1
|
Xu J, Luo Q, Huang Y, Li J, Ye W, Yan R, Zhou X, He Z, Liu G, Zhu Q. Influenza neuraminidase mutations and resistance to neuraminidase inhibitors. Emerg Microbes Infect 2024; 13:2429627. [PMID: 39530458 PMCID: PMC11600549 DOI: 10.1080/22221751.2024.2429627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/22/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Mutations in influenza virus neuraminidase (NA) can lead to viral resistance to NA inhibitors (NAIs). To update global influenza NA mutations and resistance to NAIs, we investigated epidemic information from global regions for NAIs-resistant influenza strains and analyzed their NA mutations. Drug-resistant mutations in NA, especially new mutations occurred in 2016-2024, were updated. The H274Y mutation in N1, a major contributor to NAI resistance, peaked in 2008, significantly impacting public health in countries like Japan and the USA. Three main mechanisms of NAI resistance were identified: catalytic site mutations, structural hindrance, and monomer stability changes. Although global resistance rates of H1N1pdm09, H3N2, and influenza B have remained stable at around 1%, sporadic emergence of resistant strains highlights the need for continued vigilance. The evolution of drug-resistant, transmissible strains through compensatory mutations underscores the urgency of new antiviral strategies. Strengthening global surveillance and adjusting public health policies, such as improving vaccine coverage and prudent antiviral use, remain essential to mitigating future risks.
Collapse
Affiliation(s)
- Jiapeng Xu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, People’s Republic of China
| | - Qiting Luo
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Yuanyuan Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Jieyu Li
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Wei Ye
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Ran Yan
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, People’s Republic of China
| | - Xinrui Zhou
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Zhendan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Ge Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Qinchang Zhu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, People’s Republic of China
| |
Collapse
|
2
|
Guo X, Zhao L, Li W, Cao R, Zhong W. The Synergistic Effect of Baloxavir and Neuraminidase Inhibitors against Influenza Viruses In Vitro. Viruses 2024; 16:1467. [PMID: 39339943 PMCID: PMC11437495 DOI: 10.3390/v16091467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Influenza viruses remain a major threat to human health. Four classes of drugs have been approved for the prevention and treatment of influenza infections. Oseltamivir, a neuraminidase inhibitor, is a first-line anti-influenza drug, and baloxavir is part of the newest generation of anti-influenza drugs that targets the viral polymerase. The emergence of drug resistance has reduced the efficacy of established antiviral drugs. Combination therapy is one of the options for controlling drug resistance and enhancing therapeutical efficacies. Here, we evaluate the antiviral effects of baloxavir combined with neuraminidase inhibitors (NAIs) against wild-type influenza viruses, as well as influenza viruses with drug-resistance mutations. The combination of baloxavir with NAIs led to significant synergistic effects; however, the combination of baloxavir with laninamivir failed to result in a synergistic effect on influenza B viruses. Considering the rapid emergence of drug resistance to baloxavir, we believe that these results will be beneficial for combined drug use against influenza.
Collapse
Affiliation(s)
- Xiaojia Guo
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Lei Zhao
- Beijing Sunho Pharmaceutical Co., Ltd., Beijing 102600, China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
3
|
Jia M, Zhao H, Morano NC, Lu H, Lui YM, Du H, Becker JE, Yuen KY, Ho DD, Kwong PD, Shapiro L, To KKW, Wu X. Human neutralizing antibodies target a conserved lateral patch on H7N9 hemagglutinin head. Nat Commun 2024; 15:4505. [PMID: 38802413 PMCID: PMC11130183 DOI: 10.1038/s41467-024-48758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Avian influenza A virus H7N9 causes severe human infections with >30% fatality. Currently, there is no H7N9-specific prevention or treatment for humans. Here, from a 2013 H7N9 convalescent case in Hong Kong, we isolate four hemagglutinin (HA)-reactive monoclonal antibodies (mAbs), with three directed to the globular head domain (HA1) and one to the stalk domain (HA2). Two clonally related HA1-directed mAbs, H7.HK1 and H7.HK2, potently neutralize H7N9 and protect female mice from lethal H7N9/AH1 challenge. Cryo-EM structures reveal that H7.HK1 and H7.HK2 bind to a β14-centered surface and disrupt the 220-loop that makes hydrophobic contacts with sialic acid on an adjacent protomer, thereby blocking viral entry. Sequence analysis indicates the lateral patch targeted by H7.HK1 and H7.HK2 to be conserved among influenza subtypes. Both H7.HK1 and H7.HK2 retain HA1 binding and neutralization capacity to later H7N9 isolates from 2016-2017, consistent with structural data showing that the antigenic mutations during this timeframe occur at their epitope peripheries. The HA2-directed mAb H7.HK4 lacks neutralizing activity but when used in combination with H7.HK2 moderately augments female mouse protection. Overall, our data reveal antibodies to a conserved lateral HA1 supersite that confer neutralization, and when combined with a HA2-directed non-neutralizing mAb, augment protection.
Collapse
Grants
- ZIA AI005022 Intramural NIH HHS
- W911NF-14-C-0001 U.S. Department of Defense (United States Department of Defense)
- FNIH SHAP19IUFV Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- Donations from Richard Yu and Carol Yu, Shaw Foundation Hong Kong, Michael Seak-Kan Tong, The Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Chan Yin Chuen Memorial Charitable Foundation, Marina Man-Wai Lee, Jessie and George Ho Charitable Foundation, Kai Chong Tong, Tse Kam Ming Laurence, Foo Oi Foundation Limited, Betty Hing-Chu Lee, and Ping Cham So
Collapse
Affiliation(s)
- Manxue Jia
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Hanjun Zhao
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China
| | - Nicholas C Morano
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Hong Lu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yin-Ming Lui
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Haijuan Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jordan E Becker
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Peter D Kwong
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lawrence Shapiro
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China.
- Department of Clinical Microbiology and Infection, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China.
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Chen X, Huang Y, Gao P, Wu F, Han Y, Zhang C, Hu Z, Zhao F, Shcherbakov DN, Pan W, Niu X, Li X, Liu S, Xu W. Engineering of novel hemagglutinin biosensors for rapid detection and drug screening of Influenza A H7N9 virus. Int J Biol Macromol 2024; 258:129126. [PMID: 38163504 DOI: 10.1016/j.ijbiomac.2023.129126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
New pathogenic influenza virus strains are constantly emerging, posing a serious risk to both human health and economic growth. To effectively control the spread of this virus, there is an urgent need for early, rapid, sensitive, simple, and cost-effective detection technologies, as well as new and effective antiviral drugs. In this study, we have successfully achieved a significant milestone by successfully fusing the H7N9 influenza virus hemagglutinin (HA) protein with the nano-luciferase component, resulting in the development of a novel set of biosensors. This remarkable achievement marks the first instance of utilizing this biosensor technology for influenza antibody detection. Our biosensor technology also has the potential to facilitate the development of antiviral drugs targeting specific epitopes of the HA protein, providing a promising avenue for the treatment of H7N9 influenza virus infections. Furthermore, our biosensors have broad applications beyond H7N9 influenza virus detection, as they can be expanded for the detection of other pathogens and drug screening applications in the future. By providing a novel and effective solution to the detection and treatment of influenza viruses, our biosensors have the potential to revolutionize the field of infectious disease control.
Collapse
Affiliation(s)
- Xin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yuan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Peixuan Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fang Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yongyue Han
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chuwen Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhuowen Hu
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510070, China
| | - Fang Zhao
- National Clinical Research Centre for Infectious Diseases, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, Guangdong Province, China
| | - Dmitry N Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo 630559, Russia; Department of Physical-Chemistry Biology and Biotechnology, Altai State University, Barnaul 656049, Russia
| | - Weiqi Pan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xiaoyan Li
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510070, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China.
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
5
|
Murray J, Martin DE, Hosking S, Orr-Burks N, Hogan RJ, Tripp RA. Probenecid Inhibits Influenza A(H5N1) and A(H7N9) Viruses In Vitro and in Mice. Viruses 2024; 16:152. [PMID: 38275962 PMCID: PMC10821351 DOI: 10.3390/v16010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Avian influenza (AI) viruses cause infection in birds and humans. Several H5N1 and H7N9 variants are highly pathogenic avian influenza (HPAI) viruses. H5N1 is a highly infectious bird virus infecting primarily poultry, but unlike other AIs, H5N1 also infects mammals and transmits to humans with a case fatality rate above 40%. Similarly, H7N9 can infect humans, with a case fatality rate of over 40%. Since 1996, there have been several HPAI outbreaks affecting humans, emphasizing the need for safe and effective antivirals. We show that probenecid potently inhibits H5N1 and H7N9 replication in prophylactically or therapeutically treated A549 cells and normal human broncho-epithelial (NHBE) cells, and H5N1 replication in VeroE6 cells and mice.
Collapse
Affiliation(s)
- Jackelyn Murray
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
| | | | - Sarah Hosking
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
| | - Nichole Orr-Burks
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
| | - Robert J. Hogan
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
| | - Ralph A. Tripp
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
- TrippBio, Inc., Jacksonville, FL 32256, USA;
| |
Collapse
|
6
|
Jia M, Zhao H, Morano NC, Lu H, Lui YM, Du H, Becker JE, Yuen KY, Ho DD, Kwong PD, Shapiro L, To KKW, Wu X. Allosteric Neutralization by Human H7N9 Antibodies. RESEARCH SQUARE 2023:rs.3.rs-3429355. [PMID: 37986867 PMCID: PMC10659534 DOI: 10.21203/rs.3.rs-3429355/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The avian influenza A virus H7N9 causes severe human infections with more than 30% fatality despite the use of neuraminidase inhibitors. Currently there is no H7N9-specific prevention or treatment for humans. From a 2013 H7N9 convalescent case occurred in Hong Kong, we isolated four H7 hemagglutinin (HA)-reactive monoclonal antibodies (mAbs) by single B cell cloning, with three mAbs directed to the HA globular head domain (HA1) and one to the HA stem region (HA2). Two clonally related HA1-directed mAbs, H7.HK1 and H7.HK2, potently neutralized H7N9 and protected mice from a lethal H7N9/AH1 challenge. Cryo-EM structures revealed that H7.HK1 and H7.HK2 bind to a β14-centered surface partially overlapping with the antigenic site D of HA1 and disrupt the 220-loop that makes hydrophobic contacts with sialic acid on the adjacent protomer, thus affectively blocking viral entry. The more potent mAb H7.HK2 retained full HA1 binding and neutralization capacity to later H7N9 isolates from 2016-2017, which is consistent with structural data showing that the antigenic mutations of 2016-2017 from the 2013 H7N9 only occurred at the periphery of the mAb epitope. The HA2-directed mAb H7.HK4 lacked neutralizing activity but protected mice from the lethal H7N9/AH1 challenge when engineered to mouse IgG2a enabling Fc effector function in mice. Used in combination with H7.HK2 at a suboptimal dose, H7.HK4 augmented mouse protection. Our data demonstrated an allosteric mechanism of mAb neutralization and augmented protection against H7N9 when a HA1-directed neutralizing mAb and a HA2-directed non-neutralizing mAb were combined.
Collapse
Affiliation(s)
- Manxue Jia
- Aaron Diamond AIDS Research Center, Affiliate of Rockefeller University, New York, NY 10016, USA
| | - Hanjun Zhao
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China
| | - Nicholas C. Morano
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Hong Lu
- Aaron Diamond AIDS Research Center, Affiliate of Rockefeller University, New York, NY 10016, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yin-Ming Lui
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Haijuan Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan E. Becker
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Affiliate of Rockefeller University, New York, NY 10016, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Peter D. Kwong
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Affiliate of Rockefeller University, New York, NY 10016, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
7
|
Ganter B, Zickler M, Huchting J, Winkler M, Lüttjohann A, Meier C, Gabriel G, Beck S. T-705-Derived Prodrugs Show High Antiviral Efficacies against a Broad Range of Influenza A Viruses with Synergistic Effects When Combined with Oseltamivir. Pharmaceutics 2023; 15:1732. [PMID: 37376180 DOI: 10.3390/pharmaceutics15061732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Emerging influenza A viruses (IAV) bear the potential to cause pandemics with unpredictable consequences for global human health. In particular, the WHO has declared avian H5 and H7 subtypes as high-risk candidates, and continuous surveillance of these viruses as well as the development of novel, broadly acting antivirals, are key for pandemic preparedness. In this study, we sought to design T-705 (Favipiravir) related inhibitors that target the RNA-dependent RNA polymerase and evaluate their antiviral efficacies against a broad range of IAVs. Therefore, we synthesized a library of derivatives of T-705 ribonucleoside analogues (called T-1106 pronucleotides) and tested their ability to inhibit both seasonal and highly pathogenic avian influenza viruses in vitro. We further showed that diphosphate (DP) prodrugs of T-1106 are potent inhibitors of H1N1, H3N2, H5N1, and H7N9 IAV replication. Importantly, in comparison to T-705, these DP derivatives achieved 5- to 10-fold higher antiviral activity and were non-cytotoxic at the therapeutically active concentrations. Moreover, our lead DP prodrug candidate showed drug synergy with the neuraminidase inhibitor oseltamivir, thus opening up another avenue for combinational antiviral therapy against IAV infections. Our findings may serve as a basis for further pre-clinical development of T-1106 prodrugs as an effective countermeasure against emerging IAVs with pandemic potential.
Collapse
Affiliation(s)
- Benedikt Ganter
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, 20146 Hamburg, Germany
| | - Martin Zickler
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Johanna Huchting
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, 20146 Hamburg, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| | - Matthias Winkler
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, 20146 Hamburg, Germany
| | - Anna Lüttjohann
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Chris Meier
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, 20146 Hamburg, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
| | - Gülsah Gabriel
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, 20251 Hamburg, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sebastian Beck
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, 20251 Hamburg, Germany
| |
Collapse
|
8
|
Lou X, Yan H, Su L, Sun Y, Wang X, Gong L, Chen Y, Li Z, Fang Z, Mao H, Chen K, Zhang Y. Detecting the Neuraminidase R294K Mutation in Avian Influenza A (H7N9) Virus Using Reverse Transcription Droplet Digital PCR Method. Viruses 2023; 15:v15040983. [PMID: 37112963 PMCID: PMC10146270 DOI: 10.3390/v15040983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The R294K mutation in neuraminidase (NA) causes resistance to oseltamivir in the avian influenza virus H7N9. Reverse transcription droplet digital polymerase chain reaction (RT-dd PCR) is a novel technique for detecting single-nucleotide polymorphisms. This study aimed to develop an RT-dd PCR method for detecting the R294K mutation in H7N9. Primers and dual probes were designed using the H7N9 NA gene and the annealing temperature was optimized at 58.0 °C. The sensitivity of our RT-dd PCR method was not significantly different from that of RT-qPCR (p = 0.625), but it could specifically detect R294 and 294K in H7N9. Among 89 clinical samples, 2 showed the R294K mutation. These two strains were evaluated using a neuraminidase inhibition test, which revealed that their sensitivity to oseltamivir was greatly reduced. The sensitivity and specificity of RT-dd PCR were similar to those of RT-qPCR and its accuracy was comparable to that of NGS. The RT-dd PCR method had the advantages of absolute quantitation, eliminating the need for a calibration standard curve, and being simpler in both experimental operation and result interpretation than NGS. Therefore, this RT-dd PCR method can be used to quantitatively detect the R294K mutation in H7N9.
Collapse
Affiliation(s)
- Xiuyu Lou
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Hao Yan
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Lingxuan Su
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yi Sun
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xinyin Wang
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Liming Gong
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yin Chen
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zhen Li
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Haiyan Mao
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yanjun Zhang
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| |
Collapse
|
9
|
In Silico Studies Reveal Peramivir and Zanamivir as an Optimal Drug Treatment Even If H7N9 Avian Type Influenza Virus Acquires Further Resistance. Molecules 2022; 27:molecules27185920. [PMID: 36144655 PMCID: PMC9503969 DOI: 10.3390/molecules27185920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
An epidemic of avian type H7N9 influenza virus, which took place in China in 2013, was enhanced by a naturally occurring R294K mutation resistant against Oseltamivir at the catalytic site of the neuraminidase. To cope with such drug-resistant neuraminidase mutations, we applied the molecular docking technique to evaluate the fitness of the available drugs such as Oseltamivir, Zanamivir, Peramivir, Laninamivir, L-Arginine and Benserazide hydrochloride concerning the N9 enzyme with single (R294K, R119K, R372K), double (R119_294K, R119_372K, R294_372K) and triple (R119_294_372K) mutations in the pocket. We found that the drugs Peramivir and Zanamivir score best amongst the studied compounds, demonstrating their high binding potential towards the pockets with the considered mutations. Despite the fact that mutations changed the shape of the pocket and reduced the binding strength for all drugs, Peramivir was the only drug that formed interactions with the key residues at positions 119, 294 and 372 in the pocket of the triple N9 mutant, while Zanamivir demonstrated the lowest RMSD value (0.7 Å) with respect to the reference structure.
Collapse
|
10
|
Desheva Y, Losev I, Petkova N, Kudar P, Donina S, Mamontov A, Tsai CH, Chao YC. Antigenic Characterization of Neuraminidase of Influenza A/H7N9 Viruses Isolated in Different Years. Pharmaceuticals (Basel) 2022; 15:ph15091127. [PMID: 36145348 PMCID: PMC9503534 DOI: 10.3390/ph15091127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza outbreaks caused by A/H7N9 viruses have occurred since 2013. After 2016, A/H7N9 influenza viruses underwent evolutionary changes. In this study, we examined the antigenic properties of influenza neuraminidase (NA) of A/H7N9 viruses as part of a live influenza vaccine (LAIV). It was shown that neuraminidase inhibiting (NI) antibodies obtained after A/Anhui/1/2013(H7N9)-based LAIV vaccination did not inhibit A/Hong Kong/125/2017(H7N9) NA and vice versa. The A/Hong Kong/125/2017(H7N9)-based LAIV elicited higher levels of NI antibodies compared to the A/Anhui/1/2013(H7N9)-based LAIV after two doses. Thelow degree of coincidence of the antibody response to hemagglutinin (HA) and NA after LAIV vaccination allows us to consider an enzyme-linked lectin assay (ELLA) as an additional measure for assessing the immunogenicity of influenza vaccines. In mice, N9-reactive monoclonal antibodies (mABs) for the A/environment/Shanghai/RL01/2013(H7N9) influenza virus partially protected against lung infection from the A/Guangdong/17SF003/2016 IDCDC-RG56N(H7N9) virus, thus showing the cross-protective properties of monoclonal antibodies against the drift variant.
Collapse
Affiliation(s)
- Yulia Desheva
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
- Correspondence: ; Tel.: +7-812-234-42-92
| | - Igor Losev
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Nadezhda Petkova
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Polina Kudar
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Svetlana Donina
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Andrey Mamontov
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Chih-Hsuan Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Chan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
- Department of Entomology, National Chung-Hsing University, Taichung 402, Taiwan
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
11
|
Caceres CJ, Seibert B, Cargnin Faccin F, Cardenas‐Garcia S, Rajao DS, Perez DR. Influenza antivirals and animal models. FEBS Open Bio 2022; 12:1142-1165. [PMID: 35451200 PMCID: PMC9157400 DOI: 10.1002/2211-5463.13416] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Influenza A and B viruses are among the most prominent human respiratory pathogens. About 3-5 million severe cases of influenza are associated with 300 000-650 000 deaths per year globally. Antivirals effective at reducing morbidity and mortality are part of the first line of defense against influenza. FDA-approved antiviral drugs currently include adamantanes (rimantadine and amantadine), neuraminidase inhibitors (NAI; peramivir, zanamivir, and oseltamivir), and the PA endonuclease inhibitor (baloxavir). Mutations associated with antiviral resistance are common and highlight the need for further improvement and development of novel anti-influenza drugs. A summary is provided for the current knowledge of the approved influenza antivirals and antivirals strategies under evaluation in clinical trials. Preclinical evaluations of novel compounds effective against influenza in different animal models are also discussed.
Collapse
Affiliation(s)
- C. Joaquin Caceres
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Brittany Seibert
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Flavio Cargnin Faccin
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | | | - Daniela S. Rajao
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Daniel R. Perez
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
12
|
Lee YCJ, Shirkey JD, Park J, Bisht K, Cowan AJ. An Overview of Antiviral Peptides and Rational Biodesign Considerations. BIODESIGN RESEARCH 2022; 2022:9898241. [PMID: 37850133 PMCID: PMC10521750 DOI: 10.34133/2022/9898241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 10/19/2023] Open
Abstract
Viral diseases have contributed significantly to worldwide morbidity and mortality throughout history. Despite the existence of therapeutic treatments for many viral infections, antiviral resistance and the threat posed by novel viruses highlight the need for an increased number of effective therapeutics. In addition to small molecule drugs and biologics, antimicrobial peptides (AMPs) represent an emerging class of potential antiviral therapeutics. While AMPs have traditionally been regarded in the context of their antibacterial activities, many AMPs are now known to be antiviral. These antiviral peptides (AVPs) have been shown to target and perturb viral membrane envelopes and inhibit various stages of the viral life cycle, from preattachment inhibition through viral release from infected host cells. Rational design of AMPs has also proven effective in identifying highly active and specific peptides and can aid in the discovery of lead peptides with high therapeutic selectivity. In this review, we highlight AVPs with strong antiviral activity largely curated from a publicly available AMP database. We then compile the sequences present in our AVP database to generate structural predictions of generic AVP motifs. Finally, we cover the rational design approaches available for AVPs taking into account approaches currently used for the rational design of AMPs.
Collapse
Affiliation(s)
- Ying-Chiang J. Lee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jaden D. Shirkey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jongbeom Park
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Alexis J. Cowan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
13
|
Du W, de Vries E, van Kuppeveld FJM, Matrosovich M, de Haan CAM. Second sialic acid-binding site of influenza A virus neuraminidase: binding receptors for efficient release. FEBS J 2021; 288:5598-5612. [PMID: 33314755 PMCID: PMC8518505 DOI: 10.1111/febs.15668] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
Influenza A viruses (IAVs) are a major cause of human respiratory tract infections and cause significant disease and mortality. Human IAVs originate from animal viruses that breached the host species barrier. IAV particles contain sialoglycan receptor-binding hemagglutinin (HA) and receptor-destroying neuraminidase (NA) in their envelope. When IAV crosses the species barrier, the functional balance between HA and NA needs to be adjusted to the sialoglycan repertoire of the novel host species. Relatively little is known about the role of NA in host adaptation in contrast to the extensively studied HA. NA prevents virion aggregation and facilitates release of (newly assembled) virions from cell surfaces and from decoy receptors abundantly present in mucus and cell glycocalyx. In addition to a highly conserved catalytic site, NA carries a second sialic acid-binding site (2SBS). The 2SBS preferentially binds α2,3-linked sialic acids and enhances activity of the neighboring catalytic site by bringing/keeping multivalent substrates in close contact with this site. In this way, the 2SBS contributes to the HA-NA balance of virus particles and affects virus replication. The 2SBS is highly conserved in all NA subtypes of avian IAVs, with some notable exceptions associated with changes in the receptor-binding specificity of HA and host tropism. Conservation of the 2SBS is invariably lost in human (pandemic) viruses and in several other viruses adapted to mammalian host species. Preservation or loss of the 2SBS is likely to be an important factor of the viral host range.
Collapse
Affiliation(s)
- Wenjuan Du
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Erik de Vries
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Frank J. M. van Kuppeveld
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | | | - Cornelis A. M. de Haan
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| |
Collapse
|
14
|
Song W, Huang X, Guan W, Chen P, Wang P, Zheng M, Li Z, Wang Y, Yang Z, Chen H, Wang X. Multiple basic amino acids in the cleavage site of H7N9 hemagglutinin contribute to high virulence in mice. J Thorac Dis 2021; 13:4650-4660. [PMID: 34527306 PMCID: PMC8411188 DOI: 10.21037/jtd-21-226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
Background Avian influenza A (H7N9) virus has caused more than 1,500 cases of human infection since its emergence in early 2013. Displaying little or no pathogenicity in poultry, but a 40% case-fatality rate in humans, five waves of H7N9 human infections occurred in China during 2013–2017, caused solely by a low pathogenicity strain. However, avian isolates possessing a polybasic connecting peptide in the hemagglutinin (HA) protein were detected in mid-2016, indicating that a highly pathogenic virus had emerged and was co-circulating with the low pathogenicity strains. Methods Here we characterize the pathogenicity of a newly emerged human H7N9 variant with a PEVPKRKRTAR/GLF insertion motif at the cleavage site of the HA protein in vitro and in vivo. Results This variant replicates in MDCK cells independently of TPCK-trypsin, which is indicative of high pathogenicity in chickens. The 50% mouse lethal dose (MLD50) of this novel isolate was less than 10 plaque forming units (PFU), compared with 3.16×104 for an identical virus lacking the polybasic insertion, indicating a high virulence phenotype. Conclusions Our results demonstrate that the multiple basic amino acid insertion in the HA protein of the H7N9 variant confers high virulence in mammals, highlighting a potential risk to humans. Continuous viral surveillance is therefore necessary in the China region to improve pandemic preparedness.
Collapse
Affiliation(s)
- Wenjun Song
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaofeng Huang
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Wenda Guan
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pin Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Pui Wang
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Min Zheng
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Zhengtu Li
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yutao Wang
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Abstract
In early 2013, human infections caused by a novel H7N9 avian influenza virus (AIV) were first reported in China; these infections caused severe disease and death. The virus was initially low pathogenic to poultry, enabling it to spread widely in different provinces, especially in live poultry markets. Importantly, the H7N9 low pathogenic AIVs (LPAIVs) evolved into highly pathogenic AIVs (HPAIVs) in the beginning of 2017, causing a greater threat to human health and devastating losses to the poultry industry. Fortunately, nationwide vaccination of chickens with an H5/H7 bivalent inactivated avian influenza vaccine since September 2017 has successfully controlled H7N9 avian influenza infections in poultry and, importantly, has also prevented human infections. In this review, we summarize the biological properties of the H7N9 viruses, specifically their genetic evolution, adaptation, pathogenesis, receptor binding, transmission, drug resistance, and antigenic variation, as well as the prevention and control measures. The information obtained from investigating and managing the H7N9 viruses could improve our ability to understand other novel AIVs and formulate effective measures to control their threat to humans and animals.
Collapse
Affiliation(s)
- Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
16
|
Zhu X, Yu F, Wu Y, Ying T. Potent germline-like monoclonal antibodies: rapid identification of promising candidates for antibody-based antiviral therapy. Antib Ther 2021; 4:89-98. [PMID: 34104872 PMCID: PMC8178282 DOI: 10.1093/abt/tbab008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 11/20/2022] Open
Abstract
In recent years, fully human monoclonal antibodies (mAbs) are making up an increasing share of the pharmaceutical market. However, to improve affinity and efficacy of antibodies, many somatic hypermutations could be introduced during affinity maturation, which cause several issues including safety and efficacy and limit their application in clinic. Here, we propose a special class of human mAbs with limited level of somatic mutations, referred to as germline-like mAbs. Remarkably, germline-like mAbs could have high affinity and potent neutralizing activity in vitro and in various animal models, despite lacking of extensive affinity maturation. Furthermore, the germline nature of these mAbs implies that they exhibit lower immunogenicity and can be elicited relatively fast in vivo compared with highly somatically mutated antibodies. In this review, we summarize germline-like mAbs with strong therapeutic and protection activity against various viruses that caused large-scale outbreaks in the last decade, including influenza virus H7N9, Zika virus, Dengue virus, Middle East respiratory syndrome coronavirus and severe acute respiratory syndrome coronavirus 2. We also illustrate underlying molecular mechanisms of these germline-like antibodies against viral infections from the structural and genetic perspective, thus providing insight into further development as therapeutic agents for the treatment of infectious diseases and implication for rational design of effective vaccines.
Collapse
Affiliation(s)
- Xiaoyi Zhu
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Yanling Wu
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tianlei Ying
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
17
|
Sardar A, Lahiri A, Kamble M, Mallick AI, Tarafdar PK. Translation of Mycobacterium Survival Strategy to Develop a Lipo‐peptide based Fusion Inhibitor**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Avijit Sardar
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur PIN-741246 India
| | - Aritraa Lahiri
- Department of Biological Sciences Indian Institute of Science Education and Research Kolkata Mohanpur PIN-741246 India
| | - Mithila Kamble
- Department of Biological Sciences Indian Institute of Science Education and Research Kolkata Mohanpur PIN-741246 India
| | - Amirul I. Mallick
- Department of Biological Sciences Indian Institute of Science Education and Research Kolkata Mohanpur PIN-741246 India
| | - Pradip K. Tarafdar
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur PIN-741246 India
| |
Collapse
|
18
|
Sardar A, Lahiri A, Kamble M, Mallick AI, Tarafdar PK. Translation of Mycobacterium Survival Strategy to Develop a Lipo-peptide based Fusion Inhibitor*. Angew Chem Int Ed Engl 2021; 60:6101-6106. [PMID: 33241871 PMCID: PMC7753697 DOI: 10.1002/anie.202013848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 12/16/2022]
Abstract
The entry of enveloped virus requires the fusion of viral and host cell membranes. An effective fusion inhibitor aiming at impeding such membrane fusion may emerge as a broad-spectrum antiviral agent against a wide range of viral infections. Mycobacterium survives inside the phagosome by inhibiting phagosome-lysosome fusion with the help of a coat protein coronin 1. Structural analysis of coronin 1 and other WD40-repeat protein suggest that the trp-asp (WD) sequence is placed at distorted β-meander motif (more exposed) in coronin 1. The unique structural feature of coronin 1 was explored to identify a simple lipo-peptide sequence (myr-WD), which effectively inhibits membrane fusion by modulating the interfacial order, water penetration, and surface potential. The mycobacterium inspired lipo-dipeptide was successfully tested to combat type 1 influenza virus (H1N1) and murine coronavirus infections as a potential broad-spectrum antiviral agent.
Collapse
Affiliation(s)
- Avijit Sardar
- Department of Chemical SciencesIndian Institute of Science Education and Research KolkataMohanpurPIN-741246India
| | - Aritraa Lahiri
- Department of Biological SciencesIndian Institute of Science Education and Research KolkataMohanpurPIN-741246India
| | - Mithila Kamble
- Department of Biological SciencesIndian Institute of Science Education and Research KolkataMohanpurPIN-741246India
| | - Amirul I. Mallick
- Department of Biological SciencesIndian Institute of Science Education and Research KolkataMohanpurPIN-741246India
| | - Pradip K. Tarafdar
- Department of Chemical SciencesIndian Institute of Science Education and Research KolkataMohanpurPIN-741246India
| |
Collapse
|
19
|
|
20
|
Cheng W, Pan A, Rathbun SL, Ge Y, Xiao Q, Martinez L, Ling F, Liu S, Wang X, Yu Z, Ebell MH, Li C, Handel A, Chen E, Shen Y. Effectiveness of neuraminidase inhibitors to prevent mortality in patients with laboratory-confirmed avian influenza A H7N9. Int J Infect Dis 2021; 103:573-578. [PMID: 33333253 DOI: 10.1016/j.ijid.2020.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES Avian influenza virus A(H7N9) remains a threat to humans and has great potential to cause a pandemic in the foreseeable future. Antiviral treatment with neuraminidase inhibitors has been recommended to treat patients with H7N9 infection as early as possible, although evidence-based research on their effectiveness for H7N9 infection is lacking. METHODS Data from all laboratory-confirmed cases of H7N9 infection in Zhejiang Province between 2013 and 2017 were retrieved, and time-dependent survival models were used to evaluate the effectiveness of treatment with neuraminidase inhibitors to reduce the risk of mortality. RESULTS The final optimal model found no significant association (odds ratio 1.29, 95% confidence interval 0.78-2.15) between time to treatment with neuraminidase inhibitors and survival after controlling for age and white blood cell count. Sensitivity analyses with multiple imputation for missing data concurred with the primary analysis. CONCLUSIONS No association was found between treatment with neuraminidase inhibitors and survival in patients with H7N9 infection using various adjusted models and sensitivity analyses of missing data imputations.
Collapse
Affiliation(s)
- Wei Cheng
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Anqi Pan
- University of Georgia, College of Public Health, Department of Epidemiology and Biostatistics, Athens, GA, USA
| | - Stephen L Rathbun
- University of Georgia, College of Public Health, Department of Epidemiology and Biostatistics, Athens, GA, USA
| | - Yang Ge
- University of Georgia, College of Public Health, Department of Epidemiology and Biostatistics, Athens, GA, USA
| | - Qian Xiao
- University of Georgia, Department of Statistics, Athens, GA, USA
| | - Leonardo Martinez
- Stanford University, School of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford, CA, USA
| | - Feng Ling
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Shelan Liu
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Xiaoxiao Wang
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Zhao Yu
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Mark H Ebell
- University of Georgia, College of Public Health, Department of Epidemiology and Biostatistics, Athens, GA, USA
| | - Changwei Li
- University of Georgia, College of Public Health, Department of Epidemiology and Biostatistics, Athens, GA, USA; Tulane University School of Public Health and Tropical Medicine, Department of Epidemiology, New Orleans, LA, USA
| | - Andreas Handel
- University of Georgia, College of Public Health, Department of Epidemiology and Biostatistics, Athens, GA, USA; University of Georgia, College of Public Health, Health Informatics Institute, Athens, GA, USA; University of Georgia, Center for the Ecology of Infectious Diseases, Athens, GA, USA
| | - Enfu Chen
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Ye Shen
- University of Georgia, College of Public Health, Department of Epidemiology and Biostatistics, Athens, GA, USA.
| |
Collapse
|
21
|
Perret C, Le Corre N, Castro-Rodriguez JA. Emergent Pneumonia in Children. Front Pediatr 2021; 9:676296. [PMID: 34222146 PMCID: PMC8247473 DOI: 10.3389/fped.2021.676296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
In recent decades there have been multiple pathogens, viruses and bacteria, which have emerged as causal agents of pneumonia affecting adults, albeit less frequently, to children. For the purposes of this article we have classified emerging pathogens as follows: True emerging, to pathogens identified for the very first time affecting human population (SARS-CoV-1, SARS-CoV-2, MERS-CoV, avian influenza, and hantavirus); Re-emerging, to known pathogens which circulation was controlled once, but they have reappeared (measles, tuberculosis, antimicrobial resistant bacteria such as CA-MRSA, Mycoplasma pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and new serotypes of post-vaccine pneumococcal); and finally, those that we have called old known with new presentations, including common pathogens that, in particular condition, have changed their form of presentation (rhinovirus, and non-SARS coronavirus). We will review for each of them their epidemiology, forms of presentation, therapy, and prognosis in children compared to the adult with the aim of being able to recognize them to establish appropriate therapy, prognostics, and effective control measures.
Collapse
Affiliation(s)
- Cecilia Perret
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Le Corre
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jose A Castro-Rodriguez
- Department of Pediatric Pulmonology and Cardiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
22
|
Chesnokov A, Patel MC, Mishin VP, De La Cruz JA, Lollis L, Nguyen HT, Dugan V, Wentworth DE, Gubareva LV. Replicative Fitness of Seasonal Influenza A Viruses With Decreased Susceptibility to Baloxavir. J Infect Dis 2020; 221:367-371. [PMID: 31541547 DOI: 10.1093/infdis/jiz472] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/11/2019] [Indexed: 11/14/2022] Open
Abstract
Susceptibility of influenza A viruses to baloxavir can be affected by changes at amino acid residue 38 in the polymerase acidic (PA) protein. Information on replicative fitness of PA-I38-substituted viruses remains sparse. We demonstrated that substitutions I38L/M/S/T not only had a differential effect on baloxavir susceptibility (9- to 116-fold) but also on in vitro replicative fitness. Although I38L conferred undiminished growth, other substitutions led to mild attenuation. In a ferret model, control viruses outcompeted those carrying I38M or I38T substitutions, although their advantage was limited. These findings offer insights into the attributes of baloxavir-resistant viruses needed for informed risk assessment.
Collapse
Affiliation(s)
- Anton Chesnokov
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,A. C. and M. C. P. contributed equally to this article and share first authorship
| | - Mira C Patel
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Battelle Memorial Institute, Atlanta, Georgia, USA
| | - Vasiliy P Mishin
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Juan A De La Cruz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Battelle Memorial Institute, Atlanta, Georgia, USA
| | - Lori Lollis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Battelle Memorial Institute, Atlanta, Georgia, USA
| | - Ha T Nguyen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Battelle Memorial Institute, Atlanta, Georgia, USA
| | - Vivien Dugan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Cai W, Wen H, Zhou Q, Wu L, Chen Y, Zhou H, Jin M. 14-Deoxy-11,12-didehydroandrographolide inhibits apoptosis in influenza A(H5N1) virus-infected human lung epithelial cells via the caspase-9-dependent intrinsic apoptotic pathway which contributes to its antiviral activity. Antiviral Res 2020; 181:104885. [PMID: 32702348 DOI: 10.1016/j.antiviral.2020.104885] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/26/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022]
Abstract
Influenza A virus (IAV) infection represents a global health challenge. Excavating antiviral active components from traditional Chinese medicine (TCM) is a promising anti-IAV strategy. Our previous studies have demonstrated that 14-deoxy-11,12-didehydroandrographolide (DAP), a major ingredient of a TCM herb called Andrographis paniculata, shows anti-IAV activity that is mainly effective against A/chicken/Hubei/327/2004 (H5N1), A/duck/Hubei/XN/2007 (H5N1), and A/PR/8/34 (H1N1) in vitro and in vivo. However, the underlying anti-IAV molecular mechanism of DAP needs further investigation. In the present work, we found that DAP can significantly inhibit the apoptosis of human lung epithelial (A549) cells infected with A/chicken/Hubei/327/2004 (H5N1). After DAP treatment, the protein expression levels of cleaved PARP, cleaved caspase-3, and cleaved caspase-9, and the activities of caspase-3 and caspase-9 in H5N1-infected A549 cells were all obviously downregulated. However, DAP had no inhibitory effect on caspase-8 activity and cleaved caspase-8 production. Meanwhile, the efficacy of DAP in reducing the apoptotic cells was lost after using the inhibitor of caspase-3 or caspase-9 but remained intact after the caspase-8 inhibitor treatment. Moreover, DAP efficiently attenuated the dissipation of mitochondrial membrane potential, suppressed cytochrome c release from the mitochondria to the cytosol, and decreased the protein expression ratio of Bax/Bcl-2 in the mitochondrial fraction. Furthermore, the silencing of caspase-9 reduced the yield of nucleoprotein (NP) and disabled the inhibitory ability of DAP in NP production in A549 cells. Overall results suggest that DAP exerts its antiviral effects by inhibiting H5N1-induced apoptosis on the caspase-9-dependent intrinsic/mitochondrial pathway, which may be one of the anti-H5N1 mechanisms of DAP.
Collapse
Affiliation(s)
- Wentao Cai
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Haimei Wen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Qinyang Zhou
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Lei Wu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yong Chen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
24
|
Cho YB, Hong S, Kang KW, Kang JH, Lee SM, Seo YJ. Selective and ATP-competitive kinesin KIF18A inhibitor suppresses the replication of influenza A virus. J Cell Mol Med 2020; 24:5463-5475. [PMID: 32253833 PMCID: PMC7214149 DOI: 10.1111/jcmm.15200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
The influenza virus is one of the major public health threats. However, the development of efficient vaccines and therapeutic drugs to combat this virus is greatly limited by its frequent genetic mutations. Because of this, targeting the host factors required for influenza virus replication may be a more effective strategy for inhibiting a broader spectrum of variants. Here, we demonstrated that inhibition of a motor protein kinesin family member 18A (KIF18A) suppresses the replication of the influenza A virus (IAV). The expression of KIF18A in host cells was increased following IAV infection. Intriguingly, treatment with the selective and ATP‐competitive mitotic kinesin KIF18A inhibitor BTB‐1 substantially decreased the expression of viral RNAs and proteins, and the production of infectious viral particles, while overexpression of KIF18A enhanced the replication of IAV. Importantly, BTB‐1 treatment attenuated the activation of AKT, p38 MAPK, SAPK and Ran‐binding protein 3 (RanBP3), which led to the prevention of the nuclear export of viral ribonucleoprotein complexes. Notably, administration of BTB‐1 greatly improved the viability of IAV‐infected mice. Collectively, our results unveiled a beneficial role of KIF18A in IAV replication, and thus, KIF18A could be a potential therapeutic target for the control of IAV infection.
Collapse
Affiliation(s)
- Yong-Bin Cho
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Sungguan Hong
- Department of Chemistry, Chung-Ang University, Seoul, South Korea
| | - Kyung-Won Kang
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan, South Korea
| | - Ji-Hun Kang
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Sang-Myeong Lee
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan, South Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
25
|
Wu X, Xiao L, Li L. Research progress on human infection with avian influenza H7N9. Front Med 2020; 14:8-20. [PMID: 31989396 PMCID: PMC7101792 DOI: 10.1007/s11684-020-0739-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/28/2019] [Indexed: 11/28/2022]
Abstract
Since the first case of novel H7N9 infection was reported, China has experienced five epidemics of H7N9. During the fifth wave, a highly pathogenic H7N9 strain emerged. Meanwhile, the H7N9 virus continues to accumulate mutations, and its affinity for the human respiratory epithelial sialic acid 2–6 receptor has increased. Therefore, a pandemic is still possible. In the past 6 years, we have accumulated rich experience in dealing with H7N9, especially in terms of virus tracing, epidemiological research, key site mutation monitoring, critical disease mechanisms, clinical treatment, and vaccine development. In the research fields above, significant progress has been made to effectively control the spread of the epidemic and reduce the fatality rate. To fully document the research progress concerning H7N9, we reviewed the clinical and epidemiological characteristics of H7N9, the key gene mutations of the virus, and H7N9 vaccine, thus providing a scientific basis for further monitoring and prevention of H7N9 influenza epidemics.
Collapse
Affiliation(s)
- Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanlan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
26
|
Gilchuk IM, Bangaru S, Gilchuk P, Irving RP, Kose N, Bombardi RG, Thornburg NJ, Creech CB, Edwards KM, Li S, Turner HL, Yu W, Zhu X, Wilson IA, Ward AB, Crowe JE. Influenza H7N9 Virus Neuraminidase-Specific Human Monoclonal Antibodies Inhibit Viral Egress and Protect from Lethal Influenza Infection in Mice. Cell Host Microbe 2019; 26:715-728.e8. [PMID: 31757769 PMCID: PMC6941661 DOI: 10.1016/j.chom.2019.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/20/2019] [Accepted: 10/07/2019] [Indexed: 02/05/2023]
Abstract
H7N9 avian influenza virus causes severe infections and might have the potential to trigger a major pandemic. Molecular determinants of human humoral immune response to N9 neuraminidase (NA) proteins, which exhibit unusual features compared with seasonal influenza virus NA proteins, are ill-defined. We isolated 35 human monoclonal antibodies (mAbs) from two H7N9 survivors and two vaccinees. These mAbs react to NA in a subtype-specific manner and recognize diverse antigenic sites on the surface of N9 NA, including epitopes overlapping with, or distinct from, the enzyme active site. Despite recognizing multiple antigenic sites, the mAbs use a common mechanism of action by blocking egress of nascent virions from infected cells, thereby providing an antiviral prophylactic and therapeutic protection in vivo in mice. Studies of breadth, potency, and diversity of antigenic recognition from four subjects suggest that vaccination with inactivated adjuvanted vaccine induce NA-reactive responses comparable to that of H7N9 natural infection.
Collapse
Affiliation(s)
- Iuliia M Gilchuk
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sandhya Bangaru
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Pavlo Gilchuk
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan P Irving
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin G Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Natalie J Thornburg
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - C Buddy Creech
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kathryn M Edwards
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sheng Li
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
27
|
Zou X, Guo Q, Zhang W, Chen H, Bai W, Lu B, Zhang W, Fan Y, Liu C, Wang Y, Zhou F, Cao B. Dynamic Variation and Reversion in the Signature Amino Acids of H7N9 Virus During Human Infection. J Infect Dis 2019; 218:586-594. [PMID: 29688498 PMCID: PMC6047446 DOI: 10.1093/infdis/jiy217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/22/2018] [Indexed: 11/25/2022] Open
Abstract
Background Signature amino acids of H7N9 influenza A virus play critical roles in human adaption and pathogenesis, but their dynamic variation is unknown during disease development. Methods We sequentially collected respiratory samples from H7N9 patients at different timepoints and applied next-generation sequencing (NGS) to the whole genome of the H7N9 virus to investigate the variation at signature sites. Results A total of 11 patients were involved, from whom 29 samples were successfully sequenced, including samples from multiple timepoints in 9 patients. Neuraminidase (NA) R292K, basic polymerase 2 (PB2) E627K, and D701N were the 3 most dynamic mutations. The oseltamivir resistance-related NA R292K mutation was present in 9 samples from 5 patients, including 1 sample obtained before antiviral therapy. In all patients with the NA 292K mutation, the oseltamivir-sensitive 292R genotype persisted and was not eliminated by antiviral treatment. The PB2 E627K substitution was present in 18 samples from 8 patients, among which 12 samples demonstrated a mixture of E/K and the 627K frequency exhibited dynamic variation. Dual D701N and E627K mutations emerged but failed to achieve predominance in any of the samples. Conclusions Signature amino acids in PB2 and NA demonstrated high polymorphism and dynamic variation within individual patients during H7N9 virus infection.
Collapse
Affiliation(s)
- Xiaohui Zou
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Qiang Guo
- Department of Respiratory, Emergency and Critical Care Medicine, First Affiliated Hospital of Soochow University, Jiangsu
| | - Wei Zhang
- First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China
| | - Hui Chen
- Department of Respiratory, Emergency and Critical Care Medicine, First Affiliated Hospital of Soochow University, Jiangsu
| | - Wei Bai
- First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China
| | - Binghuai Lu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Wang Zhang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Yanyan Fan
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Chao Liu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Yeming Wang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Fei Zhou
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | | |
Collapse
|
28
|
Hodges EN, Mishin VP, De la Cruz J, Guo Z, Nguyen HT, Fallows E, Stevens J, Wentworth DE, Davis CT, Gubareva LV. Detection of oseltamivir-resistant zoonotic and animal influenza A viruses using the rapid influenza antiviral resistance test. Influenza Other Respir Viruses 2019; 13:522-527. [PMID: 31187572 PMCID: PMC6692545 DOI: 10.1111/irv.12661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 11/28/2022] Open
Abstract
Mutations in the influenza virus neuraminidase (NA) that cause reduced susceptibility to the NA inhibitor (NAI) oseltamivir may occur naturally or following antiviral treatment. Currently, detection uses either a traditional NA inhibition assay or gene sequencing to identify known markers associated with reduced inhibition by oseltamivir. Both methods are laborious and require trained personnel. The influenza antiviral resistance test (iART), a prototype system developed by Becton, Dickinson and Company for research use only, offers a rapid and simple method to identify such viruses. This study investigated application of iART to influenza A viruses isolated from non-human hosts with a variety of NA subtypes (N1-N9).
Collapse
Affiliation(s)
- Erin N. Hodges
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
- CNI AdvantageAtlantaGeorgia
| | - Vasiliy P. Mishin
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
| | - Juan De la Cruz
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
- Battelle Memorial InstituteAtlantaGeorgia
| | - Zhu Guo
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
| | - Ha T. Nguyen
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
- Battelle Memorial InstituteAtlantaGeorgia
| | - Eric Fallows
- Becton, Dickinson and CompanyResearch Triangle ParkNorth Carolina
| | - James Stevens
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
| | - David E. Wentworth
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
| | - Charles Todd Davis
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
| | - Larisa V. Gubareva
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
| |
Collapse
|
29
|
Characterization of substitutions in the neuraminidase of A(H7N9) influenza viruses selected following serial passage in the presence of different neuraminidase inhibitors. Antiviral Res 2019; 168:68-75. [PMID: 31132385 DOI: 10.1016/j.antiviral.2019.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
Avian A(H7N9) infections in humans have been reported in China since 2013 and are of public health concern due to their severity and pandemic potential. Oseltamivir and peramivir are neuraminidase inhibitors (NAIs) routinely used for the treatment of A(H7N9) infections, but variants with reduced sensitivity to these drugs can emerge in patients during treatment. Zanamivir and laninamivir are NAIs that are used less frequently. Herein, we performed in vitro serial passaging experiments with recombinant viruses, containing the neuraminidase (NA) from influenza A/Anhui/1/13 (H7N9) virus, in the presence of each NAI, to determine whether variants with reduced sensitivity would emerge. NA substitutions were characterized for their effect on the NA enzymatic activity and surface expression of the A/Anhui/1/13 (Anhui/1) NA, as well as NAs originating from contemporary A(H7N9) viruses of the Yangtze River Delta and Pearl River Delta lineages. In vitro passage in the presence of oseltamivir, peramivir and laninamivir selected for substitutions associated with reduced sensitivity (E119D, R292K and R152K), whereas passage in the presence of zanamivir did not select for any viruses with reduced sensitivity. All the NA substitutions significantly reduced activity, but not the expression of the Anhui/1 NA. In contemporary N9 NAs, all substitutions tested significantly reduced NA enzyme function in the Yangtze River lineage background, but not in the Pearl River Delta lineage background. Overall, these findings suggest that zanamivir may be less likely than the other NAIs to select for resistance in A(H7N9) viruses and that the impact of substitutions that reduce NAI susceptibility or enzyme function may be less in A(H7N9) viruses from the Pearl River lineage.
Collapse
|
30
|
Structure-function analysis of neutralizing antibodies to H7N9 influenza from naturally infected humans. Nat Microbiol 2019; 4:306-315. [PMID: 30478290 DOI: 10.1038/s41564-018-0303-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
Little is known about the specificities and neutralization breadth of the H7-reactive antibody repertoire induced by natural H7N9 infection in humans. We have isolated and characterized 73 H7-reactive monoclonal antibodies from peripheral B cells from four donors infected in 2013 and 2014. Of these, 45 antibodies were H7-specific, and 17 of these neutralized the virus, albeit with few somatic mutations in their variable domain sequences. An additional set of 28 antibodies, isolated from younger donors born after 1968, cross-reacted between H7 and H3 haemagglutinins in binding assays, and had accumulated significantly more somatic mutations, but were predominantly non-neutralizing in vitro. Crystal structures of three neutralizing and protective antibodies in complex with the H7 haemagglutinin revealed that they recognize overlapping residues surrounding the receptor-binding site of haemagglutinin. One of the antibodies, L4A-14, bound into the sialic acid binding site and made contacts with haemagglutinin residues that were conserved in the great majority of 2016-2017 H7N9 isolates. However, only 3 of the 17 neutralizing antibodies retained activity for the Yangtze River Delta lineage viruses isolated in 2016-2017 that have undergone antigenic change, which emphasizes the need for updated H7N9 vaccines.
Collapse
|
31
|
Fay EJ, Aron SL, Stone IA, Waring BM, Plemper RK, Langlois RA. Engineered Small-Molecule Control of Influenza A Virus Replication. J Virol 2019; 93:e01677-18. [PMID: 30282710 PMCID: PMC6288343 DOI: 10.1128/jvi.01677-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023] Open
Abstract
Influenza A virus (IAV) remains a global health concern despite the availability of a seasonal vaccine. It is difficult to predict which strains will circulate during influenza season, and therefore, it is extremely challenging to test novel vaccines in the human population. To overcome this obstacle, new vaccines must be tested in challenge studies. This approach poses significant safety problems, since current pharmacological interventions for IAV are poorly efficacious. New methods are needed to enhance the safety of these challenge studies. In this study, we have generated a virus expressing a small-molecule-assisted shutoff (SMASh) tag as a safety switch for IAV replication. The addition of the SMASh tag to an essential IAV protein allows for small-molecule-mediated inhibition of replication. Treatment with this drug controls the replication of a SMASh-tagged virus in vitro and in vivo This model for restriction of viral replication has potential for broad applications in vaccine studies, virotherapy, and basic virus research.IMPORTANCE Influenza A virus (IAV) causes significant morbidity and mortality annually worldwide, despite the availability of new formulations of the vaccine each season. There is a critical need to develop more-efficacious vaccines. However, testing novel vaccines in the human population in controlled studies is difficult due to the limited availability and efficacy of intervention strategies should the vaccine fail. There are also significant safety concerns for work with highly pathogenic IAV strains in the laboratory. Therefore, novel strategies are needed to improve the safety of vaccine studies and of research on highly pathogenic IAV. In this study, we developed an IAV strain engineered to contain a small-molecule-mediated safety switch. This tag, when attached to an essential viral protein, allows for the regulation of IAV replication in vitro and in vivo This strategy provides a platform for the regulation of virus replication without targeting viral proteins directly.
Collapse
Affiliation(s)
- Elizabeth J Fay
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephanie L Aron
- Center for Immunology, University of Minnesota Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ian A Stone
- Center for Immunology, University of Minnesota Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Barbara M Waring
- Center for Immunology, University of Minnesota Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Ryan A Langlois
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
32
|
Wang S, Zhang L, Zhang R, Chi X, Yang Z, Xie Y, Shu S, Liao Y, Chen JL. Identification of two residues within the NS1 of H7N9 influenza A virus that critically affect the protein stability and function. Vet Res 2018; 49:98. [PMID: 30285871 PMCID: PMC6389221 DOI: 10.1186/s13567-018-0594-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/19/2018] [Indexed: 01/31/2023] Open
Abstract
The emerging avian-origin H7N9 influenza A virus, which causes mild to lethal human respiratory disease, continues to circulate in China, posing a great threat to public health. Influenza NS1 protein plays a key role in counteracting host innate immune responses, allowing the virus to efficiently replicate in the host. In this study, we compared NS1 amino acid sequences of H7N9 influenza A virus with those of other strains, and determined NS1 protein variability within the H7N9 virus and then evaluated the impact of amino acid substitutions on ability of the NS1 proteins to inhibit host innate immunity. Interestingly, the amino acid residue S212 was identified to have a profound effect on the primary function of NS1, since S212P substitution disabled H7N9 NS1 in suppressing the host RIG-I-dependent interferon response, as well as the ability to promote the virus replication. In addition, we identified another amino acid residue, I178, serving as a key site to keep NS1 protein high steady-state levels. When the isoleucine was replaced by valine at 178 site (I178V mutation), NS1 of H7N9 underwent rapid degradation through proteasome pathway. Furthermore, we observed that P212S and V178I mutation in NS1 of PR8 virus enhanced virulence and promoted the virus replication in vivo. Together, these results indicate that residues I178 and S212 within H7N9 NS1 protein are critical for stability and functioning of the NS1 protein respectively, and may contribute to the enhanced pathogenicity of H7N9 influenza virus.
Collapse
Affiliation(s)
- Song Wang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lanlan Zhang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rong Zhang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojuan Chi
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhou Yang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhui Xie
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sicheng Shu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Liao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China. .,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
33
|
Xiao YL, Ren L, Zhang X, Qi L, Kash JC, Xiao Y, Wu F, Wang J, Taubenberger JK. Deep Sequencing of H7N9 Influenza A Viruses from 16 Infected Patients from 2013 to 2015 in Shanghai Reveals Genetic Diversity and Antigenic Drift. mSphere 2018; 3:e00462-18. [PMID: 30232169 PMCID: PMC6147129 DOI: 10.1128/mspheredirect.00462-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) infections are a major public health concern, including annual epidemics, epizootic outbreaks, and pandemics. A significant IAV epizootic outbreak was the H7N9 avian influenza A outbreak in China, which was first detected in 2013 and which has spread over 5 waves from 2013 to 2017, causing human infections in many different Chinese provinces. Here, RNA from primary clinical throat swab samples from 20 H7N9-infected local patients with different clinical outcomes, who were admitted and treated at one hospital in Shanghai, China, from April 2013 to April 2015, was analyzed. Whole-transcriptome amplification, with positive enrichment of IAV RNA, was performed, all 20 samples were subjected to deep sequencing, and data from 16 samples were analyzed in detail. Many single-nucleotide polymorphisms, including ones not previously reported, and many nonsynonymous changes that could affect hemagglutinin head and stalk antibody binding epitopes were observed. Minor populations representing viral quasispecies, including nonsynonymous hemagglutinin changes shared by antigenically variant H7N9 clades identified in the most recent wave of H7N9 infections in 2016 to 2017, were also identified.IMPORTANCE H7N9 subtype avian influenza viruses caused infections in over 1,400 humans from 2013 to 2017 and resulted in almost 600 deaths. It is important to understand how avian influenza viruses infect and cause disease in humans and to assess their potential for efficient person-to-person transmission. In this study, we used deep sequencing of primary clinical material to assess the evolution and potential for human adaptation of H7N9 influenza viruses.
Collapse
Affiliation(s)
- Yong-Li Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lili Ren
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Li Qi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Fan Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
34
|
Mostafa A, Abdelwhab EM, Mettenleiter TC, Pleschka S. Zoonotic Potential of Influenza A Viruses: A Comprehensive Overview. Viruses 2018; 10:v10090497. [PMID: 30217093 PMCID: PMC6165440 DOI: 10.3390/v10090497] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/24/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023] Open
Abstract
Influenza A viruses (IAVs) possess a great zoonotic potential as they are able to infect different avian and mammalian animal hosts, from which they can be transmitted to humans. This is based on the ability of IAV to gradually change their genome by mutation or even reassemble their genome segments during co-infection of the host cell with different IAV strains, resulting in a high genetic diversity. Variants of circulating or newly emerging IAVs continue to trigger global health threats annually for both humans and animals. Here, we provide an introduction on IAVs, highlighting the mechanisms of viral evolution, the host spectrum, and the animal/human interface. Pathogenicity determinants of IAVs in mammals, with special emphasis on newly emerging IAVs with pandemic potential, are discussed. Finally, an overview is provided on various approaches for the prevention of human IAV infections.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Giza 12622, Egypt.
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| |
Collapse
|
35
|
Sivanandy P, Zi Xien F, Woon Kit L, Tze Wei Y, Hui En K, Chia Lynn L. A review on current trends in the treatment of human infection with H7N9-avian influenza A. J Infect Public Health 2018; 12:153-158. [PMID: 30213468 DOI: 10.1016/j.jiph.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/24/2018] [Indexed: 01/09/2023] Open
Abstract
The H7N9 subtype of avian influenza is an enzootic and airborne virus which caused an influenza outbreak in China. Infected individuals mostly worked with poultry, suggesting H7N9 virus-infected poultry as the primary source of human infection. Significantly increased levels of proinflammatory mediators (chemokines, cytokines) during virus infection could hamper the immune system and aggravate the infection. Severe cases are marked by fulminant pneumonia, acute respiratory distress syndrome (ARDS) and encephalopathy. Left untreated, the condition may rapidly progress to multi-organ failure and death. Reverse transcription polymerase chain reaction (rRT-PCR) is the gold standard diagnostic test for H7N9 avian influenza. Use of neurominidase inhibitor antivirals remain the main treatment. New antivirals are developed to counteract neurominidase inhibitor resistance H7N9 viral strains. Corticosteroid use in viral pneumonia may provoke mortality and longer viral shedding time. Subjects at high risk of contracting avian influenza H7N9 infection are recommended to receive annual seasonal influenza vaccination.
Collapse
Affiliation(s)
- Palanisamy Sivanandy
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.
| | - Foong Zi Xien
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee Woon Kit
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Yeoh Tze Wei
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kuan Hui En
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lian Chia Lynn
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Yang Y, Li S, Wong G, Ma S, Xu Z, Zhao X, Li H, Xu W, Zheng H, Lin J, Zhao Q, Liu W, Liu Y, Gao GF, Bi Y. Development of a quadruple qRT-PCR assay for simultaneous identification of highly and low pathogenic H7N9 avian influenza viruses and characterization against oseltamivir resistance. BMC Infect Dis 2018; 18:406. [PMID: 30111290 PMCID: PMC6094886 DOI: 10.1186/s12879-018-3302-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/01/2018] [Indexed: 11/22/2022] Open
Abstract
Background During the fifth wave of human H7N9 infections, a novel highly pathogenic (HP) H7N9 variant emerged with an insertion of multiple basic amino acids in the HA cleavage site. Moreover, a neuraminidase inhibitor (NAI) resistance (R292K in NA) mutation was found in H7N9 isolates from humans, poultry and the environment. In this study, we set out to develop and validate a multiplex quantitative reverse transcript polymerase chain reaction (qRT-PCR) to simultaneously detect the presence of H7N9 and further identify the HP and NAI-resistance mutations. Methods A quadruple qRT-PCR to simultaneously detect the presence of H7N9 and further identify the HP and NAI-resistance mutations was designed based on the analyses of the HA and NA genes of H7N9. This assay was further tested for specificity and sensitivity, and validated using clinical samples. Results The assay was highly specific and able to detect low pathogenic (LP)- or HP-H7N9 with/without the NAI-resistance mutation. The detection limit of the assay was determined to be 50 genome-equivalent copies and 2.8 × 10− 3 50% tissue culture infectious doses (TCID50) of live H7N9 per reaction. Clinical validation was confirmed by commercial kits and Sanger sequencing with ten clinical samples. Conclusions We developed and validated a rapid, single-reaction, one-step, quadruple real-time qRT-PCR to simultaneously detect the presence of H7N9 and further identify the HP- and NAI-resistance strains with excellent performance in specificity and sensitivity. This assay could be used to monitor the evolution of H7N9 viruses in the laboratory, field and the clinic for early-warning and the prevention of H7N9 infections.
Collapse
Affiliation(s)
- Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, 518112, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
| | - Shanqin Li
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, 518112, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
| | - Gary Wong
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, 518112, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
| | - Sufang Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhixiang Xu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Xiaonan Zhao
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Hong Li
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Wen Xu
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Haixia Zheng
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Jingyan Lin
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Qi Zhao
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, 518112, China.,University of Chinese Academy of Sciences Medical School, Chinese Academy of Sciences, Beijing, 101408, China
| | - George F Gao
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, 518112, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.,University of Chinese Academy of Sciences Medical School, Chinese Academy of Sciences, Beijing, 101408, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, 518112, China. .,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
37
|
Zhu W, Li S, Wang C, Yu G, Prausnitz MR, Wang BZ. Enhanced Immune Responses Conferring Cross-Protection by Skin Vaccination With a Tri-Component Influenza Vaccine Using a Microneedle Patch. Front Immunol 2018; 9:1705. [PMID: 30105019 PMCID: PMC6077188 DOI: 10.3389/fimmu.2018.01705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/10/2018] [Indexed: 01/10/2023] Open
Abstract
Skin vaccination using biodegradable microneedle patch (MNP) technology in vaccine delivery is a promising strategy showing significant advantages over conventional flu shots. In this study, we developed an MNP encapsulating a 4M2e-tFliC fusion protein and two types of whole inactivated influenza virus vaccines (H1N1 and H3N2) as a universal vaccine candidate. We demonstrated that mice receiving this tri-component influenza vaccine via MNP acquired improved IgG1 antibody responses with more balanced IgG1/IgG2a antibody responses and enhanced cellular immune responses, including increased populations of IL-4 and IFN-γ producing cells and higher frequencies of antigen-specific plasma cells compared with intramuscular injection. In addition, stronger germinal center reactions, increased numbers of Langerin-positive migratory dendritic cells, and increased cytokine secretion were observed in the skin-draining lymph nodes after immunization with the tri-component influenza MNP vaccine. The MNP-immunized group also possessed enhanced protection against a heterologous reassortant A/Shanghai/2013 H7N9 (rSH) influenza virus infection. Furthermore, the sera collected from 4M2e-tFliC MNP-immunized mice were demonstrated to have antiviral efficacy against reassortant A/Vietnam/1203/2004 H5N1 (rVet) and A/Shanghai/2013 H7N9 (rSH) virus challenges. The immunological advantages of skin vaccination with this tri-component MNP vaccine could offer a promising approach to develop an easily applicable and broadly protective universal influenza vaccine.
Collapse
Affiliation(s)
- Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, United States
| | - Song Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Chao Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, United States
| | - Guoying Yu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, United States
| |
Collapse
|
38
|
Abstract
Five epidemic waves of human infection with influenza A (H7N9) virus have emerged in China since spring 2013. We previously described the epidemiological characterization of the fifth wave in Jiangsu province. In this study, 41 H7N9 viruses from patients and live-poultry markets were isolated and sequenced to further elucidate the genetic features of viruses of the fifth wave in Jiangsu province. Phylogenetic analysis revealed substantial genetic diversity in the internal genes, and 18 genotypes were identified from the 41 H7N9 virus strains. Furthermore, our data revealed that 41 isolates from Jiangsu contained the G186V and Q226L/I mutations in their haemagglutinin (HA) protein, which may increase the ability of these viruses to bind the human receptor. Four basic amino acid insertions were not observed in the HA cleavage sites of 167 H7N9 viruses from Jiangsu, which revealed that highly pathogenic avian influenza (HPAI) H7N9 viruses did not spread to Jiangsu province in the fifth wave. These findings revealed that multiple genotypes of H7N9 viruses co-circulated in the fifth wave in Jiangsu province, which indicated that the viruses have undergone ongoing evolution with genetic mutation and reassortment. Our study highlights the need to constantly monitor the evolution of H7N9 viruses and reinforce systematic influenza surveillance of humans, birds, and pigs in China.
Collapse
|
39
|
Comparison of the Efficacy of N9 Neuraminidase-Specific Monoclonal Antibodies against Influenza A(H7N9) Virus Infection. J Virol 2018; 92:JVI.01588-17. [PMID: 29167344 DOI: 10.1128/jvi.01588-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/20/2017] [Indexed: 01/07/2023] Open
Abstract
The fifth wave of A(H7N9) virus infection in China from 2016 to 2017 caused great concern due to the large number of individuals infected, the isolation of drug-resistant viruses, and the emergence of highly pathogenic strains. Antibodies against neuraminidase (NA) provide added benefit to hemagglutinin-specific immunity and may be important contributors to the effectiveness of A(H7N9) vaccines. We generated a panel of mouse monoclonal antibodies (MAbs) to identify antigenic domains on NA of the novel A(H7N9) virus and compared their functional properties. The loop formed in the region of residue 250 (250 loop) and the domain formed by the loops containing residues 370, 400, and 430 were identified as major antigenic regions. MAbs 1E8, 2F6, 10F4, and 11B2, which recognize these two antigenic domains, were characterized in depth. These four MAbs differ in their abilities to inhibit cleavage of small and large substrates (methyl-umbelliferyl-acetyl neuraminic acid [MU-NANA] and fetuin, respectively) in NA inhibition assays. 1E8 and 11B2 did not inhibit NA cleavage of either MU-NANA or fetuin, and 2F6 inhibited cleavage of fetuin alone, whereas 10F4 inhibited cleavage of both substrates. All four MAbs reduced the in vitro spread of viruses carrying either the wild-type N9 or N9 with antiviral-resistant mutations but to different degrees. These MAbs have different in vivo levels of effectiveness: 10F4 was the most effective in protecting mice against challenge with A(H7N9) virus, 2F6 was less effective, and 11B2 failed to protect BALB/c mice at the doses tested. Our study confirms that NA-specific antibodies can protect against A(H7N9) infection and suggests that in vitro properties can be used to rank antibodies with therapeutic potential.IMPORTANCE The novel A(H7N9) viruses that emerged in China in 2013 continue to infect humans, with a high fatality rate. The most recent outbreak resulted in a larger number of human cases than previous epidemic waves. Due to the absence of a licensed vaccine and the emergence of drug-resistant viruses, there is a need to develop alternative approaches to prevent or treat A(H7N9) infection. We have made a panel of mouse monoclonal antibodies (MAbs) specific for neuraminidase (NA) of A(H7N9) viruses; some of these MAbs are effective in inhibiting viruses that are resistant to antivirals used to treat A(H7N9) patients. Binding avidity, inhibition of NA activity, and plaque formation correlated with the effectiveness of these MAbs to protect mice against lethal A(H7N9) virus challenge. This study identifies in vitro measures that can be used to predict the in vivo efficacy of NA-specific antibodies, providing a way to select MAbs for further therapeutic development.
Collapse
|
40
|
McKimm-Breschkin JL, Jiang S, Hui DS, Beigel JH, Govorkova EA, Lee N. Prevention and treatment of respiratory viral infections: Presentations on antivirals, traditional therapies and host-directed interventions at the 5th ISIRV Antiviral Group conference. Antiviral Res 2018; 149:118-142. [PMID: 29162476 PMCID: PMC7133686 DOI: 10.1016/j.antiviral.2017.11.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
The International Society for Influenza and other Respiratory Virus Diseases held its 5th Antiviral Group (isirv-AVG) Conference in Shanghai, China, in conjunction with the Shanghai Public Health Center and Fudan University from 14-16 June 2017. The three-day programme encompassed presentations on some of the clinical features, management, immune responses and virology of respiratory infections, including influenza A(H1N1)pdm09 and A(H7N9) viruses, MERS-CoV, SARS-CoV, adenovirus Type 80, enterovirus D68, metapneumovirus and respiratory syncytial virus (RSV). Updates were presented on several therapeutics currently in clinical trials, including influenza polymerase inhibitors pimodivir/JNJ6362387, S033188, favipiravir, monoclonal antibodies MHAA45449A and VIS410, and host directed strategies for influenza including nitazoxanide, and polymerase ALS-008112 and fusion inhibitors AK0529, GS-5806 for RSV. Updates were also given on the use of the currently licensed neuraminidase inhibitors. Given the location in China, there were also presentations on the use of Traditional Chinese Medicines. Following on from the previous conference, there were ongoing discussions on appropriate endpoints for severe influenza in clinical trials from regulators and clinicians, an issue which remains unresolved. The aim of this conference summary is to provide information for not only conference participants, but a detailed referenced review of the current status of clinical trials, and pre-clinical development of therapeutics and vaccines for influenza and other respiratory diseases for a broader audience.
Collapse
Affiliation(s)
| | - Shibo Jiang
- College of Basic Medical Sciences, Fudan University, Shanghai, China; Lindsley F. Kimball Research Institute, New York Blood Center, NY, USA
| | - David S Hui
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - John H Beigel
- Leidos Biomedical Research, Inc., Support to National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, USA
| | - Nelson Lee
- Faculty of Medicine and Dentistry, University of Alberta, Canada
| |
Collapse
|
41
|
Agunos A, Pierson FW, Lungu B, Dunn PA, Tablante N. Review of Nonfoodborne Zoonotic and Potentially Zoonotic Poultry Diseases. Avian Dis 2017; 60:553-75. [PMID: 27610715 DOI: 10.1637/11413-032416-review.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Emerging and re-emerging diseases are continuously diagnosed in poultry species. A few of these diseases are known to cross the species barrier, thus posing a public health risk and an economic burden. We identified and synthesized global evidence for poultry nonfoodborne zoonoses to better understand these diseases in people who were exposed to different poultry-related characteristics (e.g., occupational or nonoccupational, operational types, poultry species, outbreak conditions, health status of flocks). This review builds on current knowledge on poultry zoonoses/potentially zoonotic agents transmitted via the nonfoodborne route. It also identifies research gaps and potential intervention points within the poultry industry to reduce zoonotic transmission by using various knowledge synthesis tools such as systematic review (SR) and qualitative (descriptive) and quantitative synthesis methods (i.e., meta-analysis). Overall, 1663 abstracts were screened and 156 relevant articles were selected for further review. Full articles (in English) were retrieved and critically appraised using routine SR methods. In total, eight known zoonotic diseases were reviewed: avian influenza (AI) virus (n = 85 articles), Newcastle disease virus (n = 8), West Nile virus (WNV, n = 2), avian Chlamydia (n = 24), Erysipelothrix rhusiopathiae (n = 3), methicillin-resistant Staphylococcus aureus (MRSA, n = 15), Ornithonyssus sylvarium (n = 4), and Microsporum gallinae (n = 3). In addition, articles on other viral poultry pathogens (n = 5) and poultry respiratory allergens derived from mites and fungi (n = 7) were reviewed. The level of investigations (e.g., exposure history, risk factor, clinical disease in epidemiologically linked poultry, molecular studies) to establish zoonotic linkages varied across disease agents and across studies. Based on the multiple outcome measures captured in this review, AI virus seems to be the poultry zoonotic pathogen that may have considerable and significant public health consequences; however, epidemiologic reports have only documented severe human cases clustered in Asia and not in North America. In contrast, avian Chlamydia and MRSA reports clustered mainly in Europe and less so in North America and other regions. Knowledge gaps in other zoonoses or other agents were identified, including potential direct (i.e., nonmosquito-borne) transmission of WNV from flocks to poultry workers, the public health and clinical significance of poultry-derived (livestock-associated) MRSA, the zoonotic significance of other viruses, and the role of poultry allergens in the pathophysiology of respiratory diseases of poultry workers. Across all pathogens reviewed, the use of personal protective equipment was commonly cited as the most important preventive measure to reduce the zoonotic spread of these diseases and the use of biosecurity measures to reduce horizontal transmission in flock populations. The studies also emphasized the need for flock monitoring and an integrated approach to prevention (i.e., veterinary-public health coordination with regard to diagnosis, and knowledge translation and education in the general population) to reduce zoonotic transmission.
Collapse
Affiliation(s)
- Agnes Agunos
- A Public Health Agency of Canada, Guelph, Ontario, Canada N1G5B2
| | - F William Pierson
- B Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Bwalya Lungu
- C Department of Food Science and Technology, University of California, Davis, CA 95616
| | - Patricia A Dunn
- D Animal Diagnostic Laboratory (PADLS-PSU), Pennsylvania State University, University Park, PA 16802
| | - Nathaniel Tablante
- E Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20740
| |
Collapse
|
42
|
Chen J, Zhang J, Zhu W, Zhang Y, Tan H, Liu M, Cai M, Shen J, Ly H, Chen J. First genome report and analysis of chicken H7N9 influenza viruses with poly-basic amino acids insertion in the hemagglutinin cleavage site. Sci Rep 2017; 7:9972. [PMID: 28855633 PMCID: PMC5577273 DOI: 10.1038/s41598-017-10605-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
We report the full-length sequence of two chicken source influenza A (H7N9) viruses found in Guangdong live poultry market (LPM) during the most recent wave of human infections (from October 2016 to the present time). These viruses carry insertion of poly-basic amino acids (KGKRTAR/G) at the protease cleavage site of the HA protein, which were previously found in the highly pathogenic (HP) human influenza A (H7N9) [IAV(H7N9)] strains. Phylogenetic analysis of these two novel avian influenza viruses (AIVs) suggested that their genomes reassorted between the Yangtze River Delta (YRD) and Pearl River Delta (PRD) clades. Molecular clock analysis indicated that they emerged several months before the HP human strains. Collectively, our results suggest that IAV(H7N9) viruses evolve in chickens through antigenic drift to include a signature HP sequence in the HA gene, which highlights challenges in risk assessment and public health management of IAV(H7N9) infections at the human-animal interface.
Collapse
Affiliation(s)
- Jidang Chen
- School of Life Science and Engineering, Foshan University, Foshan, China.,Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| | - Jipei Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Wanjun Zhu
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| | - Yishan Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hualong Tan
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Minfang Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mingsheng Cai
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaren Shen
- Shanghai Municipal Center for Disease Control and Prevention (SCDC), Shanghai, China
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA.
| | - Jianhong Chen
- School of Life Science and Engineering, Foshan University, Foshan, China.
| |
Collapse
|
43
|
Abstract
Influenza is an acute respiratory illness, caused by influenza A, B, and C viruses, that occurs in local outbreaks or seasonal epidemics. Clinical illness follows a short incubation period and presentation ranges from asymptomatic to fulminant, depending on the characteristics of both the virus and the individual host. Influenza A viruses can also cause sporadic infections or spread worldwide in a pandemic when novel strains emerge in the human population from an animal host. New approaches to influenza prevention and treatment for management of both seasonal influenza epidemics and pandemics are desirable. In this Seminar, we discuss the clinical presentation, transmission, diagnosis, management, and prevention of seasonal influenza infection. We also review the animal-human interface of influenza, with a focus on current pandemic threats.
Collapse
Affiliation(s)
- Catharine Paules
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
44
|
Farrukee R, Hurt AC. Antiviral Drugs for the Treatment and Prevention of Influenza. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2017. [DOI: 10.1007/s40506-017-0129-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Su S, Gu M, Liu D, Cui J, Gao GF, Zhou J, Liu X. Epidemiology, Evolution, and Pathogenesis of H7N9 Influenza Viruses in Five Epidemic Waves since 2013 in China. Trends Microbiol 2017; 25:713-728. [PMID: 28734617 DOI: 10.1016/j.tim.2017.06.008] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/30/2023]
Abstract
H7N9 influenza viruses were first isolated in 2013 and continue to cause human infections. H7N9 infections represent an ongoing public health threat that has resulted in 1344 cases with 511 deaths as of April 9, 2017. This highlights the continued threat posed by the current poultry trade and live poultry market system in China. Until now, there have been five H7N9 influenza epidemic waves in China; however, the steep increase in the number of humans infected with H7N9 viruses observed in the fifth wave, beginning in October 2016, the spread into western provinces, and the emergence of highly pathogenic (HP) H7N9 influenza outbreaks in chickens and infection in humans have caused domestic and international concern. In this review, we summarize and compare the different waves of H7N9 regarding their epidemiology, pathogenesis, evolution, and characteristic features, and speculate on factors behind the recent increase in the number of human cases and sudden outbreaks in chickens. The continuous evolution of the virus poses a long-term threat to public health and the poultry industry, and thus it is imperative to strengthen prevention and control strategies.
Collapse
Affiliation(s)
- Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Di Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Cui
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Jiyong Zhou
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
46
|
Danqi B, Li Z, Liu Q, Richt JA. H7N9 avian influenza A virus in China: a short report on its circulation, drug resistant mutants and novel antiviral drugs. Expert Rev Anti Infect Ther 2017; 15:723-727. [PMID: 28692316 DOI: 10.1080/14787210.2017.1353419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The first human H7N9 avian influenza virus case was reported in Shanghai in 2013. Shortly thereafter, this virus spread to other regions in China. Molecular analysis indicated that the H7N9 virus is a reassortant virus containing internal genes from the H9N2 virus and previously described mammalian adaption markers, which could allow the virus to adapt efficiently to a mammalian host. Fortunately, there is no evidence of sustained person-to-person spread. Most of the human H7N9 cases have a history of exposure to live poultry markets (LPMs). The circulating H7N9 were low pathogenic viruses, however highly pathogenic H7N9 viruses were recently identified in human cases. Areas covered: In the present article, the circulation of H7N9 in LPMs of China, the five waves of H7N9 infection in humans, recently identified drug resistant mutants and potential antiviral drugs against H7N9 are discussed; this may provide further understanding of the evolution and pandemic potential of the H7N9 influenza viruses. Expert commentary: All the data reveal that the major source of H7N9 viruses are LPMs and the H7N9 virus is still circulating widely in China. It is concerning that the recent emergence of highly pathogenic H7N9 viruses may result in highly transmissible viruses in mammalian species.
Collapse
Affiliation(s)
- Bao Danqi
- a Department of Avian Diseases , Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai , People's Republic of China.,b College of Veterinary Medicine, Inner Mongolia Agricultural University , Hohhot , People's Republic of China
| | - Zejun Li
- a Department of Avian Diseases , Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai , People's Republic of China
| | - Qinfang Liu
- a Department of Avian Diseases , Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai , People's Republic of China
| | - Juergen A Richt
- c Diagnostic Medicine/Pathobiology , College of Veterinary Medicine, Kansas State University , Manhattan , KS , USA
| |
Collapse
|
47
|
Hu J, Ma L, Wang H, Yan H, Zhang D, Li Z, Jiang J, Li Y. A novel benzo-heterocyclic amine derivative N30 inhibits influenza virus replication by depression of Inosine-5'-Monophospate Dehydrogenase activity. Virol J 2017; 14:55. [PMID: 28298229 PMCID: PMC5353780 DOI: 10.1186/s12985-017-0724-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 03/07/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUD Influenza virus is still a huge threat to the world-wide public health. Host inosine-5'- monophosphate dehydrogenase (IMPDH) involved in the synthesis of guanine nucleotides, is known to be a potential target to inhibit the replication of viruses. Herein, we evaluated antiviral activity of a benzo-heterocyclic amine derivative N30, which was designed to inhibit IMPDH. RESULTS The results demonstrated that N30 inhibited the replication of H1N1, H3N2, influenza B viruses, including oseltamivir and amantadine resistant strains in vitro. Mechanistically, neuraminidase inhibition assay and hemagglutination inhibition assay suggested that N30 did not directly target the two envelope glycoproteins required for viral adsorption or release. Instead, the compound could depress the activity of IMPDH type II. Based on these findings, we further confirmed that N30 provided a strong inhibition on the replication of respiratory syncytial virus, coronavirus, enterovirus 71 and a diverse strains of coxsackie B virus. CONCLUSIONS We identified the small molecule N30, as an inhibitor of IMPDH, might be a potential candidate to inhibit the replication of various viruses.
Collapse
Affiliation(s)
- Jin Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linlin Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiqiang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyan Yan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dajun Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
48
|
Zhou B, Li J, Liang X, Yang Z, Jiang Z. Transcriptome profiling of influenza A virus-infected lung epithelial (A549) cells with lariciresinol-4-β-D-glucopyranoside treatment. PLoS One 2017; 12:e0173058. [PMID: 28273165 PMCID: PMC5342222 DOI: 10.1371/journal.pone.0173058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
The influenza A virus is an acute contagious pathogen that affects the human respiratory system and can cause severe lung disease and even death. Lariciresinol-4-β-D-glucopyranoside is a lignan that is extracted from Isatis indigotica, which is a medicinal herb plant that was commonly applied to treat infections, the common cold, fever and inflammatory diseases. Our previous study demonstrated that lariciresinol-4-β-D-glucopyranoside possesses anti-viral and anti-inflammatory properties. However, the comprehensive and detailed mechanisms that underlie the effect of lariciresinol-4-β-D-glucopyranoside interventions against influenza virus infection remain to be elucidated. In this study, we employed high-throughput RNA sequencing (RNA-seq) to investigate the transcriptomic responses of influenza A virus-infected lung epithelial (A549) cells with lariciresinol-4-β-D-glucopyranoside treatment. The transcriptome data show that infection with influenza A virus prompted the activation of 368 genes involved in RIG-I signalling, the inflammatory response, interferon α/β signalling and gene expression that was not affected by lariciresinol-4-β-D-glucopyranoside treatment. Lariciresinol-4-β-D-glucopyranoside exerted its pharmacological actions on the immune system, signal transduction, cell cycle and metabolism, which may be an underlying defense mechanism against influenza virus infection. In addition, 166 differentially expressed genes (DEGs) were uniquely expressed in lariciresinol-4-β-D-glucopyranoside-treated cells, which were concentrated in the cell cycle, DNA repair, chromatin organization, gene expression and biosynthesis domains. Among them, six telomere-associated genes were up-regulated by lariciresinol-4-β-D-glucopyranoside treatment, which have been implicated in telomere regulation and stability. Collectively, we employed RNA-seq analysis to provide comprehensive insight into the mechanism of lariciresinol-4-β-D-glucopyranoside against influenza virus infection.
Collapse
Affiliation(s)
- Beixian Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Jing Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaoli Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zifeng Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
- * E-mail: (ZFY); (ZHJ)
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
- * E-mail: (ZFY); (ZHJ)
| |
Collapse
|
49
|
Antiviral Resistance in Influenza Viruses: Clinical and Epidemiological Aspects. ANTIMICROBIAL DRUG RESISTANCE 2017. [PMCID: PMC7122614 DOI: 10.1007/978-3-319-47266-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
There are three classes of antiviral drugs approved for the treatment of influenza: the M2 ion channel inhibitors (amantadine, rimantadine), neuraminidase (NA) inhibitors (laninamivir, oseltamivir, peramivir, zanamivir), and the protease inhibitor (favipiravir); some of the agents are only available in selected countries [1, 2]. These agents are effective at treating the signs and symptoms of influenza in patients infected with susceptible viruses. Clinical failure has been demonstrated in patients infected with viruses with primary resistance, i.e., antivirals can be present in the virus initially infecting the patient, or resistance may emerge during the course of therapy [3–5]. NA inhibitors are active against all nine NA subtypes recognized in nature [6], including highly pathogenic avian influenza A/H5N1 and recent low-pathogenic avian influenza A/H7N9 viruses [7]. Since seasonal influenza is usually an acute, self-limited illness in which viral clearance usually occurs rapidly due to innate and adaptive host immune responses, the emergence of drug-resistant variants would be anticipated to have limited effect on clinical recovery in otherwise healthy patients, as has been demonstrated clinically [3, 8, 9]. Unfortunately, immunocompromised or immunologically naïve hosts, such as young children and infants or those exposed to novel strains, are more likely to have mutations that confer resistance emergence during therapy; such resistant variants may also result in clinically significant adverse outcomes [10–13].
Collapse
|
50
|
Phillips AM, Shoulders MD. The Path of Least Resistance: Mechanisms to Reduce Influenza's Sensitivity to Oseltamivir. J Mol Biol 2016; 428:533-537. [PMID: 26748011 DOI: 10.1016/j.jmb.2015.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Angela M Phillips
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|