1
|
Moraka NO, Choga WT, Pema MN, Chawawa MK, Gobe I, Mokomane M, Bareng OT, Bhebhe L, Kelentse N, Mulenga G, Pretorius Holme M, Mohammed T, Koofhethile CK, Makhema JM, Shapiro R, Lockman S, Moyo S, Gaseitsiwe S. Predicted resistance to broadly neutralizing antibodies (bnAbs) and associated HIV-1 envelope characteristics among seroconverting adults in Botswana. Sci Rep 2023; 13:18134. [PMID: 37875518 PMCID: PMC10598268 DOI: 10.1038/s41598-023-44722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
We used HIV-1C sequences to predict (in silico) resistance to 33 known broadly neutralizing antibodies (bnAbs) and evaluate the different HIV-1 Env characteristics that may affect virus neutralization. We analyzed proviral sequences from adults with documented HIV-1 seroconversion (N = 140) in Botswana (2013-2018). HIV-1 env sequences were used to predict bnAb resistance using bNAb-ReP, to determine the number of potential N-linked glycosylation sites (PNGS) and evaluate Env variable region characteristics (VC). We also assessed the presence of signature mutations that may affect bnAb sensitivity in vitro. We observe varied results for predicted bnAb resistance among our cohort. 3BNC117 showed high predicted resistance (72%) compared to intermediate levels of resistance to VRC01 (57%). We predict low resistance to PGDM100 and 10-1074 and no resistance to 4E10. No difference was observed in the frequency of PNGS by bNAb susceptibility patterns except for higher number of PNGs in V3 bnAb resistant strains. Associations of VC were observed for V1, V4 and V5 loop length and net charge. We also observed few mutations that have been reported to confer bnAb resistance in vitro. Our results support use of sequence data and machine learning tools to predict the best bnAbs to use within populations.
Collapse
Affiliation(s)
- Natasha O Moraka
- Botswana Harvard AIDS Institute Partnership, Bontleng, Private Bag BO320, Gaborone, Botswana
| | - Wonderful T Choga
- Botswana Harvard AIDS Institute Partnership, Bontleng, Private Bag BO320, Gaborone, Botswana
| | - Marea N Pema
- Botswana Harvard AIDS Institute Partnership, Bontleng, Private Bag BO320, Gaborone, Botswana
| | - Moses Kudzai Chawawa
- Botswana Harvard AIDS Institute Partnership, Bontleng, Private Bag BO320, Gaborone, Botswana
| | - Irene Gobe
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Margaret Mokomane
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Ontlametse T Bareng
- Botswana Harvard AIDS Institute Partnership, Bontleng, Private Bag BO320, Gaborone, Botswana
| | - Lynette Bhebhe
- Botswana Harvard AIDS Institute Partnership, Bontleng, Private Bag BO320, Gaborone, Botswana
| | - Nametso Kelentse
- Botswana Harvard AIDS Institute Partnership, Bontleng, Private Bag BO320, Gaborone, Botswana
| | - Graceful Mulenga
- Botswana Harvard AIDS Institute Partnership, Bontleng, Private Bag BO320, Gaborone, Botswana
| | | | - Terence Mohammed
- Botswana Harvard AIDS Institute Partnership, Bontleng, Private Bag BO320, Gaborone, Botswana
| | - Catherine K Koofhethile
- Botswana Harvard AIDS Institute Partnership, Bontleng, Private Bag BO320, Gaborone, Botswana
| | - Joseph M Makhema
- Botswana Harvard AIDS Institute Partnership, Bontleng, Private Bag BO320, Gaborone, Botswana
| | - Roger Shapiro
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Shahin Lockman
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Bontleng, Private Bag BO320, Gaborone, Botswana
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Bontleng, Private Bag BO320, Gaborone, Botswana.
| |
Collapse
|
2
|
Ringe RP, Colin P, Ozorowski G, Allen JD, Yasmeen A, Seabright GE, Lee JH, Antanasijevic A, Rantalainen K, Ketas T, Moore JP, Ward AB, Crispin M, Klasse PJ. Glycan heterogeneity as a cause of the persistent fraction in HIV-1 neutralization. PLoS Pathog 2023; 19:e1011601. [PMID: 37903160 PMCID: PMC10635575 DOI: 10.1371/journal.ppat.1011601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/09/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023] Open
Abstract
Neutralizing antibodies (NAbs) to multiple epitopes on the HIV-1-envelope glycoprotein (Env) have been isolated from infected persons. The potency of NAbs is measured more often than the size of the persistent fraction of infectivity at maximum neutralization, which may also influence preventive efficacy of active or passive immunization and the therapeutic outcome of the latter. Many NAbs neutralize HIV-1 CZA97.012, a clone of a Clade-C isolate, to ~100%. But here NAb PGT151, directed to a fusion-peptide epitope, left a persistent fraction of 15%. NAb PGT145, ligating the Env-trimer apex, left no detectable persistent fraction. The divergence in persistent fractions was further analyzed by depletion of pseudoviral populations of the most PGT151- and PGT145-reactive virions. Thereby, neutralization by the non-depleting NAb increased, whereas neutralization by the depleting NAb decreased. Furthermore, depletion by PGT151 increased sensitivity to autologous neutralization by sera from rabbits immunized with soluble native-like CZA97.012 trimer: substantial persistent fractions were reduced. NAbs in these sera target epitopes comprising residue D411 at the V4-β19 transition in a defect of the glycan shield on CZA97.012 Env. NAb binding to affinity-fractionated soluble native-like CZA97.012 trimer differed commensurately with neutralization in analyses by ELISA and surface plasmon resonance. Glycan differences between PGT151- and PGT145-purified trimer fractions were then demonstrated by mass spectrometry, providing one explanation for the differential antigenicity. These differences were interpreted in relation to a new structure at 3.4-Å resolution of the soluble CZA97.012 trimer determined by cryo-electron microscopy. The trimer adopted a closed conformation, refuting apex opening as the cause of reduced PGT145 binding to the PGT151-purified form. The evidence suggests that differences in binding and neutralization after trimer purification or pseudovirus depletion with PGT145 or PGT151 are caused by variation in glycosylation, and that some glycan variants affect antigenicity through direct effects on antibody contacts, whereas others act allosterically.
Collapse
Affiliation(s)
- Rajesh P. Ringe
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Philippe Colin
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Gemma E. Seabright
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Kimmo Rantalainen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas Ketas
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - P. J. Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| |
Collapse
|
3
|
Moraka NO, Choga WT, Pema MN, Chawawa MK, Gobe I, Mokomane M, Bareng OT, Bhebhe L, Kelentse N, Mulenga G, Pretorius-Holme M, Mohammed T, Koofhethile CK, Makhema JM, Shapiro R, Lockman S, Moyo S, Gaseitsiwe S. Predicted broadly neutralizing antibody (bnAb) resistance and associated envelope characteristics of adults with HIV-1 seroconversion in Botswana. RESEARCH SQUARE 2023:rs.3.rs-3194948. [PMID: 37693564 PMCID: PMC10491331 DOI: 10.21203/rs.3.rs-3194948/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
We used HIV-1C sequences to predict (in silico) resistance to 33 known broadly neutralizing antibodies (bNAbs) and evaluate the different HIV-1 env characteristics that may affect virus neutralization. We analyzed proviral sequences from adults with documented HIV-1 seroconversion (N=140) in Botswana (2013-2018). HIV-1 env sequences were used to predict bnAb resistance using bNAb-ReP, to determine the number of potential N-linked glycosylation sites (PNGS) and evaluate env variable region characteristics (VC). We also assessed the presence of signature mutations that may affect bnAb sensitivity in vitro. We observe varied results for predicted bnAb resistance among our cohort. 3BNC117 showed high predicted resistance (72%) compared to intermediate levels of resistance to VRC01 (57%). We predict low resistance to PGDM100 and 10-1074 and no resistance to 4E10. No difference was observed in the frequency of PNGS by bNAb susceptibility patterns except for higher number of PNGs in V3 bnAb resistant strains. Associations of VC were observed for V1, V4 and V5 loop length and net charge. We also observed few mutations that have been reported to confer bnAb resistance in vitro. Our results support use of sequence data and machine learning tools to predict the best bnAbs to use within populations.
Collapse
|
4
|
Haynes BF, Wiehe K, Borrow P, Saunders KO, Korber B, Wagh K, McMichael AJ, Kelsoe G, Hahn BH, Alt F, Shaw GM. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat Rev Immunol 2023; 23:142-158. [PMID: 35962033 PMCID: PMC9372928 DOI: 10.1038/s41577-022-00753-w] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 01/07/2023]
Abstract
After nearly four decades of research, a safe and effective HIV-1 vaccine remains elusive. There are many reasons why the development of a potent and durable HIV-1 vaccine is challenging, including the extraordinary genetic diversity of HIV-1 and its complex mechanisms of immune evasion. HIV-1 envelope glycoproteins are poorly recognized by the immune system, which means that potent broadly neutralizing antibodies (bnAbs) are only infrequently induced in the setting of HIV-1 infection or through vaccination. Thus, the biology of HIV-1-host interactions necessitates novel strategies for vaccine development to be designed to activate and expand rare bnAb-producing B cell lineages and to select for the acquisition of critical improbable bnAb mutations. Here we discuss strategies for the induction of potent and broad HIV-1 bnAbs and outline the steps that may be necessary for ultimate success.
Collapse
Affiliation(s)
- Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Department of Immunology, Duke University of School of Medicine, Durham, NC, USA.
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Bette Korber
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Kshitij Wagh
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University of School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Rzymski P, Szuster-Ciesielska A, Dzieciątkowski T, Gwenzi W, Fal A. mRNA vaccines: The future of prevention of viral infections? J Med Virol 2023; 95:e28572. [PMID: 36762592 DOI: 10.1002/jmv.28572] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Messenger RNA (mRNA) vaccines against COVID-19 are the first authorized biological preparations developed using this platform. During the pandemic, their administration has been proven to be a life-saving intervention. Here, we review the main advantages of using mRNA vaccines, identify further technological challenges to be met during the development of the mRNA platform, and provide an update on the clinical progress on leading mRNA vaccine candidates against different viruses that include influenza viruses, human immunodeficiency virus 1, respiratory syncytial virus, Nipah virus, Zika virus, human cytomegalovirus, and Epstein-Barr virus. The prospects and challenges of manufacturing mRNA vaccines in low-income countries are also discussed. The ongoing interest and research in mRNA technology are likely to overcome some existing challenges for this technology (e.g., related to storage conditions and immunogenicity of some components of lipid nanoparticles) and enhance the portfolio of vaccines against diseases for which classical formulations are already authorized. It may also open novel pathways of protection against infections and their consequences for which no safe and efficient immunization methods are currently available.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.,Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Agnieszka Szuster-Ciesielska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Willis Gwenzi
- Alexander von Humboldt Fellow & Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Witzenhausen, Germany.,Alexander von Humboldt Fellow & Guest Professor, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Andrzej Fal
- Collegium Medicum, Warsaw Faculty of Medicine, Cardinal Stefan Wyszynski University, Warsaw, Poland.,Department of Public Health, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
6
|
Knudsen ML, Agrawal P, MacCamy A, Parks KR, Gray MD, Takushi BN, Khechaduri A, Salladay KR, Coler RN, LaBranche CC, Montefiori D, Stamatatos L. Adjuvants influence the maturation of VRC01-like antibodies during immunization. iScience 2022; 25:105473. [PMID: 36405776 PMCID: PMC9667313 DOI: 10.1016/j.isci.2022.105473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Once naive B cells expressing germline VRC01-class B cell receptors become activated by germline-targeting immunogens, they enter germinal centers and undergo affinity maturation. Booster immunizations with heterologous Envs are required for the full maturation of VRC01-class antibodies. Here, we examined whether and how three adjuvants, Poly(I:C), GLA-LSQ, or Rehydragel, that activate different pathways of the innate immune system, influence the rate and type of somatic mutations accumulated by VRC01-class BCRs that become activated by the germline-targeting 426c.Mod.Core immunogen and the heterologous HxB2.WT.Core booster immunogen. We report that although the adjuvant used had no influence on the durability of plasma antibody responses after the prime, it influenced the plasma VRC01 antibody titers after the boost and the accumulation of somatic mutations on the elicited VRC01 antibodies.
Collapse
Affiliation(s)
- Maria L. Knudsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Parul Agrawal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anna MacCamy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - K. Rachael Parks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Matthew D. Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Brittany N. Takushi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Arineh Khechaduri
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kelsey R. Salladay
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rhea N. Coler
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | | | - David Montefiori
- Division of Surgical Sciences, Duke University, Durham, NC 27710, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Huettner I, Krumm SA, Serna S, Brzezicka K, Monaco S, Walpole S, van Diepen A, Allan F, Hicks T, Kimuda S, Emery AM, Landais E, Hokke CH, Angulo J, Reichardt N, Doores KJ. Cross-reactivity of glycan-reactive HIV-1 broadly neutralizing antibodies with parasite glycans. Cell Rep 2022; 38:110611. [PMID: 35354052 PMCID: PMC10073069 DOI: 10.1016/j.celrep.2022.110611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/26/2022] [Accepted: 03/11/2022] [Indexed: 11/03/2022] Open
Abstract
The HIV-1 Envelope glycoprotein (Env) is the sole target for broadly neutralizing antibodies (bnAbs). Env is heavily glycosylated with host-derived N-glycans, and many bnAbs bind to, or are dependent upon, Env glycans for neutralization. Although glycan-binding bnAbs are frequently detected in HIV-infected individuals, attempts to elicit them have been unsuccessful because of the poor immunogenicity of Env N-glycans. Here, we report cross-reactivity of glycan-binding bnAbs with self- and non-self N-glycans and glycoprotein antigens from different life-stages of Schistosoma mansoni. Using the IAVI Protocol C HIV infection cohort, we examine the relationship between S. mansoni seropositivity and development of bnAbs targeting glycan-dependent epitopes. We show that the unmutated common ancestor of the N332/V3-specific bnAb lineage PCDN76, isolated from an HIV-infected donor with S. mansoni seropositivity, binds to S. mansoni cercariae while lacking reactivity to gp120. Overall, these results present a strategy for elicitation of glycan-reactive bnAbs which could be exploited in HIV-1 vaccine development.
Collapse
Affiliation(s)
- Isabella Huettner
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Stefanie A Krumm
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Sonia Serna
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Katarzyna Brzezicka
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Samuel Walpole
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, UK
| | - Thomas Hicks
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Simon Kimuda
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Aidan M Emery
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, UK
| | - Elise Landais
- International AIDS Vaccine Initiative Neutralizing Antibody Center, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Niels Reichardt
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain; CIBER-BBN, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
8
|
Critcher M, Hassan AA, Huang ML. Seeing the forest through the trees: characterizing the glycoproteome. Trends Biochem Sci 2022; 47:492-505. [DOI: 10.1016/j.tibs.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
|
9
|
Xu Z, Walker S, Wise MC, Chokkalingam N, Purwar M, Moore A, Tello-Ruiz E, Wu Y, Majumdar S, Konrath KM, Kulkarni A, Tursi NJ, Zaidi FI, Reuschel EL, Patel I, Obeirne A, Du J, Schultheis K, Gites L, Smith T, Mendoza J, Broderick KE, Humeau L, Pallesen J, Weiner DB, Kulp DW. Induction of tier-2 neutralizing antibodies in mice with a DNA-encoded HIV envelope native like trimer. Nat Commun 2022; 13:695. [PMID: 35121758 PMCID: PMC8816947 DOI: 10.1038/s41467-022-28363-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
Abstract
HIV Envelope (Env) is the main vaccine target for induction of neutralizing antibodies. Stabilizing Env into native-like trimer (NLT) conformations is required for recombinant protein immunogens to induce autologous neutralizing antibodies(nAbs) against difficult to neutralize HIV strains (tier-2) in rabbits and non-human primates. Immunizations of mice with NLTs have generally failed to induce tier-2 nAbs. Here, we show that DNA-encoded NLTs fold properly in vivo and induce autologous tier-2 nAbs in mice. DNA-encoded NLTs also uniquely induce both CD4 + and CD8 + T-cell responses as compared to corresponding protein immunizations. Murine neutralizing antibodies are identified with an advanced sequencing technology. The structure of an Env-Ab (C05) complex, as determined by cryo-EM, identifies a previously undescribed neutralizing Env C3/V5 epitope. Beyond potential functional immunity gains, DNA vaccines permit in vivo folding of structured antigens and provide significant cost and speed advantages for enabling rapid evaluation of new HIV vaccines.
Collapse
Affiliation(s)
- Ziyang Xu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Susanne Walker
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Megan C Wise
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | - Neethu Chokkalingam
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Mansi Purwar
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Alan Moore
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Edgar Tello-Ruiz
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Yuanhan Wu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Sonali Majumdar
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Kylie M Konrath
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Abhijeet Kulkarni
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Nicholas J Tursi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Faraz I Zaidi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Emma L Reuschel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Ishaan Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - April Obeirne
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Jianqiu Du
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | | | - Lauren Gites
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | - Trevor Smith
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | - Janess Mendoza
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | | | - Laurent Humeau
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | - Jesper Pallesen
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Daniel W Kulp
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Cattin M, Bruxelle JF, Ng K, Blaukopf M, Pantophlet R, Kosma P. Synthetic neoglycoconjugates of hepta- and nonamannoside ligands for eliciting oligomannose-specific HIV-1-neutralizing antibodies. Chembiochem 2022; 23:e202200061. [PMID: 35104013 PMCID: PMC9108342 DOI: 10.1002/cbic.202200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/01/2022] [Indexed: 11/08/2022]
Abstract
Oligomannose-type glycans on the spike protein of HIV-1 constitute relevant epitopes to elicit broadly neutralizing antibodies (bnAbs). Herein we describe an improved synthesis of α- and β-linked hepta- and nonamannosyl ligands that, subsequently, were converted into BSA and CRM 197 neoglycoconjugates. We assembled the ligands from anomeric 3-azidopropyl spacer glycosides from select 3-O-protected thiocresyl mannoside donors. Chain extensions were achieved using 4+3 or 4+5 block synthesis of thiocresyl and trichloroacetimidate glycosyl donors. Subsequent global deprotection generated the 3-aminopropyl oligosaccharide ligands. ELISA binding data obtained with the β-anomeric hepta- and nonamannosyl conjugates with a selection of HIV-1 bnAbs showed comparable binding of both mannosyl ligands by Fab fragments yet lesser binding of the nonasaccharide conjugate by the corresponding IgG antibodies. These results support previous observations that a complete Man 9 structure might not be the preferred antigenic binding motif for some oligomannose-specific antibodies and have implications for glycoside designs to elicit oligomannose-targeted HIV-1-neutralizing antibodies.
Collapse
Affiliation(s)
- Matteo Cattin
- University of Natural Resources and Life Sciences: Universitat fur Bodenkultur Wien, Chemistry, Muthgasse 18, A 1190, Vienna, AUSTRIA
| | - Jean-François Bruxelle
- Simon Fraser University Faculty of Health Sciences, Molecular Biology and Biochemistry, Burnaby, CANADA
| | - Kurtis Ng
- Simon Fraser University Faculty of Health Sciences, Molecular Biology and Biochemistry, CANADA
| | - Markus Blaukopf
- University of Natural Resources and Life Sciences Vienna: Universitat fur Bodenkultur Wien, Chemistry, AUSTRIA
| | - Ralph Pantophlet
- Simon Fraser University Faculty of Health Sciences, Molecular Biology and Biochemistry, V5A 1S6, Burnaby, CANADA
| | - Paul Kosma
- University of Natural Resources and Life Sciences, Chemistry, Muthgasse 18, A 1190, Vienna, AUSTRIA
| |
Collapse
|
11
|
Griffith SA, McCoy LE. To bnAb or Not to bnAb: Defining Broadly Neutralising Antibodies Against HIV-1. Front Immunol 2021; 12:708227. [PMID: 34737737 PMCID: PMC8560739 DOI: 10.3389/fimmu.2021.708227] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Since their discovery, antibodies capable of broad neutralisation have been at the forefront of HIV-1 research and are of particular interest due to in vivo passive transfer studies demonstrating their potential to provide protection. Currently an exact definition of what is required for a monoclonal antibody to be classed as a broadly neutralising antibody (bnAb) has not yet been established. This has led to hundreds of antibodies with varying neutralisation breadth being studied and has given insight into antibody maturation pathways and epitopes targeted. However, even with this knowledge, immunisation studies and vaccination trials to date have had limited success in eliciting antibodies with neutralisation breadth. For this reason there is a growing need to identify factors specifically associated with bnAb development, yet to do this a set of criteria is necessary to distinguish bnAbs from non-bnAbs. This review aims to define what it means to be a HIV-1 bnAb by comparing neutralisation breadth, genetic features and epitopes of bnAbs, and in the process highlights the challenges of comparing the array of antibodies that have been isolated over the years.
Collapse
Affiliation(s)
- Sarah A Griffith
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Laura E McCoy
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
12
|
Shipley MM, Mangala Prasad V, Doepker LE, Dingens A, Ralph DK, Harkins E, Dhar A, Arenz D, Chohan V, Weight H, Mandaliya K, Bloom JD, Matsen FA, Lee KK, Overbaugh JM. Functional development of a V3/glycan-specific broadly neutralizing antibody isolated from a case of HIV superinfection. eLife 2021; 10:68110. [PMID: 34263727 PMCID: PMC8376252 DOI: 10.7554/elife.68110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Stimulating broadly neutralizing antibodies (bnAbs) directly from germline remains a barrier for HIV vaccines. HIV superinfection elicits bnAbs more frequently than single infection, providing clues of how to elicit such responses. We used longitudinal antibody sequencing and structural studies to characterize bnAb development from a superinfection case. BnAb QA013.2 bound initial and superinfecting viral Env, despite its probable naive progenitor only recognizing the superinfecting strain, suggesting both viruses influenced this lineage. A 4.15 Å cryo-EM structure of QA013.2 bound to native-like trimer showed recognition of V3 signatures (N301/N332 and GDIR). QA013.2 relies less on CDRH3 and more on framework and CDRH1 for affinity and breadth compared to other V3/glycan-specific bnAbs. Antigenic profiling revealed that viral escape was achieved by changes in the structurally-defined epitope and by mutations in V1. These results highlight shared and novel properties of QA013.2 relative to other V3/glycan-specific bnAbs in the setting of sequential, diverse antigens.
Collapse
Affiliation(s)
- Mackenzie M Shipley
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, United States
| | - Laura E Doepker
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Adam Dingens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Duncan K Ralph
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Elias Harkins
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Amrit Dhar
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Dana Arenz
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Vrasha Chohan
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Haidyn Weight
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Kishor Mandaliya
- Coast Provincial General Hospital, Women's Health Project, Mombasa, Kenya
| | - Jesse D Bloom
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Department of Genome Sciences, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Frederick A Matsen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, United States
| | - Julie M Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
13
|
Rubio AA, Filsinger Interrante MV, Bell BN, Brown CL, Bruun TUJ, LaBranche CC, Montefiori DC, Kim PS. A Derivative of the D5 Monoclonal Antibody That Targets the gp41 N-Heptad Repeat of HIV-1 with Broad Tier-2-Neutralizing Activity. J Virol 2021; 95:e0235020. [PMID: 33980592 PMCID: PMC8274607 DOI: 10.1128/jvi.02350-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
HIV-1 infection is initiated by the viral glycoprotein Env, which, after interaction with cellular coreceptors, adopts a transient conformation known as the prehairpin intermediate (PHI). The N-heptad repeat (NHR) is a highly conserved region of gp41 exposed in the PHI; it is the target of the FDA-approved drug enfuvirtide and of neutralizing monoclonal antibodies (mAbs). However, to date, these mAbs have only been weakly effective against tier-1 HIV-1 strains, which are most sensitive to neutralizing antibodies. Here, we engineered and tested 11 IgG variants of D5, an anti-NHR mAb, by recombining previously described mutations in four of D5's six antibody complementarity-determining regions. One variant, D5_AR, demonstrated 6-fold enhancement in the 50% inhibitory dose (ID50) against lentivirus pseudotyped with HXB2 Env. D5_AR exhibited weak cross-clade neutralizing activity against a diverse set of tier-2 HIV-1 viruses, which are less sensitive to neutralizing antibodies than tier-1 viruses and are the target of current antibody-based vaccine efforts. In addition, the neutralization potency of D5_AR IgG was greatly enhanced in target cells expressing FcγRI, with ID50 values of <0.1 μg/ml; this immunoglobulin receptor is expressed on macrophages and dendritic cells, which are implicated in the early stages of HIV-1 infection of mucosal surfaces. D5 and D5_AR have equivalent neutralization potency in IgG, Fab, and single-chain variable-fragment (scFv) formats, indicating that neutralization is not impacted by steric hindrance. Taken together, these results provide support for vaccine strategies that target the PHI by eliciting antibodies against the gp41 NHR and support investigation of anti-NHR mAbs in nonhuman primate passive immunization studies. IMPORTANCE Despite advances in antiretroviral therapy, HIV remains a global epidemic and has claimed more than 32 million lives. Accordingly, developing an effective HIV vaccine remains an urgent public health need. The gp41 N-heptad repeat (NHR) of the HIV-1 prehairpin intermediate (PHI) is highly conserved (>90%) and is inhibited by the FDA-approved drug enfuvirtide, making it an attractive vaccine target. However, to date, anti-NHR antibodies have not been potent. Here, we engineered D5_AR, a more potent variant of the anti-NHR antibody D5, and established its ability to inhibit HIV-1 strains that are more difficult to neutralize and are more representative of circulating strains (tier-2 strains). The neutralizing activity of D5_AR was greatly potentiated in cells expressing FcγRI; FcγRI is expressed on cells that are implicated at the earliest stages of sexual HIV-1 transmission. Taken together, these results bolster efforts to target the gp41 NHR and the PHI for vaccine development.
Collapse
Affiliation(s)
- Adonis A. Rubio
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University School of Humanities & Sciences, Stanford, California, USA
| | - Maria V. Filsinger Interrante
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, California, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin N. Bell
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | - Clayton L. Brown
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Theodora U. J. Bruun
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Celia C. LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Peter S. Kim
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
14
|
Zhang X, Zhang Z, Xia N, Zhao Q. Carbohydrate-containing nanoparticles as vaccine adjuvants. Expert Rev Vaccines 2021; 20:797-810. [PMID: 34101528 DOI: 10.1080/14760584.2021.1939688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Adjuvants are essential to vaccines for immunopotentiation in the elicitation of protective immunity. However, classical and widely used aluminum-based adjuvants have limited capacity to induce cellular response. There are increasing needs for appropriate adjuvants with improved profiles for vaccine development toward emerging pathogens. Carbohydrate-containing nanoparticles (NPs) with immunomodulatory activity and particulate nanocarriers for effective antigen presentation are capable of eliciting a more balanced humoral and cellular immune response.Areas covered: We reviewed several carbohydrates with immunomodulatory properties. They include chitosan, β-glucan, mannan, and saponins, which have been used in vaccine formulations. The mode of action, the preparation methods, characterization of these carbohydrate-containing NPs and the corresponding vaccines are presented.Expert opinion: Several carbohydrate-containing NPs have entered the clinical stage or have been used in licensed vaccines for human use. Saponin-containing NPs are being evaluated in a vaccine against SARS-CoV-2, the pathogen causing the on-going worldwide pandemic. Vaccines with carbohydrate-containing NPs are in different stages of development, from preclinical studies to late-stage clinical trials. A better understanding of the mode of action for carbohydrate-containing NPs as vaccine carriers and as immunostimulators will likely contribute to the design and development of new generation vaccines against cancer and infectious diseases.
Collapse
Affiliation(s)
- Xinyuan Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Zhigang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China.,School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China.,The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| |
Collapse
|
15
|
Graham C, Seow J, Huettner I, Khan H, Kouphou N, Acors S, Winstone H, Pickering S, Galao RP, Dupont L, Lista MJ, Jimenez-Guardeño JM, Laing AG, Wu Y, Joseph M, Muir L, van Gils MJ, Ng WM, Duyvesteyn HME, Zhao Y, Bowden TA, Shankar-Hari M, Rosa A, Cherepanov P, McCoy LE, Hayday AC, Neil SJD, Malim MH, Doores KJ. Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant. Immunity 2021; 54:1276-1289.e6. [PMID: 33836142 PMCID: PMC8015430 DOI: 10.1016/j.immuni.2021.03.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 01/21/2023]
Abstract
Interaction of the SARS-CoV-2 Spike receptor binding domain (RBD) with the receptor ACE2 on host cells is essential for viral entry. RBD is the dominant target for neutralizing antibodies, and several neutralizing epitopes on RBD have been molecularly characterized. Analysis of circulating SARS-CoV-2 variants has revealed mutations arising in the RBD, N-terminal domain (NTD) and S2 subunits of Spike. To understand how these mutations affect Spike antigenicity, we isolated and characterized >100 monoclonal antibodies targeting epitopes on RBD, NTD, and S2 from SARS-CoV-2-infected individuals. Approximately 45% showed neutralizing activity, of which ∼20% were NTD specific. NTD-specific antibodies formed two distinct groups: the first was highly potent against infectious virus, whereas the second was less potent and displayed glycan-dependant neutralization activity. Mutations present in B.1.1.7 Spike frequently conferred neutralization resistance to NTD-specific antibodies. This work demonstrates that neutralizing antibodies targeting subdominant epitopes should be considered when investigating antigenic drift in emerging variants.
Collapse
Affiliation(s)
- Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Isabella Huettner
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Hataf Khan
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Neophytos Kouphou
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Sam Acors
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Helena Winstone
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Suzanne Pickering
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Rui Pedro Galao
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Liane Dupont
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Maria Jose Lista
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Jose M Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Adam G Laing
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Yin Wu
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK; The Francis Crick Institute, UK
| | - Magdalene Joseph
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK; The Francis Crick Institute, UK
| | - Luke Muir
- Division of Infection and Immunity, University College London, London, UK
| | - Marit J van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Netherlands
| | - Weng M Ng
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Manu Shankar-Hari
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | | | - Laura E McCoy
- Division of Infection and Immunity, University College London, London, UK
| | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK; The Francis Crick Institute, UK
| | - Stuart J D Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK; Genotype-to-Phenotype UK National Virology Consortium
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK; Genotype-to-Phenotype UK National Virology Consortium
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK; Genotype-to-Phenotype UK National Virology Consortium.
| |
Collapse
|
16
|
Sutar J, Deshpande S, Mullick R, Hingankar N, Patel V, Bhattacharya J. Geospatial HIV-1 subtype C gp120 sequence diversity and its predicted impact on broadly neutralizing antibody sensitivity. PLoS One 2021; 16:e0251969. [PMID: 34029329 PMCID: PMC8143386 DOI: 10.1371/journal.pone.0251969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/06/2021] [Indexed: 11/28/2022] Open
Abstract
Evolving diversity in globally circulating HIV-1 subtypes presents a formidable challenge in defining and developing neutralizing antibodies for prevention and treatment. HIV-1 subtype C is responsible for majority of global HIV-1 infections. In the present study, we examined the diversity in genetic signatures and attributes that differentiate region-specific HIV-1 subtype C gp120 sequences associated with virus neutralization outcomes to key bnAbs having distinct epitope specificities. A total of 1814 full length HIV-1 subtype C gp120 sequence from 37 countries were retrieved from Los Alamos National Laboratory HIV database (www.hiv.lanl.gov). The amino acid sequences were assessed for their phylogenetic association, variable loop lengths and prevalence of potential N-linked glycosylation sites (pNLGS). Responses of these sequences to bnAbs were predicted with a machine learning algorithm ‘bNAb-ReP’ and compared with those reported in the CATNAP database. Subtype C sequences from Asian countries including India differed phylogenetically when compared with that from African countries. Variable loop lengths and charges within Indian and African clusters were also found to be distinct from each other, specifically for V1, V2 and V4 loops. Pairwise analyses at each of the 25 pNLG sites indicated distinct country specific profiles. Highly significant differences (p<0.001***) were observed in prevalence of four pNLGS (N130, N295, N392 and N448) between South Africa and India, having most disease burden associated with subtype C. Our findings highlight that distinctly evolving clusters within global intra-subtype C gp120 sequences are likely to influence the disparate region-specific sensitivity of circulating HIV-1 subtype C to bnAbs.
Collapse
Affiliation(s)
- Jyoti Sutar
- HIV Vaccine Translational Research Laboratory, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- International AIDS Vaccine Initiative, New Delhi, India
| | - Suprit Deshpande
- HIV Vaccine Translational Research Laboratory, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ranajoy Mullick
- HIV Vaccine Translational Research Laboratory, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- International AIDS Vaccine Initiative, New Delhi, India
| | - Nitin Hingankar
- HIV Vaccine Translational Research Laboratory, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Vainav Patel
- ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Jayanta Bhattacharya
- HIV Vaccine Translational Research Laboratory, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- International AIDS Vaccine Initiative, New Delhi, India
- * E-mail: ,
| |
Collapse
|
17
|
Corrigan AR, Duan H, Cheng C, Gonelli CA, Ou L, Xu K, DeMouth ME, Geng H, Narpala S, O'Connell S, Zhang B, Zhou T, Basappa M, Boyington JC, Chen SJ, O'Dell S, Pegu A, Stephens T, Tsybovsky Y, van Schooten J, Todd JP, Wang S, Doria-Rose NA, Foulds KE, Koup RA, McDermott AB, van Gils MJ, Kwong PD, Mascola JR. Fusion peptide priming reduces immune responses to HIV-1 envelope trimer base. Cell Rep 2021; 35:108937. [PMID: 33826898 PMCID: PMC8070658 DOI: 10.1016/j.celrep.2021.108937] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/02/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Soluble "SOSIP"-stabilized envelope (Env) trimers are promising HIV-vaccine immunogens. However, they induce high-titer responses against the glycan-free trimer base, which is occluded on native virions. To delineate the effect on base responses of priming with immunogens targeting the fusion peptide (FP) site of vulnerability, here, we quantify the prevalence of trimer-base antibody responses in 49 non-human primates immunized with various SOSIP-stabilized Env trimers and FP-carrier conjugates. Trimer-base responses account for ∼90% of the overall trimer response in animals immunized with trimer only, ∼70% in animals immunized with a cocktail of SOSIP trimer and FP conjugate, and ∼30% in animals primed with FP conjugates before trimer immunization. Notably, neutralization breadth in FP-conjugate-primed animals correlates inversely with trimer-base responses. Our data provide methods to quantify the prevalence of trimer-base responses and reveal that FP-conjugate priming, either alone or as part of a cocktail, can reduce the trimer-base response and improve the neutralization outcome.
Collapse
Affiliation(s)
- Angela R Corrigan
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongying Duan
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher A Gonelli
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Xu
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megan E DeMouth
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah O'Connell
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manjula Basappa
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven J Chen
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21710, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21710, USA
| | - Jelle van Schooten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105AZ Amsterdam, the Netherlands
| | - John P Todd
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105AZ Amsterdam, the Netherlands
| | - Peter D Kwong
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - John R Mascola
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Bruxelle JF, Kirilenko T, Trattnig N, Yang Y, Cattin M, Kosma P, Pantophlet R. A glycoside analog of mammalian oligomannose formulated with a TLR4-stimulating adjuvant elicits HIV-1 cross-reactive antibodies. Sci Rep 2021; 11:4637. [PMID: 33633304 PMCID: PMC7907241 DOI: 10.1038/s41598-021-84116-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
The occurrence of oligomannose-specific broadly neutralizing antibodies (bnAbs) has spurred efforts to develop immunogens that can elicit similar antibodies. Here, we report on the antigenicity and immunogenicity of a CRM197-conjugate of a previously reported oligomannose mimetic. Oligomannose-specific bnAbs that are less dependent on interactions with the HIV envelope protein sequence showed strong binding to the glycoconjugates, with affinities approximating those reported for their cognate epitope. The glycoconjugate is also recognized by inferred germline precursors of oligomannose-specific bnAbs, albeit with the expected low avidity, supporting its potential as an immunogen. Immunization of human-antibody transgenic mice revealed that only a TLR4-stimulating adjuvant formulation resulted in antibodies able to bind a panel of recombinant HIV trimers. These antibodies bound at relatively modest levels, possibly explaining their inability to neutralize HIV infectivity. Nevertheless, these findings contribute further to understanding conditions for eliciting HIV-cross-reactive oligomannose-specific antibodies and inform on next steps for improving on the elicited response.
Collapse
Affiliation(s)
- Jean-François Bruxelle
- grid.61971.380000 0004 1936 7494Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
| | - Tess Kirilenko
- grid.61971.380000 0004 1936 7494Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada ,grid.479077.aPresent Address: AbCellera Biologics Inc., Vancouver, BC Canada
| | - Nino Trattnig
- grid.5173.00000 0001 2298 5320Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria ,grid.5477.10000000120346234Present Address: Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
| | - Yiqiu Yang
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC Canada
| | - Matteo Cattin
- grid.5173.00000 0001 2298 5320Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul Kosma
- grid.5173.00000 0001 2298 5320Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ralph Pantophlet
- grid.61971.380000 0004 1936 7494Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada ,grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC Canada
| |
Collapse
|
19
|
HIV-1 Envelope Glycosylation and the Signal Peptide. Vaccines (Basel) 2021; 9:vaccines9020176. [PMID: 33669676 PMCID: PMC7922494 DOI: 10.3390/vaccines9020176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
The RV144 trial represents the only vaccine trial to demonstrate any protective effect against HIV-1 infection. While the reason(s) for this protection are still being evaluated, it serves as justification for widespread efforts aimed at developing new, more effective HIV-1 vaccines. Advances in our knowledge of HIV-1 immunogens and host antibody responses to these immunogens are crucial to informing vaccine design. While the envelope (Env) protein is the only viral protein present on the surface of virions, it exists in a complex trimeric conformation and is decorated with an array of variable N-linked glycans, making it an important but difficult target for vaccine design. Thus far, efforts to elicit a protective humoral immune response using structural mimics of native Env trimers have been unsuccessful. Notably, the aforementioned N-linked glycans serve as a component of many of the epitopes crucial for the induction of potentially protective broadly neutralizing antibodies (bnAbs). Thus, a greater understanding of Env structural determinants, most critically Env glycosylation, will no doubt be of importance in generating effective immunogens. Recent studies have identified the HIV-1 Env signal peptide (SP) as an important contributor to Env glycosylation. Further investigation into the mechanisms by which the SP directs glycosylation will be important, both in the context of understanding HIV-1 biology and in order to inform HIV-1 vaccine design.
Collapse
|
20
|
Graham C, Seow J, Huettner I, Khan H, Kouphou N, Acors S, Winstone H, Pickering S, Galao RP, Lista MJ, Jimenez-Guardeno JM, Laing AG, Wu Y, Joseph M, Muir L, Ng WM, Duyvesteyn HME, Zhao Y, Bowden TA, Shankar-Hari M, Rosa A, Cherepanov P, McCoy LE, Hayday AC, Neil SJ, Malim MH, Doores KJ. Impact of the B.1.1.7 variant on neutralizing monoclonal antibodies recognizing diverse epitopes on SARS-CoV-2 Spike. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.03.429355. [PMID: 33564766 PMCID: PMC7872354 DOI: 10.1101/2021.02.03.429355] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The interaction of the SARS-CoV-2 Spike receptor binding domain (RBD) with the ACE2 receptor on host cells is essential for viral entry. RBD is the dominant target for neutralizing antibodies and several neutralizing epitopes on RBD have been molecularly characterized. Analysis of circulating SARS-CoV-2 variants has revealed mutations arising in the RBD, the N-terminal domain (NTD) and S2 subunits of Spike. To fully understand how these mutations affect the antigenicity of Spike, we have isolated and characterized neutralizing antibodies targeting epitopes beyond the already identified RBD epitopes. Using recombinant Spike as a sorting bait, we isolated >100 Spike-reactive monoclonal antibodies from SARS-CoV-2 infected individuals. ≈45% showed neutralizing activity of which ≈20% were NTD-specific. None of the S2-specific antibodies showed neutralizing activity. Competition ELISA revealed that NTD-specific mAbs formed two distinct groups: the first group was highly potent against infectious virus, whereas the second was less potent and displayed glycan-dependant neutralization activity. Importantly, mutations present in B.1.1.7 Spike frequently conferred resistance to neutralization by the NTD-specific neutralizing antibodies. This work demonstrates that neutralizing antibodies targeting subdominant epitopes need to be considered when investigating antigenic drift in emerging variants.
Collapse
Affiliation(s)
- Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Isabella Huettner
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Hataf Khan
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Neophytos Kouphou
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Sam Acors
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Helena Winstone
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Suzanne Pickering
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Rui Pedro Galao
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Maria Jose Lista
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Jose M Jimenez-Guardeno
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Adam G. Laing
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Yin Wu
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London, UK
- The Francis Crick Institute, UK
| | - Magdalene Joseph
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Luke Muir
- Division of Infection and Immunity, University College London, London, UK
| | - Weng M. Ng
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Helen M. E. Duyvesteyn
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Manu Shankar-Hari
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | | | | | - Laura E. McCoy
- Division of Infection and Immunity, University College London, London, UK
| | - Adrian C. Hayday
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Stuart J.D. Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
- Genotype-to-Phenotype UK National Virology Consortium
| | - Michael H. Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
- Genotype-to-Phenotype UK National Virology Consortium
| | - Katie J. Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
- Genotype-to-Phenotype UK National Virology Consortium
| |
Collapse
|
21
|
Immune Complex Vaccine Strategies to Combat HIV-1 and Other Infectious Diseases. Vaccines (Basel) 2021; 9:vaccines9020112. [PMID: 33540685 PMCID: PMC7913084 DOI: 10.3390/vaccines9020112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 01/16/2023] Open
Abstract
Immune complexes (ICs) made of antibody-bound antigens exhibit immunomodulatory activities exploitable in a vaccination strategy to optimize vaccine efficacy. The modulatory effects of ICs are typically attributed to the Fc fragments of the antibody components, which engage Fc receptors, complement and complement receptors on various immune cells. These Fc-mediated functions facilitate the critical interplay between innate and adaptive immune systems to impact the quality and quantity of the elicited adaptive responses. In addition to the Fc contribution, the Fab fragment also plays an immunoregulation role. The antigen-binding domains of the Fab fragment can bind their specific epitopes at high affinity to sterically occlude these antigenic sites from recognition by other antibodies. Moreover, the Fab-mediated binding has been demonstrated to induce allosteric alterations at nearby or distant antigenic sites. In this review article, we survey published studies to illuminate how the immunomodulatory functions of ICs have been investigated or utilized in a vaccination strategy to fight against an array of infectious pathogens, culminating with IC vaccine designs aimed at preventing HIV-1 infection. In particular, we highlight IC vaccine candidates that exploit Fab-mediated steric and allosteric effects to direct antibody responses away or toward the V1V2 domain, the V3 loop, and other antigenic sites on the HIV-1 envelope gp120 glycoprotein. Like other HIV-1 vaccine approaches, the path for IC-based vaccines to reach the clinic faces major hurdles yet to be overcome; however, investigations into this vaccine strategy have provided insights into the multifaceted activities of antibodies beyond their conventional roles in the host defense against HIV-1 and other microbial pathogens.
Collapse
|
22
|
Wei Q, Hargett AA, Knoppova B, Duverger A, Rawi R, Shen CH, Farney SK, Hall S, Brown R, Keele BF, Heath SL, Saag MS, Kutsch O, Chuang GY, Kwong PD, Moldoveanu Z, Raska M, Renfrow MB, Novak J. Glycan Positioning Impacts HIV-1 Env Glycan-Shield Density, Function, and Recognition by Antibodies. iScience 2020; 23:101711. [PMID: 33205023 PMCID: PMC7649354 DOI: 10.1016/j.isci.2020.101711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/12/2020] [Accepted: 10/16/2020] [Indexed: 11/24/2022] Open
Abstract
HIV-1 envelope (Env) N-glycosylation impact virus-cell entry and immune evasion. How each glycan interacts to shape the Env-protein-sugar complex and affects Env function is not well understood. Here, analysis of two Env variants from the same donor, with differing functional characteristics and N-glycosylation-site composition, revealed that changes to key N-glycosylation sites affected the Env structure at distant locations and had a ripple effect on Env-wide glycan processing, virus infectivity, antibody recognition, and virus neutralization. Specifically, the N262 glycan, although not in the CD4-binding site, modulated Env binding to the CD4 receptor, affected Env recognition by several glycan-dependent neutralizing antibodies, and altered site-specific glycosylation heterogeneity, with, for example, N448 displaying limited glycan processing. Molecular-dynamic simulations visualized differences in glycan density and how specific oligosaccharide positions can move to compensate for a glycan loss. This study demonstrates how changes in individual glycans can alter molecular dynamics, processing, and function of the Env-glycan shield.
Collapse
Affiliation(s)
- Qing Wei
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Audra A. Hargett
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Barbora Knoppova
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Alexandra Duverger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - S. Katie Farney
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stacy Hall
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Rhubell Brown
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sonya L. Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael S. Saag
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olaf Kutsch
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
- Department of Immunology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S, Birmingham, AL 35294, USA
| |
Collapse
|
23
|
Targeting broadly neutralizing antibody precursors: a naïve approach to vaccine design. Curr Opin HIV AIDS 2020; 14:294-301. [PMID: 30946041 DOI: 10.1097/coh.0000000000000548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW It is believed that broadly neutralizing antibodies (bNAbs) will be an important component of an effective HIV-1 vaccine. Several immunogens have been designed that can target specific precursor B cells as a first step in a vaccine strategy to elicit bNAbs. RECENT FINDINGS Germline-targeting immunogens have been developed that specifically engage precursors of reproducible classes of anti-HIV antibodies, such as VRC01-class and apex-directed bNAbs. However, these precursors represent only a small portion of the immune repertoire and any antigen will inherently present off-target epitopes to the immune system that may confound bNAb development. Novel animal models are being utilized to understand the competitive fitness of bNAb precursors in the context of immunization with germline-targeting immunogens. In parallel, immunogen design efforts are being pursued to favor the development of bNAb responses over off-target responses following immunization. New studies of bNAb precursor interactions with glycosylated Env variants can inform prime-boost regimens geared towards accelerating bNAb development. SUMMARY Germline-targeting immunogens hold promise as a first step in eliciting a bNAb response through vaccination. A better understating of how efficiently germline-targeting immunogens can specifically target rare bNAb precursors is emerging. In addition, a more comprehensive structure-based understanding of critical barriers to bNAb elicitation, as well as commonalities between bNAb classes can further inform vaccine design.
Collapse
|
24
|
Moyo T, Kitchin D, Moore PL. Targeting the N332-supersite of the HIV-1 envelope for vaccine design. Expert Opin Ther Targets 2020; 24:499-509. [PMID: 32340497 DOI: 10.1080/14728222.2020.1752183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Broadly neutralizing antibodies (bNAbs) that are able to target diverse global viruses are widely believed to be crucial for an HIV-1 vaccine. Several conserved targets recognized by these antibodies have been identified on the HIV-1 envelope glycoprotein. One such target that shows particular promise for vaccination is the N332-supersite.Areas covered: This review describes the potential of the N332-supersite epitope as an immunogen design platform. We discuss the structure of the epitope and the bNAbs that target it, emphasizing their diverse modes of binding. Furthermore, the successes and limitations of recent N332-supersite immunization studies are discussed.Expert opinion: During HIV-1 infection, some of the broadest and most potent bNAbs target the N332-supersite. Furthermore, some of these antibodies require less affinity maturation than the high levels typical of many bNAbs, making these potentially more achievable vaccine targets. In addition, bNAbs bind this epitope with multiple angles of approach and glycan dependencies, perhaps increasing the probability of eliciting such responses by vaccination. Animal studies have shown that N332-supersite bNAb precursors can be activated by novel immunogens. While follow-up studies must establish whether boosting strategies can drive the maturation of bNAbs from these precursors, the development of targeted N332-supersite immunogens expands our arsenal of potential HIV-1 vaccine candidates.
Collapse
Affiliation(s)
- Thandeka Moyo
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dale Kitchin
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
25
|
Calado R, Duarte J, Borrego P, Marcelino JM, Bártolo I, Martin F, Figueiredo I, Almeida S, Graça L, Vítor J, Aires da Silva F, Dias I, Carrapiço B, Taveira N. A Prime-Boost Immunization Strategy with Vaccinia Virus Expressing Novel gp120 Envelope Glycoprotein from a CRF02_AG Isolate Elicits Cross-Clade Tier 2 HIV-1 Neutralizing Antibodies. Vaccines (Basel) 2020; 8:E171. [PMID: 32272637 PMCID: PMC7349027 DOI: 10.3390/vaccines8020171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Development of new immunogens eliciting broadly neutralizing antibodies (bNAbs) is a main priority for the HIV-1 vaccine field. Envelope glycoproteins from non-B-non-C HIV-1clades have not been fully explored as components of a vaccine. We produced Vaccinia viruses expressing a truncated version of gp120 (gp120t) from HIV-1 clades CRF02_AG, H, J, B, and C and examined their immunogenicity in mice and rabbits. Mice primed with the recombinant Vaccinia viruses and boosted with the homologous gp120t or C2V3C3 polypeptides developed antibodies that bind potently to homologous and heterologous envelope glycoproteins. Notably, a subset of mice immunized with the CRF02_AG-based envelope immunogens developed a cross-reactive neutralizing response against tier 2 HIV-1 Env-pseudoviruses and primary isolates. Rabbits vaccinated with the CRF02_AG-based envelope immunogens also generated potent binding antibodies, and one animal elicited antibodies that neutralized almost all (13 of 16, 81.3%) tier 2 HIV-1 isolates tested. Overall, the results suggest that the novel CRF02_AG-based envelope immunogens and prime-boost immunization strategy elicit the type of immune responses required for a preventive HIV-1 vaccine.
Collapse
Affiliation(s)
- Rita Calado
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - Joana Duarte
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - Pedro Borrego
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - José Maria Marcelino
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Monte de Caparica, Portugal
| | - Inês Bártolo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - Francisco Martin
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - Inês Figueiredo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
| | - Silvia Almeida
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, 1649-02 Lisboa, Portugal; (S.A.); (L.G.)
- Post-Graduate Program in Infectious Diseases, and Department of Social Medicine, Center of Health Sciences, Federal University of Espirito Santo, Vitória 29075-910, Brazil
| | - Luís Graça
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, 1649-02 Lisboa, Portugal; (S.A.); (L.G.)
| | - Jorge Vítor
- Biochemistry and Human Biology Dept, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Frederico Aires da Silva
- Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (F.A.d.S.); (I.D.); (B.C.)
| | - Inês Dias
- Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (F.A.d.S.); (I.D.); (B.C.)
| | - Belmira Carrapiço
- Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (F.A.d.S.); (I.D.); (B.C.)
| | - Nuno Taveira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.C.); (J.D.); (P.B.); (J.M.M.); (I.B.); (F.M.); (I.F.)
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Monte de Caparica, Portugal
| |
Collapse
|
26
|
Cooperation between somatic mutation and germline-encoded residues enables antibody recognition of HIV-1 envelope glycans. PLoS Pathog 2019; 15:e1008165. [PMID: 31841553 PMCID: PMC6936856 DOI: 10.1371/journal.ppat.1008165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/30/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022] Open
Abstract
Viral glycoproteins are a primary target for host antibody responses. However, glycans on viral glycoproteins can hinder antibody recognition since they are self glycans derived from the host biosynthesis pathway. During natural HIV-1 infection, neutralizing antibodies are made against glycans on HIV-1 envelope glycoprotein (Env). However, such antibodies are rarely elicited with vaccination. Previously, the vaccine-induced, macaque antibody DH501 was isolated and shown to bind to high mannose glycans on HIV-1 Env. Understanding how DH501 underwent affinity maturation to recognize glycans could inform vaccine induction of HIV-1 glycan antibodies. Here, we show that DH501 Env glycan reactivity is mediated by both germline-encoded residues that contact glycans, and somatic mutations that increase antibody paratope flexibility. Only somatic mutations in the heavy chain were required for glycan reactivity. The paratope conformation was fragile as single mutations within the immunoglobulin fold or complementarity determining regions were sufficient for eliminating antibody function. Taken together, the initial germline VHDJH rearrangement generated contact residues capable of binding glycans, and somatic mutations were required to form a flexible paratope with a cavity conducive to HIV-1 envelope glycan binding. The requirement for the presence of most somatic mutations across the heavy chain variable region provides one explanation for the difficulty in inducing anti-Env glycan antibodies with HIV-1 Env vaccination. The viral pathogen HIV-1 uses sugar molecules, called glycans, from the host to densely cover its envelope protein. Most broadly neutralizing HIV-1 antibodies interact with glycans on the HIV-1 envelope protein. For this reason, the vaccine induction of anti-HIV-1 glycan antibodies is a principal goal. Since vaccine-induced anti-HIV-1 glycan antibodies are rare, it has not been determined how antibodies develop during vaccination to recognize HIV-1 glycans. Here, we elucidated the amino acids required for a primate antibody induced by HIV-1 vaccination to interact with HIV envelope glycans. Genetic and functional analyses showed the putative antibody germline nucleotide sequence encoded amino acids that were required for glycan reactivity. Somatic mutation also introduced critical amino acids that were required for glycan recognition. Unusually, the somatic mutations were not required in order to form direct contacts with antigen, but instead functioned to improve antibody flexibility and to form its glycan binding site. These results define the molecular development of a vaccine-induced HIV-1 glycan antibody, providing insight into why vaccines rarely elicit antibodies against the glycans on the HIV-1 outer coat protein.
Collapse
|
27
|
Williams KL, Wang B, Arenz D, Williams JA, Dingens AS, Cortez V, Simonich CA, Rainwater S, Lehman DA, Lee KK, Overbaugh J. Superinfection Drives HIV Neutralizing Antibody Responses from Several B Cell Lineages that Contribute to a Polyclonal Repertoire. Cell Rep 2019; 23:682-691. [PMID: 29669274 PMCID: PMC5990032 DOI: 10.1016/j.celrep.2018.03.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/26/2017] [Accepted: 03/17/2018] [Indexed: 12/03/2022] Open
Abstract
Eliciting broad and potent HIV-specific neutralizing antibody responses represents the holy grail of HIV vaccine efforts. Data from singly infected individuals with broad and potent plasma neutralizing activity targeting one epitope have guided our understanding of how these responses develop. However, far less is known about responses developed by super-infected individuals who acquire two distinct HIV strains. Here, we isolated HIV-specific mAbs from a superinfected individual with a broad plasma response. In this superinfection case, neutralizing activity resulted from multiple distinct B cell lineages that arose in response to either the initial or the superinfecting virus, including an antibody that targets the N332 supersite. This nAb, QA013.2, was specific to the superinfecting virus and was associated with eventual reemergence of the initial infecting virus. The complex dynamic between viruses in superinfection may drive development of a unique collection of polyclonal nAbs that present a higher barrier to escape than monoclonal responses.
Collapse
Affiliation(s)
- Katherine L Williams
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA
| | - Bingjie Wang
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Dana Arenz
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA
| | - James A Williams
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Adam S Dingens
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA; Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Valerie Cortez
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA; Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Cassandra A Simonich
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Stephanie Rainwater
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA
| | - Dara A Lehman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA.
| |
Collapse
|
28
|
Abstract
Neutralizing antibodies against human immunodeficiency virus subtype 1 (HIV-1) bind to its envelope glycoprotein (Env). Half of the molecular mass of Env is carbohydrate making it one of the most heavily glycosylated proteins known in nature. HIV-1 Env glycans are derived from the host and present a formidable challenge for host anti-glycan antibody induction. Anti-glycan antibody induction is challenging because anti-HIV-1 glycan antibodies should recognize Env antigen while not acquiring autoreactivity. Thus, the glycan network on HIV-1 Env is referred to as the glycan shield. Despite the challenges presented by immune recognition of host-derived glycans, neutralizing antibodies capable of binding the glycans on HIV-1 Env can be generated by the host immune system in the setting of HIV-1 infection. In particular, a cluster of high mannose glycans, including an N-linked glycan at position 332, form the high mannose patch and are targeted by a variety of broadly neutralizing antibodies. These high mannose patch-directed HIV-1 antibodies can be categorized into distinct categories based on their antibody paratope structure, neutralization activity, and glycan and peptide reactivity. Below we will compare and contrast each of these classes of HIV-1 glycan-dependent antibodies and describe vaccine design efforts to elicit each of these antibody types.
Collapse
|
29
|
Trattnig N, Blaukopf M, Bruxelle JF, Pantophlet R, Kosma P. Synthesis of an Undecasaccharide Featuring an Oligomannosidic Heptasaccharide and a Bacterial Kdo-lipid A Backbone for Eliciting Neutralizing Antibodies to Mammalian Oligomannose on the HIV-1 Envelope Spike. J Am Chem Soc 2019; 141:7946-7954. [PMID: 31010286 PMCID: PMC6524000 DOI: 10.1021/jacs.9b02872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 01/01/2023]
Abstract
Lipooligosaccharides (LOS) from the bacterium Rhizobium radiobacter Rv3 are structurally related to antigenic mammalian oligomannoses on the HIV-1 envelope glycoprotein spike that are targets for broadly neutralizing antibodies. Here, we prepared a hybrid structure of viral and bacterial epitopes as part of a vaccine design strategy to elicit oligomannose-specific HIV-neutralizing antibodies using glycoconjugates based on the Rv3 LOS structure. Starting from a Kdo2GlcNAc2 tetrasaccharide precursor, a central orthogonally protected mannose trichloroacetimidate donor was coupled to OH-5 of the innermost Kdo residue. To assemble larger glycans, the N-acetylamino groups of the glucosamine units were converted to imides to prevent formation of unwanted imidate byproducts. Blockwise coupling of the pentasaccharide acceptor with an α-(1→2)-linked mannotriosyl trichloroacetimidate donor introduced the D1-arm fragment. Glycosylation of O-6 of the central branching mannose with an α-(1→2)-α-(1→6)-linked mannotriosyl trichloroacetimidate donor unit then furnished the undecasaccharide harboring a D3-arm extension. Global deprotection yielded the 3-aminopropyl ligand, which was activated as an isothiocyanate or adipic acid succinimidoyl ester and conjugated to CRM197. However, representative oligomannose-specific HIV-neutralizing antibodies bound the undecasaccharide conjugates poorly. Possible reasons for this outcome are discussed herein along with paths for improvement.
Collapse
Affiliation(s)
- Nino Trattnig
- Department
of Chemistry, University of Natural Resources
and Life Sciences, A-1190 Vienna, Austria
| | - Markus Blaukopf
- Department
of Chemistry, University of Natural Resources
and Life Sciences, A-1190 Vienna, Austria
| | - Jean-François Bruxelle
- Faculty of Health Sciences and Department of Molecular Biology and
Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Ralph Pantophlet
- Faculty of Health Sciences and Department of Molecular Biology and
Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Paul Kosma
- Department
of Chemistry, University of Natural Resources
and Life Sciences, A-1190 Vienna, Austria
| |
Collapse
|
30
|
Hargett AA, Wei Q, Knoppova B, Hall S, Huang ZQ, Prakash A, Green TJ, Moldoveanu Z, Raska M, Novak J, Renfrow MB. Defining HIV-1 Envelope N-Glycan Microdomains through Site-Specific Heterogeneity Profiles. J Virol 2019; 93:e01177-18. [PMID: 30305355 PMCID: PMC6288332 DOI: 10.1128/jvi.01177-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/29/2018] [Indexed: 01/01/2023] Open
Abstract
The HIV-1 envelope (Env) glycans shield the surface of Env from the immune system and form integral interactions important for a functional Env. To understand how individual N-glycosylation sites (NGS) coordinate to form a dynamic shield and evade the immune system through mutations, we tracked 20 NGS in Env from HIV-transmitted/founder (T/F) and immune escape variants and their mutants involving the N262 glycan. NGS were profiled in a site-specific manner using a high-resolution mass spectrometry (MS)-based workflow. Using this site-specific quantitative heterogeneity profiling, we empirically characterized the interdependent NGS of a microdomain in the high-mannose patch (HMP). The changes (shifts) in NGS heterogeneity between the T/F and immune escape variants defined a range of NGS that we further probed for exclusive combinations of sequons in the HMP microdomain using the Los Alamos National Laboratory HIV sequence database. The resultant sequon combinations, including the highly conserved NGS N262, N448, and N301, created an immune escape map of the conserved and variable sequons in the HMP microdomain. This report provides details on how some clustered NGS form microdomains that can be identified and tracked across Env variants. These microdomains have a limited number of N-glycan-sequon combinations that may allow the anticipation of immune escape variants.IMPORTANCE The Env protein of HIV is highly glycosylated, and the sites of glycosylation can change as the virus mutates during immune evasion. Due to these changes, the glycan location and heterogeneity of surrounding N-glycosylation sites can be altered, resulting in exposure of different glycan or proteoglycan surfaces while still producing a viable HIV variant. These changes present a need for vaccine developers to identify Env variants with epitopes most likely to induce durable protective responses. Here we describe a means of anticipating HIV-1 immune evasion by dividing Env into N-glycan microdomains that have a limited number of N-glycan sequon combinations.
Collapse
Affiliation(s)
- Audra A Hargett
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qing Wei
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Barbora Knoppova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Immunology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Stacy Hall
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhi-Qiang Huang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amol Prakash
- Optys Tech Corporation, Shrewsbury, Massachusetts, USA
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Immunology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
31
|
Landais E, Moore PL. Development of broadly neutralizing antibodies in HIV-1 infected elite neutralizers. Retrovirology 2018; 15:61. [PMID: 30185183 PMCID: PMC6125991 DOI: 10.1186/s12977-018-0443-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs), able to prevent viral entry by diverse global viruses, are a major focus of HIV vaccine design, with data from animal studies confirming their ability to prevent HIV infection. However, traditional vaccine approaches have failed to elicit these types of antibodies. During chronic HIV infection, a subset of individuals develops bNAbs, some of which are extremely broad and potent. This review describes the immunological and virological factors leading to the development of bNAbs in such "elite neutralizers". The features, targets and developmental pathways of bNAbs from their precursors have been defined through extraordinarily detailed within-donor studies. These have enabled the identification of epitope-specific commonalities in bNAb precursors, their intermediates and Env escape patterns, providing a template for vaccine discovery. The unusual features of bNAbs, such as high levels of somatic hypermutation, and precursors with unusually short or long antigen-binding loops, present significant challenges in vaccine design. However, the use of new technologies has led to the isolation of more than 200 bNAbs, including some with genetic profiles more representative of the normal immunoglobulin repertoire, suggesting alternate and shorter pathways to breadth. The insights from these studies have been harnessed for the development of optimized immunogens, novel vaccine regimens and improved delivery schedules, which are providing encouraging data that an HIV vaccine may soon be a realistic possibility.
Collapse
Affiliation(s)
- Elise Landais
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,International AIDS Vaccine Initiative, New York, NY, 10004, USA
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa. .,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
32
|
Barnes CO, Gristick HB, Freund NT, Escolano A, Lyubimov AY, Hartweger H, West AP, Cohen AE, Nussenzweig MC, Bjorkman PJ. Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope. Nat Commun 2018; 9:1251. [PMID: 29593217 PMCID: PMC5871869 DOI: 10.1038/s41467-018-03632-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/01/2018] [Indexed: 01/16/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) isolated from HIV-1-infected individuals inform HIV-1 vaccine design efforts. Developing bNAbs with increased efficacy requires understanding how antibodies interact with the native oligomannose and complex-type N-glycan shield that hides most protein epitopes on HIV-1 envelope (Env). Here we present crystal structures, including a 3.8-Å X-ray free electron laser dataset, of natively glycosylated Env trimers complexed with BG18, the most potent V3/N332gp120 glycan-targeting bNAb reported to date. Our structures show conserved contacts mediated by common D gene-encoded residues with the N332gp120 glycan and the gp120 GDIR peptide motif, but a distinct Env-binding orientation relative to PGT121/10-1074 bNAbs. BG18's binding orientation provides additional contacts with N392gp120 and N386gp120 glycans near the V3-loop base and engages protein components of the V1-loop. The BG18-natively-glycosylated Env structures facilitate understanding of bNAb-glycan interactions critical for using V3/N332gp120 bNAbs therapeutically and targeting their epitope for immunogen design.
Collapse
Affiliation(s)
- Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Natalia T Freund
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
- Department of Clinical Immunology and Microbiology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Artem Y Lyubimov
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Harald Hartweger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
33
|
Han SY, Antoine A, Howard D, Chang B, Chang WS, Slein M, Deikus G, Kossida S, Duroux P, Lefranc MP, Sebra RP, Smith ML, Fofana IBF. Coupling of Single Molecule, Long Read Sequencing with IMGT/HighV-QUEST Analysis Expedites Identification of SIV gp140-Specific Antibodies from scFv Phage Display Libraries. Front Immunol 2018; 9:329. [PMID: 29545792 PMCID: PMC5837965 DOI: 10.3389/fimmu.2018.00329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
The simian immunodeficiency virus (SIV)/macaque model of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome pathogenesis is critical for furthering our understanding of the role of antibody responses in the prevention of HIV infection, and will only increase in importance as macaque immunoglobulin (IG) gene databases are expanded. We have previously reported the construction of a phage display library from a SIV-infected rhesus macaque (Macaca mulatta) using oligonucleotide primers based on human IG gene sequences. Our previous screening relied on Sanger sequencing, which was inefficient and generated only a few dozen sequences. Here, we re-analyzed this library using single molecule, real-time (SMRT) sequencing on the Pacific Biosciences (PacBio) platform to generate thousands of highly accurate circular consensus sequencing (CCS) reads corresponding to full length single chain fragment variable. CCS data were then analyzed through the international ImMunoGeneTics information system® (IMGT®)/HighV-QUEST (www.imgt.org) to identify variable genes and perform statistical analyses. Overall the library was very diverse, with 2,569 different IMGT clonotypes called for the 5,238 IGHV sequences assigned to an IMGT clonotype. Within the library, SIV-specific antibodies represented a relatively limited number of clones, with only 135 different IMGT clonotypes called from 4,594 IGHV-assigned sequences. Our data did confirm that the IGHV4 and IGHV3 gene usage was the most abundant within the rhesus antibodies screened, and that these genes were even more enriched among SIV gp140-specific antibodies. Although a broad range of VH CDR3 amino acid (AA) lengths was observed in the unpanned library, the vast majority of SIV gp140-specific antibodies demonstrated a more uniform VH CDR3 length (20 AA). This uniformity was far less apparent when VH CDR3 were classified according to their clonotype (range: 9–25 AA), which we believe is more relevant for specific antibody identification. Only 174 IGKV and 588 IGLV clonotypes were identified within the VL sequences associated with SIV gp140-specific VH. Together, these data strongly suggest that the combination of SMRT sequencing with the IMGT/HighV-QUEST querying tool will facilitate and expedite our understanding of polyclonal antibody responses during SIV infection and may serve to rapidly expand the known scope of macaque V genes utilized during these responses.
Collapse
Affiliation(s)
- Seung Yub Han
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Alesia Antoine
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - David Howard
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Bryant Chang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Woo Sung Chang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Matthew Slein
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - Sofia Kossida
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Patrice Duroux
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Marie-Paule Lefranc
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | | |
Collapse
|
34
|
Abstract
Glycosylation is an important post-translational modification that is required for structural and stability purposes and functional roles such as signalling, attachment and shielding. Many human pathogens such as bacteria display an array of carbohydrates on their surface that are non-self to the host; others such as viruses highjack the host-cell machinery and present self-carbohydrates sometimes arranged in a non-self more immunogenic manner. In combination with carrier proteins, these glycan structures can be highly immunogenic. During natural infection, glycan-binding antibodies are often elicited that correlate with long-lasting protection. A great amount of research has been invested in carbohydrate vaccine design to elicit such an immune response, which has led to the development of vaccines against the bacterial pathogens Haemophilus influenzae type b, Streptococcus pneumonia and Neisseria meningitidis. Other vaccines, e.g. against HIV-1, are still in development, but promising progress has been made with the isolation of broadly neutralizing glycan-binding antibodies and the engineering of stable trimeric envelope glycoproteins. Carbohydrate vaccines against other pathogens such as viruses (Dengue, Hepatitis C), parasites (Plasmodium) and fungi (Candida) are at different stages of development. This chapter will discuss the challenges in inducing cross-reactive carbohydrate-targeting antibodies and progress towards carbohydrate vaccines.
Collapse
|
35
|
Bonsignori M, Kreider EF, Fera D, Meyerhoff RR, Bradley T, Wiehe K, Alam SM, Aussedat B, Walkowicz WE, Hwang KK, Saunders KO, Zhang R, Gladden MA, Monroe A, Kumar A, Xia SM, Cooper M, Louder MK, McKee K, Bailer RT, Pier BW, Jette CA, Kelsoe G, Williams WB, Morris L, Kappes J, Wagh K, Kamanga G, Cohen MS, Hraber PT, Montefiori DC, Trama A, Liao HX, Kepler TB, Moody MA, Gao F, Danishefsky SJ, Mascola JR, Shaw GM, Hahn BH, Harrison SC, Korber BT, Haynes BF. Staged induction of HIV-1 glycan-dependent broadly neutralizing antibodies. Sci Transl Med 2017; 9:9/381/eaai7514. [PMID: 28298420 DOI: 10.1126/scitranslmed.aai7514] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 08/18/2016] [Accepted: 01/31/2017] [Indexed: 12/30/2022]
Abstract
A preventive HIV-1 vaccine should induce HIV-1-specific broadly neutralizing antibodies (bnAbs). However, bnAbs generally require high levels of somatic hypermutation (SHM) to acquire breadth, and current vaccine strategies have not been successful in inducing bnAbs. Because bnAbs directed against a glycosylated site adjacent to the third variable loop (V3) of the HIV-1 envelope protein require limited SHM, the V3-glycan epitope is an attractive vaccine target. By studying the cooperation among multiple V3-glycan B cell lineages and their coevolution with autologous virus throughout 5 years of infection, we identify key events in the ontogeny of a V3-glycan bnAb. Two autologous neutralizing antibody lineages selected for virus escape mutations and consequently allowed initiation and affinity maturation of a V3-glycan bnAb lineage. The nucleotide substitution required to initiate the bnAb lineage occurred at a low-probability site for activation-induced cytidine deaminase activity. Cooperation of B cell lineages and an improbable mutation critical for bnAb activity defined the necessary events leading to breadth in this V3-glycan bnAb lineage. These findings may, in part, explain why initiation of V3-glycan bnAbs is rare, and suggest an immunization strategy for inducing similar V3-glycan bnAbs.
Collapse
Affiliation(s)
- Mattia Bonsignori
- Department of Medicine, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA. .,Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Edward F Kreider
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniela Fera
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - R Ryan Meyerhoff
- Department of Medicine, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Todd Bradley
- Department of Medicine, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Kevin Wiehe
- Department of Medicine, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - S Munir Alam
- Department of Medicine, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Baptiste Aussedat
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - William E Walkowicz
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Kevin O Saunders
- Duke Human Vaccine Institute, Durham, NC 27710, USA.,Department of Surgery, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Ruijun Zhang
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | | | | | - Amit Kumar
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Shi-Mao Xia
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | | | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brendan W Pier
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Claudia A Jette
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Durham, NC 27710, USA.,Department of Immunology, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Wilton B Williams
- Department of Medicine, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Lynn Morris
- National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - John Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Gift Kamanga
- University of North Carolina Project, Kamuzu Central Hospital, Lilongwe, Malawi
| | - Myron S Cohen
- Departments of Medicine, Epidemiology, and Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Peter T Hraber
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Durham, NC 27710, USA.,Department of Surgery, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Ashley Trama
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Hua-Xin Liao
- Department of Medicine, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Thomas B Kepler
- Department of Microbiology and Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Durham, NC 27710, USA.,Department of Immunology, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Pediatrics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Feng Gao
- Department of Medicine, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Samuel J Danishefsky
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bette T Korber
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA. .,Duke Human Vaccine Institute, Durham, NC 27710, USA
| |
Collapse
|
36
|
Saunders KO, Nicely NI, Wiehe K, Bonsignori M, Meyerhoff RR, Parks R, Walkowicz WE, Aussedat B, Wu NR, Cai F, Vohra Y, Park PK, Eaton A, Go EP, Sutherland LL, Scearce RM, Barouch DH, Zhang R, Von Holle T, Overman RG, Anasti K, Sanders RW, Moody MA, Kepler TB, Korber B, Desaire H, Santra S, Letvin NL, Nabel GJ, Montefiori DC, Tomaras GD, Liao HX, Alam SM, Danishefsky SJ, Haynes BF. Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates. Cell Rep 2017; 18:2175-2188. [PMID: 28249163 DOI: 10.1016/j.celrep.2017.02.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/19/2016] [Accepted: 01/30/2017] [Indexed: 12/26/2022] Open
Abstract
Induction of broadly neutralizing antibodies (bnAbs) that target HIV-1 envelope (Env) is a goal of HIV-1 vaccine development. A bnAb target is the Env third variable loop (V3)-glycan site. To determine whether immunization could induce antibodies to the V3-glycan bnAb binding site, we repetitively immunized macaques over a 4-year period with an Env expressing V3-high mannose glycans. Env immunizations elicited plasma antibodies that neutralized HIV-1 expressing only high-mannose glycans-a characteristic shared by early bnAb B cell lineage members. A rhesus recombinant monoclonal antibody from a vaccinated macaque bound to the V3-glycan site at the same amino acids as broadly neutralizing antibodies. A structure of the antibody bound to glycan revealed that the three variable heavy-chain complementarity-determining regions formed a cavity into which glycan could insert and neutralized multiple HIV-1 isolates with high-mannose glycans. Thus, HIV-1 Env vaccination induced mannose-dependent antibodies with characteristics of V3-glycan bnAb precursors.
Collapse
Affiliation(s)
- Kevin O Saunders
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Nathan I Nicely
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mattia Bonsignori
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - R Ryan Meyerhoff
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Baptiste Aussedat
- Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Nelson R Wu
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fangping Cai
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yusuf Vohra
- Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Peter K Park
- Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Amanda Eaton
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Eden P Go
- University of Kansas, Lawrence, KS 66045, USA
| | - Laura L Sutherland
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Richard M Scearce
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ruijun Zhang
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tarra Von Holle
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - R Glenn Overman
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kara Anasti
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - M Anthony Moody
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | | | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Georgia D Tomaras
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hua-Xin Liao
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - S Munir Alam
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
37
|
Pantophlet R, Trattnig N, Murrell S, Lu N, Chau D, Rempel C, Wilson IA, Kosma P. Bacterially derived synthetic mimetics of mammalian oligomannose prime antibody responses that neutralize HIV infectivity. Nat Commun 2017; 8:1601. [PMID: 29150603 PMCID: PMC5693931 DOI: 10.1038/s41467-017-01640-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022] Open
Abstract
Oligomannose-type glycans are among the major targets on the gp120 component of the HIV envelope protein (Env) for broadly neutralizing antibodies (bnAbs). However, attempts to elicit oligomannose-specific nAbs by immunizing with natural or synthetic oligomannose have so far not been successful, possibly due to B cell tolerance checkpoints. Here we design and synthesize oligomannose mimetics, based on the unique chemical structure of a recently identified bacterial lipooligosaccharide, to appear foreign to the immune system. One of these mimetics is bound avidly by members of a family of oligomannose-specific bnAbs and their putative common germline precursor when presented as a glycoconjugate. The crystal structure of one of the mimetics bound to a member of this bnAb family confirms the antigenic resemblance. Lastly, immunization of human-antibody transgenic animals with a lead mimetic evokes nAbs with specificities approaching those of existing bnAbs. These results provide evidence for utilizing antigenic mimicry to elicit oligomannose-specific bnAbs to HIV-1.
Collapse
Affiliation(s)
- Ralph Pantophlet
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A1S6. .,Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada, V5A1S6. .,SFU Interdisciplinary Research Centre for HIV, Simon Fraser University, Burnaby, BC, Canada, V5A1S6.
| | - Nino Trattnig
- Department of Chemistry, University of Natural Resources and Life Sciences, A-1190, Vienna, Austria
| | - Sasha Murrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Naiomi Lu
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A1S6
| | - Dennis Chau
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A1S6
| | - Caitlin Rempel
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A1S6
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences, A-1190, Vienna, Austria.
| |
Collapse
|
38
|
Abstract
Vaccines against HIV most likely need to elicit broadly neutralizing antibodies. In this issue of Immunity, Poignard and colleagues describe the co-evolution of a broadly neutralizing antibody and the virus that triggered it, providing a template for HIV vaccine design.
Collapse
Affiliation(s)
- Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Sun Z, Yan L, Tang J, Qian Q, Lenberg J, Zhu D, Liu W, Wu K, Wang Y, Lu S. Brief introduction of current technologies in isolation of broadly neutralizing HIV-1 antibodies. Virus Res 2017; 243:75-82. [PMID: 29051051 PMCID: PMC7114535 DOI: 10.1016/j.virusres.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022]
Abstract
HIV/AIDS has become a worldwide pandemic. Before an effective HIV-1 vaccine eliciting broadly neutralizing monoclonal antibodies (bnmAbs) is fully developed, passive immunization for prevention and treatment of HIV-1 infection may alleviate the burden caused by the pandemic. Among HIV-1 infected individuals, about 20% of them generated cross-reactive neutralizing antibodies two to four years after infection, the details of which could provide knowledge for effective vaccine design. Recent progress in techniques for isolation of human broadly neutralizing antibodies has facilitated the study of passive immunization. The isolation and characterization of large panels of potent human broadly neutralizing antibodies has revealed new insights into the principles of antibody-mediated neutralization of HIV. In this paper, we review the current effective techniques in broadly neutralizing antibody isolation.
Collapse
Affiliation(s)
- Zehua Sun
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States.
| | - Lixin Yan
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China.
| | - Jiansong Tang
- Department of Technical Specialist, China Bioengineering Technology Group Limited, Unit 209,Building 16W, Hong Kong Science Park, Shatin, NT, HK, 999077, Hong Kong
| | - Qian Qian
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States
| | - Jerica Lenberg
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States; Augustana University, 2001 S Summit Avenue, Sioux Falls, SD, 571977, United States
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, 77030, United States
| | - Wan Liu
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China
| | - Kao Wu
- Glyn O. Philips Hydrocolloid Research Center at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Yilin Wang
- University of California, Irvine. 100 Pacific, Irvine, CA, 92618, United States
| | - Shiqiang Lu
- AIDS Institute, Faculty of Medicine, The University of Hong Kong, No21 Sassoon Road, 999077, Hong Kong, Hong Kong.
| |
Collapse
|
40
|
Abstract
BACKGROUND HIV-1 is known to adapt to the local environment in its usage of receptors, and it can become CD4 independent in the brain where the receptor is scarce. This adaptation is through amino acid variations, but the patterns of such variation are not yet well understood. Given that infection of long-lived CD4-low and CD4-negative cells in anatomical compartments such as the brain expands cell tropism in vivo and may serve as potential viral reservoirs that pose challenge for HIV eradication, understanding the evolution to CD4 independence and envelope conformation associated with infection in the absence of CD4 will not only broaden our insights into HIV pathogenesis but may guide functional cure strategies as well. METHODS We characterize, by site-directed mutagenesis, neutralization assay, and structural analysis, a pair of CD4-dependent (cl2) and CD4-independent (cl20) envelopes concurrently isolated from the cerebral spinal fluid of an SHIV-infected macaque with neurological AIDS and with minimum sequence differences. RESULTS Residues different between cl2 and cl20 are mapped to the V1V2 and surrounding regions. Mutations of these residues in cl2 increased its CD4 independence in infection, and the effects are cumulative and likely structural. CONCLUSIONS Our data suggested that the determinants of CD4 independence in vivo mapped principally to V1V2 of gp120 that can destabilize the apex of the envelope spike, with an additional change in V4 that abrogated a potential N-linked glycan to facilitate movement of the V1V2 domain and further expose the coreceptor-binding site.
Collapse
|
41
|
Anthony C, York T, Bekker V, Matten D, Selhorst P, Ferreria RC, Garrett NJ, Karim SSA, Morris L, Wood NT, Moore PL, Williamson C. Cooperation between Strain-Specific and Broadly Neutralizing Responses Limited Viral Escape and Prolonged the Exposure of the Broadly Neutralizing Epitope. J Virol 2017; 91:e00828-17. [PMID: 28679760 PMCID: PMC5571269 DOI: 10.1128/jvi.00828-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022] Open
Abstract
V3-glycan-targeting broadly neutralizing antibodies (bNAbs) are a focus of HIV-1 vaccine development. Understanding the viral dynamics that stimulate the development of these antibodies can provide insights for immunogen design. We used a deep-sequencing approach, together with neutralization phenotyping, to investigate the rate and complexity of escape from V3-glycan-directed bNAbs compared to overlapping early strain-specific neutralizing antibody (ssNAb) responses to the V3/C3 region in donor CAP177. Escape from the ssNAb response occurred rapidly via an N334-to-N332 glycan switch, which took just 7.5 weeks to reach >50% frequency. In contrast, escape from the bNAbs was mediated via multiple pathways and took longer, with escape first occurring through an increase in V1 loop length, which took 46 weeks to reach 50% frequency, followed by an N332-to-N334 reversion, which took 66 weeks. Importantly, bNAb escape was incomplete, with contemporaneous neutralization observed up to 3 years postinfection. Both the ssNAb response and the bNAb response were modulated by the presence/absence of the N332 glycan, indicating an overlap between the two epitopes. Thus, selective pressure by ssNAbs to maintain the N332 glycan may have constrained the bNAb escape pathway. This slower and incomplete viral escape resulted in prolonged exposure of the bNAb epitope, which may in turn have aided the maturation of the bNAb lineage.IMPORTANCE The development of an HIV-1 vaccine is of paramount importance, and broadly neutralizing antibodies are likely to be a key component of a protective vaccine. The V3-glycan-targeting bNAb responses are among the most promising vaccine targets, as they are commonly elicited during infection. Understanding the interplay between viral evolution and the development of these antibodies provides insights that may guide immunogen design. Our work contrasted the dynamics of the early strain-specific antibodies and the later broadly neutralizing responses to a common Env target (V3C3), showing slower and more complex escape from bNAbs. Constrained bNAb escape, together with evidence of contemporaneous autologous virus neutralization, supports the proposal that prolonged exposure of the bNAb epitope enabled the maturation of the bNAb lineage.
Collapse
Affiliation(s)
- Colin Anthony
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Talita York
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Valerie Bekker
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service, Johannesburg, South Africa
| | - David Matten
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Philippe Selhorst
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Roux-Cil Ferreria
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nigel J Garrett
- CAPRISA, University of KwaZulu-Natal, Durban, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Salim S Abdool Karim
- CAPRISA, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, New York, USA
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service, Johannesburg, South Africa
- CAPRISA, University of KwaZulu-Natal, Durban, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Natasha T Wood
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service, Johannesburg, South Africa
- CAPRISA, University of KwaZulu-Natal, Durban, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- CAPRISA, University of KwaZulu-Natal, Durban, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
42
|
He L, Lin X, de Val N, Saye-Francisco KL, Mann CJ, Augst R, Morris CD, Azadnia P, Zhou B, Sok D, Ozorowski G, Ward AB, Burton DR, Zhu J. Hidden Lineage Complexity of Glycan-Dependent HIV-1 Broadly Neutralizing Antibodies Uncovered by Digital Panning and Native-Like gp140 Trimer. Front Immunol 2017; 8:1025. [PMID: 28883821 PMCID: PMC5573810 DOI: 10.3389/fimmu.2017.01025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/08/2017] [Indexed: 11/30/2022] Open
Abstract
Germline precursors and intermediates of broadly neutralizing antibodies (bNAbs) are essential to the understanding of humoral response to HIV-1 infection and B-cell lineage vaccine design. Using a native-like gp140 trimer probe, we examined antibody libraries constructed from donor-17, the source of glycan-dependent PGT121-class bNAbs recognizing the N332 supersite on the HIV-1 envelope glycoprotein. To facilitate this analysis, a digital panning method was devised that combines biopanning of phage-displayed antibody libraries, 900 bp long-read next-generation sequencing, and heavy/light (H/L)-paired antibodyomics. In addition to single-chain variable fragments resembling the wild-type bNAbs, digital panning identified variants of PGT124 (a member of the PGT121 class) with a unique insertion in the heavy chain complementarity-determining region 1, as well as intermediates of PGT124 exhibiting notable affinity for the native-like trimer and broad HIV-1 neutralization. In a competition assay, these bNAb intermediates could effectively compete with mouse sera induced by a scaffolded BG505 gp140.681 trimer for the N332 supersite. Our study thus reveals previously unrecognized lineage complexity of the PGT121-class bNAbs and provides an array of library-derived bNAb intermediates for evaluation of immunogens containing the N332 supersite. Digital panning may prove to be a valuable tool in future studies of bNAb diversity and lineage development.
Collapse
Affiliation(s)
- Linling He
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Xiaohe Lin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Karen L Saye-Francisco
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Colin J Mann
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Ryan Augst
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Charles D Morris
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Parisa Azadnia
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Bin Zhou
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| | - Devin Sok
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jiang Zhu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
43
|
Kepler TB, Wiehe K. Genetic and structural analyses of affinity maturation in the humoral response to HIV-1. Immunol Rev 2017; 275:129-144. [PMID: 28133793 DOI: 10.1111/imr.12513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most broadly neutralizing antibodies (BNAbs) elicited in response to HIV-1 infection are extraordinarily mutated. One goal of HIV-1 vaccine development is to induce antibodies that are similar to the most potent and broad BNAbs isolated from infected subjects. The most effective BNAbs have very high mutation frequencies, indicative of the long periods of continual activation necessary to acquire the BNAb phenotype through affinity maturation. Understanding the mutational patterns that define the maturation pathways in BNAb development is critical to vaccine design efforts to recapitulate through vaccination the successful routes to neutralization breadth and potency that have occurred in natural infection. Studying the mutational changes that occur during affinity maturation, however, requires accurate partitioning of sequence data into B-cell clones and identification of the starting point of a B-cell clonal lineage, the initial V(D)J rearrangement. Here, we describe the statistical framework we have used to perform these tasks. Through the recent advancement of these and similar computational methods, many HIV-1 ancestral antibodies have been inferred, synthesized and their structures determined. This has allowed, for the first time, the investigation of the structural mechanisms underlying the affinity maturation process in HIV-1 antibody development. Here, we review what has been learned from this atomic-level structural characterization of affinity maturation in HIV-1 antibodies and the implications for vaccine design.
Collapse
Affiliation(s)
- Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
44
|
Abstract
Beginning in 2009, studies of the humoral responses of HIV‐positive individuals have led to the identification of scores, if not hundreds, of antibodies that are both broadly reactive and potently neutralizing. This development has provided renewed impetus toward an HIV vaccine and led directly to the development of novel immunogens. Advances in identification of donors with the most potent and broad anti‐HIV serum neutralizing responses were crucial in this effort. Equally, development of methods for the rapid generation of human antibodies from these donors was pivotal. Primarily these methods comprise single B‐cell culture coupled to high‐throughput neutralization screening and flow cytometry‐based sorting of single B cells using HIV envelope protein baits. In this review, the advantages and disadvantages of these methodologies are discussed in the context of the specificities targeted by individual antibodies and the need for further improvements to evaluate HIV vaccine candidates.
Collapse
Affiliation(s)
- Laura E McCoy
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA.,Division of Infection & Immunity, University College London, London, UK
| | - Dennis R Burton
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| |
Collapse
|
45
|
Abstract
In 2009, Dimitrov's group reported that the inferred germline (iGL) forms of several HIV-1 broadly neutralizing antibodies (bNAbs) did not display measurable binding to a recombinant gp140 Env protein (derived from the dual-tropic 89.6 virus), which was efficiently recognized by the mature (somatically mutated) antibodies. At that time, a small number of bNAbs were available, but in the following years, the implementation of high-throughput B-cell isolation and sequencing assays and of screening methodologies facilitated the isolation of greater numbers of bNAbs from infected subjects. Using these newest bNAbs, and a wide range of diverse recombinant Envs, we and others confirmed the observations made by Dimitrov's group. The results from these studies created a paradigm shift in our collective thinking as to why recombinant Envs are ineffective in eliciting bNAbs and has led to the "germline-targeting" immunization approach. Here we discuss this approach in detail: what has been done so far, the advantages and limitations of the current germline-targeting immunogens and of the animal models used to test them, and we conclude with a few thoughts about future directions in this area of research.
Collapse
Affiliation(s)
- Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
46
|
Bonsignori M, Liao HX, Gao F, Williams WB, Alam SM, Montefiori DC, Haynes BF. Antibody-virus co-evolution in HIV infection: paths for HIV vaccine development. Immunol Rev 2017; 275:145-160. [PMID: 28133802 PMCID: PMC5302796 DOI: 10.1111/imr.12509] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Induction of HIV-1 broadly neutralizing antibodies (bnAbs) to date has only been observed in the setting of HIV-1 infection, and then only years after HIV transmission. Thus, the concept has emerged that one path to induction of bnAbs is to define the viral and immunologic events that occur during HIV-1 infection, and then to mimic those events with a vaccine formulation. This concept has led to efforts to map both virus and antibody events that occur from the time of HIV-1 transmission to development of bnAbs. This work has revealed that a virus-antibody "arms race" occurs in which a HIV-1 transmitted/founder (TF) Env induces autologous neutralizing antibodies that can not only neutralize the TF virus but also can select virus escape mutants that in turn select affinity-matured neutralizing antibodies. From these studies has come a picture of bnAb development that has led to new insights in host-pathogen interactions and, as well, led to insight into immunologic mechanisms of control of bnAb development. Here, we review the progress to date in elucidating bnAb B cell lineages in HIV-1 infection, discuss new research leading to understanding the immunologic mechanisms of bnAb induction, and address issues relevant to the use of this information for the design of new HIV-1 sequential envelope vaccine candidates.
Collapse
Affiliation(s)
- Mattia Bonsignori
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Hua-Xin Liao
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Feng Gao
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Wilton B Williams
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - S Munir Alam
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
47
|
Losfeld ME, Scibona E, Lin CW, Villiger TK, Gauss R, Morbidelli M, Aebi M. Influence of protein/glycan interaction on site-specific glycan heterogeneity. FASEB J 2017; 31:4623-4635. [PMID: 28679530 DOI: 10.1096/fj.201700403r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/19/2017] [Indexed: 01/23/2023]
Abstract
To study how the interaction between N-linked glycans and the surrounding amino acids influences oligosaccharide processing, we used protein disulfide isomerase (PDI), a glycoprotein bearing 5 N-glycosylation sites, as a model system and expressed it transiently in a Chinese hamster ovary (CHO)-S cell line. PDI was produced as both secreted Sec-PDI and endoplasmic reticulum-retained glycoprotein (ER)-PDI, to study glycan processing by ER and Golgi resident enzymes. Quantitative site-specific glycosylation profiles were obtained, and flux analysis enabled modeling site-specific glycan processing. By altering the primary sequence of PDI, we changed the glycan/protein interaction and thus the site-specific glycoprofile because of the improved enzymatic fluxes at enzymatic bottlenecks. Our results highlight the importance of direct interactions between N-glycans and surface-exposed amino acids of glycoproteins on processing in the ER and the Golgi and the possibility of changing a site-specific N-glycan profile by modulating such interactions and thus the associated enzymatic fluxes. Altering the primary protein sequence can therefore be used to glycoengineer recombinant proteins.-Losfeld, M.-E., Scibona, E., Lin, C.-W., Villiger, T. K., Gauss, R., Morbidelli, M., Aebi, M. Influence of protein/glycan interaction on site-specific glycan heterogeneity.
Collapse
Affiliation(s)
- Marie-Estelle Losfeld
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Ernesto Scibona
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology ETH Zürich, Zürich, Switzerland
| | - Chia-Wei Lin
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Thomas K Villiger
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology ETH Zürich, Zürich, Switzerland
| | - Robert Gauss
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology ETH Zürich, Zürich, Switzerland
| | - Markus Aebi
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland;
| |
Collapse
|
48
|
Behrens AJ, Crispin M. Structural principles controlling HIV envelope glycosylation. Curr Opin Struct Biol 2017; 44:125-133. [PMID: 28363124 DOI: 10.1016/j.sbi.2017.03.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/09/2017] [Accepted: 03/14/2017] [Indexed: 12/21/2022]
Abstract
The heavily glycosylated, trimeric HIV-1 envelope (Env) protein is the sole viral protein exposed on the HIV-1 virion surface and is thus a main focus of antibody-mediated vaccine development. Dense glycosylation at the outer domain of Env constrains normal enzymatic processing, stalling the glycans at immature oligomannose-type structures. Furthermore, native trimerization imposes additional steric constraints, which generate an extensive 'trimer-induced mannose patch'. Importantly, the immature glycans present a highly conserved feature of the virus that is targeted by broadly neutralizing antibodies. Quantitative mass spectrometry of glycopeptides together with structures of the trimeric viral-spike define the steric principles controlling processing and provide a detailed map of the glycan shield.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
49
|
Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers. mBio 2017; 8:mBio.00036-17. [PMID: 28246356 PMCID: PMC5347340 DOI: 10.1128/mbio.00036-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) have provided valuable insights into the humoral immune response to HIV-1. While rationally designed epitope scaffolds and well-folded gp140 trimers have been proposed as vaccine antigens, a comparative understanding of their antibody responses has not yet been established. In this study, we probed antibody responses to the N332 supersite and the membrane-proximal external region (MPER) in the context of heterologous protein scaffolds and native-like gp140 trimers. Ferritin nanoparticles and fragment crystallizable (Fc) regions were utilized as multivalent carriers to display scaffold antigens with grafted N332 and MPER epitopes, respectively. Trimeric scaffolds were also identified to stabilize the MPER-containing BG505 gp140.681 trimer in a native-like conformation. Following structural and antigenic evaluation, a subset of scaffold and trimer antigens was selected for immunization in BALB/c mice. Serum binding revealed distinct patterns of antibody responses to these two bNAb targets presented in different structural contexts. For example, the N332 nanoparticles elicited glycan epitope-specific antibody responses that could also recognize the native trimer, while a scaffolded BG505 gp140.681 trimer generated a stronger and more rapid antibody response to the trimer apex than its parent gp140.664 trimer. Furthermore, next-generation sequencing (NGS) of mouse splenic B cells revealed expansion of antibody lineages with long heavy-chain complementarity-determining region 3 (HCDR3) loops upon activation by MPER scaffolds, in contrast to the steady repertoires primed by N332 nanoparticles and a soluble gp140.664 trimer. These findings will facilitate the future development of a coherent vaccination strategy that combines both epitope-focused and trimer-based approaches.IMPORTANCE Both epitope-focused and trimer-based strategies are currently being explored in HIV-1 vaccine development, which aims to elicit broadly neutralizing antibodies (bNAbs) targeting conserved epitopes on the viral envelope (Env). However, little is known about the differences in antibody response to these bNAb targets presented by foreign scaffolds and native Env. In this study, a systematic effort was undertaken to design multivalent epitope scaffolds and soluble gp140.681 trimers with a complete antigenic surface, and to comparatively analyze the antibody responses elicited by these antigens to the N332 supersite and MPER in a mouse model. This study will inform both epitope-focused and trimer-based vaccine design and will facilitate integration of the two vaccine strategies.
Collapse
|
50
|
Molecular Architecture of the Cleavage-Dependent Mannose Patch on a Soluble HIV-1 Envelope Glycoprotein Trimer. J Virol 2017; 91:JVI.01894-16. [PMID: 27807235 DOI: 10.1128/jvi.01894-16] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/25/2016] [Indexed: 01/04/2023] Open
Abstract
The formation of a correctly folded and natively glycosylated HIV-1 viral spike is dependent on protease cleavage of the gp160 precursor protein in the Golgi apparatus. Cleavage induces a compact structure which not only renders the spike capable of fusion but also limits further maturation of its extensive glycosylation. The redirection of the glycosylation pathway to preserve underprocessed oligomannose-type glycans is an important feature in immunogen design, as glycans contribute to or influence the epitopes of numerous broadly neutralizing antibodies. Here we present a quantitative site-specific analysis of a recombinant, trimeric mimic of the native HIV-1 viral spike (BG505 SOSIP.664) compared to the corresponding uncleaved pseudotrimer and the matched gp120 monomer. We present a detailed molecular map of a trimer-associated glycan remodeling that forms a localized subdomain of the native mannose patch. The formation of native trimers is a critical design feature in shaping the glycan epitopes presented on recombinant vaccine candidates. IMPORTANCE The envelope spike of human immunodeficiency virus type 1 (HIV-1) is a target for antibody-based neutralization. For some patients infected with HIV-1, highly potent antibodies have been isolated that can neutralize a wide range of circulating viruses. It is a goal of HIV-1 vaccine research to elicit these antibodies by immunization with recombinant mimics of the viral spike. These antibodies have evolved to recognize the dense array of glycans that coat the surface of the viral molecule. We show how the structure of these glycans is shaped by steric constraints imposed upon them by the native folding of the viral spike. This information is important in guiding the development of vaccine candidates.
Collapse
|