1
|
Bai YZ, Wang S, Sun Y, Liu YG, Zhang HL, Wang Q, Huang R, Rao CH, Xu SJ, Tian ZJ, An TQ, Cai XH, Tang YD. The full-length nsp2 replicase contributes to viral assembly in highly pathogenic PRRSV-2. J Virol 2025; 99:e0182124. [PMID: 39601570 PMCID: PMC11784222 DOI: 10.1128/jvi.01821-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Porcine reproductive and respiratory syndrome viruses (PRRSVs) are significant pathogens that affect the global swine industry. Its virions consist of a central core composed of nucleocapsid (N) protein, surrounded by multiple distinct viral envelope proteins. However, the mechanisms underlying the recognition and packaging of N protein by viral envelope proteins remain elusive. In this study, we elucidated the role of nonstructural protein 2 (nsp2) from highly pathogenic PRRSV-2 (HP-PRRSV-2) in viral assembly. Firstly, among all the tested envelope proteins, only glycoprotein 5 (GP5) exhibits limited interaction with N protein. Interestingly, we demonstrated that full-length nsp2 co-immunoprecipitates (Co-IPs) with the N protein and all tested viral envelope proteins. In the presence of full-length nsp2, the N protein interacts with distinct viral envelope proteins. Moreover, upon viral infection, Co-IP experiments using nsp2-specific antibodies or N-specific antibodies revealed the formation of a complex between N and nsp2 with the M protein, GP2a, and GP5. However, neither of the two short forms of nsp2-namely nsp2TF nor nsp2N-participates in this process as they fail to interact with the N protein. Finally, our results demonstrate that this process occurs in the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC). Overall, our findings unveil a novel functional role for full-length nsp2 of HP-PRRSV-2 in facilitating the assembly of the N protein with viral envelope proteins.IMPORTANCEThe virus assembly process of arteriviruses remains largely elusive, including the direct interaction between N protein and viral envelope proteins or the potential requirement for additional proteins in facilitating assembly. Moreover, where the N protein assembles with viral envelope proteins during the virus lifecycle remains unclear. This study reveals a novel role for nonstructural protein 2 (nsp2) in highly pathogenic porcine reproductive and respiratory syndrome virus type 2 (HP-PRRSV-2), highlighting its involvement in HP-PRRSV-2 assembly. These findings provide crucial insights into HP-PRRSV-2 assembly and enhance our understanding of their lifecycle. Overall, this study offers an alternative approach to developing a new antiviral strategy targeting PRRSV-2 assembly.
Collapse
Affiliation(s)
- Yuan-Zhe Bai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yue Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yong-Gang Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Hong-Liang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Qian Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Rui Huang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Cui-Hong Rao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Shi-Jia Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Zhi-Jun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Tong-Qing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xue-Hui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Ni X, Han Y, Yu J, Zhou R, Lei J. Structural basis of the C-terminal domain of SARS-CoV-2 N protein in complex with GMP reveals critical residues for RNA interaction. Bioorg Med Chem Lett 2024; 114:130014. [PMID: 39489230 DOI: 10.1016/j.bmcl.2024.130014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein performs multiple functions during the viral life cycle, particularly in binding to the viral genomic RNA to form a helical ribonucleoprotein complex. Here, we present that the C-terminal domain of SARS-CoV-2 N protein (N-CTD) specifically interacts with polyguanylic acid (poly(G)). The crystal structure of the N-CTD in complex with 5'-guanylic acid (GMP, also known as guanosine monophosphate) was determined at a resolution of approximately 2.0 Å. A novel GMP-binding pocket in the N-CTD was illustrated. Residues Arg259 and Lys338 were identified to play key roles in binding to GMP through mutational analysis. These two residues are absolutely conserved in the other two highly pathogenic CoVs, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Overall, our findings expand the structural information on N protein interacting with guanylate and reveal a conserved GMP-binding pocket as a potential antiviral target.
Collapse
Affiliation(s)
- Xincheng Ni
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yinze Han
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiao Yu
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Renjie Zhou
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Lei
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Han Y, Zhou H, Liu C, Wang W, Qin Y, Chen M. SARS-CoV-2 N protein coordinates viral particle assembly through multiple domains. J Virol 2024; 98:e0103624. [PMID: 39412257 PMCID: PMC11575404 DOI: 10.1128/jvi.01036-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 11/20/2024] Open
Abstract
Increasing evidence suggests that mutations in the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may enhance viral replication by modulating the assembly process. However, the mechanisms governing the selective packaging of viral genomic RNA by the N protein, along with the assembly and budding processes, remain poorly understood. Utilizing a virus-like particles (VLPs) system, we have identified that the C-terminal domain (CTD) of the N protein is essential for its interaction with the membrane (M) protein during budding, crucial for binding and packaging genomic RNA. Notably, the isolated CTD lacks M protein interaction capacity and budding ability. Yet, upon fusion with the N-terminal domain (NTD) or the linker region (LKR), the resulting NTD/CTD and LKR/CTD acquire RNA-dependent interactions with the M protein and acquire budding capabilities. Furthermore, the presence of the C-tail is vital for efficient genomic RNA encapsidation by the N protein, possibly regulated by interactions with the M protein. Remarkably, the NTD of the N protein appears dispensable for virus particle assembly, offering the virus adaptive advantages. The emergence of N* (NΔN209) in the SARS-CoV-2 B.1.1 lineage corroborates our findings and hints at the potential evolution of a more streamlined N protein by the SARS-CoV-2 virus to facilitate the assembly process. Comparable observations have been noted with the N proteins of SARS-CoV and HCoV-OC43 viruses. In essence, these findings propose that β-coronaviruses may augment their replication by fine-tuning the assembly process.IMPORTANCEAs a highly transmissible zoonotic virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve. Adaptive mutations in the nucleocapsid (N) protein highlight the critical role of N protein-based assembly in the virus's replication and evolutionary dynamics. However, the precise molecular mechanisms of N protein-mediated viral assembly remain inadequately understood. Our study elucidates the intricate interactions between the N protein, membrane (M) protein, and genomic RNA, revealing a C-terminal domain (CTD)-based assembly mechanism common among β-coronaviruses. The appearance of the N* variant within the SARS-CoV-2 B.1.1 lineage supports our conclusion that the N-terminal domain (NTD) of the N protein is not essential for viral assembly. This work not only enhances our understanding of coronavirus assembly mechanisms but also provides new insights for developing antiviral drugs targeting these conserved processes.
Collapse
Affiliation(s)
- Yuewen Han
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haiwu Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Cong Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiwei Wang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yali Qin
- School of Life Sciences, Hubei University, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- School of Life Sciences, Hubei University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
4
|
Syed AM, Ciling A, Chen IP, Carlson CR, Adly AN, Martin HS, Taha TY, Khalid MM, Price N, Bouhaddou M, Ummadi MR, Moen JM, Krogan NJ, Morgan DO, Ott M, Doudna JA. SARS-CoV-2 evolution balances conflicting roles of N protein phosphorylation. PLoS Pathog 2024; 20:e1012741. [PMID: 39571001 PMCID: PMC11620656 DOI: 10.1371/journal.ppat.1012741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/05/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
All lineages of SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, contain mutations between amino acids 199 and 205 in the nucleocapsid (N) protein that are associated with increased infectivity. The effects of these mutations have been difficult to determine because N protein contributes to both viral replication and viral particle assembly during infection. Here, we used single-cycle infection and virus-like particle assays to show that N protein phosphorylation has opposing effects on viral assembly and genome replication. Ancestral SARS-CoV-2 N protein is densely phosphorylated, leading to higher levels of genome replication but 10-fold lower particle assembly compared to evolved variants with low N protein phosphorylation, such as Delta (N:R203M), Iota (N:S202R), and B.1.2 (N:P199L). A new open reading frame encoding a truncated N protein called N*, which occurs in the B.1.1 lineage and subsequent lineages of the Alpha, Gamma, and Omicron variants, supports high levels of both assembly and replication. Our findings help explain the enhanced fitness of viral variants of concern and a potential avenue for continued viral selection.
Collapse
Affiliation(s)
- Abdullah M. Syed
- Gladstone Institutes, San Francisco, California, United States of America
| | - Alison Ciling
- Gladstone Institutes, San Francisco, California, United States of America
| | - Irene P. Chen
- Gladstone Institutes, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Christopher R. Carlson
- Department of Physiology, University of California, San Francisco, California, United States of America
| | - Armin N. Adly
- Department of Physiology, University of California, San Francisco, California, United States of America
| | - Hannah S. Martin
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Taha Y. Taha
- Gladstone Institutes, San Francisco, California, United States of America
| | - Mir M. Khalid
- Gladstone Institutes, San Francisco, California, United States of America
| | - Nathan Price
- Gladstone Institutes, San Francisco, California, United States of America
| | - Mehdi Bouhaddou
- Gladstone Institutes, San Francisco, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), UCLA, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences (QCBio), UCLA, Los Angeles, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Manisha R. Ummadi
- Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Jack M. Moen
- Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | - David O. Morgan
- Department of Physiology, University of California, San Francisco, California, United States of America
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Jennifer A. Doudna
- Gladstone Institutes, San Francisco, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Innovative Genomics Institute, University of California, Berkeley, California, United States of America
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, United States of America
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
5
|
Bezerra PR, Almeida FCL. Structural basis for the participation of the SARS-CoV-2 nucleocapsid protein in the template switch mechanism and genomic RNA reorganization. J Biol Chem 2024; 300:107834. [PMID: 39343000 PMCID: PMC11541846 DOI: 10.1016/j.jbc.2024.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
The COVID-19 pandemic has resulted in a significant toll of deaths worldwide, exceeding seven million individuals, prompting intensive research efforts aimed at elucidating the molecular mechanisms underlying the pathogenesis of SARS-CoV-2 infection. Despite the rapid development of effective vaccines and therapeutic interventions, COVID-19 remains a threat to humans due to the emergence of novel variants and largely unknown long-term consequences. Among the viral proteins, the nucleocapsid protein (N) stands out as the most conserved and abundant, playing the primary role in nucleocapsid assembly and genome packaging. The N protein is promiscuous for the recognition of RNA, yet it can perform specific functions. Here, we discuss the structural basis of specificity, which is directly linked to its regulatory role. Notably, the RNA chaperone activity of N is central to its multiple roles throughout the viral life cycle. This activity encompasses double-stranded RNA (dsRNA) annealing and melting and facilitates template switching, enabling discontinuous transcription. N also promotes the formation of membrane-less compartments through liquid-liquid phase separation, thereby facilitating the congregation of the replication and transcription complex. Considering the information available regarding the catalytic activities and binding signatures of the N protein-RNA interaction, this review focuses on the regulatory role of the SARS-CoV-2 N protein. We emphasize the participation of the N protein in discontinuous transcription, template switching, and RNA chaperone activity, including double-stranded RNA melting and annealing activities.
Collapse
Affiliation(s)
- Peter R Bezerra
- Program of Structural Biology, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Program of Structural Biology, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Nguyen A, Zhao H, Myagmarsuren D, Srinivasan S, Wu D, Chen J, Piszczek G, Schuck P. Modulation of biophysical properties of nucleocapsid protein in the mutant spectrum of SARS-CoV-2. eLife 2024; 13:RP94836. [PMID: 38941236 PMCID: PMC11213569 DOI: 10.7554/elife.94836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Abstract
Genetic diversity is a hallmark of RNA viruses and the basis for their evolutionary success. Taking advantage of the uniquely large genomic database of SARS-CoV-2, we examine the impact of mutations across the spectrum of viable amino acid sequences on the biophysical phenotypes of the highly expressed and multifunctional nucleocapsid protein. We find variation in the physicochemical parameters of its extended intrinsically disordered regions (IDRs) sufficient to allow local plasticity, but also observe functional constraints that similarly occur in related coronaviruses. In biophysical experiments with several N-protein species carrying mutations associated with major variants, we find that point mutations in the IDRs can have nonlocal impact and modulate thermodynamic stability, secondary structure, protein oligomeric state, particle formation, and liquid-liquid phase separation. In the Omicron variant, distant mutations in different IDRs have compensatory effects in shifting a delicate balance of interactions controlling protein assembly properties, and include the creation of a new protein-protein interaction interface in the N-terminal IDR through the defining P13L mutation. A picture emerges where genetic diversity is accompanied by significant variation in biophysical characteristics of functional N-protein species, in particular in the IDRs.
Collapse
Affiliation(s)
- Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Dulguun Myagmarsuren
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Sanjana Srinivasan
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| |
Collapse
|
7
|
Nguyen A, Zhao H, Myagmarsuren D, Srinivasan S, Wu D, Chen J, Piszczek G, Schuck P. Modulation of Biophysical Properties of Nucleocapsid Protein in the Mutant Spectrum of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.21.568093. [PMID: 38045241 PMCID: PMC10690151 DOI: 10.1101/2023.11.21.568093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Genetic diversity is a hallmark of RNA viruses and the basis for their evolutionary success. Taking advantage of the uniquely large genomic database of SARS-CoV-2, we examine the impact of mutations across the spectrum of viable amino acid sequences on the biophysical phenotypes of the highly expressed and multifunctional nucleocapsid protein. We find variation in the physicochemical parameters of its extended intrinsically disordered regions (IDRs) sufficient to allow local plasticity, but also exhibiting functional constraints that similarly occur in related coronaviruses. In biophysical experiments with several N-protein species carrying mutations associated with major variants, we find that point mutations in the IDRs can have nonlocal impact and modulate thermodynamic stability, secondary structure, protein oligomeric state, particle formation, and liquid-liquid phase separation. In the Omicron variant, distant mutations in different IDRs have compensatory effects in shifting a delicate balance of interactions controlling protein assembly properties, and include the creation of a new protein-protein interaction interface in the N-terminal IDR through the defining P13L mutation. A picture emerges where genetic diversity is accompanied by significant variation in biophysical characteristics of functional N-protein species, in particular in the IDRs.
Collapse
Affiliation(s)
- Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dulguun Myagmarsuren
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sanjana Srinivasan
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Kubinski HC, Despres HW, Johnson BA, Schmidt MM, Jaffrani SA, Mills MG, Lokugamage K, Dumas CM, Shirley DJ, Estes LK, Pekosz A, Crothers JW, Roychoudhury P, Greninger AL, Jerome KR, Di Genova BM, Walker DH, Ballif BA, Ladinsky MS, Bjorkman PJ, Menachery VD, Bruce EA. Variant mutation in SARS-CoV-2 nucleocapsid enhances viral infection via altered genomic encapsidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584120. [PMID: 38559000 PMCID: PMC10979914 DOI: 10.1101/2024.03.08.584120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The evolution of SARS-CoV-2 variants and their respective phenotypes represents an important set of tools to understand basic coronavirus biology as well as the public health implications of individual mutations in variants of concern. While mutations outside of Spike are not well studied, the entire viral genome is undergoing evolutionary selection, particularly the central disordered linker region of the nucleocapsid (N) protein. Here, we identify a mutation (G215C), characteristic of the Delta variant, that introduces a novel cysteine into this linker domain, which results in the formation of a disulfide bond and a stable N-N dimer. Using reverse genetics, we determined that this cysteine residue is necessary and sufficient for stable dimer formation in a WA1 SARS-CoV-2 background, where it results in significantly increased viral growth both in vitro and in vivo. Finally, we demonstrate that the N:G215C virus packages more nucleocapsid per virion and that individual virions are larger, with elongated morphologies.
Collapse
Affiliation(s)
- Hannah C. Kubinski
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Hannah W. Despres
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Bryan A. Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Madaline M. Schmidt
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Sara A. Jaffrani
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Margaret G. Mills
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Kumari Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Caroline M. Dumas
- Department of Biology, University of Vermont 109 Carrigan Drive, 120A Marsh Life Sciences, Burlington VT 05404, USA
| | - David J. Shirley
- Faraday, Inc. Data Science Department. Burlington VT, 05405, USA
| | - Leah K. Estes
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jessica W. Crothers
- Department of Pathology and Laboratory Medicine, Robert Larner, MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Pavitra Roychoudhury
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Alexander L. Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Keith R. Jerome
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Bruno Martorelli Di Genova
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bryan A. Ballif
- Department of Biology, University of Vermont 109 Carrigan Drive, 120A Marsh Life Sciences, Burlington VT 05404, USA
| | - Mark S. Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA. 91125, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA. 91125, USA
| | - Vineet D. Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Emily A. Bruce
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| |
Collapse
|
9
|
Liu C, Huang W, He X, Feng Z, Chen Q. Research Advances on Swine Acute Diarrhea Syndrome Coronavirus. Animals (Basel) 2024; 14:448. [PMID: 38338091 PMCID: PMC10854734 DOI: 10.3390/ani14030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a virulent pathogen that causes acute diarrhea in piglets. The virus was first discovered in Guangdong Province, China, in 2017 and has since emerged in Jiangxi, Fujian, and Guangxi Provinces. The outbreak exhibited a localized and sporadic pattern, with no discernable temporal continuity. The virus can infect human progenitor cells and demonstrates considerable potential for cross-species transmission, representing a potential risk for zoonotic transmission. Therefore, continuous surveillance of and comprehensive research on SADS-CoV are imperative. This review provides an overview of the temporal and evolutionary features of SADS-CoV outbreaks, focusing on the structural characteristics of the virus, which serve as the basis for discussing its potential for interspecies transmission. Additionally, the review summarizes virus-host interactions, including the effects on host cells, as well as apoptotic and autophagic behaviors, and discusses prevention and treatment modalities for this viral infection.
Collapse
Affiliation(s)
- Chuancheng Liu
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Weili Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Xinyan He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Zhihua Feng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Qi Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; (C.L.); (W.H.); (X.H.)
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
10
|
Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Classification, replication, and transcription of Nidovirales. Front Microbiol 2024; 14:1291761. [PMID: 38328580 PMCID: PMC10847374 DOI: 10.3389/fmicb.2023.1291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.
Collapse
Affiliation(s)
- Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huiyu Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
11
|
Terasaki K, Narayanan K, Makino S. Identification of a 1.4-kb-Long Sequence Located in the nsp12 and nsp13 Coding Regions of SARS-CoV-2 Genomic RNA That Mediates Efficient Viral RNA Packaging. J Virol 2023:e0065923. [PMID: 37367225 PMCID: PMC10373556 DOI: 10.1128/jvi.00659-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
The specific packaging of the viral RNA genome into virus particles is an essential step in the replication cycle of coronaviruses (CoVs). Using a single-cycle, replicable severe acute respiratory syndrome CoV-2 (SARS-CoV-2) mutant, we demonstrated the preferential packaging of the SARS-CoV-2 genomic RNA into purified virus particles. Furthermore, based on the sequence of an efficiently packaged defective interfering RNA of SARS-CoV, a closely related CoV, that was generated after serial passages of SARS-CoV in cell culture, we designed a series of replication-competent SARS-CoV-2 minigenome RNAs to identify the specific viral RNA region that is important for SARS-CoV-2 RNA packaging into virus particles. We showed that a 1.4-kb-long sequence, derived from the nsp12 and nsp13 coding regions of the SARS-CoV-2 genomic RNA, is required for the efficient packaging of SARS-CoV-2 minigenome RNA into SARS-CoV-2 particles. In addition, we also showed that the presence of possibly the entire 1.4-kb-long sequence is important for the efficient packaging of SARS-CoV-2 RNA. Our findings highlight the differences between the RNA packaging sequence identified in SARS-CoV-2, a Sarbecovirus, and the packaging signal of mouse hepatitis virus (MHV), an Embecovirus, which is a 95-nt-long sequence located at the nsp15 coding region of MHV genomic RNA. Collectively, our data imply that both the location and the sequence/structural features of the RNA element(s) that drives the selective and efficient packaging of viral genomic RNA are not conserved among the subgenera Embecovirus and Sarbecovirus within the Betacoronavirus genus. IMPORTANCE Elucidating the mechanism of SARS-CoV-2 RNA packaging into virus particles is important for the rational design of antiviral drugs that inhibit this vital step in the replication cycle of CoVs. However, our knowledge about the RNA packaging mechanism in SARS-CoV-2, including the identification of the viral RNA region important for SARS-CoV-2 RNA packaging, is limited, primarily due to the logistical challenges of handing SARS-CoV-2 in biosafety level 3 (BSL3) facilities. Our study, using a single-cycle, replicable SARS-CoV-2 mutant, which can be handled in a BSL2 lab, demonstrated the preferential packaging of full-length SARS-CoV-2 genomic RNA into virus particles and identified a specific 1.4-kb-long RNA region in SARS-CoV-2 genomic RNA that is required for the efficient packaging of SARS-CoV-2 RNA into virus particles. The information generated in our study could be valuable for clarifying the mechanisms of SARS-CoV-2 RNA packaging and for the development of targeted therapeutics against SARS-CoV-2 and other related CoVs.
Collapse
Affiliation(s)
- Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Krishna Narayanan
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
12
|
Zhao H, Wu D, Hassan SA, Nguyen A, Chen J, Piszczek G, Schuck P. A conserved oligomerization domain in the disordered linker of coronavirus nucleocapsid proteins. SCIENCE ADVANCES 2023; 9:eadg6473. [PMID: 37018390 PMCID: PMC10075959 DOI: 10.1126/sciadv.adg6473] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/07/2023] [Indexed: 06/01/2023]
Abstract
The nucleocapsid (N-)protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a key role in viral assembly and scaffolding of the viral RNA. It promotes liquid-liquid phase separation (LLPS), forming dense droplets that support the assembly of ribonucleoprotein particles with as-of-yet unknown macromolecular architecture. Combining biophysical experiments, molecular dynamics simulations, and analysis of the mutational landscape, we describe a heretofore unknown oligomerization site that contributes to LLPS, is required for the assembly of higher-order protein-nucleic acid complexes, and is coupled to large-scale conformational changes of N-protein upon nucleic acid binding. The self-association interface is located in a leucine-rich sequence of the intrinsically disordered linker between N-protein folded domains and formed by transient helices assembling into trimeric coiled-coils. Critical residues stabilizing hydrophobic and electrostatic interactions between adjacent helices are highly protected against mutations in viable SARS-CoV-2 genomes, and the oligomerization motif is conserved across related coronaviruses, thus presenting a target for antiviral therapeutics.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergio A. Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Zhao Z, Xu LD, Zhang F, Liang QZ, Jiao Y, Shi FS, He B, Xu P, Huang YW. Heat shock protein 90 facilitates SARS-CoV-2 structural protein-mediated virion assembly and promotes virus-induced pyroptosis. J Biol Chem 2023; 299:104668. [PMID: 37011862 PMCID: PMC10066589 DOI: 10.1016/j.jbc.2023.104668] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Inhibition of heat shock protein 90 (Hsp90), a prominent molecular chaperone, effectively limits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but little is known about any interaction between Hsp90 and SARS-CoV-2 proteins. Here, we systematically analyzed the effects of the chaperone isoforms Hsp90α and Hsp90β on individual SARS-CoV-2 viral proteins. Five SARS-CoV-2 proteins, namely nucleocapsid (N), membrane (M), and accessory proteins Orf3, Orf7a, and Orf7b were found to be novel clients of Hsp90β in particular. Pharmacological inhibition of Hsp90 with 17-DMAG results in N protein proteasome-dependent degradation. Hsp90 depletion-induced N protein degradation is independent of CHIP, a ubiquitin E3 ligase previously identified for Hsp90 client proteins, but alleviated by FBXO10, an E3 ligase identified by subsequent siRNA screening. We also provide evidence that Hsp90 depletion may suppress SARS-CoV-2 assembly partially through induced M or N degradation. Additionally, we found that GSDMD-mediated pyroptotic cell death triggered by SARS-CoV-2 was mitigated by inhibition of Hsp90. These findings collectively highlight a beneficial role for targeting of Hsp90 during SARS-CoV-2 infection, directly inhibiting virion production and reducing inflammatory injury by preventing the pyroptosis that contributes to severe SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Zhuangzhuang Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Ling-Dong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fei Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qi-Zhang Liang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Yajuan Jiao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Fang-Shu Shi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Yao-Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Department of Veterinary Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Pezeshkian W, Grünewald F, Narykov O, Lu S, Arkhipova V, Solodovnikov A, Wassenaar TA, Marrink SJ, Korkin D. Molecular architecture and dynamics of SARS-CoV-2 envelope by integrative modeling. Structure 2023; 31:492-503.e7. [PMID: 36870335 DOI: 10.1016/j.str.2023.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023]
Abstract
Despite tremendous efforts, the exact structure of SARS-CoV-2 and related betacoronaviruses remains elusive. SARS-CoV-2 envelope is a key structural component of the virion that encapsulates viral RNA. It is composed of three structural proteins, spike, membrane (M), and envelope, which interact with each other and with the lipids acquired from the host membranes. Here, we developed and applied an integrative multi-scale computational approach to model the envelope structure of SARS-CoV-2 with near atomistic detail, focusing on studying the dynamic nature and molecular interactions of its most abundant, but largely understudied, M protein. The molecular dynamics simulations allowed us to test the envelope stability under different configurations and revealed that the M dimers agglomerated into large, filament-like, macromolecular assemblies with distinct molecular patterns. These results are in good agreement with current experimental data, demonstrating a generic and versatile approach to model the structure of a virus de novo.
Collapse
Affiliation(s)
- Weria Pezeshkian
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands; Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Fabian Grünewald
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands
| | - Oleksandr Narykov
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Senbao Lu
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | | | | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands; Institute for Life Science and Technology, Hanze University of Applied Sciences, 9747AS Groningen, the Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands.
| | - Dmitry Korkin
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA; Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
| |
Collapse
|
15
|
Wang X, Yang Y, Sun Z, Zhou X. Crystal structure of the membrane (M) protein from a bat betacoronavirus. PNAS NEXUS 2023; 2:pgad021. [PMID: 36874273 PMCID: PMC9982069 DOI: 10.1093/pnasnexus/pgad021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/20/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
The membrane (M) protein is the most abundant structural protein of coronaviruses including MERS-CoV, SARS-CoV, and SARS-CoV-2, and plays a central role in virus assembly through its interaction with various partner proteins. However, mechanistic details about how M protein interacts with others remain elusive due to lack of high-resolution structures. Here, we present the first crystal structure of a betacoronavirus M protein from Pipistrellus bat coronavirus HKU5 (batCOV5-M), which is closely related to MERS-CoV, SARS-CoV, and SARS-CoV-2 M proteins. Furthermore, an interaction analysis indicates that the carboxy-terminus of the batCOV5 nucleocapsid (N) protein mediates its interaction with batCOV5-M. Combined with a computational docking analysis an M-N interaction model is proposed, providing insight into the mechanism of M protein-mediated protein interactions.
Collapse
Affiliation(s)
- Xiaodong Wang
- State Key Laboratory of Biotherapy, Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuwei Yang
- State Key Laboratory of Biotherapy, Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ziyi Sun
- State Key Laboratory of Biotherapy, Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoming Zhou
- State Key Laboratory of Biotherapy, Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
16
|
Kumar P, Kumar A, Garg N, Giri R. An insight into SARS-CoV-2 membrane protein interaction with spike, envelope, and nucleocapsid proteins. J Biomol Struct Dyn 2023; 41:1062-1071. [PMID: 34913847 DOI: 10.1080/07391102.2021.2016490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Intraviral protein-protein interactions are crucial for replication, pathogenicity, and viral assembly. Among these, virus assembly is a critical step as it regulates the arrangements of viral structural proteins and helps in the encapsulation of genomic material. SARS-CoV-2 structural proteins play an essential role in the self-rearrangement, RNA encapsulation, and mature virus particle formation. In SARS-CoV, the membrane protein interacts with the envelope and spike protein in Endoplasmic Reticulum Golgi Intermediate Complex (ERGIC) to form an assembly in the lipid bilayer, followed by membrane-ribonucleoprotein (nucleocapsid) interaction. In this study, we tried to understand the interaction of membrane protein's interaction with envelope, spike, and nucleocapsid proteins using protein-protein docking. Further, simulation studies were performed up to 100 ns to examine the stability of protein-protein complexes of Membrane-Envelope, Membrane-Spike, and Membrane-Nucleocapsid proteins. Prime MM-GBSA showed high binding energy calculations for the simulated structures than the docked complex. The interactions identified in our study will be of great importance, as it provides valuable insight into the protein-protein complex, which could be the potential drug targets for future studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| | - Amit Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| |
Collapse
|
17
|
Rani J, Bhargav A, Khan FI, Ramachandran S, Lai D, Bajpai U. In silico prediction of natural compounds as potential multi-target inhibitors of structural proteins of SARS-CoV-2. J Biomol Struct Dyn 2022; 40:12118-12134. [PMID: 34486935 PMCID: PMC8425474 DOI: 10.1080/07391102.2021.1968497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a colossal loss to human health and lives and has deeply impacted socio-economic growth. Remarkable efforts have been made by the scientific community in containing the virus by successful development of vaccines and diagnostic kits. Initiatives towards drug repurposing and discovery have also been undertaken. In this study, we compiled the known natural anti-viral compounds using text mining of the literature and examined them against four major structural proteins of SARS-CoV-2, namely, spike (S) protein, nucleocapsid (N) protein, membrane (M) protein and envelope (E) protein. Following computational approaches, we identified fangchinoline and versicolactone C as the compounds to exhibit strong binding to the target proteins and causing structural deformation of three structural proteins (N, S and M). We recommend the inhibitory effects of these compounds from our study should be experimentally validated against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India,G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research – Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Anasuya Bhargav
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research – Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Srinivasan Ramachandran
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research – Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,Srinivasan Ramchandran ;
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China,Dakun Lai
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India,CONTACT Urmi Bajpai ;
| |
Collapse
|
18
|
Thakor JC, Dinesh M, Manikandan R, Bindu S, Sahoo M, Sahoo D, Dhawan M, Pandey MK, Tiwari R, Emran TB, Dhama K, Chaicumpa W. Swine coronaviruses (SCoVs) and their emerging threats to swine population, inter-species transmission, exploring the susceptibility of pigs for SARS-CoV-2 and zoonotic concerns. Vet Q 2022; 42:125-147. [PMID: 35584308 PMCID: PMC9225692 DOI: 10.1080/01652176.2022.2079756] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
Swine coronaviruses (SCoVs) are one of the most devastating pathogens affecting the livelihoods of farmers and swine industry across the world. These include transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine respiratory coronavirus (PRCV), porcine hemagglutinating encephalomyelitis virus (PHEV), swine acute diarrhea syndrome coronavirus (SADS-CoV), and porcine delta coronavirus (PDCoV). Coronaviruses infect a wide variety of animal species and humans because these are having single stranded-RNA that accounts for high mutation rates and thus could break the species barrier. The gastrointestinal, cardiovascular, and nervous systems are the primary organ systems affected by SCoVs. Infection is very common in piglets compared to adult swine causing high mortality in the former. Bat is implicated to be the origin of all CoVs affecting animals and humans. Since pig is the only domestic animal in which CoVs cause a wide range of diseases; new coronaviruses with high zoonotic potential could likely emerge in the future as observed in the past. The recently emerged severe acute respiratory syndrome coronavirus virus-2 (SARS-CoV-2), causing COVID-19 pandemic in humans, has been implicated to have animal origin, also reported from few animal species, though its zoonotic concerns are still under investigation. This review discusses SCoVs and their epidemiology, virology, evolution, pathology, wildlife reservoirs, interspecies transmission, spill-over events and highlighting their emerging threats to swine population. The role of pigs amid ongoing SARS-CoV-2 pandemic will also be discussed. A thorough investigation should be conducted to rule out zoonotic potential of SCoVs and to design appropriate strategies for their prevention and control.
Collapse
Affiliation(s)
- Jigarji C. Thakor
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Rajendran Manikandan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Suresh Bindu
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Diptimayee Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- The Trafford Group of Colleges, Manchester, United Kingdom
| | - Megha Katare Pandey
- Department of Translational Medicine Center, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
19
|
Dolan KA, Dutta M, Kern DM, Kotecha A, Voth GA, Brohawn SG. Structure of SARS-CoV-2 M protein in lipid nanodiscs. eLife 2022; 11:e81702. [PMID: 36264056 PMCID: PMC9642992 DOI: 10.7554/elife.81702] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
SARS-CoV-2 encodes four structural proteins incorporated into virions, spike (S), envelope (E), nucleocapsid (N), and membrane (M). M plays an essential role in viral assembly by organizing other structural proteins through physical interactions and directing them to sites of viral budding. As the most abundant protein in the viral envelope and a target of patient antibodies, M is a compelling target for vaccines and therapeutics. Still, the structure of M and molecular basis for its role in virion formation are unknown. Here, we present the cryo-EM structure of SARS-CoV-2 M in lipid nanodiscs to 3.5 Å resolution. M forms a 50 kDa homodimer that is structurally related to the SARS-CoV-2 ORF3a viroporin, suggesting a shared ancestral origin. Structural comparisons reveal how intersubunit gaps create a small, enclosed pocket in M and large open cavity in ORF3a, consistent with a structural role and ion channel activity, respectively. M displays a strikingly electropositive cytosolic surface that may be important for interactions with N, S, and viral RNA. Molecular dynamics simulations show a high degree of structural rigidity in a simple lipid bilayer and support a role for M homodimers in scaffolding viral assembly. Together, these results provide insight into roles for M in coronavirus assembly and structure.
Collapse
Affiliation(s)
- Kimberly A Dolan
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, and California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Mandira Dutta
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of ChicagoChicagoUnited States
| | - David M Kern
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, and California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Abhay Kotecha
- Materials and Structural Analysis Division, Thermo Fisher ScientificEindhovenNetherlands
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of ChicagoChicagoUnited States
| | - Stephen G Brohawn
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, and California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
20
|
Li S, Zandi R. Biophysical Modeling of SARS-CoV-2 Assembly: Genome Condensation and Budding. Viruses 2022; 14:2089. [PMID: 36298645 PMCID: PMC9611094 DOI: 10.3390/v14102089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spurred unprecedented and concerted worldwide research to curtail and eradicate this pathogen. SARS-CoV-2 has four structural proteins: Envelope (E), Membrane (M), Nucleocapsid (N), and Spike (S), which self-assemble along with its RNA into the infectious virus by budding from intracellular lipid membranes. In this paper, we develop a model to explore the mechanisms of RNA condensation by structural proteins, protein oligomerization and cellular membrane-protein interactions that control the budding process and the ultimate virus structure. Using molecular dynamics simulations, we have deciphered how the positively charged N proteins interact and condense the very long genomic RNA resulting in its packaging by a lipid envelope decorated with structural proteins inside a host cell. Furthermore, considering the length of RNA and the size of the virus, we find that the intrinsic curvature of M proteins is essential for virus budding. While most current research has focused on the S protein, which is responsible for viral entry, and it has been motivated by the need to develop efficacious vaccines, the development of resistance through mutations in this crucial protein makes it essential to elucidate the details of the viral life cycle to identify other drug targets for future therapy. Our simulations will provide insight into the viral life cycle through the assembly of viral particles de novo and potentially identify therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Siyu Li
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Roya Zandi
- Department of Physics and Astronomy, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
21
|
Zhang Z, Nomura N, Muramoto Y, Ekimoto T, Uemura T, Liu K, Yui M, Kono N, Aoki J, Ikeguchi M, Noda T, Iwata S, Ohto U, Shimizu T. Structure of SARS-CoV-2 membrane protein essential for virus assembly. Nat Commun 2022; 13:4399. [PMID: 35931673 PMCID: PMC9355944 DOI: 10.1038/s41467-022-32019-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/13/2022] [Indexed: 12/13/2022] Open
Abstract
The coronavirus membrane protein (M) is the most abundant viral structural protein and plays a central role in virus assembly and morphogenesis. However, the process of M protein-driven virus assembly are largely unknown. Here, we report the cryo-electron microscopy structure of the SARS-CoV-2 M protein in two different conformations. M protein forms a mushroom-shaped dimer, composed of two transmembrane domain-swapped three-helix bundles and two intravirion domains. M protein further assembles into higher-order oligomers. A highly conserved hinge region is key for conformational changes. The M protein dimer is unexpectedly similar to SARS-CoV-2 ORF3a, a viral ion channel. Moreover, the interaction analyses of M protein with nucleocapsid protein (N) and RNA suggest that the M protein mediates the concerted recruitment of these components through the positively charged intravirion domain. Our data shed light on the M protein-driven virus assembly mechanism and provide a structural basis for therapeutic intervention targeting M protein.
Collapse
Affiliation(s)
- Zhikuan Zhang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| | - Toru Ekimoto
- Computational Life Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Tomoko Uemura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Kehong Liu
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Moeko Yui
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Nozomu Kono
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Mitsunori Ikeguchi
- Computational Life Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, Yokohama, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan
- RIKEN SPring-8 Center, Kouto, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
22
|
de Castro Barbosa E, de Souza Andrade A, Duarte MM, Faria G, de Melo Iani FC, Ataide ACZ, Cunha LM, Duarte CG, Fialho SL, Caldas S. Influence of SARS-CoV-2 inactivation by different chemical reagents on the humoral response evaluated in a murine model. Mol Immunol 2022; 147:199-208. [PMID: 35644072 PMCID: PMC9125173 DOI: 10.1016/j.molimm.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023]
Abstract
Viral inactivation for antibody induction purposes, among other applications, should ensure biosafety, completely avoiding the risk of infectivity, and preserving viral immunogenicity. β-propiolactone (BPL) is one of the most used reagents for viral inactivation, despite its high toxicity and recent difficulties related to importation, experienced in Brazil during the SARS-CoV-2 pandemic. In this context, the main objectives of this work were to test different inactivation procedures for SARS-CoV-2 and to evaluate the induction of neutralizing antibodies in mice immunized with antigenic preparations obtained after viral treatment with formaldehyde (FDE), glutaraldehyde (GDE), peroxide hydrogen (H2O2), as well as with viral proteins extract (VPE), in parallel with BPL. Verification of viral inactivation was performed by subsequent incubations of the inactivated virus in Vero cells, followed by cytopathic effect and lysis plaques observation, as well as by quantification of RNA load using reverse transcription-quantitative real time polymerase chain reaction. Once viral inactivation was confirmed, cell culture supernatants were concentrated and purified. In addition, an aliquot inactivated by BPL was also subjected to viral protein extraction (VPE). The different antigens were prepared using a previously developed microemulsion as adjuvant, and were administered in a four-dose immunization protocol. Antibody production was comparatively evaluated by ELISA and Plaque Reduction Neutralization Tests (PRNT). All immunogens evaluated showed some level of IgG anti-SARS-CoV-2 antibodies in the ELISA assay, with the highest levels presented by the group immunized with FDE-inactivated viral antigen. In the PRNT results, except for VPE-antigen, all other immunogens evaluated induced some level of neutralizing anti-SARS-CoV-2 antibodies, and the FDE-antigen stood out again with the most expressive values. Taken together, the present work shows that FDE can be an efficient and affordable alternative to BPL for the production of inactivated SARS-CoV-2 viral antigen.
Collapse
Affiliation(s)
- Emerson de Castro Barbosa
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil; Serviço de Virologia e Riquetsioses, Diretoria do Instituto Octávio Magalhães, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Adriana de Souza Andrade
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil
| | - Myrian Morato Duarte
- Serviço de Virologia e Riquetsioses, Diretoria do Instituto Octávio Magalhães, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Gilson Faria
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil
| | - Felipe Campos de Melo Iani
- Serviço de Virologia e Riquetsioses, Diretoria do Instituto Octávio Magalhães, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Ana Caroline Zampiroli Ataide
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil
| | - Lucas Maciel Cunha
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Clara Guerra Duarte
- Serviço de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Sílvia Ligorio Fialho
- Serviço de Desenvolvimento Tecnológico Farmacêutico, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Sérgio Caldas
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil.
| |
Collapse
|
23
|
Rath SL, Tripathy M, Mandal N. How Does Temperature Affect the Dynamics of SARS-CoV-2 M Proteins? Insights from Molecular Dynamics Simulations. J Membr Biol 2022; 255:341-356. [PMID: 35552785 PMCID: PMC9101995 DOI: 10.1007/s00232-022-00244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Enveloped viruses, in general, have several transmembrane proteins and glycoproteins, which assist the virus in entry and attachment onto the host cells. These proteins also play a significant role in determining the shape and size of the newly formed virus particles. The lipid membrane and the embedded proteins affect each other in non-trivial ways during the course of the viral life cycle. Unraveling the nature of the protein-protein and protein-lipid interactions, under various environmental and physiological conditions, could therefore prove to be crucial in development of therapeutics. Here, we study the M protein of SARS-CoV-2 to understand the effect of temperature on the properties of the protein-membrane system. The membrane-embedded dimeric M proteins were studied using atomistic and coarse-grained molecular dynamics simulations at temperatures ranging between 10 and 50 °C. While temperature-induced fluctuations are expected to be monotonic, we observe a steady rise in the protein dynamics up to 40 °C, beyond which it surprisingly reverts back to the low-temperature behavior. Detailed investigation reveals disordering of the membrane lipids in the presence of the protein, which induces additional curvature around the transmembrane region. Coarse-grained simulations indicate temperature-dependent aggregation of M protein dimers. Our study clearly indicates that the dynamics of membrane lipids and integral M protein of SARS-CoV-2 enables it to better associate and aggregate only at a certain temperature range (i.e., ~ 30-40 °C). This can have important implications in the protein aggregation and subsequent viral budding/fission processes.
Collapse
Affiliation(s)
- Soumya Lipsa Rath
- Department of Biotechnology, National Institute of Technology Warangal (NITW), Telangana, 506004, India.
| | - Madhusmita Tripathy
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany.
| | - Nabanita Mandal
- Department of Biotechnology, National Institute of Technology Warangal (NITW), Telangana, 506004, India
| |
Collapse
|
24
|
Zambalde ÉP, Pavan ICB, Mancini MCS, Severino MB, Scudero OB, Morelli AP, Amorim MR, Bispo-dos-Santos K, Góis MM, Toledo-Teixeira DA, Parise PL, Mauad T, Dolhnikoff M, Saldiva PHN, Marques-Souza H, Proenca-Modena JL, Ventura AM, Simabuco FM. Characterization of the Interaction Between SARS-CoV-2 Membrane Protein (M) and Proliferating Cell Nuclear Antigen (PCNA) as a Potential Therapeutic Target. Front Cell Infect Microbiol 2022; 12:849017. [PMID: 35677658 PMCID: PMC9168989 DOI: 10.3389/fcimb.2022.849017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 is an emerging virus from the Coronaviridae family and is responsible for the ongoing COVID-19 pandemic. In this work, we explored the previously reported SARS-CoV-2 structural membrane protein (M) interaction with human Proliferating Cell Nuclear Antigen (PCNA). The M protein is responsible for maintaining virion shape, and PCNA is a marker of DNA damage which is essential for DNA replication and repair. We validated the M-PCNA interaction through immunoprecipitation, immunofluorescence co-localization, and PLA (Proximity Ligation Assay). In cells infected with SARS-CoV-2 or transfected with M protein, using immunofluorescence and cell fractioning, we documented a reallocation of PCNA from the nucleus to the cytoplasm and the increase of PCNA and γH2AX (another DNA damage marker) expression. We also observed an increase in PCNA and γH2AX expression in the lung of a COVID-19 patient by immunohistochemistry. In addition, the inhibition of PCNA translocation by PCNA I1 and Verdinexor led to a reduction of plaque formation in an in vitro assay. We, therefore, propose that the transport of PCNA to the cytoplasm and its association with M could be a virus strategy to manipulate cell functions and may be considered a target for COVID-19 therapy.
Collapse
Affiliation(s)
- Érika Pereira Zambalde
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Isadora Carolina Betim Pavan
- Laboratory of Signaling Mechanisms, School of Pharmaceutical Sciences, University of Campinas, (Unicamp), Campinas, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Matheus Brandemarte Severino
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Orlando Bonito Scudero
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Mariene Ribeiro Amorim
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Karina Bispo-dos-Santos
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Mariana Marcela Góis
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Daniel A. Toledo-Teixeira
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Pierina Lorencini Parise
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Thais Mauad
- São Paulo University Medical School, Department of Pathology, University of São Paulo (USP), São Paulo, Brazil
| | - Marisa Dolhnikoff
- São Paulo University Medical School, Department of Pathology, University of São Paulo (USP), São Paulo, Brazil
| | | | | | - José Luiz Proenca-Modena
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
- Experimental Medicine Research Cluster, University of Campinas (Unicamp), Campinas, Brazil
- Hub of Global Health (HGH), University of Campinas (Unicamp), Campinas, Brazil
| | - Armando Morais Ventura
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| |
Collapse
|
25
|
Flageul A, Courtillon C, Allée C, Leroux A, Blanchard Y, Deleforterie Y, Grasland B, Brown PA. Extracting Turkey Coronaviruses from the intestinal lumen of infected turkey embryos yields full genome data with good coverage by NGS. Avian Pathol 2022; 51:291-294. [PMID: 35201915 DOI: 10.1080/03079457.2022.2046701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Currently, turkey coronaviruses (TCoV) are isolated from homogenized intestines of experimentally infected embryos to ensure a maximum recovery of viral particles from all components of the intestines. However, the process of homogenization also ensures a release of an important amount of cellular RNAs into the sample that hinders downstream viral genome sequencing. This is especially the case for next generation sequencing (NGS) that sequences molecules at random. This characteristic means that the heavily abundant cellular RNA in the sample drowns out the minority viral RNA during the sequencing process and consequently very little to no viral genome data is obtained.To address this problem, a method was developed, in which ten descendent isolates of the European strain of TCoV were recovered uniquely from the intestinal lumen without homogenization of the tissue. For nine out of ten samples, NGS produced viral RNA reads with good coverage depth over the entire TCoV genomes. This is a much-needed new, simple and cost effective method of isolating TCoV that facilitates downstream NGS of viral RNA and should be considered as an alternative method for isolating other avian enteric coronaviruses in the interest of obtaining full-length genome sequences.
Collapse
Affiliation(s)
- Alexandre Flageul
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES) laboratory of Ploufragan-Plouzané-Niort, Virology, immunology and parasitology in poultry and rabbit (VIPAC) Unit, Université de Rennes 1
| | - Céline Courtillon
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES) laboratory of Ploufragan-Plouzané-Niort, Virology, immunology and parasitology in poultry and rabbit (VIPAC) Unit, Université de Rennes 1
| | - Chantal Allée
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES) laboratory of Ploufragan-Plouzané-Niort, Virology, immunology and parasitology in poultry and rabbit (VIPAC) Unit, Université de Rennes 1
| | - Aurélie Leroux
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES), laboratory of Ploufragan-Plouzané-Niort, Viral Genetic and Biosafety (GVB) Unit, Université de Rennes 1
| | - Yannick Blanchard
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES), laboratory of Ploufragan-Plouzané-Niort, Viral Genetic and Biosafety (GVB) Unit, Université de Rennes 1
| | | | - Béatrice Grasland
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES) laboratory of Ploufragan-Plouzané-Niort, Virology, immunology and parasitology in poultry and rabbit (VIPAC) Unit, Université de Rennes 1
| | - Paul Alun Brown
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES) laboratory of Ploufragan-Plouzané-Niort, Virology, immunology and parasitology in poultry and rabbit (VIPAC) Unit, Université de Rennes 1
| |
Collapse
|
26
|
Galkin SO, Anisenko AN, Shadrina OA, Gottikh MB. Genetic Engineering Systems to Study Human Viral Pathogens from the Coronaviridae Family. Mol Biol 2022; 56:72-89. [PMID: 35194246 PMCID: PMC8853348 DOI: 10.1134/s0026893322010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/02/2022]
Abstract
The COVID-19 pandemic caused by the previously unknown SARS-CoV-2 Betacoronavirus made it extremely important to develop simple and safe cellular systems which allow manipulation of the viral genome and high-throughput screening of its potential inhibitors. In this review, we made an attempt at summarizing the currently existing data on genetic engineering systems used to study not only SARS-CoV-2, but also other viruses from the Coronaviridae family. In addition, the review covers the basic knowledge about the structure and the life cycle of coronaviruses.
Collapse
Affiliation(s)
- S. O. Galkin
- Bioengineering and Bioinformatics Department, Moscow State University, 119991 Moscow, Russia
- Chemistry Department, Moscow State University, 119991 Moscow, Russia
| | - A. N. Anisenko
- Bioengineering and Bioinformatics Department, Moscow State University, 119991 Moscow, Russia
- Chemistry Department, Moscow State University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119991 Moscow, Russia
| | - O. A. Shadrina
- Chemistry Department, Moscow State University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119991 Moscow, Russia
| | - M. B. Gottikh
- Chemistry Department, Moscow State University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
27
|
Wang F, Wang M, Zhang L, Cheng M, Li M, Zhu J. Generation and functional analysis of single chain variable fragments (scFvs) targeting the nucleocapsid protein of Porcine epidemic diarrhea virus. Appl Microbiol Biotechnol 2022; 106:995-1009. [PMID: 35024918 PMCID: PMC8755980 DOI: 10.1007/s00253-021-11722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/25/2022]
Abstract
Abstract Porcine epidemic diarrhea virus (PEDV) is the causative agent of porcine epidemic diarrhea, which can cause death in suckling piglets. Vaccines confer only partial protection against new mutant strains, whereas antibodies targeting virus-encoded proteins may be effective prophylactics. In this study, we constructed a recombinant single chain variable fragment (scFv) library from the spleens of two pigs immunized with a recombinant PEDV nucleocapsid (N) protein. Among the positive clones directed against PEDV N protein isolated from the library, four scFvs that showed higher affinity for N were functionally analyzed. These scFvs specifically bound to the PEDV N protein, but not to the transmissible gastroenteritis virus (TGEV) N protein. Their framework regions were highly conserved, whereas their complementarity-determining regions displayed clear diversity. An immunofluorescence assay showed the co-localization of the four scFvs with PEDV N protein in cells. They significantly suppressed PEDV replication, detected with reverse transcription (RT)-quantitative PCR (qPCR; P < 0.01). Two of them significantly reduced the viral titer at 48 hpi and 72 hpi (P < 0.05). In addition, they observably suppressed the production of viral protein at 72 hpi. The expression of interferons, interferon regulatory factor 3 (IRF3), and IRF7 was assessed with RT-qPCR, which indicated that PEDV dramatically suppressed the transcription of interferon-λ1 and IRF7 and that the scFvs significantly upregulated their expression (P < 0.05). These findings facilitated the investigation of the mechanism by which PEDV evaded the host immune response and suggested that these porcine scFvs were potential candidate agents for the prevention and treatment of porcine diarrhea caused by PEDV. Key points • Four scFvs targeting PEDV N protein were generated from porcine spleens • These scFvs co-localized with PEDV N protein and suppressed PEDV replication • These scFvs significantly upregulated IFN-λ1 expression Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11722-z.
Collapse
Affiliation(s)
- Fengqing Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Man Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lei Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Manling Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mei Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianguo Zhu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
28
|
Chechetkin VR, Lobzin VV. Ribonucleocapsid assembly/packaging signals in the genomes of the coronaviruses SARS-CoV and SARS-CoV-2: detection, comparison and implications for therapeutic targeting. J Biomol Struct Dyn 2022; 40:508-522. [PMID: 32901577 PMCID: PMC7544952 DOI: 10.1080/07391102.2020.1815581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
Abstract
The genomic ssRNA of coronaviruses is packaged within a helical nucleocapsid. Due to transitional symmetry of a helix, weakly specific cooperative interaction between ssRNA and nucleocapsid proteins leads to the natural selection of specific quasi-periodic assembly/packaging signals in the related genomic sequence. Such signals coordinated with the nucleocapsid helical structure were detected and reconstructed in the genomes of the coronaviruses SARS-CoV and SARS-CoV-2. The main period of the signals for both viruses was about 54 nt, that implies 6.75 nt per N protein. The complete coverage of the ssRNA genome of length about 30,000 nt by the nucleocapsid would need 4.4 × 103 N proteins, that makes them the most abundant among the structural proteins. The repertoires of motifs for SARS-CoV and SARS-CoV-2 were divergent but nearly coincided for different isolates of SARS-CoV-2. We obtained the distributions of assembly/packaging signals over the genomes with nonoverlapping windows of width 432 nt. Finally, using the spectral entropy, we compared the load from point mutations and indels during virus age for SARS-CoV and SARS-CoV-2. We found the higher mutational load on SARS-CoV. In this sense, SARS-CoV-2 can be treated as a 'newborn' virus. These observations may be helpful in practical medical applications and are of basic interest. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vladimir R. Chechetkin
- Engelhardt Institute of Molecular Biology of
Russian Academy of Sciences, Moscow,
Russia
| | | |
Collapse
|
29
|
Murugan C, Ramamoorthy S, Kuppuswamy G, Murugan RK, Sivalingam Y, Sundaramurthy A. COVID-19: A review of newly formed viral clades, pathophysiology, therapeutic strategies and current vaccination tasks. Int J Biol Macromol 2021; 193:1165-1200. [PMID: 34710479 PMCID: PMC8545698 DOI: 10.1016/j.ijbiomac.2021.10.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023]
Abstract
Today, the world population is facing an existential threat by an invisible enemy known as severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) or COVID-19. It is highly contagious and has infected a larger fraction of human population across the globe on various routes of transmission. The detailed knowledge of the SARS-CoV-2 structure and clinical aspects offers an important insight into the evolution of infection, disease progression and helps in executing the different therapies effectively. Herein, we have discussed in detail about the genome structure of SARS-CoV-2 and its role in the proteomic rational spread of different muted species and pathogenesis in infecting the host cells. The mechanisms behind the viral outbreak and its immune response, the availability of existing diagnostics techniques, the treatment efficacy of repurposed drugs and the emerging vaccine trials for the SARS-CoV-2 outbreak also have been highlighted. Furthermore, the possible antiviral effects of various herbal products and their extracted molecules in inhibiting SARS-CoV-2 replication and cellular entry are also reported. Finally, we conclude our opinion on current challenges involved in the drug development, bulk production of drug/vaccines and their storage requirements, logistical procedures and limitations related to dosage trials for larger population.
Collapse
Affiliation(s)
- Chandran Murugan
- SRM Research Institute, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Sharmiladevi Ramamoorthy
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Guruprasad Kuppuswamy
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Rajesh Kumar Murugan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Yuvaraj Sivalingam
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Anandhakumar Sundaramurthy
- SRM Research Institute, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India; Department of Chemical Engineering, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India.
| |
Collapse
|
30
|
Jamiu AT, Pohl CH, Bello S, Adedoja T, Sabiu S. A review on molecular docking analysis of phytocompounds against SARS-CoV-2 druggable targets. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.2013327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Abdullahi Temitope Jamiu
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
- Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Sharafa Bello
- Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria
| | - Toluwase Adedoja
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
31
|
Koetzner CA, Hurst-Hess KR, Kuo L, Masters PS. Analysis of a crucial interaction between the coronavirus nucleocapsid protein and the major membrane-bound subunit of the viral replicase-transcriptase complex. Virology 2021; 567:1-14. [PMID: 34933176 PMCID: PMC8669624 DOI: 10.1016/j.virol.2021.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/27/2022]
Abstract
The coronavirus nucleocapsid (N) protein comprises two RNA-binding domains connected by a central spacer, which contains a serine- and arginine-rich (SR) region. The SR region engages the largest subunit of the viral replicase-transcriptase, nonstructural protein 3 (nsp3), in an interaction that is essential for efficient initiation of infection by genomic RNA. We carried out an extensive genetic analysis of the SR region of the N protein of mouse hepatitis virus in order to more precisely define its role in RNA synthesis. We further examined the N-nsp3 interaction through construction of nsp3 mutants and by creation of an interspecies N protein chimera. Our results indicate a role for the central spacer as an interaction hub of the N molecule that is partially regulated by phosphorylation. These findings are discussed in relation to the recent discovery that nsp3 forms a molecular pore in the double-membrane vesicles that sequester the coronavirus replicase-transcriptase.
Collapse
Affiliation(s)
- Cheri A Koetzner
- Laboratory of Viral Replication and Vector Biology, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA
| | - Kelley R Hurst-Hess
- Laboratory of Viral Replication and Vector Biology, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA
| | - Lili Kuo
- Laboratory of Viral Replication and Vector Biology, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA
| | - Paul S Masters
- Laboratory of Viral Replication and Vector Biology, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA; Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, 12208, USA.
| |
Collapse
|
32
|
Zandi M, Hosseini P, Soltani S, Rasooli A, Moghadami M, Nasimzadeh S, Behnezhad F. The role of lipids in the pathophysiology of coronavirus infections. Osong Public Health Res Perspect 2021; 12:278-285. [PMID: 34719219 PMCID: PMC8561023 DOI: 10.24171/j.phrp.2021.0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/06/2021] [Indexed: 11/23/2022] Open
Abstract
Coronaviruses, which have been known to cause diseases in animals since the 1930s, utilize cellular components during their replication cycle. Lipids play important roles in viral infection, as coronaviruses target cellular lipids and lipid metabolism to modify their host cells to become an optimal environment for viral replication. Therefore, lipids can be considered as potential targets for the development of antiviral agents. This review provides an overview of the roles of cellular lipids in different stages of the life cycle of coronaviruses.
Collapse
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Rasooli
- Department of Biochemistry, Faculty of Sciences, Payame Noor University, Tehran, Iran
| | - Mona Moghadami
- Department of Medical Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sepideh Nasimzadeh
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farzane Behnezhad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Parkhe P, Verma S. Evolution, Interspecies Transmission, and Zoonotic Significance of Animal Coronaviruses. Front Vet Sci 2021; 8:719834. [PMID: 34738021 PMCID: PMC8560429 DOI: 10.3389/fvets.2021.719834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Coronaviruses are single-stranded RNA viruses that affect humans and a wide variety of animal species, including livestock, wild animals, birds, and pets. These viruses have an affinity for different tissues, such as those of the respiratory and gastrointestinal tract of most mammals and birds and the hepatic and nervous tissues of rodents and porcine. As coronaviruses target different host cell receptors and show divergence in the sequences and motifs of their structural and accessory proteins, they are classified into groups, which may explain the evolutionary relationship between them. The interspecies transmission, zoonotic potential, and ability to mutate at a higher rate and emerge into variants of concern highlight their importance in the medical and veterinary fields. The contribution of various factors that result in their evolution will provide better insight and may help to understand the complexity of coronaviruses in the face of pandemics. In this review, important aspects of coronaviruses infecting livestock, birds, and pets, in particular, their structure and genome organization having a bearing on evolutionary and zoonotic outcomes, have been discussed.
Collapse
Affiliation(s)
| | - Subhash Verma
- Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| |
Collapse
|
34
|
Jack A, Ferro LS, Trnka MJ, Wehri E, Nadgir A, Nguyenla X, Fox D, Costa K, Stanley S, Schaletzky J, Yildiz A. SARS-CoV-2 nucleocapsid protein forms condensates with viral genomic RNA. PLoS Biol 2021; 19:e3001425. [PMID: 34634033 PMCID: PMC8553124 DOI: 10.1371/journal.pbio.3001425] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/28/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection causes Coronavirus Disease 2019 (COVID-19), a pandemic that seriously threatens global health. SARS-CoV-2 propagates by packaging its RNA genome into membrane enclosures in host cells. The packaging of the viral genome into the nascent virion is mediated by the nucleocapsid (N) protein, but the underlying mechanism remains unclear. Here, we show that the N protein forms biomolecular condensates with viral genomic RNA both in vitro and in mammalian cells. While the N protein forms spherical assemblies with homopolymeric RNA substrates that do not form base pairing interactions, it forms asymmetric condensates with viral RNA strands. Cross-linking mass spectrometry (CLMS) identified a region that drives interactions between N proteins in condensates, and deletion of this region disrupts phase separation. We also identified small molecules that alter the size and shape of N protein condensates and inhibit the proliferation of SARS-CoV-2 in infected cells. These results suggest that the N protein may utilize biomolecular condensation to package the SARS-CoV-2 RNA genome into a viral particle.
Collapse
Affiliation(s)
- Amanda Jack
- Biophysics Graduate Group, University of California, Berkeley, California, United States of America
| | - Luke S. Ferro
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Michael J. Trnka
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Eddie Wehri
- Center for Emerging and Neglected Diseases, University of California, Berkeley, California, United States of America
| | - Amrut Nadgir
- Physics Department, University of California, Berkeley, California, United States of America
| | - Xammy Nguyenla
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, California, United States of America
| | - Douglas Fox
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, California, United States of America
| | - Katelyn Costa
- Press West Illustrations, Boston, Massachusetts, United States of America
| | - Sarah Stanley
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, California, United States of America
| | - Julia Schaletzky
- Center for Emerging and Neglected Diseases, University of California, Berkeley, California, United States of America
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Physics Department, University of California, Berkeley, California, United States of America
| |
Collapse
|
35
|
Jörrißen P, Schütz P, Weiand M, Vollenberg R, Schrempf IM, Ochs K, Frömmel C, Tepasse PR, Schmidt H, Zibert A. Antibody Response to SARS-CoV-2 Membrane Protein in Patients of the Acute and Convalescent Phase of COVID-19. Front Immunol 2021; 12:679841. [PMID: 34421894 PMCID: PMC8371319 DOI: 10.3389/fimmu.2021.679841] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Understanding the course of the antibody response directed to individual epitopes of SARS-CoV-2 proteins is crucial for serological assays and establishment of vaccines. Twenty-one synthetic peptides were synthesized that have ten amino acids overlap and cover the complete membrane (M) protein. Plasma samples from 32 patients having acute disease and 30 patients from the convalescent phase were studied. Only peptide M01 (aa 1–20) and to a lesser extent peptide M21 (aa 201–222) showed specific reactivity as compared to historical control plasma samples. Peptide M01 was recognized by IgM- (71.9%) and IgG-specific antibodies (43.8%) during the acute phase as early as day 8 PIO. In a longitudinal analysis, a higher reactivity was observed for the IgM response directed to peptide M01 following day 20 PIO as compared to earlier time points of the acute phase. In the convalescent phase, antibody reactivity to the two M-specific peptides was significantly lower (<30% seropositivity). A fusion protein encoding major parts of RBD also showed higher rates of recognition during acute (50.0%) and lower rates in the convalescent phase (23.3%). Taken together, our results suggest that during the acute phase of COVID-19 antibodies are raised to two linear epitopes of the SARS-CoV-2 M protein, located at the very N- and C-termini, showing almost similar levels of reactivity as immunodominant linear epitopes derived from the spike and nucleocapsid protein. Anti-M is also present in the convalescent phase of COVID-19 patients, however at lower levels, with the N-terminus of the M protein as a preferred target.
Collapse
Affiliation(s)
- Philipp Jörrißen
- Medizinische Klinik B, Universitätsklinikum Münster, Münster, Germany
| | - Paula Schütz
- Medizinische Klinik B, Universitätsklinikum Münster, Münster, Germany
| | - Matthias Weiand
- Medizinische Klinik B, Universitätsklinikum Münster, Münster, Germany
| | | | | | - Kevin Ochs
- Medizinische Klinik B, Universitätsklinikum Münster, Münster, Germany
| | | | | | - Hartmut Schmidt
- Medizinische Klinik B, Universitätsklinikum Münster, Münster, Germany
| | - Andree Zibert
- Medizinische Klinik B, Universitätsklinikum Münster, Münster, Germany
| |
Collapse
|
36
|
Biochemical composition, transmission and diagnosis of SARS-CoV-2. Biosci Rep 2021; 41:229295. [PMID: 34291285 PMCID: PMC8350435 DOI: 10.1042/bsr20211238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a life-threatening respiratory infection caused by severe acute respiratory syndrome virus (SARS-CoV-2), a novel human coronavirus. COVID-19 was declared a pandemic by World Health Organization in March 2020 for its continuous and rapid spread worldwide. Rapidly emerging COVID-19 epicenters and mutants of concerns have created mammoth chaos in healthcare sectors across the globe. With over 185 million infections and approximately 4 million deaths globally, COVID-19 continues its unchecked spread despite all mitigation measures. Until effective and affordable antiretroviral drugs are made available and the population at large is vaccinated, timely diagnosis of the infection and adoption of COVID-appropriate behavior remains major tool available to curtail the still escalating COVID-19 pandemic. This review provides an updated overview of various techniques of COVID-19 testing in human samples and also discusses, in brief, the biochemical composition and mode of transmission of the SARS-CoV-2. Technological advancement in various molecular, serological and immunological techniques including mainly the reverse-transcription polymerase chain reaction (RT-PCR), CRISPR, lateral flow assays (LFAs), and immunosensors are reviewed.
Collapse
|
37
|
Aldaais EA, Yegnaswamy S, Albahrani F, Alsowaiket F, Alramadan S. Sequence and structural analysis of COVID-19 E and M proteins with MERS virus E and M proteins-A comparative study. Biochem Biophys Rep 2021; 26:101023. [PMID: 34013072 PMCID: PMC8120451 DOI: 10.1016/j.bbrep.2021.101023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/23/2022] Open
Abstract
The outbreak of SARS in 2003, MERS in 2012, and now COVID-19 in 2019 has demonstrated that Coronaviruses are capable of causing primary lethal infections in humans, and the pandemic is now a global concern. The COVID-19 belongs to the beta coronavirus family encoding 29 proteins, of which four are structural, the Spike, Membrane, Envelope, and Nucleocapsid proteins. Here we have analyzed and compared the Membrane (M) and Envelope (E) proteins of COVID-19 and MERS with SARS and Bat viruses. The sequence analysis of conserved regions of both E and M proteins revealed that many regions of COVID-19 are similar to Bat and SARS viruses while the MERS virus showed variations. The essential binding motifs found in SARS appeared in COVID-19. Besides, the M protein of COVID-19 showed a distinct serine phosphorylation site in the C-terminal domain, which looked like a catalytic triad seen in serine proteases. A Dileucine motif occurred many times in the sequence of the M protein of all the four viruses compared. Concerning the structural part, the COVID-19 E protein showed more similarity to Bat while MERS shared similarity with the SARS virus. The M protein of both COVID-19 and MERS displayed variations in the structure. The interaction between M and E proteins was also studied to know the additional binding regions. Our study highlights the critical motifs and structural regions to be considered for further research to design better inhibitors for the infection caused by these viruses.
Collapse
Affiliation(s)
- Ebtisam A. Aldaais
- Department of Radiological Sciences, Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 2435, 31441, Saudi Arabia
| | - Subha Yegnaswamy
- Aldaais Research Group, Imam Abdulrahman bin Faisal University, Dammam, P.O. Box 2435, 31451, Saudi Arabia
| | - Fatimah Albahrani
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 2435, 31451, Saudi Arabia
| | - Fatima Alsowaiket
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 2435, 31451, Saudi Arabia
| | - Sarah Alramadan
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 2435, 31451, Saudi Arabia
| |
Collapse
|
38
|
Caruso ÍP, Sanches K, Da Poian AT, Pinheiro AS, Almeida FCL. Dynamics of the SARS-CoV-2 nucleoprotein N-terminal domain triggers RNA duplex destabilization. Biophys J 2021; 120:2814-2827. [PMID: 34197802 PMCID: PMC8239202 DOI: 10.1016/j.bpj.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/25/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
The nucleocapsid (N) protein of betacoronaviruses is responsible for nucleocapsid assembly and other essential regulatory functions. The N protein N-terminal domain (N-NTD) interacts and melts the double-stranded transcriptional regulatory sequences (dsTRSs), regulating the discontinuous subgenome transcription process. Here, we used molecular dynamics (MD) simulations to study the binding of the severe acute respiratory syndrome coronavirus 2 N-NTD to nonspecific (NS) and TRS dsRNAs. We probed dsRNAs' Watson-Crick basepairing over 25 replicas of 100 ns MD simulations, showing that only one N-NTD of dimeric N is enough to destabilize dsRNAs, triggering melting initiation. dsRNA destabilization driven by N-NTD was more efficient for dsTRSs than dsNS. N-NTD dynamics, especially a tweezer-like motion of β2-β3 and Δ2-β5 loops, seems to play a key role in Watson-Crick basepairing destabilization. Based on experimental information available in the literature, we constructed kinetics models for N-NTD-mediated dsRNA melting. Our results support a 1:1 stoichiometry (N-NTD/dsRNA), matching MD simulations and raising different possibilities for N-NTD action: 1) two N-NTD arms of dimeric N would bind to two different RNA sites, either closely or spatially spaced in the viral genome, in a cooperative manner; and 2) monomeric N-NTD would be active, opening up the possibility of a regulatory dissociation event.
Collapse
Affiliation(s)
- Ícaro P Caruso
- Multiuser Center for Biomolecular Innovation and Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil; Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Rio de Janeiro, Brazil.
| | - Karoline Sanches
- Multiuser Center for Biomolecular Innovation and Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil; Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Andrea T Da Poian
- Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Rio de Janeiro, Brazil.
| |
Collapse
|
39
|
Obaidullah AJ, Alanazi MM, Alsaif NA, Albassam H, Almehizia AA, Alqahtani AM, Mahmud S, Sami SA, Emran TB. Immunoinformatics-guided design of a multi-epitope vaccine based on the structural proteins of severe acute respiratory syndrome coronavirus 2. RSC Adv 2021; 11:18103-18121. [PMID: 35480208 PMCID: PMC9033181 DOI: 10.1039/d1ra02885e] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in a contagious respiratory tract infection that has become a global burden since the end of 2019. Notably, fewer patients infected with SARS-CoV-2 progress from acute disease onset to death compared with the progression rate associated with two other coronaviruses, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Several research organizations and pharmaceutical industries have attempted to develop successful vaccine candidates for the prevention of COVID-19. However, increasing evidence indicates that the SARS-CoV-2 genome undergoes frequent mutation; thus, an adequate analysis of the viral strain remains necessary to construct effective vaccines. The current study attempted to design a multi-epitope vaccine by utilizing an approach based on the SARS-CoV-2 structural proteins. We predicted the antigenic T- and B-lymphocyte responses to four structural proteins after screening all structural proteins according to specific characteristics. The predicted epitopes were combined using suitable adjuvants and linkers, and a secondary structure profile indicated that the vaccine shared similar properties with the native protein. Importantly, the molecular docking analysis and molecular dynamics simulations revealed that the constructed vaccine possessed a high affinity for toll-like receptor 4 (TLR4). In addition, multiple descriptors were obtained from the simulation trajectories, including the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), solvent-accessible surface area (SASA), and radius of gyration (R g), demonstrating the rigid nature and inflexibility of the vaccine and receptor molecules. In addition, codon optimization, based on Escherichia coli K12, was used to determine the GC content and the codon adaptation index (CAI) value, which further followed for the incorporation into the cloning vector pET28+(a). Collectively, these findings suggested that the constructed vaccine could be used to modulate the immune reaction against SARS-CoV-2.
Collapse
Affiliation(s)
- Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Hussam Albassam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University Abha 62529 Saudi Arabia
| | - Shafi Mahmud
- Microbiology Laboratory, Bioinformatics Division, Department of Genetic Engineering and Biotechnology, University of Rajshahi Rajshahi 6205 Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong Chittagong 4331 Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh Chittagong 4381 Bangladesh
| |
Collapse
|
40
|
Kumar B, Hawkins GM, Kicmal T, Qing E, Timm E, Gallagher T. Assembly and Entry of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2): Evaluation Using Virus-Like Particles. Cells 2021; 10:853. [PMID: 33918600 PMCID: PMC8068838 DOI: 10.3390/cells10040853] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023] Open
Abstract
Research on infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is currently restricted to BSL-3 laboratories. SARS-CoV2 virus-like particles (VLPs) offer a BSL-1, replication-incompetent system that can be used to evaluate virus assembly and virus-cell entry processes in tractable cell culture conditions. Here, we describe a SARS-CoV2 VLP system that utilizes nanoluciferase (Nluc) fragment complementation to track assembly and entry. We utilized the system in two ways. Firstly, we investigated the requirements for VLP assembly. VLPs were produced by concomitant synthesis of three viral membrane proteins, spike (S), envelope (E), and matrix (M), along with the cytoplasmic nucleocapsid (N). We discovered that VLP production and secretion were highly dependent on N proteins. N proteins from related betacoronaviruses variably substituted for the homologous SARS-CoV2 N, and chimeric betacoronavirus N proteins effectively supported VLP production if they contained SARS-CoV2 N carboxy-terminal domains (CTD). This established the CTDs as critical features of virus particle assembly. Secondly, we utilized the system by investigating virus-cell entry. VLPs were produced with Nluc peptide fragments appended to E, M, or N proteins, with each subsequently inoculated into target cells expressing complementary Nluc fragments. Complementation into functional Nluc was used to assess virus-cell entry. We discovered that each of the VLPs were effective at monitoring virus-cell entry, to various extents, in ways that depended on host cell susceptibility factors. Overall, we have developed and utilized a VLP system that has proven useful in identifying SARS-CoV2 assembly and entry features.
Collapse
Affiliation(s)
| | | | | | | | | | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA; (B.K.); (G.M.H.); (T.K.); (E.Q.); (E.T.)
| |
Collapse
|
41
|
Jack A, Ferro LS, Trnka MJ, Wehri E, Nadgir A, Nguyenla X, Costa K, Stanley S, Schaletzky J, Yildiz A. SARS-CoV-2 nucleocapsid protein forms condensates with viral genomic RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.09.14.295824. [PMID: 32995779 PMCID: PMC7523105 DOI: 10.1101/2020.09.14.295824] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes COVID-19, a pandemic that seriously threatens global health. SARS-CoV-2 propagates by packaging its RNA genome into membrane enclosures in host cells. The packaging of the viral genome into the nascent virion is mediated by the nucleocapsid (N) protein, but the underlying mechanism remains unclear. Here, we show that the N protein forms biomolecular condensates with viral genomic RNA both in vitro and in mammalian cells. Phase separation is driven, in part, by hydrophobic and electrostatic interactions. While the N protein forms spherical assemblies with unstructured RNA, it forms asymmetric condensates with viral RNA strands that contain secondary structure elements. Cross-linking mass spectrometry identified a region that forms interactions between N proteins in condensates, and truncation of this region disrupts phase separation. We also identified small molecules that alter the formation of N protein condensates. These results suggest that the N protein may utilize biomolecular condensation to package the SARS-CoV-2 RNA genome into a viral particle.
Collapse
Affiliation(s)
- Amanda Jack
- Biophysics Graduate Group, University of California, Berkeley CA
| | - Luke S. Ferro
- Department of Molecular and Cellular Biology, University of California, Berkeley CA
| | - Michael J. Trnka
- Department of Pharmaceutical Chemistry, University of California, San Francisco CA
| | - Eddie Wehri
- Center for Emerging and Neglected Diseases, University of California, Berkeley CA
| | - Amrut Nadgir
- Physics Department, University of California, Berkeley CA
| | - Xammy Nguyenla
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, CA
| | | | - Sarah Stanley
- Department of Molecular and Cellular Biology, University of California, Berkeley CA
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, CA
| | - Julia Schaletzky
- Center for Emerging and Neglected Diseases, University of California, Berkeley CA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley CA
- Department of Molecular and Cellular Biology, University of California, Berkeley CA
- Physics Department, University of California, Berkeley CA
| |
Collapse
|
42
|
Chen J, Hu BJ, Zhao K, Luo Y, Lin HF, Shi ZL. Development of A MERS-CoV Replicon Cell Line for Antiviral Screening. Virol Sin 2021; 36:730-735. [PMID: 33616893 PMCID: PMC7898024 DOI: 10.1007/s12250-020-00341-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is the causative agent of a severe respiratory disease with a high mortality of ~ 35%. The lack of approved treatments for MERS-CoV infection underscores the need for a user-friendly system for rapid drug screening. In this study, we constructed a MERS-CoV replicon containing the Renilla luciferase (Rluc) reporter gene and a stable luciferase replicon-carrying cell line. Using this cell line, we showed that MERS-CoV replication was inhibited by combined application of lopinavir and ritonavir, indicating that this cell line can be used to screen inhibitors of MERS-CoV replication. Importantly, the MERS-replicon cell line can be used for high-throughput screening of antiviral drugs without the need for live virus handling, providing an effective and safe tool for the discovery of antiviral drugs against MERS-CoV.
Collapse
Affiliation(s)
- Jing Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Jie Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Zhao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Luo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao-Feng Lin
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
43
|
Santana MVS, Silva-Jr FP. De novo design and bioactivity prediction of SARS-CoV-2 main protease inhibitors using recurrent neural network-based transfer learning. BMC Chem 2021; 15:8. [PMID: 33531083 PMCID: PMC7852053 DOI: 10.1186/s13065-021-00737-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/16/2021] [Indexed: 12/13/2022] Open
Abstract
The global pandemic of coronavirus disease (COVID-19) caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) created a rush to discover drug candidates. Despite the efforts, so far no vaccine or drug has been approved for treatment. Artificial intelligence offers solutions that could accelerate the discovery and optimization of new antivirals, especially in the current scenario dominated by the scarcity of compounds active against SARS-CoV-2. The main protease (Mpro) of SARS-CoV-2 is an attractive target for drug discovery due to the absence in humans and the essential role in viral replication. In this work, we developed a deep learning platform for de novo design of putative inhibitors of SARS-CoV-2 main protease (Mpro). Our methodology consists of 3 main steps: (1) training and validation of general chemistry-based generative model; (2) fine-tuning of the generative model for the chemical space of SARS-CoV- Mpro inhibitors and (3) training of a classifier for bioactivity prediction using transfer learning. The fine-tuned chemical model generated > 90% valid, diverse and novel (not present on the training set) structures. The generated molecules showed a good overlap with Mpro chemical space, displaying similar physicochemical properties and chemical structures. In addition, novel scaffolds were also generated, showing the potential to explore new chemical series. The classification model outperformed the baseline area under the precision-recall curve, showing it can be used for prediction. In addition, the model also outperformed the freely available model Chemprop on an external test set of fragments screened against SARS-CoV-2 Mpro, showing its potential to identify putative antivirals to tackle the COVID-19 pandemic. Finally, among the top-20 predicted hits, we identified nine hits via molecular docking displaying binding poses and interactions similar to experimentally validated inhibitors.
Collapse
Affiliation(s)
- Marcos V S Santana
- LaBECFar-Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Floriano P Silva-Jr
- LaBECFar-Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil.
| |
Collapse
|
44
|
Wong NA, Saier MH. The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci 2021; 22:1308. [PMID: 33525632 PMCID: PMC7865831 DOI: 10.3390/ijms22031308] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a novel epidemic strain of Betacoronavirus that is responsible for the current viral pandemic, coronavirus disease 2019 (COVID-19), a global health crisis. Other epidemic Betacoronaviruses include the 2003 SARS-CoV-1 and the 2009 Middle East Respiratory Syndrome Coronavirus (MERS-CoV), the genomes of which, particularly that of SARS-CoV-1, are similar to that of the 2019 SARS-CoV-2. In this extensive review, we document the most recent information on Coronavirus proteins, with emphasis on the membrane proteins in the Coronaviridae family. We include information on their structures, functions, and participation in pathogenesis. While the shared proteins among the different coronaviruses may vary in structure and function, they all seem to be multifunctional, a common theme interconnecting these viruses. Many transmembrane proteins encoded within the SARS-CoV-2 genome play important roles in the infection cycle while others have functions yet to be understood. We compare the various structural and nonstructural proteins within the Coronaviridae family to elucidate potential overlaps and parallels in function, focusing primarily on the transmembrane proteins and their influences on host membrane arrangements, secretory pathways, cellular growth inhibition, cell death and immune responses during the viral replication cycle. We also offer bioinformatic analyses of potential viroporin activities of the membrane proteins and their sequence similarities to the Envelope (E) protein. In the last major part of the review, we discuss complement, stimulation of inflammation, and immune evasion/suppression that leads to CoV-derived severe disease and mortality. The overall pathogenesis and disease progression of CoVs is put into perspective by indicating several stages in the resulting infection process in which both host and antiviral therapies could be targeted to block the viral cycle. Lastly, we discuss the development of adaptive immunity against various structural proteins, indicating specific vulnerable regions in the proteins. We discuss current CoV vaccine development approaches with purified proteins, attenuated viruses and DNA vaccines.
Collapse
Affiliation(s)
- Nicholas A. Wong
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
45
|
Abstract
In less than two decades, three deadly zoonotic coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2, have emerged in humans, causing SARS, MERS, and coronavirus disease 2019 (COVID-19), respectively. The current COVID-19 pandemic poses an unprecedented crisis in health care and social and economic development. It reinforces the cruel fact that CoVs are constantly evolving, possessing the genetic malleability to become highly pathogenic in humans. In this review, we start with an overview of CoV diseases and the molecular virology of CoVs, focusing on similarities and differences between SARS-CoV-2 and its highly pathogenic as well as low-pathogenic counterparts. We then discuss mechanisms underlying pathogenesis and virus-host interactions of SARS-CoV-2 and other CoVs, emphasizing the host immune response. Finally, we summarize strategies adopted for the prevention and treatment of CoV diseases and discuss approaches to develop effective antivirals and vaccines. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- To Sing Fung
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China;
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
46
|
Lu S, Ye Q, Singh D, Cao Y, Diedrich JK, Yates JR, Villa E, Cleveland DW, Corbett KD. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nat Commun 2021; 12:502. [PMID: 33479198 PMCID: PMC7820290 DOI: 10.1038/s41467-020-20768-y] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
The multifunctional nucleocapsid (N) protein in SARS-CoV-2 binds the ~30 kb viral RNA genome to aid its packaging into the 80-90 nm membrane-enveloped virion. The N protein is composed of N-terminal RNA-binding and C-terminal dimerization domains that are flanked by three intrinsically disordered regions. Here we demonstrate that the N protein's central disordered domain drives phase separation with RNA, and that phosphorylation of an adjacent serine/arginine rich region modulates the physical properties of the resulting condensates. In cells, N forms condensates that recruit the stress granule protein G3BP1, highlighting a potential role for N in G3BP1 sequestration and stress granule inhibition. The SARS-CoV-2 membrane (M) protein independently induces N protein phase separation, and three-component mixtures of N + M + RNA form condensates with mutually exclusive compartments containing N + M or N + RNA, including annular structures in which the M protein coats the outside of an N + RNA condensate. These findings support a model in which phase separation of the SARS-CoV-2 N protein contributes both to suppression of the G3BP1-dependent host immune response and to packaging genomic RNA during virion assembly.
Collapse
Affiliation(s)
- Shan Lu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA
| | - Qiaozhen Ye
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Digvijay Singh
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yong Cao
- National Institute of Biological Sciences, 102206, Beijing, China
| | | | - John R Yates
- The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Elizabeth Villa
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, 92093, USA.
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
47
|
The Fatty Acid Lipid Metabolism Nexus in COVID-19. Viruses 2021; 13:v13010090. [PMID: 33440724 PMCID: PMC7826519 DOI: 10.3390/v13010090] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Enteric symptomology seen in early-stage severe acute respiratory syndrome (SARS)-2003 and COVID-19 is evidence of virus replication occurring in the intestine, liver and pancreas. Aberrant lipid metabolism in morbidly obese individuals adversely affects the COVID-19 immune response and increases disease severity. Such observations are in line with the importance of lipid metabolism in COVID-19, and point to the gut as a site for intervention as well as a therapeutic target in treating the disease. Formation of complex lipid membranes and palmitoylation of coronavirus proteins are essential during viral replication and assembly. Inhibition of fatty acid synthase (FASN) and restoration of lipid catabolism by activation of AMP-activated protein kinase (AMPK) impede replication of coronaviruses closely related to SARS-coronavirus-2 (CoV-2). In vitro findings and clinical data reveal that the FASN inhibitor, orlistat, and the AMPK activator, metformin, may inhibit coronavirus replication and reduce systemic inflammation to restore immune homeostasis. Such observations, along with the known mechanisms of action for these types of drugs, suggest that targeting fatty acid lipid metabolism could directly inhibit virus replication while positively impacting the patient's response to COVID-19.
Collapse
|
48
|
Cavasotto CN, Lamas MS, Maggini J. Functional and druggability analysis of the SARS-CoV-2 proteome. Eur J Pharmacol 2021; 890:173705. [PMID: 33137330 PMCID: PMC7604074 DOI: 10.1016/j.ejphar.2020.173705] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
The infectious coronavirus disease (COVID-19) pandemic, caused by the coronavirus SARS-CoV-2, appeared in December 2019 in Wuhan, China, and has spread worldwide. As of today, more than 46 million people have been infected and over 1.2 million fatalities. With the purpose of contributing to the development of effective therapeutics, we performed an in silico determination of binding hot-spots and an assessment of their druggability within the complete SARS-CoV-2 proteome. All structural, non-structural, and accessory proteins have been studied, and whenever experimental structural data of SARS-CoV-2 proteins were not available, homology models were built based on solved SARS-CoV structures. Several potential allosteric or protein-protein interaction druggable sites on different viral targets were identified, knowledge that could be used to expand current drug discovery endeavors beyond the currently explored cysteine proteases and the polymerase complex. It is our hope that this study will support the efforts of the scientific community both in understanding the molecular determinants of this disease and in widening the repertoire of viral targets in the quest for repurposed or novel drugs against COVID-19.
Collapse
Affiliation(s)
- Claudio N Cavasotto
- Computational Drug Design and Biomedical Informatics Laboratory, Translational Medicine Research Institute (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Facultad de Ingeniería, Universidad Austral, Pilar, Buenos Aires, Argentina; Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina.
| | - Maximiliano Sánchez Lamas
- Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina; Meton AI, Inc., Wilmington, DE, 19801, USA
| | - Julián Maggini
- Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina; Technology Transfer Office, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
49
|
Adhikari N, Amin SA, Jha T. Dissecting the Drug Development Strategies Against SARS-CoV-2 Through Diverse Computational Modeling Techniques. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/7653_2020_46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
50
|
Li N, Wang P, Wang X, Geng C, Chen J, Gong Y. Molecular diagnosis of COVID-19: Current situation and trend in China (Review). Exp Ther Med 2020; 20:13. [PMID: 32934678 PMCID: PMC7471877 DOI: 10.3892/etm.2020.9142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is caused by a novel coronavirus (2019-nCoV or SARS-CoV-2) and has become a global public health emergency. Rapid and accurate molecular diagnostic technologies are crucial for the screening, isolation, treatment, prevention and control of COVID-19. Currently, nucleic acid detection-based techniques and rapid diagnostic tests that detect antigens or antibodies specific to 2019-nCoV infections are the primary diagnostic tools. China National Medical Products Administration has opened a special channel for approval of new pharmaceuticals owing to urgent clinical needs, with 18 nucleic acid detection kits, 11 protein detection kits and 1 sequencing-related equipment and supporting software having been approved until April 23, 2020. The current review summarizes the application situation, advantages, disadvantages and associated technology improvement trends of molecular diagnostics for COVID-19 in China, identifies knowledge gaps and indicates future priorities for research in this field. The most effective way to prevent and control COVID-19 is early detection, diagnosis, isolation and treatment. In the clinical application of molecular diagnosis technology, it is necessary to combine pathogenic microbiology, immunology and other associated detection technologies, advocate the combination of multiple technologies, determine how they complement each other, enhance practicability and improve the ability of rapid and accurate diagnosis and differential diagnosis of COVID-19.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin 300070, P.R. China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Pengtao Wang
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
- General Hospital of Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xinyue Wang
- Institute of Disaster Medicine, Tianjin University, Tianjin 300070, P.R. China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Chenhao Geng
- Institute of Disaster Medicine, Tianjin University, Tianjin 300070, P.R. China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Jiale Chen
- Institute of Disaster Medicine, Tianjin University, Tianjin 300070, P.R. China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Yanhua Gong
- Institute of Disaster Medicine, Tianjin University, Tianjin 300070, P.R. China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| |
Collapse
|