1
|
Kalia N, Snell K, Harris M. Alternative substrate kinetics of SARS-CoV-2 Nsp15 endonuclease reveals a specificity landscape dominated by RNA structure. Nucleic Acids Res 2024; 52:13419-13433. [PMID: 39475186 PMCID: PMC11602132 DOI: 10.1093/nar/gkae939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
Coronavirus endoribonuclease Nsp15 contributes to the evasion of host innate immunity by suppressing levels of viral dsRNA. Nsp15 cleaves both ssRNA and dsRNA in vitro with a strong preference for unpaired or bulged U residues, and its activity is stimulated by divalent ions. Here, we systematically quantified effects of RNA sequence and structure context that define its specificity. The results show that sequence preference for U↓A/G, observed previously, contributes only ca. 2-fold to kcat/Km. In contrast, dsRNA structure flanking a bulged U residue increases kcat/Km by an order of magnitude compared to ssRNA while base pairing in dsRNA essentially blocks cleavage. Despite enormous differences in multiple turnover kinetics, the effect of RNA structure on the cleavage step is minimal. Surprisingly, although divalent ion activation of Nsp15 is widely considered to be important for its biological function, the effect on kcat/Km is only ∼2-fold and independent of RNA structure. These results reveal a specificity landscape dominated by RNA structure and provide a quantitative framework for identifying interactions that underlie specificity, determining mechanisms of inhibition and resistance and defining targets important for coronavirus biology.
Collapse
Affiliation(s)
- Nidhi Kalia
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Kimberly C Snell
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
2
|
Van Loy B, Stevaert A, Naesens L. The coronavirus nsp15 endoribonuclease: A puzzling protein and pertinent antiviral drug target. Antiviral Res 2024; 228:105921. [PMID: 38825019 DOI: 10.1016/j.antiviral.2024.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
The SARS-CoV-2 pandemic has bolstered unprecedented research efforts to better understand the pathogenesis of coronavirus (CoV) infections and develop effective therapeutics. We here focus on non-structural protein nsp15, a hexameric component of the viral replication-transcription complex (RTC). Nsp15 possesses uridine-specific endoribonuclease (EndoU) activity for which some specific cleavage sites were recently identified in viral RNA. By preventing accumulation of viral dsRNA, EndoU helps the virus to evade RNA sensors of the innate immune response. The immune-evading property of nsp15 was firmly established in several CoV animal models and makes it a pertinent target for antiviral therapy. The search for nsp15 inhibitors typically proceeds via compound screenings and is aided by the rapidly evolving insight in the protein structure of nsp15. In this overview, we broadly cover this fascinating protein, starting with its structure, biochemical properties and functions in CoV immune evasion. Next, we summarize the reported studies in which compound screening or a more rational method was used to identify suitable leads for nsp15 inhibitor development. In this way, we hope to raise awareness on the relevance and druggability of this unique CoV protein.
Collapse
Affiliation(s)
- Benjamin Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Annelies Stevaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Lieve Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium.
| |
Collapse
|
3
|
Wang X, Zhu B. SARS-CoV-2 nsp15 preferentially degrades AU-rich dsRNA via its dsRNA nickase activity. Nucleic Acids Res 2024; 52:5257-5272. [PMID: 38634805 PMCID: PMC11109939 DOI: 10.1093/nar/gkae290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
It has been proposed that coronavirus nsp15 mediates evasion of host cell double-stranded (ds) RNA sensors via its uracil-specific endoribonuclease activity. However, how nsp15 processes viral dsRNA, commonly considered as a genome replication intermediate, remains elusive. Previous research has mainly focused on short single-stranded RNA as substrates, and whether nsp15 prefers single-stranded or double-stranded RNA for cleavage is controversial. In the present work, we prepared numerous RNA substrates, including both long substrates mimicking the viral genome and short defined RNA, to clarify the substrate preference and cleavage pattern of SARS-CoV-2 nsp15. We demonstrated that SARS-CoV-2 nsp15 preferentially cleaved pyrimidine nucleotides located in less thermodynamically stable areas in dsRNA, such as AU-rich areas and mismatch-containing areas, in a nicking manner. Because coronavirus genomes generally have a high AU content, our work supported the mechanism that coronaviruses evade the antiviral response mediated by host cell dsRNA sensors by using nsp15 dsRNA nickase to directly cleave dsRNA intermediates formed during genome replication and transcription.
Collapse
Affiliation(s)
- Xionglue Wang
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Bin Zhu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518063, China
| |
Collapse
|
4
|
Xie Y, Chen C, Zhang D, Jiao Z, Chen Y, Wang G, Tan Y, Zhang W, Xiao S, Peng G, Shi Y. Diversity for endoribonuclease nsp15-mediated regulation of alpha-coronavirus propagation and virulence. Microbiol Spectr 2023; 11:e0220923. [PMID: 37938022 PMCID: PMC10715224 DOI: 10.1128/spectrum.02209-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/24/2023] [Indexed: 11/09/2023] Open
Abstract
IMPORTANCE Understanding the role of the endoribonuclease non-structural protein 15 (nsp15) (EndoU) in coronavirus (CoV) infection and pathogenesis is essential for vaccine target discovery. Whether the EndoU activity of CoV nsp15, as a virulence-related protein, has a diverse effect on viral virulence needs to be further explored. Here, we found that the transmissible gastroenteritis virus (TGEV) and feline infectious peritonitis virus (FIPV) nsp15 proteins antagonize SeV-induced interferon-β (IFN-β) production in human embryonic kidney 293 cells. Interestingly, compared with wild-type infection, infection with EnUmt-TGEV or EnUmt-FIPV did not change the IFN-β response or reduce viral propagation in immunocompetent cells. The results of animal experiments showed that EnUmt viruses did not reduce the clinical presentation and mortality caused by TGEV and FIPV. Our findings enrich the understanding of nsp15-mediated regulation of alpha-CoV propagation and virulence and reveal that the conserved functions of nonstructural proteins have diverse effects on the pathogenicity of CoVs.
Collapse
Affiliation(s)
- Yunfei Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chener Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Ding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Zhe Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yixi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Gang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yubei Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Wanpo Zhang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
5
|
Chen J, Farraj RA, Limonta D, Tabatabaei Dakhili SA, Kerek EM, Bhattacharya A, Reformat FM, Mabrouk OM, Brigant B, Pfeifer TA, McDermott MT, Ussher JR, Hobman TC, Glover JNM, Hubbard BP. Reversible and irreversible inhibitors of coronavirus Nsp15 endoribonuclease. J Biol Chem 2023; 299:105341. [PMID: 37832873 PMCID: PMC10656235 DOI: 10.1016/j.jbc.2023.105341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2, the causative agent of coronavirus disease 2019, has resulted in the largest pandemic in recent history. Current therapeutic strategies to mitigate this disease have focused on the development of vaccines and on drugs that inhibit the viral 3CL protease or RNA-dependent RNA polymerase enzymes. A less-explored and potentially complementary drug target is Nsp15, a uracil-specific RNA endonuclease that shields coronaviruses and other nidoviruses from mammalian innate immune defenses. Here, we perform a high-throughput screen of over 100,000 small molecules to identify Nsp15 inhibitors. We characterize the potency, mechanism, selectivity, and predicted binding mode of five lead compounds. We show that one of these, IPA-3, is an irreversible inhibitor that might act via covalent modification of Cys residues within Nsp15. Moreover, we demonstrate that three of these inhibitors (hexachlorophene, IPA-3, and CID5675221) block severe acute respiratory syndrome coronavirus 2 replication in cells at subtoxic doses. This study provides a pipeline for the identification of Nsp15 inhibitors and pinpoints lead compounds for further development against coronavirus disease 2019 and related coronavirus infections.
Collapse
Affiliation(s)
- Jerry Chen
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Rabih Abou Farraj
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Limonta
- Department of Cell Biology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, USA
| | | | - Evan M Kerek
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Ashim Bhattacharya
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Filip M Reformat
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Ola M Mabrouk
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin Brigant
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tom A Pfeifer
- High Throughput Biology Facility, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark T McDermott
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tom C Hobman
- Department of Cell Biology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Basil P Hubbard
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Zhang D, Ji L, Chen X, He Y, Sun Y, Ji L, Zhang T, Shen Q, Wang X, Wang Y, Yang S, Zhang W, Zhou C. SARS-CoV-2 Nsp15 suppresses type I interferon production by inhibiting IRF3 phosphorylation and nuclear translocation. iScience 2023; 26:107705. [PMID: 37680466 PMCID: PMC10480782 DOI: 10.1016/j.isci.2023.107705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes 2019 coronavirus disease (COVID-19), poses a significant threat to global public health security. Like other coronaviruses, SARS-CoV-2 has developed various strategies to inhibit the production of interferon (IFN). Here, we have discovered that SARS-CoV-2 Nsp15 obviously reduces the expression of IFN-β and IFN-stimulated genes (ISG56, CXCL10), and also inhibits IRF3 phosphorylation and nuclear translocation by antagonizing the RLR-mediated antiviral signaling pathway. Mechanically, we found that the poly-U-specific endonuclease domain (EndoU) of Nsp15 directly associates with the kinase domain (KD) of TBK1 to interfere TBK1 interacting with IRF3 and the flowing TBK1-mediated IRF3 phosphorylation. Furthermore, Nsp15 also prevented nuclear translocation of phosphorylated IRF3 via binding to the nuclear import adaptor karyopherin α1 (KPNA1) and promoting it autophagy-dependent degradation. These findings collectively reveal a novel mechanism by which Nsp15 antagonizes host's innate immune response.
Collapse
Affiliation(s)
- Dianqi Zhang
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214221, China
| | - Likai Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xu Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Department of Laboratory Medicine and Pathology, Jiangsu Provincial Corps Hospital of Chinese People’s Armed Police Force, Yangzhou, Jiangsu 225003, China
| | - Yumin He
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Medical Research Center, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu 225001, China
| | - Yijie Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Li Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tiancheng Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Quan Shen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaochun Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yan Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shixing Yang
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wen Zhang
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
| |
Collapse
|
7
|
Salukhe I, Choi R, Van Voorhis W, Barrett L, Hyde J. Regulation of coronavirus nsp15 cleavage specificity by RNA structure. PLoS One 2023; 18:e0290675. [PMID: 37616296 PMCID: PMC10449227 DOI: 10.1371/journal.pone.0290675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, has had an enduring impact on global public health. However, SARS-CoV-2 is only one of multiple pathogenic human coronaviruses (CoVs) to have emerged since the turn of the century. CoVs encode for several nonstructural proteins (nsps) that are essential for viral replication and pathogenesis. Among them is nsp15, a uridine-specific viral endonuclease that is important in evading the host immune response and promoting viral replication. Despite the established endonuclease function of nsp15, little is known about other determinants of its cleavage specificity. In this study we investigate the role of RNA secondary structure in SARS-CoV-2 nsp15 endonuclease activity. Using a series of in vitro endonuclease assays, we observed that thermodynamically stable RNA structures were protected from nsp15 cleavage relative to RNAs lacking stable structure. We leveraged the s2m RNA from the SARS-CoV-1 3'UTR as a model for our structural studies as it adopts a well-defined structure with several uridines, two of which are unpaired and thus highly probable targets for nsp15 cleavage. We found that SARS-CoV-2 nsp15 specifically cleaves s2m at the unpaired uridine within the GNRNA pentaloop of the RNA. Further investigation revealed that the position of uridine within the pentaloop also impacted nsp15 cleavage efficiency suggesting that positioning within the pentaloop is necessary for optimal presentation of the scissile uridine and alignment within the nsp15 catalytic pocket. Our findings indicate that RNA secondary structure is an important determinant of nsp15 cleavage and provides insight into the molecular mechanisms of RNA recognition by nsp15.
Collapse
Affiliation(s)
- Indraneel Salukhe
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Ryan Choi
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington School of Medicine, Seattle, WA, United States of America
| | - Wesley Van Voorhis
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington School of Medicine, Seattle, WA, United States of America
| | - Lynn Barrett
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington School of Medicine, Seattle, WA, United States of America
| | - Jennifer Hyde
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|
8
|
Zheng Y, Zhang H, Luo Q, Sha H, Li G, Mu X, He Y, Kong W, Wu A, Zhang H, Yu X. Research Progress on NSP11 of Porcine Reproductive and Respiratory Syndrome Virus. Vet Sci 2023; 10:451. [PMID: 37505856 PMCID: PMC10384725 DOI: 10.3390/vetsci10070451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a virulent infectious disease caused by the PRRS virus (PRRSV). The non-structural protein 11 (NSP11) of PRRSV is a nidovirus-specific endonuclease (NendoU), which displays uridine specificity and catalytic functions conserved throughout the entire NendoU family and exerts a wide range of biological effects. This review discusses the genetic evolution of NSP11, its effects on PRRSV replication and virulence, its interaction with other PRRSV and host proteins, its regulation of host immunity, the conserved characteristics of its enzyme activity (NendoU), and its diagnosis, providing an essential theoretical basis for in-depth studies of PRRSV pathogenesis and vaccine design.
Collapse
Affiliation(s)
- Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Huiyang Sha
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Gan Li
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Xuanru Mu
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Yingxin He
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, CA 94158, USA
| | - Anfeng Wu
- Maccura Biotechnology Co., Ltd., Chengdu 510000, China
| | - Haoji Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Xingang Yu
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| |
Collapse
|
9
|
Kandwal S, Fayne D. Genetic conservation across SARS-CoV-2 non-structural proteins - Insights into possible targets for treatment of future viral outbreaks. Virology 2023; 581:97-115. [PMID: 36940641 PMCID: PMC9999249 DOI: 10.1016/j.virol.2023.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
The majority of SARS-CoV-2 therapeutic development work has focussed on targeting the spike protein, viral polymerase and proteases. As the pandemic progressed, many studies reported that these proteins are prone to high levels of mutation and can become drug resistant. Thus, it is necessary to not only target other viral proteins such as the non-structural proteins (NSPs) but to also target the most conserved residues of these proteins. In order to understand the level of conservation among these viruses, in this review, we have focussed on the conservation across RNA viruses, conservation across the coronaviruses and then narrowed our focus to conservation of NSPs across coronaviruses. We have also discussed the various treatment options for SARS-CoV-2 infection. A synergistic melding of bioinformatics, computer-aided drug-design and in vitro/vivo studies can feed into better understanding of the virus and therefore help in the development of small molecule inhibitors against the viral proteins.
Collapse
Affiliation(s)
- Shubhangi Kandwal
- Molecular Design Group, School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, 2, Ireland
| | - Darren Fayne
- Molecular Design Group, School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, 2, Ireland.
| |
Collapse
|
10
|
Jernigan RJ, Logeswaran D, Doppler D, Nagaratnam N, Sonker M, Yang JH, Ketawala G, Martin-Garcia JM, Shelby ML, Grant TD, Mariani V, Tolstikova A, Sheikh MZ, Yung MC, Coleman MA, Zaare S, Kaschner EK, Rabbani MT, Nazari R, Zacks MA, Hayes B, Sierra RG, Hunter MS, Lisova S, Batyuk A, Kupitz C, Boutet S, Hansen DT, Kirian RA, Schmidt M, Fromme R, Frank M, Ros A, Chen JJL, Botha S, Fromme P. Room-temperature structural studies of SARS-CoV-2 protein NendoU with an X-ray free-electron laser. Structure 2023; 31:138-151.e5. [PMID: 36630960 PMCID: PMC9830665 DOI: 10.1016/j.str.2022.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/08/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
NendoU from SARS-CoV-2 is responsible for the virus's ability to evade the innate immune system by cleaving the polyuridine leader sequence of antisense viral RNA. Here we report the room-temperature structure of NendoU, solved by serial femtosecond crystallography at an X-ray free-electron laser to 2.6 Å resolution. The room-temperature structure provides insight into the flexibility, dynamics, and other intrinsic properties of NendoU, with indications that the enzyme functions as an allosteric switch. Functional studies examining cleavage specificity in solution and in crystals support the uridine-purine cleavage preference, and we demonstrate that enzyme activity is fully maintained in crystal form. Optimizing the purification of NendoU and identifying suitable crystallization conditions set the benchmark for future time-resolved serial femtosecond crystallography studies. This could advance the design of antivirals with higher efficacy in treating coronaviral infections, since drugs that block allosteric conformational changes are less prone to drug resistance.
Collapse
Affiliation(s)
- Rebecca J Jernigan
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Dhenugen Logeswaran
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Diandra Doppler
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Nirupa Nagaratnam
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Mukul Sonker
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Jay-How Yang
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Gihan Ketawala
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Jose M Martin-Garcia
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Megan L Shelby
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Thomas D Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA
| | - Valerio Mariani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Michelle Z Sheikh
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Mimi Cho Yung
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Matthew A Coleman
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Sahba Zaare
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Fulton School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Emily K Kaschner
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Mohammad Towshif Rabbani
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Reza Nazari
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Michele A Zacks
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sebastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Debra T Hansen
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Richard A Kirian
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Marius Schmidt
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, WI 53211, USA
| | - Raimund Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Matthias Frank
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Alexandra Ros
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Julian J-L Chen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Sabine Botha
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA.
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
11
|
Jahirul Islam M, Nawal Islam N, Siddik Alom M, Kabir M, Halim MA. A review on structural, non-structural, and accessory proteins of SARS-CoV-2: Highlighting drug target sites. Immunobiology 2023; 228:152302. [PMID: 36434912 PMCID: PMC9663145 DOI: 10.1016/j.imbio.2022.152302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is a highly transmittable and pathogenic human coronavirus that first emerged in China in December 2019. The unprecedented outbreak of SARS-CoV-2 devastated human health within a short time leading to a global public health emergency. A detailed understanding of the viral proteins including their structural characteristics and virulence mechanism on human health is very crucial for developing vaccines and therapeutics. To date, over 1800 structures of non-structural, structural, and accessory proteins of SARS-CoV-2 are determined by cryo-electron microscopy, X-ray crystallography, and NMR spectroscopy. Designing therapeutics to target the viral proteins has several benefits since they could be highly specific against the virus while maintaining minimal detrimental effects on humans. However, for ongoing and future research on SARS-CoV-2, summarizing all the viral proteins and their detailed structural information is crucial. In this review, we compile comprehensive information on viral structural, non-structural, and accessory proteins structures with their binding and catalytic sites, different domain and motifs, and potential drug target sites to assist chemists, biologists, and clinicians finding necessary details for fundamental and therapeutic research.
Collapse
Affiliation(s)
- Md Jahirul Islam
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka 1215, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Siddik Alom
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Mahmuda Kabir
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad A Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, 370 Paulding Avenue NW, Kennesaw, GA 30144, USA
| |
Collapse
|
12
|
Wilson IM, Frazier MN, Li JL, Randall TA, Stanley RE. Biochemical Characterization of Emerging SARS-CoV-2 Nsp15 Endoribonuclease Variants. J Mol Biol 2022; 434:167796. [PMID: 35995266 PMCID: PMC9389836 DOI: 10.1016/j.jmb.2022.167796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022]
Abstract
Global sequencing efforts from the ongoing COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, continue to provide insight into the evolution of the viral genome. Coronaviruses encode 16 nonstructural proteins, within the first two-thirds of their genome, that facilitate viral replication and transcription as well as evasion of the host immune response. However, many of these viral proteins remain understudied. Nsp15 is a uridine-specific endoribonuclease conserved across all coronaviruses. The nuclease activity of Nsp15 helps the virus evade triggering an innate immune response. Understanding how Nsp15 has changed over the course of the pandemic, and how mutations affect its RNA processing function, will provide insight into the evolution of an oligomerization-dependent endoribonuclease and inform drug design. In combination with previous structural data, bioinformatics analyses of 1.9 + million SARS-CoV-2 sequences revealed mutations across Nsp15's three structured domains (N-terminal, Middle, EndoU). Selected Nsp15 variants were characterized biochemically and compared to wild type Nsp15. We found that mutations to important catalytic residues decreased cleavage activity but increased the hexamer/monomer ratio of the recombinant protein. Many of the highly prevalent variants we analyzed led to decreased nuclease activity as well as an increase in the inactive, monomeric form. Overall, our work establishes how Nsp15 variants seen in patient samples affect nuclease activity and oligomerization, providing insight into the effect of these variants in vivo.
Collapse
Affiliation(s)
- Isha M Wilson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA. https://twitter.com/@ishamyana
| | - Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA; Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424, USA(†). https://twitter.com/@MNFrazier5
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
13
|
Frazier MN, Riccio AA, Wilson IM, Copeland WC, Stanley RE. Recent insights into the structure and function of coronavirus ribonucleases. FEBS Open Bio 2022; 12:1567-1583. [PMID: 35445579 PMCID: PMC9110870 DOI: 10.1002/2211-5463.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
Coronaviruses use approximately two-thirds of their 30-kb genomes to encode nonstructural proteins (nsps) with diverse functions that assist in viral replication and transcription, and evasion of the host immune response. The SARS-CoV-2 pandemic has led to renewed interest in the molecular mechanisms used by coronaviruses to infect cells and replicate. Among the 16 Nsps involved in replication and transcription, coronaviruses encode two ribonucleases that process the viral RNA-an exonuclease (Nsp14) and an endonuclease (Nsp15). In this review, we discuss recent structural and biochemical studies of these nucleases and the implications for drug discovery.
Collapse
Affiliation(s)
- Meredith N. Frazier
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Amanda A. Riccio
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Isha M. Wilson
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - William C. Copeland
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Robin E. Stanley
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| |
Collapse
|
14
|
Proteolytic Processing of the Coronavirus Replicase Nonstructural Protein 14 Exonuclease Is Not Required for Virus Replication but Alters RNA Synthesis and Viral Fitness. J Virol 2022; 96:e0084122. [PMID: 35924922 PMCID: PMC9400476 DOI: 10.1128/jvi.00841-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronaviruses (CoVs) initiate replication by translation of the positive-sense RNA genome into the replicase polyproteins connecting 16 nonstructural protein domains (nsp1-16), which are subsequently processed by viral proteases to yield mature nsp. For the betacoronavirus murine hepatitis virus (MHV), total inhibition of translation or proteolytic processing of replicase polyproteins results in rapid cessation of RNA synthesis. The nsp5-3CLpro (Mpro) processes nsps7-16, which assemble into functional replication-transcription complexes (RTCs), including the enzymatic nsp12-RdRp and nsp14-exoribonuclease (ExoN)/N7-methyltransferase. The nsp14-ExoN activity mediates RNA-dependent RNA proofreading, high-fidelity RNA synthesis, and replication. To date, the solved partial RTC structures, biochemistry, and models use or assume completely processed, mature nsp. Here, we demonstrate that in MHV, engineered deletion of the cleavage sites between nsp13-14 and nsp14-15 allowed recovery of replication-competent virus. Compared to wild-type (WT) MHV, the nsp13-14 and nsp14-15 cleavage deletion mutants demonstrated delayed replication kinetics, impaired genome production, altered abundance and patterns of recombination, and impaired competitive fitness. Further, the nsp13-14 and nsp14-15 mutant viruses demonstrated mutation frequencies that were significantly higher than with the WT. The results demonstrate that cleavage of nsp13-14 or nsp14-15 is not required for MHV viability and that functions of the RTC/nsp14-ExoN are impaired when assembled with noncleaved intermediates. These data will inform future genetic, structural, biochemical, and modeling studies of coronavirus RTCs and nsp 13, 14, and 15 and may reveal new approaches for inhibition or attenuation of CoV infection. IMPORTANCE Coronavirus replication requires proteolytic maturation of the nonstructural replicase proteins to form the replication-transcription complex. Coronavirus replication-transcription complex models assume mature subunits; however, mechanisms of coronavirus maturation and replicase complex formation have yet to be defined. Here, we show that for the coronavirus murine hepatitis virus, cleavage between the nonstructural replicase proteins nsp13-14 and nsp14-15 is not required for replication but does alter RNA synthesis and recombination. These results shed new light on the requirements for coronavirus maturation and replication-transcription complex assembly, and they may reveal novel therapeutic targets and strategies for attenuation.
Collapse
|
15
|
Wilson IM, Frazier MN, Li JL, Randall TA, Stanley RE. Biochemical Characterization of Emerging SARS-CoV-2 Nsp15 Endoribonuclease Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.05.10.491349. [PMID: 35611336 PMCID: PMC9128782 DOI: 10.1101/2022.05.10.491349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Global sequencing efforts from the ongoing COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, continue to provide insight into the evolution of the viral genome. Coronaviruses encode 16 nonstructural proteins, within the first two-thirds of their genome, that facilitate viral replication and transcription as well as evasion of the host immune response. However, many of these viral proteins remain understudied. Nsp15 is a uridine-specific endoribonuclease conserved across all coronaviruses. The nuclease activity of Nsp15 helps the virus evade triggering an innate immune response. Understanding how Nsp15 has changed over the course of the pandemic, and how mutations affect its RNA processing function, will provide insight into the evolution of an oligomerization-dependent endoribonuclease and inform drug design. In combination with previous structural data, bioinformatics analyses of 1.9+ million SARS-CoV-2 sequences revealed mutations across Nsp15’s three structured domains (N-terminal, Middle, EndoU). Selected Nsp15 variants were characterized biochemically and compared to wild type Nsp15. We found that mutations to important catalytic residues decreased cleavage activity but increased the hexamer/monomer ratio of the recombinant protein. Many of the highly prevalent variants we analyzed led to decreased nuclease activity as well as an increase in the inactive, monomeric form. Overall, our work establishes how Nsp15 variants seen in patient samples affect nuclease activity and oligomerization, providing insight into the effect of these variants in vivo .
Collapse
Affiliation(s)
- Isha M Wilson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
16
|
Molecular docking studies of phytochemicals from Terminalia chebula for identification of potential multi-target inhibitors of SARS-CoV-2 proteins. J Ayurveda Integr Med 2022; 13:100557. [PMID: 35185301 PMCID: PMC8847108 DOI: 10.1016/j.jaim.2022.100557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/14/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Background The COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a global pandemic claiming more than 6 million lives worldwide as of 16 March 2022. Till date, no medicine has been developed which is proved to have 100% efficiency in combating against this deadly disease. We focussed on ayurvedic medicines to identify drug-like candidates for treatment and management of COVID-19. Among all ayurvedic medicines, we were interested in Terminalia chebula (T. chebula), as it is known to have antibacterial, antifungal, antiviral, antioxidant and anti-inflammatory properties. Objectives In this study, we evaluated potential inhibitory effects of phytochemicals from T. chebula against eight structural and functional proteins of SARS-CoV-2. Material and methods We performed blind molecular docking studies using fifteen phytochemicals from T. chebula against the proteins of SARS-CoV-2. The three-dimensional proteins structures were analysed and potential drug-binding sites were identified. The drug-likeness properties of the ligands were assessed as well. Results Analysing the docking results by comparing Atomic Contact Energy (ACE) and intermolecular interactions along with assessment of ADME/T properties identified 1,3,6-Trigalloyl glucose (−332.14 ± 55.74 kcal/mol), Beta-Sitosterol (−324.75 ± 36.98 kcal/mol) and Daucosterol (−335.67 ± 104.79 kcal/mol) as most promising candidates which exhibit significantly high inhibition efficiency against all eight protein targets. Conclusions We believe that our study has the potential to help the scientific communities to develop multi-target drugs from T. chebula to combat against the deadly pathogen of COVID-19, with the support of extensive wet lab analysis.
Collapse
|
17
|
The nsp15 Nuclease as a Good Target to Combat SARS-CoV-2: Mechanism of Action and Its Inactivation with FDA-Approved Drugs. Microorganisms 2022; 10:microorganisms10020342. [PMID: 35208797 PMCID: PMC8880170 DOI: 10.3390/microorganisms10020342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023] Open
Abstract
The pandemic caused by SARS-CoV-2 is not over yet, despite all the efforts from the scientific community. Vaccination is a crucial weapon to fight this virus; however, we still urge the development of antivirals to reduce the severity and progression of the COVID-19 disease. For that, a deep understanding of the mechanisms involved in viral replication is necessary. nsp15 is an endoribonuclease critical for the degradation of viral polyuridine sequences that activate host immune sensors. This enzyme is known as one of the major interferon antagonists from SARS-CoV-2. In this work, a biochemical characterization of SARS-CoV-2 nsp15 was performed. We saw that nsp15 is active as a hexamer, and zinc can block its activity. The role of conserved residues from SARS-CoV-2 nsp15 was investigated, and N164 was found to be important for protein hexamerization and to contribute to the specificity to degrade uridines. Several chemical groups that impact the activity of this ribonuclease were also identified. Additionally, FDA-approved drugs with the capacity to inhibit the in vitro activity of nsp15 are reported in this work. This study is of utmost importance by adding highly valuable information that can be used for the development and rational design of therapeutic strategies.
Collapse
|
18
|
Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022; 7:26. [PMID: 35087058 PMCID: PMC8793099 DOI: 10.1038/s41392-022-00884-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the pandemic disease COVID-19, which is so far without efficacious treatment. The discovery of therapy reagents for treating COVID-19 are urgently needed, and the structures of the potential drug-target proteins in the viral life cycle are particularly important. SARS-CoV-2, a member of the Orthocoronavirinae subfamily containing the largest RNA genome, encodes 29 proteins including nonstructural, structural and accessory proteins which are involved in viral adsorption, entry and uncoating, nucleic acid replication and transcription, assembly and release, etc. These proteins individually act as a partner of the replication machinery or involved in forming the complexes with host cellular factors to participate in the essential physiological activities. This review summarizes the representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment. Indeed, these studies open the door for COVID therapies, leading to ways to prevent and treat COVID-19, especially, treatment of the disease caused by the viral variants are imperative.
Collapse
Affiliation(s)
- Weizhu Yan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yanhui Zheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaotao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Bin He
- Department of Emergency Medicine, West China Hospital of Sichuan University, 610041, Chengdu, China.
- The First People's Hospital of Longquanyi District Chengdu, 610100, Chengdu, China.
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
19
|
Horrell S, Santoni G, Thorn A. Structural biology of SARS-CoV-2 endoribonuclease NendoU (nsp15). CRYSTALLOGR REV 2022. [DOI: 10.1080/0889311x.2022.2065270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Andrea Thorn
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
20
|
Perry JK, Appleby TC, Bilello JP, Feng JY, Schmitz U, Campbell EA. An atomistic model of the coronavirus replication-transcription complex as a hexamer assembled around nsp15. J Biol Chem 2021; 297:101218. [PMID: 34562452 PMCID: PMC8494237 DOI: 10.1016/j.jbc.2021.101218] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 replication-transcription complex is an assembly of nonstructural viral proteins that collectively act to reproduce the viral genome and generate mRNA transcripts. While the structures of the individual proteins involved are known, how they assemble into a functioning superstructure is not. Applying molecular modeling tools, including protein-protein docking, to the available structures of nsp7-nsp16 and the nucleocapsid, we have constructed an atomistic model of how these proteins associate. Our principal finding is that the complex is hexameric, centered on nsp15. The nsp15 hexamer is capped on two faces by trimers of nsp14/nsp16/(nsp10)2, which then recruit six nsp12/nsp7/(nsp8)2 polymerase subunits to the complex. To this, six subunits of nsp13 are arranged around the superstructure, but not evenly distributed. Polymerase subunits that coordinate dimers of nsp13 are capable of binding the nucleocapsid, which positions the 5'-UTR TRS-L RNA over the polymerase active site, a state distinguishing transcription from replication. Analysis of the viral RNA path through the complex indicates the dsRNA that exits the polymerase passes over the nsp14 exonuclease and nsp15 endonuclease sites before being unwound by a convergence of zinc fingers from nsp10 and nsp14. The template strand is then directed away from the complex, while the nascent strand is directed to the sites responsible for mRNA capping. The model presents a cohesive picture of the multiple functions of the coronavirus replication-transcription complex and addresses fundamental questions related to proofreading, template switching, mRNA capping, and the role of the endonuclease.
Collapse
Affiliation(s)
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, California, USA
| | - Uli Schmitz
- Gilead Sciences, Inc, Foster City, California, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| |
Collapse
|
21
|
Frazier MN, Dillard LB, Krahn JM, Perera L, Williams JG, Wilson IM, Stewart ZD, Pillon MC, Deterding LJ, Borgnia MJ, Stanley RE. Characterization of SARS2 Nsp15 nuclease activity reveals it's mad about U. Nucleic Acids Res 2021; 49:10136-10149. [PMID: 34403466 PMCID: PMC8385992 DOI: 10.1093/nar/gkab719] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Nsp15 is a uridine specific endoribonuclease that coronaviruses employ to cleave viral RNA and evade host immune defense systems. Previous structures of Nsp15 from across Coronaviridae revealed that Nsp15 assembles into a homo-hexamer and has a conserved active site similar to RNase A. Beyond a preference for cleaving RNA 3′ of uridines, it is unknown if Nsp15 has any additional substrate preferences. Here, we used cryo-EM to capture structures of Nsp15 bound to RNA in pre- and post-cleavage states. The structures along with molecular dynamics and biochemical assays revealed critical residues involved in substrate specificity, nuclease activity, and oligomerization. Moreover, we determined how the sequence of the RNA substrate dictates cleavage and found that outside of polyU tracts, Nsp15 has a strong preference for purines 3′ of the cleaved uridine. This work advances our understanding of how Nsp15 recognizes and processes viral RNA, and will aid in the development of new anti-viral therapeutics.
Collapse
Affiliation(s)
- Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Lucas B Dillard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jason G Williams
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Isha M Wilson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Zachary D Stewart
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Leesa J Deterding
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
22
|
Canal B, Fujisawa R, McClure AW, Deegan TD, Wu M, Ulferts R, Weissmann F, Drury LS, Bertolin AP, Zeng J, Beale R, Howell M, Labib K, Diffley JF. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp15 endoribonuclease. Biochem J 2021; 478:2465-2479. [PMID: 34198324 PMCID: PMC8286823 DOI: 10.1042/bcj20210199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is responsible for COVID-19, a human disease that has caused over 2 million deaths, stretched health systems to near-breaking point and endangered economies of countries and families around the world. Antiviral treatments to combat COVID-19 are currently lacking. Remdesivir, the only antiviral drug approved for the treatment of COVID-19, can affect disease severity, but better treatments are needed. SARS-CoV-2 encodes 16 non-structural proteins (nsp) that possess different enzymatic activities with important roles in viral genome replication, transcription and host immune evasion. One key aspect of host immune evasion is performed by the uridine-directed endoribonuclease activity of nsp15. Here we describe the expression and purification of nsp15 recombinant protein. We have developed biochemical assays to follow its activity, and we have found evidence for allosteric behaviour. We screened a custom chemical library of over 5000 compounds to identify nsp15 endoribonuclease inhibitors, and we identified and validated NSC95397 as an inhibitor of nsp15 endoribonuclease in vitro. Although NSC95397 did not inhibit SARS-CoV-2 growth in VERO E6 cells, further studies will be required to determine the effect of nsp15 inhibition on host immune evasion.
Collapse
Affiliation(s)
- Berta Canal
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Allison W. McClure
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Tom D. Deegan
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Mary Wu
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Florian Weissmann
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Lucy S. Drury
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Agustina P. Bertolin
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Jingkun Zeng
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Rupert Beale
- Cell Biology of Infection Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Michael Howell
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Karim Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - John F.X. Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| |
Collapse
|
23
|
The Role of Coronavirus RNA-Processing Enzymes in Innate Immune Evasion. Life (Basel) 2021; 11:life11060571. [PMID: 34204549 PMCID: PMC8235370 DOI: 10.3390/life11060571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/21/2023] Open
Abstract
Viral RNA sensing triggers innate antiviral responses in humans by stimulating signaling pathways that include crucial antiviral genes such as interferon. RNA viruses have evolved strategies to inhibit or escape these mechanisms. Coronaviruses use multiple enzymes to synthesize, modify, and process their genomic RNA and sub-genomic RNAs. These include Nsp15 and Nsp16, whose respective roles in RNA capping and dsRNA degradation play a crucial role in coronavirus escape from immune surveillance. Evolutionary studies on coronaviruses demonstrate that genome expansion in Nidoviruses was promoted by the emergence of Nsp14-ExoN activity and led to the acquisition of Nsp15- and Nsp16-RNA-processing activities. In this review, we discuss the main RNA-sensing mechanisms in humans as well as recent structural, functional, and evolutionary insights into coronavirus Nsp15 and Nsp16 with a view to potential antiviral strategies.
Collapse
|
24
|
Chen SC, Olsthoorn RCL, Yu CH. Structural phylogenetic analysis reveals lineage-specific RNA repetitive structural motifs in all coronaviruses and associated variations in SARS-CoV-2. Virus Evol 2021; 7:veab021. [PMID: 34141447 PMCID: PMC8206606 DOI: 10.1093/ve/veab021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In many single-stranded (ss) RNA viruses, the cis-acting packaging signal that confers selectivity genome packaging usually encompasses short structured RNA repeats. These structural units, termed repetitive structural motifs (RSMs), potentially mediate capsid assembly by specific RNA–protein interactions. However, general knowledge of the conservation and/or the diversity of RSMs in the positive-sense ssRNA coronaviruses (CoVs) is limited. By performing structural phylogenetic analysis, we identified a variety of RSMs in nearly all CoV genomic RNAs, which are exclusively located in the 5′-untranslated regions (UTRs) and/or in the inter-domain regions of poly-protein 1ab coding sequences in a lineage-specific manner. In all alpha- and beta-CoVs, except for Embecovirus spp, two to four copies of 5′-gUUYCGUc-3′ RSMs displaying conserved hexa-loop sequences were generally identified in Stem-loop 5 (SL5) located in the 5′-UTRs of genomic RNAs. In Embecovirus spp., however, two to eight copies of 5′-agc-3′/guAAu RSMs were found in the coding regions of non-structural protein (NSP) 3 and/or NSP15 in open reading frame (ORF) 1ab. In gamma- and delta-CoVs, other types of RSMs were found in several clustered structural elements in 5′-UTRs and/or ORF1ab. The identification of RSM-encompassing structural elements in all CoVs suggests that these RNA elements play fundamental roles in the life cycle of CoVs. In the recently emerged SARS-CoV-2, beta-CoV-specific RSMs are also found in its SL5, displaying two copies of 5′-gUUUCGUc-3′ motifs. However, multiple sequence alignment reveals that the majority of SARS-CoV-2 possesses a variant RSM harboring SL5b C241U, and intriguingly, several variations in the coding sequences of viral proteins, such as Nsp12 P323L, S protein D614G, and N protein R203K-G204R, are concurrently found with such variant RSM. In conclusion, the comprehensive exploration for RSMs reveals phylogenetic insights into the RNA structural elements in CoVs as a whole and provides a new perspective on variations currently found in SARS-CoV-2.
Collapse
Affiliation(s)
- Shih-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - René C L Olsthoorn
- Department of Supramolecular Biomaterials Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden,The Netherlands
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, No.1, University Road, Tainan City 701, Taiwan
| |
Collapse
|
25
|
Stevaert A, Krasniqi B, Van Loy B, Nguyen T, Thomas J, Vandeput J, Jochmans D, Thiel V, Dijkman R, Dehaen W, Voet A, Naesens L. Betulonic Acid Derivatives Interfering with Human Coronavirus 229E Replication via the nsp15 Endoribonuclease. J Med Chem 2021; 64:5632-5644. [PMID: 33877845 PMCID: PMC8084268 DOI: 10.1021/acs.jmedchem.0c02124] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 02/08/2023]
Abstract
To develop antiviral therapeutics against human coronavirus (HCoV) infections, suitable coronavirus drug targets and corresponding lead molecules must be urgently identified. Here, we describe the discovery of a class of HCoV inhibitors acting on nsp15, a hexameric protein component of the viral replication-transcription complexes, endowed with immune evasion-associated endoribonuclease activity. Structure-activity relationship exploration of these 1,2,3-triazolo-fused betulonic acid derivatives yielded lead molecule 5h as a strong inhibitor (antiviral EC50: 0.6 μM) of HCoV-229E replication. An nsp15 endoribonuclease active site mutant virus was markedly less sensitive to 5h, and selected resistance to the compound mapped to mutations in the N-terminal part of HCoV-229E nsp15, at an interface between two nsp15 monomers. The biological findings were substantiated by the nsp15 binding mode for 5h, predicted by docking. Hence, besides delivering a distinct class of inhibitors, our study revealed a druggable pocket in the nsp15 hexamer with relevance for anti-coronavirus drug development.
Collapse
Affiliation(s)
- Annelies Stevaert
- Laboratory of Virology and Chemotherapy,
Rega Institute, KU Leuven, 3000 Leuven,
Belgium
| | - Besir Krasniqi
- Molecular Design and Synthesis, Department of
Chemistry, KU Leuven, 3001 Leuven,
Belgium
| | - Benjamin Van Loy
- Laboratory of Virology and Chemotherapy,
Rega Institute, KU Leuven, 3000 Leuven,
Belgium
| | - Tien Nguyen
- Biochemistry, Molecular and Structural Biology,
Department of Chemistry, KU Leuven, 3001 Leuven,
Belgium
| | - Joice Thomas
- Molecular Design and Synthesis, Department of
Chemistry, KU Leuven, 3001 Leuven,
Belgium
| | - Julie Vandeput
- Laboratory of Virology and Chemotherapy,
Rega Institute, KU Leuven, 3000 Leuven,
Belgium
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy,
Rega Institute, KU Leuven, 3000 Leuven,
Belgium
| | - Volker Thiel
- Institute of Virology and Immunology
(IVI), 3012 Bern and 3012 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology,
Vetsuisse Faculty, University of Bern, 3012 Bern,
Switzerland
| | - Ronald Dijkman
- Institute of Virology and Immunology
(IVI), 3012 Bern and 3012 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology,
Vetsuisse Faculty, University of Bern, 3012 Bern,
Switzerland
- Institute for Infectious Diseases (IFIK),
University of Bern, 3012 Bern,
Switzerland
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of
Chemistry, KU Leuven, 3001 Leuven,
Belgium
| | - Arnout Voet
- Biochemistry, Molecular and Structural Biology,
Department of Chemistry, KU Leuven, 3001 Leuven,
Belgium
| | - Lieve Naesens
- Laboratory of Virology and Chemotherapy,
Rega Institute, KU Leuven, 3000 Leuven,
Belgium
| |
Collapse
|
26
|
Pillon MC, Frazier MN, Dillard LB, Williams JG, Kocaman S, Krahn JM, Perera L, Hayne CK, Gordon J, Stewart ZD, Sobhany M, Deterding LJ, Hsu AL, Dandey VP, Borgnia MJ, Stanley RE. Cryo-EM structures of the SARS-CoV-2 endoribonuclease Nsp15 reveal insight into nuclease specificity and dynamics. Nat Commun 2021; 12:636. [PMID: 33504779 PMCID: PMC7840905 DOI: 10.1038/s41467-020-20608-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Nsp15, a uridine specific endoribonuclease conserved across coronaviruses, processes viral RNA to evade detection by host defense systems. Crystal structures of Nsp15 from different coronaviruses have shown a common hexameric assembly, yet how the enzyme recognizes and processes RNA remains poorly understood. Here we report a series of cryo-EM reconstructions of SARS-CoV-2 Nsp15, in both apo and UTP-bound states. The cryo-EM reconstructions, combined with biochemistry, mass spectrometry, and molecular dynamics, expose molecular details of how critical active site residues recognize uridine and facilitate catalysis of the phosphodiester bond. Mass spectrometry revealed the accumulation of cyclic phosphate cleavage products, while analysis of the apo and UTP-bound datasets revealed conformational dynamics not observed by crystal structures that are likely important to facilitate substrate recognition and regulate nuclease activity. Collectively, these findings advance understanding of how Nsp15 processes viral RNA and provide a structural framework for the development of new therapeutics.
Collapse
Affiliation(s)
- Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA.
| | - Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Lucas B Dillard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Jason G Williams
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Seda Kocaman
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Cassandra K Hayne
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Jacob Gordon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
- Cambridge Institute for Medical Research, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Zachary D Stewart
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Mack Sobhany
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Leesa J Deterding
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Allen L Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Venkata P Dandey
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
27
|
Savale RU, Bhowmick S, Osman SM, Alasmary FA, Almutairi TM, Abdullah DS, Patil PC, Islam MA. Pharmacoinformatics approach based identification of potential Nsp15 endoribonuclease modulators for SARS-CoV-2 inhibition. Arch Biochem Biophys 2021; 700:108771. [PMID: 33485847 PMCID: PMC7825923 DOI: 10.1016/j.abb.2021.108771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
In the current study, a structure-based virtual screening paradigm was used to screen a small molecular database against the Non-structural protein 15 (Nsp15) endoribonuclease of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 is the causative agent of the recent outbreak of coronavirus disease 2019 (COVID-19) which left the entire world locked down inside the home. A multi-step molecular docking study was performed against antiviral specific compounds (~8722) collected from the Asinex antiviral database. The less or non-interacting molecules were wiped out sequentially in the molecular docking. Further, MM-GBSA based binding free energy was estimated for 26 compounds which shows a high affinity towards the Nsp15. The drug-likeness and pharmacokinetic parameters of all 26 compounds were explored, and five molecules were found to have an acceptable pharmacokinetic profile. Overall, the Glide-XP docking score and Prime-MM-GBSA binding free energy of the selected molecules were explained strong interaction potentiality towards the Nsp15 endoribonuclease. The dynamic behavior of each molecule with Nsp15 was assessed using conventional molecular dynamics (MD) simulation. The MD simulation information was strongly favors the Nsp15 and each identified ligand stability in dynamic condition. Finally, from the MD simulation trajectories, the binding free energy was estimated using the MM-PBSA method. Hence, the proposed final five molecules might be considered as potential Nsp15 modulators for SARS-CoV-2 inhibition.
Collapse
Affiliation(s)
- Rutuja Umesh Savale
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Sameh Mohamed Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Fatmah Ali Alasmary
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tahani Mazyad Almutairi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Dalal Saied Abdullah
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Pritee Chunarkar Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, India
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom; School of Health Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa; Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa.
| |
Collapse
|
28
|
Barage S, Karthic A, Bavi R, Desai N, Kumar R, Kumar V, Lee KW. Identification and characterization of novel RdRp and Nsp15 inhibitors for SARS-COV2 using computational approach. J Biomol Struct Dyn 2020; 40:2557-2574. [PMID: 33155531 PMCID: PMC7651200 DOI: 10.1080/07391102.2020.1841026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The World Health Organization has declared COVID-19 as a global health emergency. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and highlights an urgent need for therapeutics. Here, we have employed a series of computer-aided drug repurposing campaign to discover inhibitors of RNA dependent RNA polymerase (RdRp) and Nsp15/EndoU. Subsequently, MD simulation has been performed to observe dynamic behavior of identified leads at the active site of RdRp and Nsp15. We successfully identified novel lead molecule such as Alectinib for RdRp while Naldemedine and Ergotamine for NSP15. These lead molecules were accommodated in the active site of the enzyme and stabilized by the networks of the hydrogen bond, pi type and hydrophobic interaction with key residues of either target. Interestingly, identified compounds show molecular mimicry in terms of molecular interactions with key residues of RdRp and Nsp15 essential for catalysis and substrate interaction. Previously, Alectinib, Naldemedine and Ergotamine were used as drug in different diseases might be repurposed against selected protein targets of COVID19. Finally, we propose that the identified inhibitors represent a novel lead molecule to design a more effective inhibitor to stop the progress of pathogen. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Sagar Barage
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, India
| | - A Karthic
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, India
| | - Rohit Bavi
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China.,School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, Maharashtra, India
| | - Neetin Desai
- SDSOS, NMIMS University, Mumbai, Maharashtra, India
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| | - Vikas Kumar
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| |
Collapse
|
29
|
Sirpilla O, Bauss J, Gupta R, Underwood A, Qutob D, Freeland T, Bupp C, Carcillo J, Hartog N, Rajasekaran S, Prokop JW. SARS-CoV-2-Encoded Proteome and Human Genetics: From Interaction-Based to Ribosomal Biology Impact on Disease and Risk Processes. J Proteome Res 2020; 19:4275-4290. [PMID: 32686937 PMCID: PMC7418564 DOI: 10.1021/acs.jproteome.0c00421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 (COVID-19) has infected millions of people worldwide, with lethality in hundreds of thousands. The rapid publication of information, both regarding the clinical course and the viral biology, has yielded incredible knowledge of the virus. In this review, we address the insights gained for the SARS-CoV-2 proteome, which we have integrated into the Viral Integrated Structural Evolution Dynamic Database, a publicly available resource. Integrating evolutionary, structural, and interaction data with human proteins, we present how the SARS-CoV-2 proteome interacts with human disorders and risk factors ranging from cytokine storm, hyperferritinemic septic, coagulopathic, cardiac, immune, and rare disease-based genetics. The most noteworthy human genetic potential of SARS-CoV-2 is that of the nucleocapsid protein, where it is known to contribute to the inhibition of the biological process known as nonsense-mediated decay. This inhibition has the potential to not only regulate about 10% of all biological transcripts through altered ribosomal biology but also associate with viral-induced genetics, where suppressed human variants are activated to drive dominant, negative outcomes within cells. As we understand more of the dynamic and complex biological pathways that the proteome of SARS-CoV-2 utilizes for entry into cells, for replication, and for release from human cells, we can understand more risk factors for severe/lethal outcomes in patients and novel pharmaceutical interventions that may mitigate future pandemics.
Collapse
Affiliation(s)
- Olivia Sirpilla
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Department of Pharmacology and
Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Jacob Bauss
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
| | - Ruchir Gupta
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Department of Pharmacology and
Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Adam Underwood
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Dinah Qutob
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Tom Freeland
- Walsh
University, North Canton, Ohio 44720,
United States
| | - Caleb Bupp
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Spectrum Health Medical
Genetics, Grand Rapids, Michigan 49503,
United States
| | - Joseph Carcillo
- Department of Critical Care Medicine
and Pediatrics, Children’s Hospital of Pittsburgh,
University of Pittsburgh School of
Medicine, Pittsburgh, Pennsylvania 15421,
United States
| | - Nicholas Hartog
- Allergy & Immunology,
Spectrum Health, Grand Rapids, Michigan 49503,
United States
| | - Surender Rajasekaran
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Pediatric Intensive Care
Unit, Helen DeVos Children’s Hospital,
Grand Rapids, Michigan 49503, United States
- Office of Research,
Spectrum Health, Grand Rapids, Michigan 49503,
United States
| | - Jeremy W. Prokop
- Department of Pediatrics and Human
Development, College of Human Medicine, Michigan State
University, Grand Rapids, Michigan 49503,
United States
- Department of Pharmacology and
Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
| |
Collapse
|
30
|
Hemmati S, Behzadipour Y, Haddad M. Decoding the proteome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for cell-penetrating peptides involved in pathogenesis or applicable as drug delivery vectors. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104474. [PMID: 32712315 PMCID: PMC7378008 DOI: 10.1016/j.meegid.2020.104474] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023]
Abstract
Synthetic or natural derived cell-penetrating peptides (CPPs) are vastly investigated as tools for the intracellular delivery of membrane-impermeable molecules. As viruses are intracellular obligate parasites, viral originated CPPs have been considered as suitable intracellular shuttling vectors for cargo transportation. A total of 310 CPPs were identified in the proteome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Screening the proteome of the cause of COVID-19 reveals that SARS-CoV-2 CPPs (SCV2-CPPs) span the regions involved in replication, protein-nucleotide and protein-protein interaction, protein-metal ion interaction, and stabilization of homo/hetero-oligomers. However, to find the most appropriate peptides as drug delivery vectors, one might face several hurdles. Computational analyses showed that 94.3% of the identified SCV2-CPPs are non-toxins, and 38% are neither antigenic nor allergenic. Interestingly, 36.70% of SCV2-CPPs were resistant to all four groups of protease families. Nearly 1/3 of SCV2-CPPs had sufficient inherent or induced helix and sheet conformation leading to increased uptake efficiency. Heliquest lipid-binding discrimination factor revealed that 44.30% of the helical SCV2-CPPs are lipid-binding helices. Although Cys-rich derived CPPs of helicase (NSP13) can potentially fold into a cyclic conformation in endosomes with a higher rate of endosomal release, the most optimal SCV2-CPP candidates as vectors for drug delivery were SCV2-CPP118, SCV2-CPP119, SCV2-CPP122, and SCV2-CPP129 of NSP12 (RdRp). Ten experimentally validated viral-derived CPPs were also used as the positive control to check the scalability and reliability of our protocol in SCV2-CPP retrieval. Some peptides with a cell-penetration ability known as bioactive peptides are adopted as biotherapeutics themselves. Therefore, 59.60%, 29.63%, and 32.32% of SCV2-CPPs were identified as potential antibacterial, antiviral, and antifungals, respectively. While 63.64% of SCV2-CPPs had immuno-modulatory properties, 21.89% were recognized as anti-cancers. Conclusively, the workflow of this study provides a platform for profound screening of viral proteomes as a rich source of biotherapeutics or drug delivery carriers.
Collapse
Affiliation(s)
- Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Yasaman Behzadipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Haddad
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
31
|
Maurya AK, Mishra N. In silico validation of coumarin derivatives as potential inhibitors against Main Protease, NSP10/NSP16-Methyltransferase, Phosphatase and Endoribonuclease of SARS CoV-2. J Biomol Struct Dyn 2020; 39:7306-7321. [PMID: 32835632 PMCID: PMC7484570 DOI: 10.1080/07391102.2020.1808075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Coronavirus Disease (COVID-19) is recently declared pandemic (WHO) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The virus was named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), (Coronavirus Disease 2019). Currently, there is no specific drug for the therapy of COVID-19. So, there is a need to develop or find out the new drug from the existing to cure the COVID-19. Identification of a potent inhibitor of Methyltransferase, Endoribonuclease, Phosphatase and Main Protease enzymes of SARS CoV-2 by coumarin derivatives using insilico approach. The in silico studies were performed on maestro 12.0 software (Schrodinger LLC 2019, USA). Two thousand seven hundred fifty-five biologically active coumarin derivative was docked with above receptor proteins of SARS CoV-2. The molecular dynamic simulation of the top one ligand of respected proteins was performed. Top five ligands of each protein were taken for study. Coumarin derivatives actively interact with taken receptors and showed good docking results for Methyltransferase, Endoribonuclease, Phosphatase and Main Protease and top five compounds of each have docking score from –9.00 to –7.97, –8.42 to –6.80, –8.63 to –7.48 and –7.30 to –6.01 kcal/mol, respectively. The docked compounds were showed RMSD and binding stability of simulated ligands are show the potency of ligands against the SARS CoV-2. Our study provides information on drugs that may be a potent inhibitor of COVID-19 infection. Drug repurposing of the available drugs would be great help in the treatment of COVID-19 infection. The combination therapy of the finding may improve inhibitory activity. Communicated by Ramaswamy H. Sarma Highlights Coronavirus Disease (COVID-19) is recently declared pandemic (WHO) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In silico virtual screening, docking, ADME, MM-GBSA and MD simulation analysis of coumarin derivatives against Methyltransferase (MTase), Endoribonuclease(endoU), ADP ribose Phosphatase and Main Protease enzyme of SARS CoV-2. All the analysis was performed on Maestro 12.0 Schrodinger software against respective receptors. Top five compounds of coumarin derivatives s docked at the active site of Methyltransferase (MTase), Endoribonuclease(endoU), ADP ribose Phosphatase and protease and top five compounds of each have docking score from –9.00 to –7.97, –8.42 to –6.80, –8.63 to –7.48 and –7.30 to –6.01 kcal/mol, respectively, of SARS CoV-2. These compounds were used to analysis of binding free energy by using the Prime MM-GBSA module. All the compounds showed drug-likeness properties. MD simulation of Proteins and ligands showed binding stability and good RMSD, radius of gyration of protein, coulomb-SR and LJ-SR energy.
Collapse
Affiliation(s)
- Akhilesh Kumar Maurya
- Chemistry Laboratory, Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Devghat, Jhalwa, Prayagraj, UP, India
| | - Nidhi Mishra
- Chemistry Laboratory, Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Devghat, Jhalwa, Prayagraj, UP, India
| |
Collapse
|
32
|
Structural basis for the multimerization of nonstructural protein nsp9 from SARS-CoV-2. MOLECULAR BIOMEDICINE 2020; 1:5. [PMID: 34765992 PMCID: PMC7438161 DOI: 10.1186/s43556-020-00005-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
AbstractSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of a potentially fatal disease named coronavirus disease 2019 (COVID-19), has raised significant public health concerns globally. To date, the COVID-19 pandemic has caused millions of people to be infected with SARS-CoV-2 worldwide. It has been known since the 2003 SARS epidemic that coronaviruses (CoVs) have large RNA genomes, the replication of which requires an RNA-dependent RNA replication/transcription complex. CoV nonstructural proteins (Nsps) play pivotal roles in the assembly of this complex and associated enzymatic functions in virus genomic replication. Several smaller nonenzymatic Nsps assist with RNA-dependent RNA polymerase function. In this study, we determined the structure of SARS-CoV-2 nonstructural protein 9 (nsp9), an RNA-binding protein that is essential for CoV replication. Its homotetrameric structure with two stable dimeric interfaces provids a structural basis for understanding the mechanisms of RNA-binding protein self-assembly, which may be essential for the regulation of viral RNA replication and transcription.
Collapse
|
33
|
Pillon MC, Frazier MN, Dillard LB, Williams JG, Kocaman S, Krahn JM, Perera L, Hayne CK, Gordon J, Stewart ZD, Sobhany M, Deterding LJ, Hsu AL, Dandey VP, Borgnia MJ, Stanley RE. Cryo-EM Structures of the SARS-CoV-2 Endoribonuclease Nsp15. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.11.244863. [PMID: 32803198 PMCID: PMC7427136 DOI: 10.1101/2020.08.11.244863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
New therapeutics are urgently needed to inhibit SARS-CoV-2, the virus responsible for the on-going Covid-19 pandemic. Nsp15, a uridine-specific endoribonuclease found in all coronaviruses, processes viral RNA to evade detection by RNA-activated host defense systems, making it a promising drug target. Previous work with SARS-CoV-1 established that Nsp15 is active as a hexamer, yet how Nsp15 recognizes and processes viral RNA remains unknown. Here we report a series of cryo-EM reconstructions of SARS-CoV-2 Nsp15. The UTP-bound cryo-EM reconstruction at 3.36 Å resolution provides molecular details into how critical residues within the Nsp15 active site recognize uridine and facilitate catalysis of the phosphodiester bond, whereas the apo-states reveal active site conformational heterogeneity. We further demonstrate the specificity and mechanism of nuclease activity by analyzing Nsp15 products using mass spectrometry. Collectively, these findings advance understanding of how Nsp15 processes viral RNA and provide a structural framework for the development of new therapeutics.
Collapse
Affiliation(s)
- Monica C. Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Meredith N. Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Lucas B. Dillard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jason G. Williams
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Seda Kocaman
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Juno M. Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Cassandra K. Hayne
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jacob Gordon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Zachary D. Stewart
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mack Sobhany
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Leesa J. Deterding
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Allen L. Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Venkata P. Dandey
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mario J. Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E. Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
34
|
Kim Y, Jedrzejczak R, Maltseva NI, Wilamowski M, Endres M, Godzik A, Michalska K, Joachimiak A. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci 2020; 29:1596-1605. [PMID: 32304108 PMCID: PMC7264519 DOI: 10.1002/pro.3873] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
Abstract
Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is rapidly spreading around the world. There is no existing vaccine or proven drug to prevent infections and stop virus proliferation. Although this virus is similar to human and animal SARS-CoVs and Middle East Respiratory Syndrome coronavirus (MERS-CoVs), the detailed information about SARS-CoV-2 proteins structures and functions is urgently needed to rapidly develop effective vaccines, antibodies, and antivirals. We applied high-throughput protein production and structure determination pipeline at the Center for Structural Genomics of Infectious Diseases to produce SARS-CoV-2 proteins and structures. Here we report two high-resolution crystal structures of endoribonuclease Nsp15/NendoU. We compare these structures with previously reported homologs from SARS and MERS coronaviruses.
Collapse
Affiliation(s)
- Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA
| | - Natalia I Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA
| | - Mateusz Wilamowski
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Michael Endres
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA
| | - Adam Godzik
- Biomedical Sciences, University of California Riverside, Riverside, California, USA
| | - Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
35
|
Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proc Natl Acad Sci U S A 2020; 117:8094-8103. [PMID: 32198201 PMCID: PMC7149396 DOI: 10.1073/pnas.1921485117] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cells carry sensors that are primed to detect invading viruses. To avoid being recognized, coronaviruses express factors that interfere with host immune sensing pathways. Previous studies revealed that a coronavirus endoribonuclease (EndoU) delays activation of the host sensor system, but the mechanism was not known. Here, we report that EndoU cleaves a viral polyuridine sequence that would otherwise activate host immune sensors. This information may be used in developing inhibitors that target EndoU activity and prevent diseases caused by coronaviruses. Coronaviruses (CoVs) are positive-sense RNA viruses that can emerge from endemic reservoirs and infect zoonotically, causing significant morbidity and mortality. CoVs encode an endoribonuclease designated EndoU that facilitates evasion of host pattern recognition receptor MDA5, but the target of EndoU activity was not known. Here, we report that EndoU cleaves the 5′-polyuridines from negative-sense viral RNA, termed PUN RNA, which is the product of polyA-templated RNA synthesis. Using a virus containing an EndoU catalytic-inactive mutation, we detected a higher abundance of PUN RNA in the cytoplasm compared to wild-type−infected cells. Furthermore, we found that transfecting PUN RNA into cells stimulates a robust, MDA5-dependent interferon response, and that removal of the polyuridine extension on the RNA dampens the response. Overall, the results of this study reveal the PUN RNA to be a CoV MDA5-dependent pathogen-associated molecular pattern (PAMP). We also establish a mechanism for EndoU activity to cleave and limit the accumulation of this PAMP. Since EndoU activity is highly conserved in all CoVs, inhibiting this activity may serve as an approach for therapeutic interventions against existing and emerging CoV infections.
Collapse
|
36
|
Abstract
RNA viruses carry out selective packaging of their genomes in a variety of ways, many involving a genomic packaging signal. The first coronavirus packaging signal was discovered nearly thirty years ago, but how it functions remains incompletely understood. This review addresses the current state of knowledge of coronavirus genome packaging, which has mainly been studied in two prototype species, mouse hepatitis virus and transmissible gastroenteritis virus. Despite the progress that has been made in the mapping and characterization of some packaging signals, there is conflicting evidence as to whether the viral nucleocapsid protein or the membrane protein plays the primary role in packaging signal recognition. The different models for the mechanism of genomic RNA packaging that have been prompted by these competing views are described. Also discussed is the recent exciting discovery that selective coronavirus genome packaging is critical for in vivo evasion of the host innate immune response. Selective incorporation of the coronavirus genome into virions is mediated by a cis-acting RNA packaging signal. Packaging signals vary across different coronavirus genera and lineages. Different lines of evidence attribute packaging signal recognition to either the nucleocapsid or the membrane protein. Selective coronavirus genome packaging plays a role in evasion of host innate immunity.
Collapse
Affiliation(s)
- Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, United States.
| |
Collapse
|
37
|
Structural and Biochemical Characterization of Endoribonuclease Nsp15 Encoded by Middle East Respiratory Syndrome Coronavirus. J Virol 2018; 92:JVI.00893-18. [PMID: 30135128 DOI: 10.1128/jvi.00893-18] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/02/2018] [Indexed: 02/05/2023] Open
Abstract
Nonstructural protein 15 (Nsp15) encoded by coronavirus (CoV) is a nidoviral uridylate-specific endoribonuclease (NendoU) that plays an essential role in the life cycle of the virus. Structural information on this crucial protein from the Middle East respiratory syndrome CoV (MERS-CoV), which is lethally pathogenic and has caused severe respiratory diseases worldwide, is lacking. Here, we determined the crystal structure of MERS-CoV Nsp15 at a 2.7-Å resolution and performed the relevant biochemical assays to study how NendoU activity is regulated. Although the overall structure is conserved, MERS-CoV Nsp15 shows unique and novel features compared to its homologs. Serine substitution of residue F285, which harbors an aromatic side chain that disturbs RNA binding compared with that of other homologs, increases catalytic activity. Mutations of residues residing on the oligomerization interfaces that distort hexamerization, namely, N38A, Y58A, and N157A, decrease thermostability, decrease affinity of binding with RNA, and reduce the NendoU activity of Nsp15. In contrast, mutant D39A exhibits increased activity and a higher substrate binding capacity. Importantly, Nsp8 was found to interact with both monomeric and hexameric Nsp15. The Nsp7/Nsp8 complex displays a higher binding affinity for Nsp15. Furthermore, Nsp8 and the Nsp7/Nsp8 complex also enhance the NendoU activity of hexameric Nsp15 in vitro Taking the findings together, this work first provides evidence on how the activity of Nsp15 may be functionally mediated by catalytic residues, oligomeric assembly, RNA binding efficiency, or the possible association with other nonstructural proteins.IMPORTANCE The lethally pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV) and the severe acute respiratory syndrome coronavirus (SARS-CoV) pose serious threats to humans. Endoribonuclease Nsp15 encoded by coronavirus plays an important role in viral infection and pathogenesis. This study determines the structure of MERS-CoV Nsp15 and demonstrates how the catalytic activity of this protein is potentially mediated, thereby providing structural and functional evidence for developing antiviral drugs. We also hypothesize that the primase-like protein Nsp8 and the Nsp7/Nsp8 complex may interact with Nsp15 and affect enzymatic activity. This contributes to the understanding of the association of Nsp15 with the viral replication and transcription machinery.
Collapse
|
38
|
Michalska K, Quan Nhan D, Willett JLE, Stols LM, Eschenfeldt WH, Jones AM, Nguyen JY, Koskiniemi S, Low DA, Goulding CW, Joachimiak A, Hayes CS. Functional plasticity of antibacterial EndoU toxins. Mol Microbiol 2018; 109:509-527. [PMID: 29923643 PMCID: PMC6173971 DOI: 10.1111/mmi.14007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2018] [Indexed: 01/05/2023]
Abstract
Bacteria use several different secretion systems to deliver toxic EndoU ribonucleases into neighboring cells. Here, we present the first structure of a prokaryotic EndoU toxin in complex with its cognate immunity protein. The contact-dependent growth inhibition toxin CdiA-CTSTECO31 from Escherichia coli STEC_O31 adopts the eukaryotic EndoU fold and shares greatest structural homology with the nuclease domain of coronavirus Nsp15. The toxin contains a canonical His-His-Lys catalytic triad in the same arrangement as eukaryotic EndoU domains, but lacks the uridylate-specific ribonuclease activity that characterizes the superfamily. Comparative sequence analysis indicates that bacterial EndoU domains segregate into at least three major clades based on structural variations in the N-terminal subdomain. Representative EndoU nucleases from clades I and II degrade tRNA molecules with little specificity. In contrast, CdiA-CTSTECO31 and other clade III toxins are specific anticodon nucleases that cleave tRNAGlu between nucleotides C37 and m2 A38. These findings suggest that the EndoU fold is a versatile scaffold for the evolution of novel substrate specificities. Such functional plasticity may account for the widespread use of EndoU effectors by diverse inter-bacterial toxin delivery systems.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL, USA.,Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | - Dinh Quan Nhan
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Julia L E Willett
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Lucy M Stols
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL, USA
| | - William H Eschenfeldt
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL, USA
| | - Allison M Jones
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Josephine Y Nguyen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - David A Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | - Celia W Goulding
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA.,Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL, USA.,Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| |
Collapse
|
39
|
Zheng A, Shi Y, Shen Z, Wang G, Shi J, Xiong Q, Fang L, Xiao S, Fu ZF, Peng G. Insight into the evolution of nidovirus endoribonuclease based on the finding that nsp15 from porcine Deltacoronavirus functions as a dimer. J Biol Chem 2018; 293:12054-12067. [PMID: 29887523 PMCID: PMC6078464 DOI: 10.1074/jbc.ra118.003756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/31/2018] [Indexed: 12/22/2022] Open
Abstract
Nidovirus endoribonucleases (NendoUs) include nonstructural protein 15 (nsp15) from coronaviruses and nsp11 from arteriviruses, both of which have been reported to participate in the viral replication process and in the evasion of the host immune system. Results from a previous study of coronaviruses SARS-CoV, HCoV-229E, and MHV nsp15 indicate that it mainly forms a functional hexamer, whereas nsp11 from the arterivirus PRRSV is a dimer. Here, we found that porcine Deltacoronavirus (PDCoV) nsp15 primarily exists as dimers and monomers in vitro. Biological experiments reveal that a PDCoV nsp15 mutant lacking the first 27 amino acids of the N-terminal domain (Asn-1–Asn-27) forms more monomers and displays decreased enzymatic activity, indicating that this region is important for its dimerization. Moreover, multiple sequence alignments and three-dimensional structural analysis indicated that the C-terminal region (His-251–Val-261) of PDCoV nsp15 is 10 amino acids shorter and forms a shorter loop than that formed by the equivalent sequence (Gln-259–Phe-279) of SARS-CoV nsp15. This result may explain why PDCoV nsp15 failed to form hexamers. We speculate that NendoUs may have originated from XendoU endoribonucleases (XendoUs) forming monomers in eukaryotic cells, that NendoU from arterivirus gained the ability to form dimers, and that the coronavirus variants then evolved the capacity to assemble into hexamers. We further propose that PDCoV nsp15 may be an intermediate in this evolutionary process. Our findings provide a theoretical basis for improving our understanding of NendoU evolution and offer useful clues for designing drugs and vaccines against nidoviruses.
Collapse
Affiliation(s)
- Anjun Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Gang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Qiqi Xiong
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zhen F Fu
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
40
|
An "Old" protein with a new story: Coronavirus endoribonuclease is important for evading host antiviral defenses. Virology 2018; 517:157-163. [PMID: 29307596 PMCID: PMC5869138 DOI: 10.1016/j.virol.2017.12.024] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022]
Abstract
Here we review the evolving story of the coronavirus endoribonuclease (EndoU). Coronavirus EndoU is encoded within the sequence of nonstructural protein (nsp) 15, which was initially identified as a component of the viral replication complex. Biochemical and structural studies revealed the enzymatic nature of nsp15/EndoU, which was postulated to be essential for the unique replication cycle of viruses in the order Nidovirales. However, the role of nsp15 in coronavirus replication was enigmatic as EndoU-deficient coronaviruses were viable and replicated to near wild-type virus levels in fibroblast cells. A breakthrough in our understanding of the role of EndoU was revealed in recent studies, which showed that EndoU mediates the evasion of viral double-stranded RNA recognition by host sensors in macrophages. This new discovery of nsp15/EndoU function leads to new opportunities for investigating how a viral EndoU contributes to pathogenesis and exploiting this enzyme for therapeutics and vaccine design against pathogenic coronaviruses.
Collapse
|
41
|
Jiang N, Jin H, Li Y, Ge X, Han J, Guo X, Zhou L, Yang H. Identification of a novel linear B-cell epitope in nonstructural protein 11 of porcine reproductive and respiratory syndrome virus that are conserved in both genotypes. PLoS One 2017; 12:e0188946. [PMID: 29186182 PMCID: PMC5706702 DOI: 10.1371/journal.pone.0188946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens, that hinder the development of global pork industry. Its nonstructural protein 11 (nsp11), with the nidoviral uridylate-specific endoribonuclease (NendoU) domain, is essential for PRRSV genome replication and it also contributes to host innate immunity suppression. However, the immunogenicity and immune structure of PRRSV nsp11 have not been well investigated yet. In this study, a monoclonal antibody (mAb), designated 3F9, that against nsp11 was generated. Subsequently, a series of partially overlapped fragments, covered the nsp1140-223aa, were expressed to test the reactivity with mAb 3F9, and the 111DCREY115 was found to be the core unit of the B-cell epitope recognized by mAb 3F9. Further investigation indicated that both genotype 1 and genotype 2 PRRSV can be recognized by mAb 3F9, due to the 111DCREY115 is conserved in both genotype virus. Meanwhile, this epitope, localized at the surface of nsp11 in 3D structure, is confirmed to be able to induce humoral immune response in PRRSV infected pigs. These findings do not only provide an mAb tool to further investigate the function of nsp11, they also indicate the diagnostic potential for this epitope.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Huan Jin
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Yi Li
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
- * E-mail:
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
42
|
In Situ Tagged nsp15 Reveals Interactions with Coronavirus Replication/Transcription Complex-Associated Proteins. mBio 2017; 8:mBio.02320-16. [PMID: 28143984 PMCID: PMC5285509 DOI: 10.1128/mbio.02320-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Coronavirus (CoV) replication and transcription are carried out in close proximity to restructured endoplasmic reticulum (ER) membranes in replication/transcription complexes (RTC). Many of the CoV nonstructural proteins (nsps) are required for RTC function; however, not all of their functions are known. nsp15 contains an endoribonuclease domain that is conserved in the CoV family. While the enzymatic activity and crystal structure of nsp15 are well defined, its role in replication remains elusive. nsp15 localizes to sites of RNA replication, but whether it acts independently or requires additional interactions for its function remains unknown. To begin to address these questions, we created an in situ tagged form of nsp15 using the prototypic CoV, mouse hepatitis virus (MHV). In MHV, nsp15 contains the genomic RNA packaging signal (P/S), a 95-bp RNA stem-loop structure that is not required for viral replication or nsp15 function. Utilizing this knowledge, we constructed an internal hemagglutinin (HA) tag that replaced the P/S. We found that nsp15-HA was localized to discrete perinuclear puncta and strongly colocalized with nsp8 and nsp12, both well-defined members of the RTC, but not the membrane (M) protein, involved in virus assembly. Finally, we found that nsp15 interacted with RTC-associated proteins nsp8 and nsp12 during infection, and this interaction was RNA independent. From this, we conclude that nsp15 localizes and interacts with CoV proteins in the RTC, suggesting it plays a direct or indirect role in virus replication. Furthermore, the use of in situ epitope tags could be used to determine novel nsp-nsp interactions in coronaviruses. IMPORTANCE Despite structural and biochemical data demonstrating that the coronavirus nsp15 protein contains an endoribonuclease domain, its precise function during coronavirus infection remains unknown. In this work, we created a novel in situ tagged form of nsp15 to study interactions and localization during infection. This in situ tag was tolerated by MHV and did not affect viral replication. Utilizing this tag, we established that nsp15 localized to sites of replication but not sites of assembly throughout infection. Furthermore, we found that nsp15 interacted with the putative viral primase nsp8 and polymerase nsp12 during CoV infection. The strong association of nsp15 with replication complexes and interactions with replicative CoV enzymes suggest nsp15 is involved in CoV replication. These data and tools developed in this study help elucidate the function of nsp15 during infection and may be used to uncover other novel viral protein interactions.
Collapse
|
43
|
Sun Y, Ke H, Han M, Chen N, Fang W, Yoo D. Nonstructural Protein 11 of Porcine Reproductive and Respiratory Syndrome Virus Suppresses Both MAVS and RIG-I Expression as One of the Mechanisms to Antagonize Type I Interferon Production. PLoS One 2016; 11:e0168314. [PMID: 27997564 PMCID: PMC5172586 DOI: 10.1371/journal.pone.0168314] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Type I interferons (IFN-α/β) play a key role in antiviral defense, and porcine reproductive and respiratory syndrome virus (PRRSV) is known to down-regulate the IFN response in virus-infected cells and pigs. In this study, we showed that the overexpression of nsp11 of PRRSV induced a strong suppression of IFN production. Nsp11 suppressed both IRF3 and NF-κB activities when stimulated with a dsRNA analogue and TNF-α, respectively. This suppression was RLR dependent, since the transcripts and proteins of MAVS and RIG-I, two critical factors in RLR-mediated pathway, were both found to be reduced in the presence of overexpressed nsp11. Since nsp11 is an endoribonuclease (EndoU), the structure function relationship was examined using a series of nsp11 EndoU mutant plasmids. The mutants that impaired the EndoU activity failed to suppress IFN and led to the normal expression of MAVS. Seven single amino acid substitutions (4 in subdomain A and 3 in subdomain B) plus one insertion (frame-shift in nsp11) were then introduced into PRRSV infectious cDNA clones to generate nsp11 mutant viruses. Unfortunately, all EndoU knock-out nsp11 mutant viruses appeared replication-defective and no progenies were produced. Three mutations in EndoU subdomain A expressed the N and nsp2/3 proteins but their infectivity diminished after 2 passages. Taken together, our data show that PRRSV nsp11 endoribonuclease activity is critical for both viral replication and IFN antagonism. More importantly, the endoribonuclease activity of nsp11 demonstrates the substrate specificity towards MAVS and RIG-I (transcripts and proteins) over p65 and IRF3 in the context of gene transfection and overexpression. This is likely a mechanism of nsp11 suppression of type I IFN production.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Hanzhong Ke
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mingyuan Han
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ning Chen
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
44
|
Structural Biology of the Arterivirus nsp11 Endoribonucleases. J Virol 2016; 91:JVI.01309-16. [PMID: 27795409 DOI: 10.1128/jvi.01309-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/01/2016] [Indexed: 12/17/2022] Open
Abstract
Endoribonuclease (NendoU) is unique and conserved as a major genetic marker in nidoviruses that infect vertebrate hosts. Arterivirus nonstructural protein 11 (nsp11) was shown to have NendoU activity and play essential roles in the viral life cycle. Here, we report three crystal structures of porcine reproductive and respiratory syndrome virus (PRRSV) and equine arteritis virus (EAV) nsp11 mutants. The structures of arterivirus nsp11 contain two conserved compact domains: the N-terminal domain (NTD) and C-terminal domain (CTD). The structures of PRRSV and EAV endoribonucleases are similar and conserved in the arterivirus, but they are greatly different from that of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses (CoV), representing important human pathogens in the Nidovirales order. The catalytic center of NendoU activity is located in the CTD, where a positively charged groove is next to the key catalytic residues conserved in nidoviruses. Although the NTD is nearly identical, the catalytic region of the arterivirus nsp11 family proteins is remarkably flexible, and the oligomerization may be concentration dependent. In summary, our structures provide new insight into this key multifunctional NendoU family of proteins and lay a foundation for better understanding of the molecular mechanism and antiviral drug development. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) and equine arteritis virus are two major members of the arterivirus family. PRRSV, a leading swine pathogen, causes reproductive failure in breeding stock and respiratory tract illness in young pigs. Due to the lack of a suitable vaccine or effective drug treatment and the quick spread of these viruses, infected animals either die quickly or must be culled. PRRSV costs the swine industry around $644 million annually in the United States and almost €1.5 billion in Europe every year. To find a way to combat these viruses, we focused on the essential viral nonstructural protein 11 (nsp11). nsp11 is associated with multiple functions, such as RNA processing and suppression of the infected host innate immunity system. The three structures solved in this study provide new insight into the molecular mechanisms of this crucial protein family and will benefit the development of new treatments against these deadly viruses.
Collapse
|
45
|
Abstract
Coronaviruses are animal and human pathogens that can cause lethal zoonotic infections like SARS and MERS. They have polycistronic plus-stranded RNA genomes and belong to the order Nidovirales, a diverse group of viruses for which common ancestry was inferred from the common principles underlying their genome organization and expression, and from the conservation of an array of core replicase domains, including key RNA-synthesizing enzymes. Coronavirus genomes (~ 26–32 kilobases) are the largest RNA genomes known to date and their expansion was likely enabled by acquiring enzyme functions that counter the commonly high error frequency of viral RNA polymerases. The primary functions that direct coronavirus RNA synthesis and processing reside in nonstructural protein (nsp) 7 to nsp16, which are cleavage products of two large replicase polyproteins translated from the coronavirus genome. Significant progress has now been made regarding their structural and functional characterization, stimulated by technical advances like improved methods for bioinformatics and structural biology, in vitro enzyme characterization, and site-directed mutagenesis of coronavirus genomes. Coronavirus replicase functions include more or less universal activities of plus-stranded RNA viruses, like an RNA polymerase (nsp12) and helicase (nsp13), but also a number of rare or even unique domains involved in mRNA capping (nsp14, nsp16) and fidelity control (nsp14). Several smaller subunits (nsp7–nsp10) act as crucial cofactors of these enzymes and contribute to the emerging “nsp interactome.” Understanding the structure, function, and interactions of the RNA-synthesizing machinery of coronaviruses will be key to rationalizing their evolutionary success and the development of improved control strategies.
Collapse
Affiliation(s)
- E J Snijder
- Leiden University Medical Center, Leiden, The Netherlands.
| | - E Decroly
- Aix-Marseille Université, AFMB UMR 7257, Marseille, France; CNRS, AFMB UMR 7257, Marseille, France
| | - J Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
46
|
Kuo L, Koetzner CA, Masters PS. A key role for the carboxy-terminal tail of the murine coronavirus nucleocapsid protein in coordination of genome packaging. Virology 2016; 494:100-7. [PMID: 27105451 PMCID: PMC4884538 DOI: 10.1016/j.virol.2016.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 12/31/2022]
Abstract
The prototype coronavirus mouse hepatitis virus (MHV) exhibits highly selective packaging of its genomic positive-stranded RNA into assembled virions, despite the presence in infected cells of a large excess of subgenomic viral mRNAs. One component of this selectivity is the MHV packaging signal (PS), an RNA structure found only in genomic RNA and not in subgenomic RNAs. It was previously shown that a major determinant of PS recognition is the second of the two RNA-binding domains of the viral nucleocapsid (N) protein. We have now found that PS recognition additionally depends upon a segment of the carboxy-terminal tail (domain N3) of the N protein. Since domain N3 is also the region of N protein that interacts with the membrane (M) protein, this finding suggests a mechanism by which selective genome packaging is accomplished, through the coupling of genome encapsidation to virion assembly.
Collapse
Affiliation(s)
- Lili Kuo
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States
| | - Cheri A Koetzner
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States
| | - Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States.
| |
Collapse
|
47
|
A Dimerization-Dependent Mechanism Drives the Endoribonuclease Function of Porcine Reproductive and Respiratory Syndrome Virus nsp11. J Virol 2016; 90:4579-4592. [PMID: 26912626 PMCID: PMC4836315 DOI: 10.1128/jvi.03065-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/15/2016] [Indexed: 12/19/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) RNA endoribonuclease nsp11 belongs to the XendoU superfamily and plays a crucial role in arterivirus replication. Here, we report the first crystal structure of the arterivirus nsp11 protein from PRRSV, which exhibits a unique structure and assembles into an asymmetric dimer whose structure is completely different from the hexameric structure of coronavirus nsp15. However, the structures of the PRRSV nsp11 and coronavirus nsp15 catalytic domains were perfectly superimposed, especially in the “active site loop” (His129 to His144) and “supporting loop” (Val162 to Thr179) regions. Importantly, our biochemical data demonstrated that PRRSV nsp11 exists mainly as a dimer in solution. Mutations of the major dimerization site determinants (Ser74 and Phe76) in the dimerization interface destabilized the dimer in solution and severely diminished endoribonuclease activity, indicating that the dimer is the biologically functional unit. In the dimeric structure, the active site loop and supporting loop are packed against one another and stabilized by monomer-monomer interactions. These findings may help elucidate the mechanism underlying arterivirus replication and may represent great potential for the development of antiviral drugs. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is a member of the family Arteriviridae, order Nidovirales. PRRSV is a major agent of respiratory diseases in pigs, causing tremendous economic losses to the swine industry worldwide. The PRRSV nsp11 endoribonuclease plays a vital role in arterivirus replication, but its precise roles and mechanisms of action are poorly understood. Here, we report the first dimeric structure of the arterivirus nsp11 from PRRSV at 2.75-Å resolution. Structural and biochemical experiments demonstrated that nsp11 exists mainly as a dimer in solution and that nsp11 may be fully active as a dimer. Mutagenesis and structural analysis revealed NendoU active site residues, which are conserved throughout the order Nidovirales (families Arteriviridae and Coronaviridae) and the major determinants of dimerization (Ser74 and Phe76) in Arteriviridae. Importantly, these findings may provide a new structural basis for antiviral drug development.
Collapse
|
48
|
Chen Y, Guo D. Molecular mechanisms of coronavirus RNA capping and methylation. Virol Sin 2016; 31:3-11. [PMID: 26847650 PMCID: PMC7091378 DOI: 10.1007/s12250-016-3726-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
The 5′-cap structures of eukaryotic mRNAs are important for RNA stability, pre-mRNA splicing, mRNA export, and protein translation. Many viruses have evolved mechanisms for generating their own cap structures with methylation at the N7 position of the capped guanine and the ribose 2′-Oposition of the first nucleotide, which help viral RNAs escape recognition by the host innate immune system. The RNA genomes of coronavirus were identified to have 5′-caps in the early 1980s. However, for decades the RNA capping mechanisms of coronaviruses remained unknown. Since 2003, the outbreak of severe acute respiratory syndrome coronavirus has drawn increased attention and stimulated numerous studies on the molecular virology of coronaviruses. Here, we review the current understanding of the mechanisms adopted by coronaviruses to produce the 5′-cap structure and methylation modification of viral genomic RNAs.![]()
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430070, China.
| | - Deyin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430070, China.
| |
Collapse
|
49
|
Huo T, Liu X. Crystallization and preliminary X-ray crystallographic analysis of a nonstructural protein 15 mutant from Human coronavirus 229E. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2015; 71:1156-60. [PMID: 26323302 PMCID: PMC4555923 DOI: 10.1107/s2053230x15007359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 04/14/2015] [Indexed: 12/04/2022]
Abstract
This article describes preliminary crystallographic data for the I26A/N52A mutant of nonstructural protein 15 from Human coronavirus 229E. Nonstructural protein 15 (nsp15), also called endoribonuclease, is a gene product of open reading frame 1b (ORF 1b) in coronaviruses. It is an important enzyme in the transcription/replication process involved in discontinuous negative-strand RNA synthesis. In this work, mutants of nsp15 from Human coronavirus 229E (HCoV-229E) were made based on structural analysis of the homologous nsp15s in Severe acute respiratory syndrome coronavirus (SARS-CoV) and Mouse hepatitis virus (MHV). The I26A/N52A mutant of nsp15 was overexpressed, purified and crystallized, and this mutant led to a trimeric form rather than hexamers or monomers. Crystals of trimeric nsp15 were obtained by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitant and diffracted to 2.5 Å resolution. The crystals belonged to space group C2221, with unit-cell parameters a = 85.9, b = 137.5, c = 423.1 Å, α = β = γ = 90°.
Collapse
Affiliation(s)
- Tong Huo
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiang Liu
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
50
|
Zhang R, Zhang CT. A Brief Review: The Z-curve Theory and its Application in Genome Analysis. Curr Genomics 2014; 15:78-94. [PMID: 24822026 PMCID: PMC4009844 DOI: 10.2174/1389202915999140328162433] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 11/22/2022] Open
Abstract
In theoretical physics, there exist two basic mathematical approaches, algebraic and geometrical methods, which, in most cases, are complementary. In the area of genome sequence analysis, however, algebraic approaches have been widely used, while geometrical approaches have been less explored for a long time. The Z-curve theory is a geometrical approach to genome analysis. The Z-curve is a three-dimensional curve that represents a given DNA sequence in the sense that each can be uniquely reconstructed given the other. The Z-curve, therefore, contains all the information that the corresponding DNA sequence carries. The analysis of a DNA sequence can then be performed through studying the corresponding Z-curve. The Z-curve method has found applications in a wide range of areas in the past two decades, including the identifications of protein-coding genes, replication origins, horizontally-transferred genomic islands, promoters, translational start sides and isochores, as well as studies on phylogenetics, genome visualization and comparative genomics. Here, we review the progress of Z-curve studies from aspects of both theory and applications in genome analysis.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, Wayne State University Medical School, Detroit, MI 48201, USA
| | - Chun-Ting Zhang
- Department of Physics, Tianjin University, Tianjin 300072, China
| |
Collapse
|