1
|
Chang T, Alvarez J, Chappidi S, Crockett S, Sorouri M, Orchard RC, Hancks DC. Metabolic reprogramming tips vaccinia virus infection outcomes by stabilizing interferon-γ induced IRF1. PLoS Pathog 2024; 20:e1012673. [PMID: 39475961 DOI: 10.1371/journal.ppat.1012673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Interferon (IFN) induced activities are critical, early determinants of immune responses and infection outcomes. A key facet of IFN responses is the upregulation of hundreds of mRNAs termed interferon-stimulated genes (ISGs) that activate intrinsic and cell-mediated defenses. While primary interferon signaling is well-delineated, other layers of regulation are less explored but implied by aberrant ISG expression signatures in many diseases in the absence of infection. Consistently, our examination of tonic ISG levels across uninfected human tissues and individuals revealed three ISG subclasses. As tissue identity and many comorbidities with increased virus susceptibility are characterized by differences in metabolism, we characterized ISG responses in cells grown in media known to favor either aerobic glycolysis (glucose) or oxidative phosphorylation (galactose supplementation). While these conditions over time had a varying impact on the expression of ISG RNAs, the differences were typically greater between treatments than between glucose/galactose. Interestingly, extended interferon-priming led to divergent expression of two ISG proteins: upregulation of IRF1 in IFN-γ/glucose and increased IFITM3 in galactose by IFN-α and IFN-γ. In agreement with a hardwired response, glucose/galactose regulation of interferon-γ induced IRF1 is conserved in unrelated mouse and cat cell types. In galactose conditions, proteasome inhibition restored interferon-γ induced IRF1 levels to that of glucose/interferon-γ. Glucose/interferon-γ decreased replication of the model poxvirus vaccinia at low MOI and high MOIs. Vaccinia replication was restored by IRF1 KO. In contrast, but consistent with differential regulation of IRF1 protein by glucose/galactose, WT and IRF1 KO cells in galactose media supported similar levels of vaccinia replication regardless of IFN-γ priming. Also associated with glucose/galactose is a seemingly second block at a very late stage in viral replication which results in reductions in herpes- and poxvirus titers but not viral protein expression. Collectively, these data illustrate a novel layer of regulation for the key ISG protein, IRF1, mediated by glucose/galactose and imply unappreciated subprograms embedded in the interferon response. In principle, such cellular circuitry could rapidly adapt immune responses by sensing changing metabolite levels consumed during viral replication and cell proliferation.
Collapse
Affiliation(s)
- Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Genetics, Development, and Disease Ph.D. program, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jessica Alvarez
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Molecular Microbiology Ph.D. program, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sruthi Chappidi
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Stacey Crockett
- Molecular Microbiology Ph.D. program, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mahsa Sorouri
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Robert C Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
2
|
Chang T, Alvarez J, Chappidi S, Crockett S, Sorouri M, Orchard RC, Hancks DC. Metabolic reprogramming tips vaccinia virus infection outcomes by stabilizing interferon-γ induced IRF1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617691. [PMID: 39416205 PMCID: PMC11482883 DOI: 10.1101/2024.10.10.617691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Interferon (IFN) induced activities are critical, early determinants of immune responses and infection outcomes. A key facet of IFN responses is the upregulation of hundreds of mRNAs termed interferon-stimulated genes (ISGs) that activate intrinsic and cell-mediated defenses. While primary interferon signaling is well-delineated, other layers of regulation are less explored but implied by aberrant ISG expression signatures in many diseases in the absence of infection. Consistently, our examination of tonic ISG levels across uninfected human tissues and individuals revealed three ISG subclasses. As tissue identity and many comorbidities with increased virus susceptibility are characterized by differences in metabolism, we characterized ISG responses in cells grown in media known to favor either aerobic glycolysis (glucose) or oxidative phosphorylation (galactose supplementation). While these conditions over time had a varying impact on the expression of ISG RNAs, the differences were typically greater between treatments than between glucose/galactose. Interestingly, extended interferon-priming led to divergent expression of two ISG proteins: upregulation of IRF1 in IFN-γ/glucose and increased IFITM3 in galactose by IFN-α and IFN-γ. In agreement with a hardwired response, glucose/galactose regulation of interferon-γ induced IRF1 is conserved in unrelated mouse and cat cell types. In galactose conditions, proteasome inhibition restored interferon-γ induced IRF1 levels to that of glucose/interferon-γ. Glucose/interferon-γ decreased replication of the model poxvirus vaccinia at low MOI and high MOIs. Vaccinia replication was restored by IRF1 KO. In contrast, but consistent with differential regulation of IRF1 protein by glucose/galactose, WT and IRF1 KO cells in galactose media supported similar levels of vaccinia replication regardless of IFN-γ priming. Also associated with glucose/galactose is a seemingly second block at a very late stage in viral replication which results in reductions in herpes- and poxvirus titers but not viral protein expression. Collectively, these data illustrate a novel layer of regulation for the key ISG protein, IRF1, mediated by glucose/galactose and imply unappreciated subprograms embedded in the interferon response. In principle, such cellular circuitry could rapidly adapt immune responses by sensing changing metabolite levels consumed during viral replication and cell proliferation.
Collapse
|
3
|
Saha S, Chatterjee P, Nasipuri M, Basu S, Chakraborti T. Computational drug repurposing for viral infectious diseases: a case study on monkeypox. Brief Funct Genomics 2024; 23:570-578. [PMID: 38183212 DOI: 10.1093/bfgp/elad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
The traditional method of drug reuse or repurposing has significantly contributed to the identification of new antiviral compounds and therapeutic targets, enabling rapid response to developing infectious illnesses. This article presents an overview of how modern computational methods are used in drug repurposing for the treatment of viral infectious diseases. These methods utilize data sets that include reviewed information on the host's response to pathogens and drugs, as well as various connections such as gene expression patterns and protein-protein interaction networks. We assess the potential benefits and limitations of these methods by examining monkeypox as a specific example, but the knowledge acquired can be applied to other comparable disease scenarios.
Collapse
Affiliation(s)
- Sovan Saha
- Department of Computer Science and Engineering (Artificial Intelligence and Machine Learning), Techno Main Salt Lake, EM-4/1, Sector V, Bidhannagar, Kolkata, West Bengal 700091, India
| | - Piyali Chatterjee
- Department of Computer Science and Engineering, Netaji Subhash Engineering College, Garia, Kolkata-700152, India
| | - Mita Nasipuri
- Department of Computer Science and Engineering, Jadavpur University, Kolkata - 700032, India
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadavpur University, Kolkata - 700032, India
| | - Tapabrata Chakraborti
- Department of Medical Physics and Biomedical Engineering, University College London, UK
- Health Science Programme, The Alan Turing Institute, London, UK
- Linacre College, University of Oxford, UK
| |
Collapse
|
4
|
Kim K, Kim CE, Baek DJ, Park EY, Oh YS. Prevention of UVB-Induced Photoaging by an Ethyl Acetate Fraction from Allomyrina dichotoma Larvae and Its Potential Mechanisms in Human Dermal Fibroblasts. Int J Mol Sci 2024; 25:7850. [PMID: 39063091 PMCID: PMC11277254 DOI: 10.3390/ijms25147850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Allomyrina dichotoma larvae (ADL) is an insect type that is used ethnopharmacologically to treat various diseases; however, its use as an antiaging treatment has not been widely studied. Previously, we found that an ethyl acetate (EA) fraction derived from an ADL extract (ADLE) has a high polyphenol content and antioxidant properties. In this study, we identified the underlying molecular mechanism for the protective effect of the EA fraction against UVB-induced photodamage in vitro and ex vivo. UVB treatment increased intracellular reactive oxygen species levels and DNA damage; the latter of which was significantly decreased following cotreatment with the EA fraction. Biological markers of aging, such as p16INK4a, p21WAF1, and senescence-associated β-gal levels, were induced by UVB treatment but significantly suppressed following EA-fraction treatment. UVB-induced upregulation of matrix metalloproteinase (MMP)-1 and downregulation of COL1A1 were also reversed by EA-fraction treatment in both cells and a 3D skin model, which resulted in increased keratin and collagen deposition. Moreover, EA-fraction treatment inhibited the phosphorylation of MAPKs (p38, ERK, and JNK) and nuclear factor (NF-)-kB and decreased the levels of inflammatory cytokines in UVB-treated cells. The results indicate that an EA fraction from ADLE ameliorates UVB-induced degradation of COL1A1 by inhibiting MMP expression and inactivating the MAPK/NF-κB p65/AP-1 signaling pathway involved in this process.
Collapse
Affiliation(s)
- Kyong Kim
- Department of Food and Nutrition, Eulji University, Seongnam 13135, Republic of Korea; (K.K.); (C.-E.K.)
| | - Chae-Eun Kim
- Department of Food and Nutrition, Eulji University, Seongnam 13135, Republic of Korea; (K.K.); (C.-E.K.)
| | - Dong-Jae Baek
- College of Pharmacy, Mokpo National University, Mokpo 58554, Republic of Korea; (D.-J.B.); (E.-Y.P.)
| | - Eun-Young Park
- College of Pharmacy, Mokpo National University, Mokpo 58554, Republic of Korea; (D.-J.B.); (E.-Y.P.)
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam 13135, Republic of Korea; (K.K.); (C.-E.K.)
| |
Collapse
|
5
|
Dsouza L, Pant A, Pope B, Yang Z. Role of vaccinia virus growth factor in stimulating the mTORC1-CAD axis of the de novo pyrimidine pathway under different nutritional cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601567. [PMID: 39005450 PMCID: PMC11245005 DOI: 10.1101/2024.07.02.601567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Vaccinia virus (VACV), the prototype poxvirus, actively reprograms host cell metabolism upon infection. However, the nature and molecular mechanisms remain largely elusive. Given the diverse nutritional exposures of cells in different physiological contexts, it is essential to understand how VACV may alter various metabolic pathways in different nutritional conditions. In this study, we established the importance of de novo pyrimidine biosynthesis in VACV infection. We elucidated the significance of vaccinia growth factor (VGF), a viral early protein and a homolog of cellular epidermal growth factor, in enabling VACV to phosphorylate the key enzyme CAD of the de novo pyrimidine pathway at serine 1859, a site known to positively regulate CAD activity. While nutrient-poor conditions typically inhibit mTORC1 activation, VACV activates CAD via mTORC1-S6K1 signaling axis, in conditions where glutamine and asparagine are absent. However, unlike its cellular homolog, epidermal growth factor (EGF), VGF peptide alone in the absence of VACV infection has minimal ability to activate CAD, suggestive of the involvement of other viral factor(s) and differential functions to EGF acquired during poxvirus evolution. Our research provides a foundation for understanding the regulation of a significant metabolic pathway, namely, de novo pyrimidine synthesis during VACV infection, shedding new light on viral regulation under distinct nutritional environments. This study not only has the potential to contribute to the advancement of antiviral treatments but also improve the development of VACV as an oncolytic agent and vaccine vector.
Collapse
Affiliation(s)
- Lara Dsouza
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Anil Pant
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Blake Pope
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
6
|
Hafner A, Meurs N, Garner A, Azar E, Kannan A, Passalacqua KD, Nagrath D, Wobus CE. Norovirus NS1/2 protein increases glutaminolysis for efficient viral replication. PLoS Pathog 2024; 20:e1011909. [PMID: 38976719 PMCID: PMC11257395 DOI: 10.1371/journal.ppat.1011909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/18/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Viruses are obligate intracellular parasites that rely on host cell metabolism for successful replication. Thus, viruses rewire host cell pathways involved in central carbon metabolism to increase the availability of building blocks for successful propagation. However, the underlying mechanisms of virus-induced alterations to host metabolism are largely unknown. Noroviruses (NoVs) are highly prevalent pathogens that cause sporadic and epidemic viral gastroenteritis. In the present study, we uncovered several strain-specific and shared host cell metabolic requirements of three murine norovirus (MNV) strains, MNV-1, CR3, and CR6. While all three strains required glycolysis, glutaminolysis, and the pentose phosphate pathway for optimal infection of macrophages, only MNV-1 relied on host oxidative phosphorylation. Furthermore, the first metabolic flux analysis of NoV-infected cells revealed that both glycolysis and glutaminolysis are upregulated during MNV-1 infection of macrophages. Glutamine deprivation affected the viral lifecycle at the stage of genome replication, resulting in decreased non-structural and structural protein synthesis, viral assembly, and egress. Mechanistic studies further showed that MNV infection and overexpression of the non-structural protein NS1/2 increased the enzymatic activity of the rate-limiting enzyme glutaminase. In conclusion, the inaugural investigation of NoV-induced alterations to host glutaminolysis identified NS1/2 as the first viral molecule for RNA viruses that regulates glutaminolysis either directly or indirectly. This increases our fundamental understanding of virus-induced metabolic alterations and may lead to improvements in the cultivation of human NoVs.
Collapse
Affiliation(s)
- Adam Hafner
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Noah Meurs
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ari Garner
- Department of Microbiology, Immunology, and Inflammation, University of Illinois, Chicago, Illinois, United States of America
| | - Elaine Azar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aditya Kannan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Karla D. Passalacqua
- Graduate Medical Education, Henry Ford Health, Detroit, Michigan, United States of America
| | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
7
|
Liu H, Tian H, Hao P, Du H, Wang K, Qiu Y, Yin X, Wu N, Du Q, Tong D, Huang Y. PoRVA G9P[23] and G5P[7] infections differentially promote PEDV replication by reprogramming glutamine metabolism. PLoS Pathog 2024; 20:e1012305. [PMID: 38905309 PMCID: PMC11221755 DOI: 10.1371/journal.ppat.1012305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/03/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024] Open
Abstract
PoRVA and PEDV coinfections are extremely common in clinical practice. Although coinfections of PoRVA and PEDV are known to result in increased mortality, the underlying mechanism remains unknown. Here, we found that PoRVA infection promoted PEDV infection in vivo and in vitro and that PoRVA G9P[23] (RVA-HNNY strain) enhanced PEDV replication more significantly than did PoRVA G5P[7] (RVA-SXXA strain). Metabolomic analysis revealed that RVA-HNNY more efficiently induced an increase in the intracellular glutamine content in porcine small intestinal epithelial cells than did RVA-SXXA, which more markedly promoted ATP production to facilitate PEDV replication, whereas glutamine deprivation abrogated the effect of PoRVA infection on promoting PEDV replication. Further studies showed that PoRVA infection promoted glutamine uptake by upregulating the expression of the glutamine transporter protein SLC1A5. In SLC1A5 knockout cells, PoRVA infection neither elevated intracellular glutamine nor promoted PEDV replication. During PoRVA infection, the activity and protein expression levels of glutamine catabolism-related enzymes (GLS1 and GLUD1) were also significantly increased promoting ATP production through glutamine anaplerosis into the TCA cycle. Consistent with that, siRNAs or inhibitors of GLS1 and GLUD1 significantly inhibited the promotion of PEDV replication by PoRVA. Notably, RVA-HNNY infection more markedly promoted SLC1A5, GLS1 and GLUD1 expression to more significantly increase the uptake and catabolism of glutamine than RVA-SXXA infection. Collectively, our findings illuminate a novel mechanism by which PoRVA infection promotes PEDV infection and reveal that the modulation of glutamine uptake is key for the different efficiencies of PoRVA G9P[23] and PoRVA G5P[7] in promoting PEDV replication.
Collapse
Affiliation(s)
- Haixin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People’s Republic of China, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| | - Haolun Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People’s Republic of China, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| | - Pengcheng Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Huimin Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kun Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yudong Qiu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiangrui Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Nana Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People’s Republic of China, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People’s Republic of China, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People’s Republic of China, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| |
Collapse
|
8
|
Su G, Liu J, Duan C, Fang P, Fang L, Zhou Y, Xiao S. Enteric coronavirus PDCoV evokes a non-Warburg effect by hijacking pyruvic acid as a metabolic hub. Redox Biol 2024; 71:103112. [PMID: 38461791 PMCID: PMC10938170 DOI: 10.1016/j.redox.2024.103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024] Open
Abstract
The Warburg effect, also referred as aerobic glycolysis, is a common metabolic program during viral infection. Through targeted metabolomics combined with biochemical experiments and various cell models, we investigated the central carbon metabolism (CCM) profiles of cells infected with porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. We found that PDCoV infection required glycolysis but decreased glycolytic flux, exhibiting a non-Warburg effect characterized by pyruvic acid accumulation. Mechanistically, PDCoV enhanced pyruvate kinase activity to promote pyruvic acid anabolism, a process that generates pyruvic acid with concomitant ATP production. PDCoV also hijacked pyruvic acid catabolism to increase biosynthesis of non-essential amino acids (NEAAs), suggesting that pyruvic acid is an essential hub for PDCoV to scavenge host energy and metabolites. Furthermore, PDCoV facilitated glutaminolysis to promote the synthesis of NEAA and pyrimidines for optimal proliferation. Our work supports a novel CCM model after viral infection and provides potential anti-PDCoV drug targets.
Collapse
Affiliation(s)
- Guanning Su
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiao Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chenrui Duan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
9
|
Sun B, Zhang Y, Chen K, Sun L. Metabolomics captures the differential metabolites in the replication pathway of snakehead vesiculovirus regulated by glutamine. DISEASES OF AQUATIC ORGANISMS 2024; 158:101-114. [PMID: 38661141 DOI: 10.3354/dao03786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Snakehead vesiculovirus (SHVV) is a negative-sense single-stranded RNA virus that infects snakehead fish. This virus leads to illness and mortality, causing significant economic losses in the snakehead aquaculture industry. The replication and spread of SHVV in cells, which requires glutamine as a nitrogen source, is accompanied by alterations in intracellular metabolites. However, the metabolic mechanisms underlying the inhibition of viral replication by glutamine deficiency are poorly understood. This study utilized liquid chromatography-mass spectrometry to measure the differential metabolites between the channel catfish Parasilurus asotus ovary cell line infected with SHVV under glutamine-containing and glutamine-deprived conditions. Results showed that the absence of glutamine regulated 4 distinct metabolic pathways and influenced 9 differential metabolites. The differential metabolites PS(16:0/16:0), 5,10-methylene-THF, and PS(18:0/18:1(9Z)) were involved in amino acid metabolism. In the nuclear metabolism functional pathway, differential metabolites of guanosine were observed. In the carbohydrate metabolism pathway, differential metabolites of UDP-d-galacturonate were detected. In the signal transduction pathway, differential metabolites of SM(d18:1/20:0), SM(d18:1/22:1(13Z)), SM(d18:1/24:1(15 Z)), and sphinganine were found. Among them, PS(18:0/18:1(9Z)), PS(16:0/16:0), and UDP-d-galacturonate were involved in the synthesis of phosphatidylserine and glycoprotein. The compound 5,10-methylene-THF provided raw materials for virus replication, and guanosine and sphingosine are related to virus virulence. The differential metabolites may collectively participate in the replication, packaging, and proliferation of SHVV under glutamine deficiency. This study provides new insights and potential metabolic targets for combating SHVV infection in aquaculture through metabolomics approaches.
Collapse
Affiliation(s)
- Binbin Sun
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China
| | - Yulei Zhang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China
| | - Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
10
|
Pei L, Overdahl KE, Shannon JP, Hornick KM, Jarmusch AK, Hickman HD. Profiling whole-tissue metabolic reprogramming during cutaneous poxvirus infection and clearance. J Virol 2023; 97:e0127223. [PMID: 38009914 PMCID: PMC10734417 DOI: 10.1128/jvi.01272-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Human poxvirus infections have caused significant public health burdens both historically and recently during the unprecedented global Mpox virus outbreak. Although vaccinia virus (VACV) infection of mice is a commonly used model to explore the anti-poxvirus immune response, little is known about the metabolic changes that occur in vivo during infection. We hypothesized that the metabolome of VACV-infected skin would reflect the increased energetic requirements of both virus-infected cells and immune cells recruited to sites of infection. Therefore, we profiled whole VACV-infected skin using untargeted mass spectrometry to define the metabolome during infection, complementing these experiments with flow cytometry and transcriptomics. We identified specific metabolites, including nucleotides, itaconic acid, and glutamine, that were differentially expressed during VACV infection. Together, this study offers insight into both virus-specific and immune-mediated metabolic pathways that could contribute to the clearance of cutaneous poxvirus infection.
Collapse
Affiliation(s)
- Luxin Pei
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kirsten E. Overdahl
- Metabolomics Core Facility, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - John P. Shannon
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine M. Hornick
- Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan K. Jarmusch
- Metabolomics Core Facility, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Heather D. Hickman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Hafner A, Meurs N, Garner A, Azar E, Passalacqua KD, Nagrath D, Wobus CE. Norovirus NS1/2 protein increases glutaminolysis for efficient viral replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572316. [PMID: 38187600 PMCID: PMC10769279 DOI: 10.1101/2023.12.19.572316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Viruses are obligate intracellular parasites that rely on host cell metabolism for successful replication. Thus, viruses rewire host cell pathways involved in central carbon metabolism to increase the availability of building blocks for replication. However, the underlying mechanisms of virus-induced alterations to host metabolism are largely unknown. Noroviruses (NoVs) are highly prevalent pathogens that cause sporadic and epidemic viral gastroenteritis. In the present study, we uncovered several strain-specific and shared host cell metabolic requirements of three murine norovirus (MNV) strains, the acute MNV-1 strain and the persistent CR3 and CR6 strains. While all three strains required glycolysis, glutaminolysis, and the pentose phosphate pathway for optimal infection of macrophages, only MNV-1 relied on host oxidative phosphorylation. Furthermore, the first metabolic flux analysis of NoV-infected cells revealed that both glycolysis and glutaminolysis are upregulated during MNV-1 infection of macrophages. Glutamine deprivation affected the MNV lifecycle at the stage of genome replication, resulting in decreased non-structural and structural protein synthesis, viral assembly, and egress. Mechanistic studies further showed that MNV infection and overexpression of the MNV non-structural protein NS1/2 increased the enzymatic activity of the rate-limiting enzyme glutaminase. In conclusion, the inaugural investigation of NoV-induced alterations to host glutaminolysis identified the first viral regulator of glutaminolysis for RNA viruses, which increases our fundamental understanding of virus-induced metabolic alterations.
Collapse
Affiliation(s)
- Adam Hafner
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Noah Meurs
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ari Garner
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Elaine Azar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Zhang S, Cao Y, Xu C, Wang G, Huang Y, Bao W, Zhang S. Integrated metabolomics and transcriptomics analyses reveal metabolic responses to TGEV infection in porcine intestinal epithelial cells. J Gen Virol 2023; 104. [PMID: 38116760 DOI: 10.1099/jgv.0.001942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a coronavirus that infects piglets with severe diarrhoea, vomiting, dehydration, and even death, causing huge economic losses to the pig industry. The underlying pathogenesis of TGEV infection and the effects of TGEV infection on host metabolites remain poorly understood. To investigate the critical metabolites and regulatory factors during TGEV infection in intestinal porcine epithelial cells (IPEC-J2), we performed metabolomic and transcriptomic analyses of TGEV-infected IPEC-J2 cells by LC/MS and RNA-seq techniques. A total of 87 differential metabolites and 489 differentially expressed genes were detected. A series of metabolites and candidate genes from glutathione metabolism and AMPK signalling pathway were examined through combined analysis of metabolome and transcriptome. We found glutathione peroxidase 3 (GPX3) is markedly reduced after TGEV infection, and a significant negative correlation between AMPK signalling pathway and TGEV infection. Exogenous addition of the AMPK activator COH-SR4 significantly downregulates stearoyl coenzyme A (SCD1) mRNA and inhibits TGEV replication; while exogenous GSK-690693 significantly promotes TGEV infection by inhibiting AMPK signalling pathway. In summary, our study provides insights into the key metabolites and regulators for TGEV infection from the metabolome and transcriptome perspective, which will offer promising antiviral metabolic and molecular targets and enrich the understanding of the existence of a similar mechanism in the host.
Collapse
Affiliation(s)
- Shuoshuo Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Yanan Cao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Chao Xu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Guangzheng Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Yanjie Huang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Shuai Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| |
Collapse
|
13
|
Meade N, Toreev HK, Chakrabarty RP, Hesser CR, Park C, Chandel NS, Walsh D. The poxvirus F17 protein counteracts mitochondrially orchestrated antiviral responses. Nat Commun 2023; 14:7889. [PMID: 38036506 PMCID: PMC10689448 DOI: 10.1038/s41467-023-43635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Poxviruses are unusual DNA viruses that replicate in the cytoplasm. To do so, they encode approximately 100 immunomodulatory proteins that counteract cytosolic nucleic acid sensors such as cGAMP synthase (cGAS) along with several other antiviral response pathways. Yet most of these immunomodulators are expressed very early in infection while many are variable host range determinants, and significant gaps remain in our understanding of poxvirus sensing and evasion strategies. Here, we show that after infection is established, subsequent progression of the viral lifecycle is sensed through specific changes to mitochondria that coordinate distinct aspects of the antiviral response. Unlike other viruses that cause extensive mitochondrial damage, poxviruses sustain key mitochondrial functions including membrane potential and respiration while reducing reactive oxygen species that drive inflammation. However, poxvirus replication induces mitochondrial hyperfusion that independently controls the release of mitochondrial DNA (mtDNA) to prime nucleic acid sensors and enables an increase in glycolysis that is necessary to support interferon stimulated gene (ISG) production. To counter this, the poxvirus F17 protein localizes to mitochondria and dysregulates mTOR to simultaneously destabilize cGAS and block increases in glycolysis. Our findings reveal how the poxvirus F17 protein disarms specific mitochondrially orchestrated responses to later stages of poxvirus replication.
Collapse
Affiliation(s)
- Nathan Meade
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Helen K Toreev
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ram P Chakrabarty
- Department of Medicine, and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Charles R Hesser
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Chorong Park
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
14
|
Wang Q, Shi B, Yang G, Zhu X, Shao H, Qian K, Ye J, Qin A. Metabolomic profiling of Marek's disease virus infection in host cell based on untargeted LC-MS. Front Microbiol 2023; 14:1270762. [PMID: 38029131 PMCID: PMC10666056 DOI: 10.3389/fmicb.2023.1270762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Marek's disease (MD) caused by Marek's disease virus (MDV), poses a serious threat to the poultry industry by inducing neurological disease and malignant lymphoma in infected chickens. However, the underlying mechanisms how MDV disrupts host cells and causes damage still remain elusive. Recently, the application of metabolomics has shown great potential for uncovering the complex mechanisms during virus-host interactions. In this study, chicken embryo fibroblasts (CEFs) infected with MDV were subjected to ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) and multivariate statistical analysis. The results showed that 261 metabolites were significantly altered upon MDV infection, with most changes occurring in amino acid metabolism, energy metabolism, nucleotide metabolism, and lipid metabolism. Notably, MDV infection induces an up-regulation of amino acids in host cells during the early stages of infection to provide the energy and intermediary metabolites necessary for efficient multiplication of its own replication. Taken together, these data not only hold promise in identifying the biochemical molecules utilized by MDV replication in host cells, but also provides a new insight into understanding MDV-host interactions.
Collapse
Affiliation(s)
- Qingsen Wang
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Bin Shi
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Guifu Yang
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Xueying Zhu
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Kun Qian
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Jianqiang Ye
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Aijian Qin
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| |
Collapse
|
15
|
Ahmad W, Sattar A, Ahmad M, Aziz MW, Iqbal A, Tipu MY, Mushtaq RMZ, Rasool N, Ahmed HS, Ahmad M. Unveiling Oxidative Stress-Induced Genotoxicity and Its Alleviation through Selenium and Vitamin E Therapy in Naturally Infected Cattle with Lumpy Skin Disease. Vet Sci 2023; 10:643. [PMID: 37999466 PMCID: PMC10675407 DOI: 10.3390/vetsci10110643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Lumpy skin disease (LSD) is a contagious infection of cattle caused by a virus of the Poxviridae family, genus Capripoxvirus. In Pakistan, recent outbreaks have resulted in significant nationwide mortality and economic losses. A 20-day prospective cohort study was performed on sixty infected cattle with the aim to evaluate LSD-induced oxidative stress's genotoxic role and to determine the ameliorative effect of antioxidant therapy using principal component analysis (PCA) and a multivariable ordinal logistic regression model. LSDV was identified from scab samples and nodular lesions using RPO30-specific gene primers. The infected cattle were divided into control and treated groups. The animals were observed initially and finally on day 20 to evaluate the homeostatic, oxidative, and genotoxic changes. The animals in the treated group were administered a combination of selenium (Se) and vitamin E at the standard dose rate for five consecutive days. A substantial (p < 0.05) improvement in the hematological indices was observed in the treated group. The treated group also showed a significant (p < 0.05) reduction in levels of serum nitric oxide (NO) and malondialdehyde (MDA) post-therapy. The PCA at the final sampling data of the treated group showed that Principal Component (PC1 eigenvalue 1.429) was influenced by superoxide dismutase (SOD; 0.3632), catalase (CAT; 0.2906), and glutathione (GSH; 0.0816) and PC2 (eigenvalue 1.200) was influenced by CAT (0.4362), MDA (0.2056), and NO (0.0693). A significant correlation between serum NO (76%) and MDA levels (80%) was observed with genetic damage index (GDI) scores. The ordinal logistic regression model regarding the use of antioxidant therapy revealed 73.95-times (95%CI; 17.36-314.96) improvement in the GDI in treated animals. The multivariable ordinal logistic regression showed that each unit increase in NO and MDA resulted in a 13% increase in genotoxicity in infected individuals. In conclusion, our study revealed that LSD-induced oxidative stress and lipid peroxidation product causes genotoxicity in affected animals. Furthermore, the combined Se and vitamin E therapy significantly alleviated oxidative stress and genotoxicity in LSD-affected cattle.
Collapse
Affiliation(s)
- Waqas Ahmad
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
- Livestock and Dairy Development Department Punjab, Lahore 54000, Pakistan
| | - Adeel Sattar
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Mehmood Ahmad
- Department of Pharmacology and Toxicology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Waqar Aziz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Asif Iqbal
- Department of Parasitology, Riphah International University, Lahore 54000, Pakistan
| | - Muhammad Yasin Tipu
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | | | - Naeem Rasool
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Hafiz Saleet Ahmed
- Department of Livestock Management, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ahmad
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
16
|
Goyal P, Rajala MS. Reprogramming of glucose metabolism in virus infected cells. Mol Cell Biochem 2023; 478:2409-2418. [PMID: 36709223 PMCID: PMC9884135 DOI: 10.1007/s11010-023-04669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/16/2023] [Indexed: 01/30/2023]
Abstract
Viral infection is a kind of cellular stress that leads to the changes in cellular metabolism. Many metabolic pathways in a host cell such as glycolysis, amino acid and nucleotide synthesis are altered following virus infection. Both oncogenic and non-oncogenic viruses depend on host cell glycolysis for their survival and pathogenesis. Recent studies have shown that the rate of glycolysis plays an important role in oncolysis as well by oncolytic therapeutic viruses. During infection, viral proteins interact with various cellular glycolytic enzymes, and this interaction enhances the catalytic framework of the enzymes subsequently the glycolytic rate of the cell. Increased activity of glycolytic enzymes following their interaction with viral proteins is vital for replication and to counteract the inhibition of glycolysis caused by immune response. In this review, the importance of host cell glycolysis and the modulation of glycolysis by various viruses such as oncogenic, non-oncogenic and oncolytic viruses are presented.
Collapse
Affiliation(s)
- Priya Goyal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Maitreyi S Rajala
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
17
|
Greene KS, Choi A, Chen M, Yang N, Li R, Qiu Y, Lukey MJ, Rojas KS, Shen J, Wilson KF, Katt WP, Whittaker GR, Cerione RA. Inhibiting Glutamine Metabolism Blocks Coronavirus Replication in Mammalian Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559756. [PMID: 37808692 PMCID: PMC10557708 DOI: 10.1101/2023.09.27.559756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Developing therapeutic strategies against COVID-19 has gained widespread interest given the likelihood that new viral variants will continue to emerge. Here we describe one potential therapeutic strategy which involves targeting members of the glutaminase family of mitochondrial metabolic enzymes (GLS and GLS2), which catalyze the first step in glutamine metabolism, the hydrolysis of glutamine to glutamate. We show three examples where GLS expression increases during coronavirus infection of host cells, and another in which GLS2 is upregulated. The viruses hijack the metabolic machinery responsible for glutamine metabolism to generate the building blocks for biosynthetic processes and satisfy the bioenergetic requirements demanded by the 'glutamine addiction' of virus-infected host cells. We demonstrate how genetic silencing of glutaminase enzymes reduces coronavirus infection and that newer members of two classes of small molecule allosteric inhibitors targeting these enzymes, designated as SU1, a pan-GLS/GLS2 inhibitor, and UP4, which is specific for GLS, block viral replication in mammalian epithelial cells. Overall, these findings highlight the importance of glutamine metabolism for coronavirus replication in human cells and show that glutaminase inhibitors can block coronavirus infection and thereby may represent a novel class of anti-viral drug candidates. Teaser Inhibitors targeting glutaminase enzymes block coronavirus replication and may represent a new class of anti-viral drugs.
Collapse
|
18
|
Gu B, Pan F, Wang H, Zou Z, Song J, Xing J, Tang X, Zhan Y. Untargeted LC-MS metabolomics reveals the metabolic responses in olive flounder subjected to hirame rhabdovirus infection. Front Immunol 2023; 14:1148740. [PMID: 37711614 PMCID: PMC10498126 DOI: 10.3389/fimmu.2023.1148740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/02/2023] [Indexed: 09/16/2023] Open
Abstract
Hirame novirhabdovirus (HIRRV), which mainly infects the olive flounder (Paralichthys olivaceus), is considered to be one of the most serious viral pathogens threatening the global fish culture industry. However, little is known about the mechanism of host-pathogen interactions at the metabolomic level. In this study, in order to explore the metabolic response of olive flounder to HIRRV infection, liquid chromatography mass spectrometry (LC-MS) was used to detect the changes of endogenous compounds of the olive flounder after HIRRV infection. A total of 954 unique masses were obtained, including 495 metabolites and 459 lipids. Among them, 7 and 173 qualified differential metabolites were identified at 2 days and 7 days post-infection, respectively. Distinct metabolic profiles were observed along with viral infection. At the early stage of infection, only a few metabolites were perturbed. Among them, the level of inosine and carnosine were increased and the potential antiviral ability of these two metabolites was further confirmed by exogenous addition experiment. At the late stage of HIRRV infection, the metabolic profiles changed remarkably. The changes in amino acids and nucleotides especially the 7-methylguanine also accelerated the amplification of viral particles. And the down-regulation of glutathione (GSH) implied an elevated level of ROS (reactive oxygen species) that attenuated the immune system of flounders. HIRRV also induced the accumulation of purine and reduction of pyrimidine, and elevated LPC and LPE levels. The unbalanced purine/pyrimidine and altered lipid profile may be beneficial for the replication and infection of HIRRV at the late stage of infection. These findings provide new insights into the pathogenic mechanism of HIRRV infection in olive flounder.
Collapse
Affiliation(s)
- Bingyu Gu
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Laboratory of Pathology and Immunology of Aquatic Animals, Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, China
| | - Fenghuang Pan
- Laboratory of Pathology and Immunology of Aquatic Animals, Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, China
| | - Hongxiang Wang
- Laboratory of Pathology and Immunology of Aquatic Animals, Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, China
| | - Zhiyi Zou
- Haide College, Ocean University of China, Qingdao, China
| | - Junya Song
- Haide College, Ocean University of China, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, China
| | - Yuanchao Zhan
- College of Marine Life Science, Ocean University of China, Qingdao, China
| |
Collapse
|
19
|
Ming S, Qu S, Wu Y, Wei J, Zhang G, Jiang G, Huang X. COVID-19 Metabolomic-Guided Amino Acid Therapy Protects from Inflammation and Disease Sequelae. Adv Biol (Weinh) 2023; 7:e2200265. [PMID: 36775870 DOI: 10.1002/adbi.202200265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Indexed: 02/14/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has caused a worldwide pandemic since 2019. A metabolic disorder is a contributing factor to deaths from COVID-19. However, the underlying mechanism of metabolic dysfunction in COVID-19 patients and the potential interventions are not elucidated. Here targeted plasma metabolomic is performed, and the metabolite profiles among healthy controls, and asymptomatic, moderate, and severe COVID-19 patients are compared. Among the altered metabolites, arachidonic acid and linolenic acid pathway metabolites are profoundly up-regulated in COVID-19 patients. Arginine biosynthesis, alanine, aspartate, and glutamate metabolism pathways are significantly disturbed in asymptomatic patients. In the comparison of metabolite variances among the groups, higher levels of l-citrulline and l-glutamine are found in asymptomatic carriers and moderate or severe patients at the remission stage. Furthermore, l-citrulline and l-glutamine combination therapy is demonstrated to effectively protect mice from coronavirus infection and endotoxin-induced sepsis, and is observed to efficiently prevent the occurrence of pulmonary fibrosis and central nervous system damage. Collectively, the data reveal the metabolite profile of asymptomatic COVID-19 patients and propose a potential strategy for COVID-19 treatment.
Collapse
Affiliation(s)
- Siqi Ming
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518100, China
| | - Siying Qu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jiayou Wei
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518100, China
| | - Guanmin Jiang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518100, China
| |
Collapse
|
20
|
Peron JPS. Direct and indirect impact of SARS-CoV-2 on the brain. Hum Genet 2023; 142:1317-1326. [PMID: 37004544 PMCID: PMC10066989 DOI: 10.1007/s00439-023-02549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023]
Abstract
Although COVID-19 is mostly a pulmonary disease, it is now well accepted that it can cause a much broader spectrum of signs and symptoms and affect many other organs and tissue. From mild anosmia to severe ischemic stroke, the impact of SARS-CoV-2 on the central nervous system is still a great challenge to scientists and health care practitioners. Besides the acute and severe neurological problems described, as encephalopathies, leptomeningitis, and stroke, after 2 years of pandemic, the chronic impact observed during long-COVID or the post-acute sequelae of COVID-19 (PASC) greatly intrigues scientists worldwide. Strikingly, even asymptomatic, and mild diseased patients may evolve with important neurological and psychiatric symptoms, as confusion, memory loss, cognitive decline, chronic fatigue, associated or not with anxiety and depression. Thus, the knowledge on the correlation between COVID-19 and the central nervous system is of great relevance. In this sense, here we discuss some important mechanisms obtained from in vitro and in vivo investigation regarding how SARS-CoV-2 impacts the brain and its cells and function.
Collapse
Affiliation(s)
- J P S Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, University of Sao Paulo, Av. Prof. Lineu Prestes, 1730 Lab 232. Cidade Universitária, São Paulo, SP, CEP 05508-000, Brazil.
| |
Collapse
|
21
|
Clark SA, Vazquez A, Furiya K, Splattstoesser MK, Bashmail AK, Schwartz H, Russell M, Bhark SJ, Moreno OK, McGovern M, Owsley ER, Nelson TA, Sanchez EL, Delgado T. Rewiring of the Host Cell Metabolome and Lipidome during Lytic Gammaherpesvirus Infection Is Essential for Infectious-Virus Production. J Virol 2023; 97:e0050623. [PMID: 37191529 PMCID: PMC10308918 DOI: 10.1128/jvi.00506-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Oncogenic virus infections are estimated to cause ~15% of all cancers. Two prevalent human oncogenic viruses are members of the gammaherpesvirus family: Epstein-Barr virus (EBV) and Kaposi's sarcoma herpesvirus (KSHV). We use murine herpesvirus 68 (MHV-68), which shares significant homology with KSHV and EBV, as a model system to study gammaherpesvirus lytic replication. Viruses implement distinct metabolic programs to support their life cycle, such as increasing the supply of lipids, amino acids, and nucleotide materials necessary to replicate. Our data define the global changes in the host cell metabolome and lipidome during gammaherpesvirus lytic replication. Our metabolomics analysis found that MHV-68 lytic infection induces glycolysis, glutaminolysis, lipid metabolism, and nucleotide metabolism. We additionally observed an increase in glutamine consumption and glutamine dehydrogenase protein expression. While both glucose and glutamine starvation of host cells decreased viral titers, glutamine starvation led to a greater loss in virion production. Our lipidomics analysis revealed a peak in triacylglycerides early during infection and an increase in free fatty acids and diacylglyceride later in the viral life cycle. Furthermore, we observed an increase in the protein expression of multiple lipogenic enzymes during infection. Interestingly, pharmacological inhibitors of glycolysis or lipogenesis resulted in decreased infectious virus production. Taken together, these results illustrate the global alterations in host cell metabolism during lytic gammaherpesvirus infection, establish essential pathways for viral production, and recommend targeted mechanisms to block viral spread and treat viral induced tumors. IMPORTANCE Viruses are intracellular parasites which lack their own metabolism, so they must hijack host cell metabolic machinery in order to increase the production of energy, proteins, fats, and genetic material necessary to replicate. Using murine herpesvirus 68 (MHV-68) as a model system to understand how similar human gammaherpesviruses cause cancer, we profiled the metabolic changes that occur during lytic MHV-68 infection and replication. We found that MHV-68 infection of host cells increases glucose, glutamine, lipid, and nucleotide metabolic pathways. We also showed inhibition or starvation of glucose, glutamine, or lipid metabolic pathways results in an inhibition of virus production. Ultimately, targeting changes in host cell metabolism due to viral infection can be used to treat gammaherpesvirus-induced cancers and infections in humans.
Collapse
Affiliation(s)
- Sarah A. Clark
- Northwest University, Department of Biology, Kirkland, Washington, USA
| | - Angie Vazquez
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Kelsey Furiya
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | | | | | - Haleigh Schwartz
- Northwest University, Department of Biology, Kirkland, Washington, USA
| | - Makaiya Russell
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Shun-Je Bhark
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Osvaldo K. Moreno
- San Francisco State University, Department of Biology, San Francisco, California, USA
| | - Morgan McGovern
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Eric R. Owsley
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Timothy A. Nelson
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
| | - Erica L. Sanchez
- San Francisco State University, Department of Biology, San Francisco, California, USA
- University of Texas at Dallas, Department of Biological Sciences, Richardson, Texas, USA
| | - Tracie Delgado
- Seattle Pacific University, Department of Biology, Seattle, Washington, USA
- Northwest University, Department of Biology, Kirkland, Washington, USA
| |
Collapse
|
22
|
Vashi Y, Nehru G, Kumar S. Niclosamide inhibits Newcastle disease virus replication in chickens by perturbing the cellular glycolysis. Virology 2023; 585:196-204. [PMID: 37384966 DOI: 10.1016/j.virol.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Newcastle disease virus (NDV), a member of Paramyxoviridae family, is one of the most important pathogens in poultry. To ensure optimal environments for their replication and spread, viruses rely largely on host cellular metabolism. In the present study, we evaluated the small drug molecule niclosamide for its anti-NDV activity. Our study has shown that a sublethal dose of 1 μM niclosamide could drastically reduce NDV replication. The results showed that niclosamide has antiviral activity against NDV infection during in vitro, in ovo and in vivo assays. Pharmacologically inhibiting the glycolytic pathway remarkably reduced NDV RNA synthesis and infectious virion production. Our results suggest that the effect of niclosamide on cellular glycolysis could be the possible reason for the specific anti-NDV effect. This study could help us understand antiviral strategies against similar pathogens and may lead to novel therapeutic approaches through targeted inhibition of specific cellular metabolic pathways.
Collapse
Affiliation(s)
- Yoya Vashi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ganesh Nehru
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
23
|
Pang Y, Li C, Wang Y, Liu J, Su G, Duan C, Fang L, Zhou Y, Xiao S. Porcine reproductive and respiratory syndrome virus infection manipulates central carbon metabolism. Vet Microbiol 2023; 279:109674. [PMID: 36739813 DOI: 10.1016/j.vetmic.2023.109674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The metabolic pathways of central carbon metabolism (CCM), glycolysis and the tricarboxylic acid (TCA) cycle, are important host factors determining the outcome of viral infection. Thus, it is not surprising that viruses easily manipulate CCM for optimized replication. Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has devastated the swine industry worldwide for over 30 years. However, whether PRRSV reprograms CCM is still unclear. In this study, we found that PRRSV infection increased the intensity of cellular uptake of glucose and glutamine, two main carbon sources for mammalian cells. Deprivation of glucose and/or glutamine significantly reduced PRRSV replication; restricted entry of glucose and glutamine into CCM inhibited PRRSV proliferation. We further found that PRRSV infection elevated glycolysis and maintained the TCA cycle flux. Furthermore, preventing the flow of glycolysis or the TCA cycle led to a reduction in PRRSV proliferation. The anaplerotic usage of glutamine in the TCA cycle partially rescued PRRSV growth by replacing glutamine with α-ketoglutarate (α-KG), an intermediate of the TCA cycle. Interestingly, the addition of α-KG in replete medium also promoted PRRSV proliferation. Taken together, these results reveal that PRRSV infection promotes cellular uptake of glucose and glutamine to provide the energy and macromolecules required for PRRSV replication, and optimal PRRSV replication occurs in cells dependent on glycolysis and the TCA cycle.
Collapse
Affiliation(s)
- Yu Pang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chenyu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yuchen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Guanning Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chenrui Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
24
|
Li F, Fu X, Luo X, Lin Q, Liang H, Niu Y, Liu L, Li N. Role of asparagine biosynthesis pathway in Siniperca chuatsi rhabdovirus proliferation. Front Microbiol 2023; 14:1165491. [PMID: 37065159 PMCID: PMC10102668 DOI: 10.3389/fmicb.2023.1165491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Viruses are non-living organisms that rely on host cellular metabolism to complete their life cycle. Siniperca chuatsi rhabdovirus (SCRV) has caused huge economic losses to the Chinese perch (Siniperca chuatsi) industry worldwide. SCRV replication is dependent on the cellular glutamine metabolism, while aspartate metabolism plays an important role in viral proliferation in glutamine deficiency. Herein, we investigated roles of asparagine metabolism in SCRV proliferation. Results showed that SCRV infection upregulated the expression of key enzymes in the aspartate metabolic pathway in CPB cells. And the key enzymes of malate-aspartic acid shuttle pathway upregulated during the virus invasion phase, and key enzymes of the asparagine biosynthesis pathway upregulated during the viral replication and release phase. When asparagine was added to the depleted medium, the SCRV copy number restored to 90% of those in replete medium, showing that asparagine and glutamine completely rescue the replication of SCRV. Moreover, inhibition of the aspartate- malate shuttle pathway and knockdown of the expression of key enzymes in the asparagine biosynthesis pathway significantly reduced SCRV production, indicating that the aspartic acid metabolic pathway was required to the replication and proliferation of SCRV. Above results provided references for elucidating pathogenic mechanism of SCRV by regulation of aspartate metabolism.
Collapse
Affiliation(s)
- Fangying Li
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xiaozhe Fu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xia Luo
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qiang Lin
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hongru Liang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yinjie Niu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lihui Liu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Ningqiu Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- *Correspondence: Ningqiu Li,
| |
Collapse
|
25
|
Wuri N, Gou H, Zhang B, Wang M, Wang S, Zhang W, He H, Fan X, Zhang C, Liu Z, Geri L, Shen H, Zhang J. Lactate is useful for the efficient replication of porcine epidemic diarrhea virus in cell culture. Front Vet Sci 2023; 10:1116695. [PMID: 36861007 PMCID: PMC9968725 DOI: 10.3389/fvets.2023.1116695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a deadly pathogen infecting pig herds, and has caused significant economic losses around the world. Vaccination remains the most effective way of keeping the PEDV epidemic under control. Previous studies have shown that the host metabolism has a significant impact on viral replication. In this study, we have demonstrated that two substrates of metabolic pathway, glucose and glutamine, play a key role in PEDV replication. Interestingly, the boosting effect of these compounds toward viral replication appeared to be dose-independent. Furthermore, we found that lactate, which is a downstream metabolite, promotes PEDV replication, even when added in excess to the cell culture medium. Moreover, the role of lactate in promoting PEDV was independent of the genotype of PEDV and the multiplicity of infection (MOI). Our findings suggest that lactate is a promising candidate for use as a cell culture additive for promoting PEDV replication. It could improve the efficiency of vaccine production and provide the basis for designing novel antiviral strategies.
Collapse
Affiliation(s)
- Nile Wuri
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Hongchao Gou
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China
| | - Bin Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Menglu Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Songqi Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weixiao Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haiyan He
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Xuelei Fan
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chunhong Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China
| | - Zhicheng Liu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China
| | - Letu Geri
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Haiyan Shen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China,Haiyan Shen ✉
| | - Jianfeng Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China,*Correspondence: Jianfeng Zhang ✉
| |
Collapse
|
26
|
Ahmed D, Al-Daraawi M, Cassol E. Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. J Leukoc Biol 2023; 113:164-190. [PMID: 36822175 DOI: 10.1093/jleuko/qiac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies over the last decade have identified intimate links between cellular metabolism and macrophage function. Metabolism has been shown to both drive and regulate macrophage function by producing bioenergetic and biosynthetic precursors as well as metabolites (and other bioactive molecules) that regulate gene expression and signal transduction. Many studies have focused on lipopolysaccharide-induced reprogramming, assuming that it is representative of most inflammatory responses. However, emerging evidence suggests that diverse pathogen-associated molecular patterns (PAMPs) are associated with unique metabolic profiles, which may drive pathogen specific immune responses. Further, these metabolic pathways and processes may act as a rheostat to regulate the magnitude of an inflammatory response based on the biochemical features of the local microenvironment. In this review, we will discuss recent work examining the relationship between cellular metabolism and macrophage responses to viral PAMPs and describe how these processes differ from lipopolysaccharide-associated responses. We will also discuss how an improved understanding of the specificity of these processes may offer new insights to fine-tune macrophage function during viral infections or when using viral PAMPs as therapeutics.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Malak Al-Daraawi
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
27
|
Albert M, Vázquez J, Falcón-Pérez JM, Balboa MA, Liesa M, Balsinde J, Guerra S. ISG15 Is a Novel Regulator of Lipid Metabolism during Vaccinia Virus Infection. Microbiol Spectr 2022; 10:e0389322. [PMID: 36453897 PMCID: PMC9769738 DOI: 10.1128/spectrum.03893-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Interferon-stimulated gene 15 (ISG15) is a 15-kDa ubiquitin-like modifier that binds to target proteins in a process termed ISGylation. ISG15, first described as an antiviral molecule against many viruses, participates in numerous cellular processes, from immune modulation to the regulation of genome stability. Interestingly, the role of ISG15 as a regulator of cell metabolism has recently gained strength. We previously described ISG15 as a regulator of mitochondrial functions in bone marrow-derived macrophages (BMDMs) in the context of Vaccinia virus (VACV) infection. Here, we demonstrate that ISG15 regulates lipid metabolism in BMDMs and that ISG15 is necessary to modulate the impact of VACV infection on lipid metabolism. We show that Isg15-/- BMDMs demonstrate alterations in the levels of several key proteins of lipid metabolism that result in differences in the lipid profile compared with Isg15+/+ (wild-type [WT]) BMDMs. Specifically, Isg15-/- BMDMs present reduced levels of neutral lipids, reflected by decreased lipid droplet number. These alterations are linked to increased levels of lipases and are independent of enhanced fatty acid oxidation (FAO). Moreover, we demonstrate that VACV causes a dysregulation in the proteomes of BMDMs and alterations in the lipid content of these cells, which appear exacerbated in Isg15-/- BMDMs. Such metabolic changes are likely caused by increased expression of the metabolic regulators peroxisome proliferator-activated receptor-γ (PPARγ) and PPARγ coactivator-1α (PGC-1α). In summary, our results highlight that ISG15 controls BMDM lipid metabolism during viral infections, suggesting that ISG15 is an important host factor to restrain VACV impact on cell metabolism. IMPORTANCE The functions of ISG15 are continuously expanding, and growing evidence supports its role as a relevant modulator of cell metabolism. In this work, we highlight how the absence of ISG15 impacts macrophage lipid metabolism in the context of viral infections and how poxviruses modulate metabolism to ensure successful replication. Our results open the door to new advances in the comprehension of macrophage immunometabolism and the interaction between VACV and the host.
Collapse
Affiliation(s)
- Manuel Albert
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | | | - María A. Balboa
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Biología y Genética Molecular, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc Liesa
- Department of Medicine, Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Institut de Biologia Molecular de Barcelona, IBMB, CSIC, Barcelona, Spain
| | - Jesús Balsinde
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Biología y Genética Molecular, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
28
|
Qian Y, Yang Y, Qing W, Li C, Kong M, Kang Z, Zuo Y, Wu J, Yu M, Yang Z. Coxsackievirus B3 infection induces glycolysis to facilitate viral replication. Front Microbiol 2022; 13:962766. [PMID: 36569097 PMCID: PMC9780277 DOI: 10.3389/fmicb.2022.962766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is a leading cause of viral myocarditis, but no effective treatment strategy against CVB3 is available. Viruses lack an inherent metabolic system and thus depend on host cellular metabolism for their benefit. In this study, we observed that CVB3 enhanced glycolysis in H9c2 rat cardiomyocytes and HL-1 mouse cardiomyocytes. Therefore, three key glycolytic enzymes, namely, hexokinase 2 (HK2), muscle phosphofructokinase (PFKM), and pyruvate kinase M2 (PKM2), were measured in CVB3-infected H9c2 and HL-1 cells. Expression levels of HK2 and PFKM, but not PKM2, were increased in CVB3-infected H9c2 cells. All three key glycolytic enzymes showed elevated expression in CVB3-infected HL-1 cells. To further investigate this, we used 2 deoxyglucose, sodium citrate, and shikonin as glycolysis inhibitors for HK2, PFKM, and PKM2, respectively. Glycolysis inhibitors significantly reduced CVB3 replication, while the glycolysis enhancer dramatically promoted it. In addition, glycolysis inhibitors decreased autophagy and accelerated autophagosome degradation. The autophagy inducer eliminated partial inhibition effects of glycolysis inhibitors on CVB3 replication. These results demonstrate that CVB3 infection enhances glycolysis and thus benefits viral replication.
Collapse
Affiliation(s)
- Yujie Qian
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yeyi Yang
- Department of Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wenxiang Qing
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chunyun Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Min Kong
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhijuan Kang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuanbojiao Zuo
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiping Wu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Meng Yu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zuocheng Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Zuocheng Yang
| |
Collapse
|
29
|
Liu P, Tang N, Meng C, Yin Y, Qiu X, Tan L, Sun Y, Song C, Liu W, Liao Y, Lin SH, Ding C. SLC1A3 facilitates Newcastle disease virus replication by regulating glutamine catabolism. Virulence 2022; 13:1407-1422. [PMID: 35993169 PMCID: PMC9415643 DOI: 10.1080/21505594.2022.2112821] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
As obligate intracellular parasites, viruses rely completely on host metabolic machinery and hijack host nutrients for viral replication. Newcastle disease virus (NDV) causes acute, highly contagious avian disease and functions as an oncolytic agent. NDV efficiently replicates in both chicken and tumour cells. However, how NDV reprograms host cellular metabolism for its efficient replication is still ill-defined. We previously identified a significantly upregulated glutamate transporter gene, solute carrier family 1 member 3 (SLC1A3), during NDV infection via transcriptome analysis. To investigate the potential role of SLC1A3 during NDV infection, we first confirmed the marked upregulation of SLC1A3 in NDV-infected DF-1 or A549 cells through p53 and NF-κB pathways. Knockdown of SLC1A3 inhibited NDV infection. Western blot analysis further confirmed that glutamine, but not glutamate, asparagine, or aspartate, was required for NDV replication. Metabolic flux data showed that NDV promotes the decomposition of glutamine into the tricarboxylic acid cycle. Importantly, the level of glutamate and glutaminolysis were reduced by SLC1A3 knockdown, indicating that SLC1A3 propelled glutaminolysis for glutamate utilization and NDV replication in host cells. Taken together, our data identify that SLC1A3 serves as an important regulator for glutamine metabolism and is hijacked by NDV for its efficient replication during NDV infection. These results improve our understanding of the interaction between NDV and host cellular metabolism and lay the foundation for further investigation of efficient vaccines.
Collapse
Affiliation(s)
- Panrao Liu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Ning Tang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China.,College of Animal Science and Technology, Guangxi University, Nanning, P.R. China
| | - Chunchun Meng
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Xusheng Qiu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Lei Tan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Cuiping Song
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Weiwei Liu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Ying Liao
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Shu-Hai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P.R. China
| |
Collapse
|
30
|
Zandi M, Shokri S, Mahmoudvand S, Hosseinzadeh Adli A, Mohammadi R, Haddadi A. Interplay between cellular metabolism and DNA viruses. J Med Virol 2022; 94:5163-5173. [PMID: 35869415 DOI: 10.1002/jmv.28018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
Viruses as intracellular pathogens take over the host metabolism and reprogram to facilitate optimal virus production. DNA viruses can cause alterations in several metabolic pathways, including aerobic glycolysis also known as the Warburg effect, pentose phosphate pathway activation, and amino acid catabolism such as glutaminolysis, nucleotide biosynthesis, lipid metabolism, and amino acid biosynthesis. The available energy for productive infection can be increased in infected cells via modification of different carbon source utilization. This review discusses the metabolic alterations of the DNA viruses that will be the basis for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Shokri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahab Mahmoudvand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Hosseinzadeh Adli
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Mohammadi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Azita Haddadi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
31
|
Screening and analysis of immune-related genes of Aedes aegypti infected with DENV2. Acta Trop 2022; 236:106698. [PMID: 36162456 DOI: 10.1016/j.actatropica.2022.106698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 01/08/2023]
Abstract
Dengue virus type Ⅱ (DENV2) is a primary serotype responsible for the dengue fever epidemic, and Aedes aegypti is the main DENV2 vector. Understanding the Aedes aegypti immune mechanism against DENV2 is the basis for research on immune blockade in mosquitoes. Some preliminary studies lack validation in the literature, so this study was performed to further study and validate the potential target genes to provide a further basis for screening key target genes. We screened 51 genes possibly related to Aedes aegypti infection and immunity from the literature for further verification. First, bioinformatic methods such as GO, KEGG and PPI analysis were used, and then RT-qPCR was used to detect the changes in mRNA expression in the midguts and salivary glands of Aedes aegypti infected with DENV2.Bioinformatic analysis showed that mostly genes of the glucose metabolism pathway and myoprotein were influenced. In salivary glands, the Gst (xa) and Toll (xb) expression levels were significantly correlated with DENV2 load (y, lg[DENV2 RNA copies]), y = -3436xa+0.2287xb+3.8194 (adjusted R2 = 0.5563, F = 9.148, PF = 0.0045). In midguts, DENV2 load was significantly correlated with the relative Fba(R2 = 0.4381, t = 2.497, p < 0.05, df = 8), UcCr(R2 = 0.4072, t = 2.344, p < 0.05, df = 8) and Gbps1(R2 = 0.4678, t = 2.652, p < 0.05, df = 8) expression levels, but multiple regression did not yield significant results. This study shows that genes related to glucose metabolism and muscle proteins contribute to the interaction between Aedes aegypti and dengue virus. It was confirmed that SAAG-4, histone H4, endoplasmin, catalase and other genes are involved in the regulation of DENV2 infection in Aedes aegypti. It was revealed that GST and Toll in salivary glands may have antagonistic effects on the regulation of DENV2 load. Fba, UcCr and Gbps1 in the midgut may increase DENV2 load. These study results further condensed the potential target gene range of the Aedes aegypti immune mechanism against DENV2 infection and provided basic information for research on the Aedes aegypti in vivo blockade strategy against DENV2.
Collapse
|
32
|
Li X, Tu B, Zhang X, Xu W, Chen J, Xu B, Zheng J, Hao P, Cole R, Jalloh MB, Lu Q, Li C, Sevalie S, Liu W, Chen W. Dysregulation of glutamine/glutamate metabolism in COVID-19 patients: A metabolism study in African population and mini meta-analysis. J Med Virol 2022; 95:e28150. [PMID: 36112136 PMCID: PMC9538869 DOI: 10.1002/jmv.28150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023]
Abstract
Coronavirus disease 2019 (COVID-19) remains a serious global threat. The metabolic analysis had been successfully applied in the efforts to uncover the pathological mechanisms and biomarkers of disease severity. Here we performed a quasi-targeted metabolomic analysis on 56 COVID-19 patients from Sierra Leone in western Africa, revealing the metabolomic profiles and the association with disease severity, which was confirmed by the targeted metabolomic analysis of 19 pairs of COVID-19 patients. A meta-analysis was performed on published metabolic data of COVID-19 to verify our findings. Of the 596 identified metabolites, 58 showed significant differences between severe and nonsevere groups. The pathway enrichment of these differential metabolites revealed glutamine and glutamate metabolism as the most significant metabolic pathway (Impact = 0.5; -log10P = 1.959). Further targeted metabolic analysis revealed six metabolites with significant intergroup differences, with glutamine/glutamate ratio significantly associated with severe disease, negatively correlated with 10 clinical parameters and positively correlated with SPO2 (rs = 0.442, p = 0.005). Mini meta-analysis indicated elevated glutamate was related to increased risk of COVID-19 infection (pooled odd ratio [OR] = 2.02; 95% confidence interval [CI]: 1.17-3.50) and severe COVID-19 (pooled OR = 2.28; 95% CI: 1.14-4.56). In contrast, elevated glutamine related to decreased risk of infection and severe COVID-19, the pooled OR were 0.30 (95% CI: 0.20-0.44), and 0.44 (95% CI: 0.19-0.98), respectively. Glutamine and glutamate metabolism are associated with COVID-19 severity in multiple populations, which might confer potential therapeutic target of COVID-19, especially for severe patients.
Collapse
Affiliation(s)
- Xiao‐kun Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Bo Tu
- Fifth Medical Center of Chinese PLA General HospitalBeijing100039China
| | - Xiao‐Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Wen Xu
- Fifth Medical Center of Chinese PLA General HospitalBeijing100039China
| | - Jia‐hao Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Biao Xu
- Fifth Medical Center of Chinese PLA General HospitalBeijing100039China
| | - Jun‐Jie Zheng
- Fifth Medical Center of Chinese PLA General HospitalBeijing100039China
| | - Peng‐fei Hao
- Department of Laboratorial Science and Technology School of Public HealthPeking University
| | - Reginald Cole
- Joint Medical Unit, Republic of Sierra Leone Armed Forces34 Military Hospital Wilberforce FreetownFreetownSierra Leone
| | - Mohamed Boie Jalloh
- Joint Medical Unit, Republic of Sierra Leone Armed Forces34 Military Hospital Wilberforce FreetownFreetownSierra Leone
| | - Qing‐bin Lu
- Department of Laboratorial Science and Technology School of Public HealthPeking University
| | - Chang Li
- Department of Laboratorial Science and Technology School of Public HealthPeking University
| | - Stephen Sevalie
- Joint Medical Unit, Republic of Sierra Leone Armed Forces34 Military Hospital Wilberforce FreetownFreetownSierra Leone
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Wei‐wei Chen
- Fifth Medical Center of Chinese PLA General HospitalBeijing100039China
| |
Collapse
|
33
|
Yuen TTT, Chan JFW, Yan B, Shum CCY, Liu Y, Shuai H, Hou Y, Huang X, Hu B, Chai Y, Yoon C, Zhu T, Liu H, Shi J, Zhang J, Cai JP, Zhang AJ, Zhou J, Yin F, Yuan S, Zhang BZ, Chu H. Targeting ACLY efficiently inhibits SARS-CoV-2 replication. Int J Biol Sci 2022; 18:4714-4730. [PMID: 35874959 PMCID: PMC9305265 DOI: 10.7150/ijbs.72709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the biggest public health challenge the world has witnessed in the past decades. SARS-CoV-2 undergoes constant mutations and new variants of concerns (VOCs) with altered transmissibility, virulence, and/or susceptibility to vaccines and therapeutics continue to emerge. Detailed analysis of host factors involved in virus replication may help to identify novel treatment targets. In this study, we dissected the metabolome derived from COVID-19 patients to identify key host factors that are required for efficient SARS-CoV-2 replication. Through a series of metabolomic analyses, in vitro, and in vivo investigations, we identified ATP citrate lyase (ACLY) as a novel host factor required for efficient replication of SARS-CoV-2 wild-type and variants, including Omicron. ACLY should be further explored as a novel intervention target for COVID-19.
Collapse
Affiliation(s)
- Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Guangzhou Laboratory, Guangdong Province, China.,Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, People's Republic of China and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Bingpeng Yan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Cynthia Cheuk-Ying Shum
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Chaemin Yoon
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Tianrenzheng Zhu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Huan Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Jinjin Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Feifei Yin
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, People's Republic of China and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen, People's Republic of China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
34
|
de Oliveira LG, de Souza Angelo Y, Yamamoto P, Carregari VC, Crunfli F, Reis-de-Oliveira G, Costa L, Vendramini PH, Almeida ÉD, Dos Santos NB, Firmino EM, Paiva IM, Almeida GM, Sebollela A, Polonio CM, Zanluqui NG, de Oliveira MG, da Silva P, Gastão Davanzo G, Ayupe MC, Loureiro Salgado C, de Souza Filho AF, de Araújo MV, Silva-Pereira TT, de Almeida Campos AC, Góes LGB, Dos Passos Cunha M, Caldini EG, Lima MRDI, Fonseca DM, de Sá Guimarães AM, Minoprio PC, Munhoz CD, Mori CMC, Moraes-Vieira PM, Cunha TM, Martins-de-Souza D, Peron JPS. SARS-CoV-2 Infection Impacts Carbon Metabolism and Depends on Glutamine for Replication in Syrian Hamster Astrocytes. J Neurochem 2022; 163:113-132. [PMID: 35880385 PMCID: PMC9350388 DOI: 10.1111/jnc.15679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 01/08/2023]
Abstract
COVID‐19 causes more than million deaths worldwide. Although much is understood about the immunopathogenesis of the lung disease, a lot remains to be known on the neurological impact of COVID‐19. Here we evaluated immunometabolic changes using astrocytes in vitro and dissected brain areas of SARS‐CoV‐2 infected Syrian hamsters. We show that SARS‐CoV‐2 alters proteins of carbon metabolism, glycolysis, and synaptic transmission, many of which are altered in neurological diseases. Real‐time respirometry evidenced hyperactivation of glycolysis, further confirmed by metabolomics, with intense consumption of glucose, pyruvate, glutamine, and alpha ketoglutarate. Consistent with glutamine reduction, the blockade of glutaminolysis impaired viral replication and inflammatory response in vitro. SARS‐CoV‐2 was detected in vivo in hippocampus, cortex, and olfactory bulb of intranasally infected animals. Our data evidence an imbalance in important metabolic molecules and neurotransmitters in infected astrocytes. We suggest this may correlate with the neurological impairment observed during COVID‐19, as memory loss, confusion, and cognitive impairment.
Collapse
Affiliation(s)
- Lilian Gomes de Oliveira
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Yan de Souza Angelo
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Pedro Yamamoto
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Victor Corasolla Carregari
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lícia Costa
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Pedro Henrique Vendramini
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Érica Duque Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Barreto Dos Santos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Egidi Mayara Firmino
- Center for Research in Inflammatory Diseases (CRID); Department of Pharmacology - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora Marques Paiva
- Center for Research in Inflammatory Diseases (CRID); Department of Pharmacology - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Glaucia Maria Almeida
- Department of Biocehmistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Adriano Sebollela
- Department of Biocehmistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina Manganeli Polonio
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Nagela Ghabdan Zanluqui
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Marília Garcia de Oliveira
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil
| | - Patrick da Silva
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Gustavo Gastão Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marina Caçador Ayupe
- Laboratory of Mucosal Immunology, Department of Immunology - Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Caio Loureiro Salgado
- Laboratory of Mucosal Immunology, Department of Immunology - Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Antônio Francisco de Souza Filho
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo Valdemir de Araújo
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Taiana Tainá Silva-Pereira
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | - Elia Garcia Caldini
- Laboratory of Cellular Biology (LIM 59), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - Denise Morais Fonseca
- Laboratory of Mucosal Immunology, Department of Immunology - Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Ana Márcia de Sá Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cláudia Madalena Cabrera Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, Brazil
| | - Pedro Manoel Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases (CRID); Department of Pharmacology - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, SP, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, SP, Brazil
| | - Jean Pierre Schatzmann Peron
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil.,Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
35
|
Kim J, Cho M, Lim J, Choi H, Hong S. Pathogenic Mechanism of a Highly Virulent Infectious Hematopoietic Necrosis Virus in Head Kidney of Rainbow Trout (Oncorhynchus mykiss) Analyzed by RNA-Seq Transcriptome Profiling. Viruses 2022; 14:v14050859. [PMID: 35632602 PMCID: PMC9143916 DOI: 10.3390/v14050859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a pathogen that causes high rates of mortality in salmonid fishes. Therefore, an RNA-seq-based transcriptome analysis was performed in the head kidney of rainbow trout infected with a highly virulent IHNV strain to understand the pathogenesis of and defense strategies for IHNV infection in rainbow trout. The results showed that the numbers of DEGs were 618, 2626, and 774 (control vs. IHNV) on days 1, 3, and 5, respectively. Furthermore, the enrichment analysis of gene ontology (GO) annotations to classify DEGs showed that GO terms considerably associated with DEGs were gluconeogenesis, inflammatory response, and cell adhesion in the Biological Process (BP) category, apical plasma membrane, extracellular matrix (ECM) in the Cellular Component category, and transporter activity, integrin binding, and protein homodimerization activity in the Molecular Function category, on days 1, 3, and 5, respectively. Notably, GO terms in the BP category, including the negative regulation of type I interferon production and positive regulation of interleukin-1β secretion, were commonly identified at all time points. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, complement and coagulation cascades were commonly identified at all time points. Importantly, the widely recognized GO terms and KEGG pathways extensively linked to DEGs were related to energy metabolism on day 1, the immune response on day 3, and cell proliferation on day 5. Furthermore, protein–protein interaction networks and centrality analysis showed that the metabolism and signaling transduction pathways were majorly upregulated. Conclusively, the virulent IHNV infection drives pathogenesis by activating the metabolic energy pathway for energy use for viral replication, facilitating necrosis through autophagy, and causing a shutoff response of the host immune system through the downregulation of type I IFN at the initial stage of infection.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung 25457, Korea; (J.K.); (J.L.)
| | - Miyoung Cho
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, Korea; (M.C.); (H.C.)
| | - Jongwon Lim
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung 25457, Korea; (J.K.); (J.L.)
| | - Hyeseong Choi
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, Korea; (M.C.); (H.C.)
| | - Suhee Hong
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung 25457, Korea; (J.K.); (J.L.)
- Correspondence: ; Tel.: +82-33-640-2852
| |
Collapse
|
36
|
Guo X, Zheng Q, Pan Z, Huang Y, Huang X, Qin Q. Singapore Grouper Iridovirus Induces Glucose Metabolism in Infected Cells by Activation of Mammalian Target of Rapamycin Signaling. Front Microbiol 2022; 13:827818. [PMID: 35432224 PMCID: PMC9006996 DOI: 10.3389/fmicb.2022.827818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Singapore grouper iridovirus (SGIV), a member of the Iridoviridae family, is an important marine cultured fish pathogen worldwide. Our previous studies have demonstrated that lipid metabolism was essential for SGIV entry and replication, but the roles of glucose metabolism during SGIV infection still remains largely unknown. In this study, we found that the transcription levels of key enzymes involved in glycolysis were regulated in varying degrees during SGIV infection based on the transcriptomic analysis. Quantitative PCR and western blot analysis also indicated that the expression of both glucose transporters (GLUT1 and GLUT2) and the enzymes of glucose metabolism (hexokinase 2, HK2 and pyruvate dehydrogenase complex, PDHX) were upregulated during SGIV infection in vivo or in vitro, suggesting that glycolysis might be involved in SGIV infection. Exogenous glucose supplementation promoted the expression of viral genes and infectious virion production, while glutamine had no effect on SGIV infection, indicating that glucose was required for SGIV replication. Consistently, pharmacological inhibition of glycolysis dramatically reduced the protein synthesis of SGIV major capsid protein (MCP) and infectious virion production, and promotion of glycolysis significantly increased SGIV infection. Furthermore, knockdown of HK2, PDHX, or GLUT1 by siRNA decreased the transcription and protein synthesis of SGIV MCP and suppressed viral replication, indicating that those enzymes exerted essential roles in SGIV replication. In addition, inhibition of mTOR activity in SGIV-infected cells effectively reduced the expression of glycolysis key enzymes, including HK2, PDHX, GLUT1, and GLUT2, and finally inhibited SGIV replication, suggesting that mTOR was involved in SGIV-induced glycolysis. Thus, our results not only provided new insights into the mechanism of how SGIV infection affects host cell glycolysis, but also contributed to further understanding of the iridovirus pathogenesis.
Collapse
Affiliation(s)
- Xixi Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qi Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zanbin Pan
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Youhua Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaohong Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
37
|
Mandarin Fish (Siniperca chuatsi) p53 Regulates Glutaminolysis Induced by Virus via the p53/miR145-5p/c-Myc Pathway in Chinese Perch Brain Cells. Microbiol Spectr 2022; 10:e0272721. [PMID: 35286150 PMCID: PMC9045281 DOI: 10.1128/spectrum.02727-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
p53, as an important tumor suppressor protein, has recently been implicated in host antiviral defense. The present study found that the expression of mandarin fish (Siniperca chuatsi) p53 (Sc-p53) was negatively associated with infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdovirus (SCRV) proliferation as well as the expression of glutaminase 1 (GLS1) and glutaminolysis pathway-related enzymes glutamate dehydrogenase (GDH) and isocitrate dehydrogenase 2 (IDH2). This indicated that Sc-p53 inhibited the replication and proliferation of ISKNV and SCRV by negatively regulating the glutaminolysis pathway. Moreover, it was confirmed that miR145-5p could inhibit c-Myc expression by targeting the 3′ untranslated region (UTR). Sc-p53 could bind to the miR145-5p promoter region to promote its expression and to further inhibit the expression of c-Myc. The expression of c-Myc was proved to be positively correlated with the expression of GLS1 as well. All these suggested a negative relationship between the Sc-p53/miR145-5p/c-Myc pathway and GLS1 expression and glutaminolysis. However, it was found that after ISKNV and SCRV infection, the expressions of Sc-p53, miR145-5p, c-Myc, and GLS1 were all significantly upregulated, which did not match the pattern in normal cells. Based on the results, it was suggested that ISKNV and SCRV infection altered the Sc-p53/miR145-5p/c-Myc pathway. All of above results will provide potential targets for the development of new therapeutic strategies against ISKNV and SCRV. IMPORTANCE Infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdovirus (SCRV) as major causative agents have caused a serious threat to the mandarin fish farming industry (J.-J. Tao, J.-F. Gui, and Q.-Y. Zhang, Aquaculture 262:1–9, 2007, https://doi.org/10.1016/j.aquaculture.2006.09.030). Viruses have evolved the strategy to shape host-cell metabolism for their replication (S. K. Thaker, J. Ch’ng, and H. R. Christofk, BMC Biol 17:59, 2019, https://doi.org/10.1186/s12915-019-0678-9). Our previous studies showed that ISKNV replication induced glutamine metabolism reprogramming and that glutaminolysis was required for efficient replication of ISKNV and SCRV. In the present study, the mechanistic link between the p53/miR145-5p/c-Myc pathway and glutaminolysis in the Chinese perch brain (CPB) cells was provided, which will provide novel insights into ISKNV and SCRV pathogenesis and antiviral treatment strategies.
Collapse
|
38
|
The PI3K/AKT Pathway and PTEN Gene Are Involved in “Tree-Top Disease” of Lymantria dispar. Genes (Basel) 2022; 13:genes13020247. [PMID: 35205292 PMCID: PMC8871656 DOI: 10.3390/genes13020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Nucleopolyhedrovirus (NPV) can alter its host behaviour such that infected larvae hang at the top of trees before their death. This phenomenon was firstly described by Hofmann in 1891 and named as “tree-top disease”. Subsequent studies have described effects during the infection proceedings as NPVs manipulate the host to avoid the immune response, cross defensive barriers and regulate hormones. In this study, we demonstrate that the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway is involved in host manipulation by Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV). Particularly at the late stage of infection, a multifunctional dephosphorylase in the PI3K/AKT signaling pathway is dynamically upregulated, namely, the phosphatidylinositol-3, 4, 5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase (PTEN) gene. The biological assays of PTEN gene knockdown showed that an increase in PTEN gene expression was necessary for the infected Lymantria dispar larvae’s terminal climbing behavior, death postponement and virion production. The results imply that the PI3K/AKT signaling pathway and PTEN gene might play an essential role in “tree-top disease” induced by LdMNPV.
Collapse
|
39
|
Tsai CH, Chuang YC, Lu YH, Lin CY, Tang CK, Wei SC, Wu YL. Carbohydrate metabolism is a determinant for the host specificity of baculovirus infections. iScience 2022; 25:103648. [PMID: 35028533 PMCID: PMC8741431 DOI: 10.1016/j.isci.2021.103648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/14/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
Baculoviruses Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV) have highly similar genome sequences but exhibit no overlap in their host range. After baculovirus infects nonpermissive larvae (e.g., AcMNPV infecting B. mori or BmNPV infecting Spodoptera litura), we found that stored carbohydrates, including hemolymph trehalose and fat body glycogen, are rapidly transformed into glucose; enzymes involved in glycolysis and the TCA cycle are upregulated and produce more ATP; adenosine signaling that regulates glycolytic activity is also increased. Subsequently, phagocytosis in cellular immunity and the expression of genes involved in humoral immunity increase significantly. Moreover, inhibiting glycolysis and the expression of gloverins in nonpermissive hosts increased baculovirus infectivity, indicating that the stimulated energy production is designed to support the immune response against infection. Our study highlights that alteration of the host's carbohydrate metabolism is an important factor determining the host specificity of baculoviruses, in addition to viral factors. Nonpermissive infections by AcMNPV and BmNPV alter host carbohydrate metabolism Increased carbohydrate metabolism produces energy to launch immune responses Immune responses including antimicrobial peptide production inhibit virus infection Host metabolic alterations affect the determination of virus's host specificity
Collapse
Affiliation(s)
- Chih-Hsuan Tsai
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Yi-Chi Chuang
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Yun-Heng Lu
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Chia-Yang Lin
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Cheng-Kang Tang
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Sung-Chan Wei
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, 27 Lane 113, Roosevelt Road Sec. 4, Taipei 106, Taiwan
| |
Collapse
|
40
|
African swine fever virus regulates host energy and amino acid metabolism to promote viral replication. J Virol 2021; 96:e0191921. [PMID: 34908441 DOI: 10.1128/jvi.01919-21] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African swine fever is one of the most serious viral diseases caused by African swine fever virus (ASFV). The metabolic changes induced by ASFV infection remain unknown. Here, PAMs infected with ASFV was analyzed by ultra-high-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) in combination with multivariate statistical analysis. A total of 90 metabolites were significantly changed after ASFV infection, and most of them belong to amino acids and TCA cycle intermediates. ASFV infection induced increase of most of amino acids in host during the early stages of infection, and amino acids decreased in the late stages of infection. ASFV infection did not significantly affected glycolysis pathway, whereas it induced the increase of citrate, succinate, α-ketoglutarate, and oxaloacetate levels in the TCA cycle, suggesting that ASFV infection promoted TCA cycle. The activity of aspartate aminotransferase and glutamate production were significantly elevated in ASFV-infected cells and pigs, resulting in reversible transition between TCA cycle and amino acids synthesis. Aspartate, glutamate, and TCA cycle were essential for ASFV replication. In addition, ASFV infection induced an increase in lactate level using lactate dehydrogenase, which led to low expression of IFN-β and increased of ASFV replication. Our data, for the first time, indicated that ASFV infection controls IFN-β production through RIG-I-mediated signaling pathways. These data identified a novel mechanism evolved by ASFV to inhibit host innate immune responses, and will provide insights for development of new preventive or therapeutic strategies targeting the altered metabolic pathways. IMPORTANCE In order to promote viral replication, viruses often cause severe immunosuppression and seize organelles to synthesize a large number of metabolites required for self-replication. African swine fever virus (ASFV) has developed many strategies to evade host innate immune responses. However, the impact of ASFV infection on host cellular metabolism remains unknown. Here, for the first time, we analyzed the metabolomic profiles of ASFV-infected PAMs cells. ASFV infection increased host TCA cycle and amino acids metabolism. Aspartate, glutamate, and TCA cycle promoted ASFV replication. ASFV infection also induced the increase of lactate production to inhibit innate immune responses for self-replication. This study identified novel immune evasion mechanisms utilized by ASFV and provided viewpoints on ASFV-host interactions, which is critical for guiding the design of new prevention strategies against ASFV targeting the altered metabolic pathways.
Collapse
|
41
|
Wang G, Xu D, Guo D, Zhang Y, Mai X, Zhang B, Cao H, Zhang S. Unraveling the innate immune responses of Bombyx mori hemolymph, fat body, and midgut to Bombyx mori nucleopolyhedrovirus oral infection by metabolomic analysis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21848. [PMID: 34676595 DOI: 10.1002/arch.21848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) infection causes a series of physiological and pathological changes in Bombyx mori (B. mori). Here, a metabolomic study of the innate immunity organs including hemolymph, fat body, and midgut of the silkworm strain Dazao following BmNPV challenge was conducted to reveal the metabolic variations in B. mori. Compared to the control, 4964 and 4942 features with 4077 and 4327 high-quality features were generated under positive and negative modes, respectively, from BmNPV-infected larvae. The principal component analysis and supervised learning method using partial least squares discrimination analysis demonstrated good analytical stability and experimental reproducibility of the metabolic profiles. Based on database annotations, a total of 296, 108, and 215 differential expressed metabolites (DEMs) were identified from BmNPV-infected group of hemolymph, fat body, and midgut, respectively, which were all mainly grouped into carboxylic acids and derivatives, fatty acyls, and glycerophospholipids. Kyoto Encyclopedia of Genes and Genomes Database enrichment analysis of the DEMs showed that amino acid metabolism was increased at 24 h after BmNPV infection. BmNPV induction was adopted to significantly alter a series of immune-related pathways including phospholipase D signaling pathway, FoxO signaling pathway, metabolism of xenobiotics by cytochrome P450, melanogenesis, membrane transport, carbohydrate metabolism, and lipid metabolism. The different levels of expression of several DEMs including l-glutamate, naphthalene, 3-succinoylpyridine 1-acyl-sn-glycerol 3-phosphate, and l-tyrosine which were involved in those pathways exhibited the immune responses of B. mori to BmNPV infection. Our findings are valuable for a better understanding of the antiviral mechanism of B. mori underlying the interaction between the silkworm and BmNPV.
Collapse
Affiliation(s)
- Guobao Wang
- Department of Sericulture, College of Biological and Agricultural Engineering, Weifang University, Weifang, China
| | - Dandan Xu
- Department of Sericulture, College of Biological and Agricultural Engineering, Weifang University, Weifang, China
| | - Dingge Guo
- Department of Sericulture, College of Biological and Agricultural Engineering, Weifang University, Weifang, China
| | - Yuzhuo Zhang
- Department of Sericulture, College of Biological and Agricultural Engineering, Weifang University, Weifang, China
| | - Xiaoxi Mai
- Department of Sericulture, College of Biological and Agricultural Engineering, Weifang University, Weifang, China
| | - Baoren Zhang
- Department of Sericulture, College of Biological and Agricultural Engineering, Weifang University, Weifang, China
| | - Hui Cao
- Department of Sericulture, College of Biological and Agricultural Engineering, Weifang University, Weifang, China
| | - Shengxiang Zhang
- Department of Sericulture, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
42
|
Stewart CA, Gay CM, Ramkumar K, Cargill KR, Cardnell RJ, Nilsson MB, Heeke S, Park EM, Kundu ST, Diao L, Wang Q, Shen L, Xi Y, Zhang B, Della Corte CM, Fan Y, Kundu K, Gao B, Avila K, Pickering CR, Johnson FM, Zhang J, Kadara H, Minna JD, Gibbons DL, Wang J, Heymach JV, Byers LA. Lung Cancer Models Reveal Severe Acute Respiratory Syndrome Coronavirus 2-Induced Epithelial-to-Mesenchymal Transition Contributes to Coronavirus Disease 2019 Pathophysiology. J Thorac Oncol 2021; 16:1821-1839. [PMID: 34274504 PMCID: PMC8282443 DOI: 10.1016/j.jtho.2021.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/02/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Coronavirus disease 2019 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which enters host cells through the cell surface proteins ACE2 and TMPRSS2. METHODS Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of ACE2 and TMPRSS2. RESULTS We find that ACE2 expression is restricted to a select population of epithelial cells. Notably, infection with SARS-CoV-2 in cancer cell lines, bronchial organoids, and patient nasal epithelium induces metabolic and transcriptional changes consistent with epithelial-to-mesenchymal transition (EMT), including up-regulation of ZEB1 and AXL, resulting in an increased EMT score. In addition, a transcriptional loss of genes associated with tight junction function occurs with SARS-CoV-2 infection. The SARS-CoV-2 receptor, ACE2, is repressed by EMT through the transforming growth factor-β, ZEB1 overexpression, and onset of EGFR tyrosine kinase inhibitor resistance. This suggests a novel model of SARS-CoV-2 pathogenesis in which infected cells shift toward an increasingly mesenchymal state, associated with a loss of tight junction components with acute respiratory distress syndrome-protective effects. AXL inhibition and ZEB1 reduction, as with bemcentinib, offer a potential strategy to reverse this effect. CONCLUSIONS These observations highlight the use of aerodigestive and, especially, lung cancer model systems in exploring the pathogenesis of SARS-CoV-2 and other respiratory viruses and offer important insights into the potential mechanisms underlying the morbidity and mortality of coronavirus disease 2019 in healthy patients and patients with cancer alike.
Collapse
Affiliation(s)
- C Allison Stewart
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carl M Gay
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kavya Ramkumar
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kasey R Cargill
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert J Cardnell
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Monique B Nilsson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simon Heeke
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth M Park
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samrat T Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bingnan Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carminia Maria Della Corte
- Oncology Division, Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Youhong Fan
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kiran Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Boning Gao
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kimberley Avila
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Faye M Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John D Minna
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Don L Gibbons
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren Averett Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
43
|
Abstract
Cellular activities are finely regulated by numerous signaling pathways to support specific functions of complex life processes. Viruses are obligate intracellular parasites. Each step of viral replication is ultimately governed by the interaction of a virus with its host cells. Because of the demands of viral replication, the nutritional needs of virus-infected cells differ from those of uninfected cells. To improve their chances of survival and replication, viruses have evolved to commandeer cellular processes, including cell metabolism, augmenting these processes to support their needs. This article summarizes recent findings regarding virus-induced alterations to major cellular metabolic pathways focusing on how viruses modulate various signaling cascades to induce these changes. We begin with a general introduction describing the role played by signaling pathways in cellular metabolism. We then discuss how different viruses target these signaling pathways to reprogram host metabolism to favor the viral needs. We highlight the gaps in understanding metabolism-related virus-host interactions and discuss how studying these changes will enhance our understanding of fundamental processes involved in metabolic regulation. Finally, we discuss the potential to harness these processes to combat viral diseases, as well as other diseases, including metabolic disorders and cancers.
Collapse
|
44
|
Ren L, Zhang W, Zhang J, Zhang J, Zhang H, Zhu Y, Meng X, Yi Z, Wang R. Influenza A Virus (H1N1) Infection Induces Glycolysis to Facilitate Viral Replication. Virol Sin 2021; 36:1532-1542. [PMID: 34519916 PMCID: PMC8692537 DOI: 10.1007/s12250-021-00433-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Viruses depend on host cellular metabolism to provide the energy and biosynthetic building blocks required for their replication. In this study, we observed that influenza A virus (H1N1), a single-stranded, negative-sense RNA virus with an eight-segmented genome, enhanced glycolysis both in mouse lung tissues and in human lung epithelial (A549) cells. In detail, the expression of hexokinase 2 (HK2), the first enzyme in glycolysis, was upregulated in H1N1-infected A549 cells, and the expression of pyruvate kinase M2 (PKM2) and pyruvate dehydrogenase kinase 3 (PDK3) was upregulated in H1N1-infected mouse lung tissues. Pharmacologically inhibiting the glycolytic pathway or targeting hypoxia-inducible factor 1 (HIF-1), the central transcriptional factor critical for glycolysis, significantly reduced H1N1 replication, revealing a requirement for glycolysis during H1N1 infection. In addition, pharmacologically enhancing the glycolytic pathway further promoted H1N1 replication. Furthermore, the change of H1N1 replication upon glycolysis inhibition or enhancement was independent of interferon signaling. Taken together, these findings suggest that influenza A virus induces the glycolytic pathway and thus facilitates efficient viral replication. This study raises the possibility that metabolic inhibitors, such as those that target glycolysis, could be used to treat influenza A virus infection in the future.
Collapse
Affiliation(s)
- Lehao Ren
- Department of Emergency and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.,Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wanju Zhang
- Microbiology Laboratory, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, 200336, China
| | - Jing Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiaxiang Zhang
- Department of Emergency and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Huiying Zhang
- Department of Pathogen Diagnosis and Biosafety, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yong Zhu
- Department of Emergency and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Xiaoxiao Meng
- Department of Emergency and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Zhigang Yi
- Department of Pathogen Diagnosis and Biosafety, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Ruilan Wang
- Department of Emergency and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
45
|
Ganesh GV, Mohanram RK. Metabolic reprogramming and immune regulation in viral diseases. Rev Med Virol 2021; 32:e2268. [PMID: 34176174 DOI: 10.1002/rmv.2268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
The recent outbreak and transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide and the ensuing coronavirus disease 2019 (COVID-19) pandemic has left us scrambling for ways to contain the disease and develop vaccines that are safe and effective. Equally important, understanding the impact of the virus on the host system in convalescent patients, healthy otherwise or with co-morbidities, is expected to aid in developing effective strategies in the management of patients afflicted with the disease. Viruses possess the uncanny ability to redirect host metabolism to serve their needs and also limit host immune response to ensure their survival. An ever-increasingly powerful approach uses metabolomics to uncover diverse molecular signatures that influence a wide array of host signalling networks in different viral infections. This would also help integrate experimental findings from individual studies to yield robust evidence. In addition, unravelling the molecular mechanisms harnessed by both viruses and tumours in their host metabolism will help broaden the repertoire of therapeutic tools available to combat viral disease.
Collapse
Affiliation(s)
- Goutham V Ganesh
- Life Science Division, SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| | - Ramkumar K Mohanram
- Life Science Division, SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
46
|
Bahadoran A, Bezavada L, Smallwood HS. Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol Rev 2021; 295:140-166. [PMID: 32320072 DOI: 10.1111/imr.12851] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies support the notion that glycolysis and oxidative phosphorylation are rheostats in immune cells whose bioenergetics have functional outputs in terms of their biology. Specific intrinsic and extrinsic molecular factors function as molecular potentiometers to adjust and control glycolytic to respiratory power output. In many cases, these potentiometers are used by influenza viruses and immune cells to support pathogenesis and the host immune response, respectively. Influenza virus infects the respiratory tract, providing a specific environmental niche, while immune cells encounter variable nutrient concentrations as they migrate in response to infection. Immune cell subsets have distinct metabolic programs that adjust to meet energetic and biosynthetic requirements to support effector functions, differentiation, and longevity in their ever-changing microenvironments. This review details how influenza coopts the host cell for metabolic reprogramming and describes the overlap of these regulatory controls in immune cells whose function and fate are dictated by metabolism. These details are contextualized with emerging evidence of the consequences of influenza-induced changes in metabolic homeostasis on disease progression.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
47
|
Koufaris C, Nicolaidou V. Glutamine addiction in virus-infected mammalian cells: A target of the innate immune system? Med Hypotheses 2021; 153:110620. [PMID: 34130112 DOI: 10.1016/j.mehy.2021.110620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/30/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
Control of core cell metabolism is a key aspect of the evolutionary conflict between viruses and the host's defence mechanisms. From their side, the invading viruses press the accelerator on their host cell's glycolysis, fatty acid, and glutaminolytic metabolic processes among others. It is also well established that activation of innate immune system responses modulates facets of metabolism such as that of polyamine, cholesterol, tryptophan and many more. But what about glutamine, a proteogenic amino acid that is a crucial nutrient for multiple cellular biosynthetic processes? Although mammalian cells can normally synthesize glutamine de novo, it has been noted that infections with genetically and phylogenetically diverse viruses are followed by the acquisition of a dependency on supplies of exogenous glutamine i.e. "glutamine addiction". Here we present our novel hypothesis that glutamine metabolism is also a target of the innate immune system, possibly through the action of interferons, as part of the evolutionary conserved antiviral metabolic reprogramming.
Collapse
Affiliation(s)
- C Koufaris
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - V Nicolaidou
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus.
| |
Collapse
|
48
|
Feng M, Fei S, Xia J, Zhang M, Wu H, Swevers L, Sun J. Global Metabolic Profiling of Baculovirus Infection in Silkworm Hemolymph Shows the Importance of Amino-Acid Metabolism. Viruses 2021; 13:v13050841. [PMID: 34066413 PMCID: PMC8148188 DOI: 10.3390/v13050841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022] Open
Abstract
Viruses rely on host cell metabolism to provide the necessary energy and biosynthetic precursors for successful viral replication. Infection of the silkworm, Bombyx mori, by Bombyx mori nucleopolyhedrovirus (BmNPV), has been studied extensively in the past to unravel interactions between baculoviruses and their lepidopteran hosts. To understand the interaction between the host metabolic responses and BmNPV infection, we analyzed global metabolic changes associated with BmNPV infection in silkworm hemolymph. Our metabolic profiling data suggests that amino acid metabolism is strikingly altered during a time course of BmNPV infection. Amino acid consumption is increased during BmNPV infection at 24 h post infection (hpi), but their abundance recovered at 72 hpi. Central carbon metabolism, on the other hand, particularly glycolysis and glutaminolysis, did not show obvious changes during BmNPV infection. Pharmacologically inhibiting the glycolytic pathway and glutaminolysis also failed to reduce BmNPV replication, revealing that glycolysis and glutaminolysis are not essential during BmNPV infection. This study reveals a unique amino acid utilization process that is implemented during BmNPV infection. Our metabolomic analysis of BmNPV-infected silkworm provides insights as to how baculoviruses induce alterations in host metabolism during systemic infection.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.F.); (S.F.); (J.X.); (M.Z.); (H.W.)
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.F.); (S.F.); (J.X.); (M.Z.); (H.W.)
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.F.); (S.F.); (J.X.); (M.Z.); (H.W.)
| | - Mengmeng Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.F.); (S.F.); (J.X.); (M.Z.); (H.W.)
| | - Hongyun Wu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.F.); (S.F.); (J.X.); (M.Z.); (H.W.)
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, 15310 Athens, Greece
- Correspondence: (L.S.); (J.S.)
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.F.); (S.F.); (J.X.); (M.Z.); (H.W.)
- Correspondence: (L.S.); (J.S.)
| |
Collapse
|
49
|
Host cell glutamine metabolism as a potential antiviral target. Clin Sci (Lond) 2021; 135:305-325. [PMID: 33480424 DOI: 10.1042/cs20201042] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
A virus minimally contains a nucleic acid genome packaged by a protein coat. The genome and capsid together are known as the nucleocapsid, which has an envelope containing a lipid bilayer (mainly phospholipids) originating from host cell membranes. The viral envelope has transmembrane proteins that are usually glycoproteins. The proteins in the envelope bind to host cell receptors, promoting membrane fusion and viral entry into the cell. Virus-infected host cells exhibit marked increases in glutamine utilization and metabolism. Glutamine metabolism generates ATP and precursors for the synthesis of macromolecules to assemble progeny viruses. Some compounds derived from glutamine are used in the synthesis of purines and pyrimidines. These latter compounds are precursors for the synthesis of nucleotides. Inhibitors of glutamine transport and metabolism are potential candidate antiviral drugs. Glutamine is also an essential nutrient for the functions of leukocytes (lymphocyte, macrophage, and neutrophil), including those in virus-infected patients. The increased glutamine requirement for immune cell functions occurs concomitantly with the high glutamine utilization by host cells in virus-infected patients. The development of antiviral drugs that target glutamine metabolism must then be specifically directed at virus-infected host cells to avoid negative effects on immune functions. Therefore, the aim of this review was to describe the landscape of cellular glutamine metabolism to search for potential candidates to inhibit glutamine transport or glutamine metabolism.
Collapse
|
50
|
Sumbria D, Berber E, Mathayan M, Rouse BT. Virus Infections and Host Metabolism-Can We Manage the Interactions? Front Immunol 2021; 11:594963. [PMID: 33613518 PMCID: PMC7887310 DOI: 10.3389/fimmu.2020.594963] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
When viruses infect cells, they almost invariably cause metabolic changes in the infected cell as well as in several host cell types that react to the infection. Such metabolic changes provide potential targets for therapeutic approaches that could reduce the impact of infection. Several examples are discussed in this review, which include effects on energy metabolism, glutaminolysis and fatty acid metabolism. The response of the immune system also involves metabolic changes and manipulating these may change the outcome of infection. This could include changing the status of herpesviruses infections from productive to latency. The consequences of viral infections which include coronavirus disease 2019 (COVID-19), may also differ in patients with metabolic problems, such as diabetes mellitus (DM), obesity, and endocrine diseases. Nutrition status may also affect the pattern of events following viral infection and examples that impact on the pattern of human and experimental animal viral diseases and the mechanisms involved are discussed. Finally, we discuss the so far few published reports that have manipulated metabolic events in-vivo to change the outcome of virus infection. The topic is expected to expand in relevance as an approach used alone or in combination with other therapies to shape the nature of virus induced diseases.
Collapse
Affiliation(s)
- Deepak Sumbria
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| | - Engin Berber
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States.,Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Manikannan Mathayan
- Center for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, India
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|