation as an immunofocusing tool. We also highlight recent interesting work in the HIV-1 field involving the identification and elicitation of broadly neutralizing antibodies that incorporate glycans into their binding epitopes.
Collapse
Affiliation(s)
- Vivek Hariharan
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
28
|
Chen MY, Chai KM, Chiang CY, Wu CC, Yu GY, Liu SJ, Chen HW. Recombinant lipidated Zika virus envelope protein domain III elicits durable neutralizing antibody responses against Zika virus in mice. J Biomed Sci 2020; 27:51. [PMID: 32290844 PMCID: PMC7158147 DOI: 10.1186/s12929-020-00646-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/27/2020] [Indexed: 01/06/2023] Open
Abstract
Background The emergence of Zika virus (ZV) in tropical and subtropical areas of the world has created an urgent need for vaccines against ZV. However, approved vaccines that prevent ZV infection are not available. To develop an effective vaccine against ZV infection, a lipidated form of ZV envelope protein domain III that possesses an intrinsic adjuvant property was rationally designed. Our goal was to examine the immunogenicity of recombinant lipidated ZV envelope protein domain III (rLZE3) and evaluate its potential as a vaccine candidate against ZV. Methods Recombinant ZV envelope protein domain III (rZE3) and rLZE3 were prepared with an Escherichia coli-based system. Dendritic cell surface marker expression and cytokine production upon stimulation were analyzed to evaluate the function of rLZE3. Neutralizing antibody capacities were evaluated using focus reduction neutralization tests after immunization. To investigate the protective immunity in immunized mice, serum samples collected from immunized mice were adoptively transferred into AG129 mice, and then viremia levels and survival times were examined after ZV challenge. Results rLZE3 alone but not rZE3 alone efficiently activated dendritic cells in vitro and was taken up by dendritic cells in vivo. Immunization of C57BL/6 mice with rLZE3 alone (without exogenous adjuvant) could induce ZV-specific neutralizing antibody responses. Furthermore, serum samples obtained from rLZE3-immunized mice provided protection as indicated by a reduction in viremia levels and prolongation of survival times after ZV challenge. Conclusion These results indicate that rLZE3 is an excellent vaccine candidate and has great potential that should be evaluated in further preclinical studies.
Collapse
Affiliation(s)
- Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Kit Man Chai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chiao-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
29
|
Sunita, Sajid A, Singh Y, Shukla P. Computational tools for modern vaccine development. Hum Vaccin Immunother 2020; 16:723-735. [PMID: 31545127 PMCID: PMC7227725 DOI: 10.1080/21645515.2019.1670035] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Vaccines play an essential role in controlling the rates of fatality and morbidity. Vaccines not only arrest the beginning of different diseases but also assign a gateway for its elimination and reduce toxicity. This review gives an overview of the possible uses of computational tools for vaccine design. Moreover, we have described the initiatives of utilizing the diverse computational resources by exploring the immunological databases for developing epitope-based vaccines, peptide-based drugs, and other resources of immunotherapeutics. Finally, the applications of multi-graft and multivalent scaffolding, codon optimization and antibodyomics tools in identifying and designing in silico vaccine candidates are described.
Collapse
Affiliation(s)
- Sunita
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi
| | - Andaleeb Sajid
- National Institutes of Health, National Cancer Institute, Bethesda, MD, USA
| | - Yogendra Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
30
|
Bullard BL, Corder BN, Gordon DN, Pierson TC, Weaver EA. Characterization of a Species E Adenovirus Vector as a Zika virus vaccine. Sci Rep 2020; 10:3613. [PMID: 32107394 PMCID: PMC7046724 DOI: 10.1038/s41598-020-60238-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
The development of a safe and efficacious Zika virus (ZIKV) vaccine remains a global health priority. In our previous work, we developed an Adenovirus vectored ZIKV vaccine using a low-seroprevalent human Adenovirus type 4 (Ad4-prM-E) and compared it to an Ad5 vector (Ad5-prM-E). We found that vaccination with Ad4-prM-E leads to the development of a strong anti-ZIKV T-cell response without eliciting significant anti-ZIKV antibodies, while vaccination with Ad5-prM-E leads to the development of both anti-ZIKV antibody and T-cell responses in C57BL/6 mice. However, both vectors conferred protection against ZIKV infection in a lethal challenge model. Here we continued to characterize the T-cell biased immune response observed in Ad4 immunized mice. Vaccination of BALB/c mice resulted in immune correlates similar to C57BL/6 mice, confirming that this response is not mouse strain-specific. Vaccination with an Ad4 expressing an influenza hemagglutinin (HA) protein resulted in anti-HA T-cell responses without the development of significant anti-HA antibodies, indicating this unique response is specific to the Ad4 serotype rather than the transgene expressed. Co-administration of a UV inactivated Ad4 vector with the Ad5-prM-E vaccine led to a significant reduction in anti-ZIKV antibody development suggesting that this serotype-specific immune profile is capsid-dependent. These results highlight the serotype-specific immune profiles elicited by different Adenovirus vector types and emphasize the importance of continued characterization of these alternative Ad serotypes.
Collapse
Affiliation(s)
- Brianna L Bullard
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, USA
| | - Brigette N Corder
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, USA
| | - David N Gordon
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Eric A Weaver
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, USA.
| |
Collapse
|
31
|
Gao Y, Tai W, Wang N, Li X, Jiang S, Debnath AK, Du L, Chen S. Identification of Novel Natural Products as Effective and Broad-Spectrum Anti-Zika Virus Inhibitors. Viruses 2019; 11:E1019. [PMID: 31684080 PMCID: PMC6893700 DOI: 10.3390/v11111019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy leads to severe congenital Zika syndrome, which includes microcephaly and other neurological malformations. No therapeutic agents have, so far, been approved for the treatment of ZIKV infection in humans; as such, there is a need for a continuous effort to develop effective and safe antiviral drugs to treat ZIKV-caused diseases. After screening a natural product library, we have herein identified four natural products with anti-ZIKV activity in Vero E6 cells, including gossypol, curcumin, digitonin, and conessine. Except for curcumin, the other three natural products have not been reported before to have anti-ZIKV activity. Among them, gossypol exhibited the strongest inhibitory activity against almost all 10 ZIKV strains tested, including six recent epidemic human strains. The mechanistic study indicated that gossypol could neutralize ZIKV infection by targeting the envelope protein domain III (EDIII) of ZIKV. In contrast, the other natural products inhibited ZIKV infection by targeting the host cell or cell-associated entry and replication stages of ZIKV. A combination of gossypol with any of the three natural products identified in this study, as well as with bortezomib, a previously reported anti-ZIKV compound, exhibited significant combinatorial inhibitory effects against three ZIKV human strains tested. Importantly, gossypol also demonstrated marked potency against all four serotypes of dengue virus (DENV) human strains in vitro. Taken together, this study indicates the potential for further development of these natural products, particularly gossypol, as the lead compound or broad-spectrum inhibitors against ZIKV and other flaviviruses, such as DENV.
Collapse
Affiliation(s)
- Yaning Gao
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Ning Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Xiang Li
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Asim K Debnath
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Shizhong Chen
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
32
|
Effects of Adjuvants on the Immunogenicity and Efficacy of a Zika Virus Envelope Domain III Subunit Vaccine. Vaccines (Basel) 2019; 7:vaccines7040161. [PMID: 31717890 PMCID: PMC6963592 DOI: 10.3390/vaccines7040161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 02/08/2023] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, has attracted global attention due to its close association with congenital Zika syndrome and neurological diseases, and transmission through additional routes, such as sexual contact. Currently there are no vaccines approved for ZIKV, and thus, there is an urgent need to develop an effective and safe ZIKV vaccine. Domain III (DIII) of the ZIKV envelope (E) protein is an important vaccine target, and a vaccine developed using a mutant DIII of E (EDIII) protein protects adult and pregnant mice, and unborn offspring, against ZIKV infection. Here, we have used immunocompetent BALB/c mice treated with anti-interferon-α/β receptor 1 (Ifnar1) antibodies to investigate whether three adjuvants (aluminum (Alum), monophosphoryl lipid A (MPL), and MF59), either alone or in combination, could improve the efficacy of this EDIII subunit vaccine. Our data show that, although vaccine formulated with a single adjuvant induced a specific antibody and cellular immune response, and reduced viral load in mice challenged with ZIKV, the combination of Alum and MPL adjuvants led to a more robust and balanced immune response, stronger neutralizing activity against three recent ZIKV human strains, and greater protection against a high-dose ZIKV challenge. Particularly, the combination of Alum with MPL significantly reduced viral titers and viral RNA copy numbers in sera and tissues, including the male reproductive organs. Overall, this study has identified the combination of Alum and MPL as the most effective adjuvant for ZIKV EDIII subunit vaccines, and it has important implications for subunit vaccines against other enveloped viruses, including non-ZIKV flaviviruses.
Collapse
|