1
|
Perera D, Li E, van der Meer F, Tarah Lynch, Gill J, Church DL, Huber CD, van Marle G, Platt A, Long Q. Apollo: A comprehensive GPU-powered within-host simulator for viral evolution and infection dynamics across population, tissue, and cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617101. [PMID: 39416208 PMCID: PMC11482768 DOI: 10.1101/2024.10.07.617101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Modern sequencing instruments bring unprecedented opportunity to study within-host viral evolution in conjunction with viral transmissions between hosts. However, no computational simulators are available to assist the characterization of within-host dynamics. This limits our ability to interpret epidemiological predictions incorporating within-host evolution and to validate computational inference tools. To fill this need we developed Apollo, a GPU-accelerated, out-of-core tool for within-host simulation of viral evolution and infection dynamics across population, tissue, and cellular levels. Apollo is scalable to hundreds of millions of viral genomes and can handle complex demographic and population genetic models. Apollo can replicate real within-host viral evolution; accurately recapturing observed viral sequences from an HIV cohort derived from initial population-genetic configurations. For practical applications, using Apollo-simulated viral genomes and transmission networks, we validated and uncovered the limitations of a widely used viral transmission inference tool.
Collapse
Affiliation(s)
- Deshan Perera
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Evan Li
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tarah Lynch
- Provincial Public Health Laboratory South, Calgary, AB T2N 4W4, Canada
| | - John Gill
- Department of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Deirdre L. Church
- Department of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Christian D. Huber
- Department of Biology, The Pennsylvania State University, University Park, 16802 PA, United States of America
| | - Guido van Marle
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Alexander Platt
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, United States of America
| | - Quan Long
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Department of Mathematics and Statistics, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
2
|
Garcia AK, Almodovar S. The Intersection of HIV and Pulmonary Vascular Health: From HIV Evolution to Vascular Cell Types to Disease Mechanisms. JOURNAL OF VASCULAR DISEASES 2024; 3:174-200. [PMID: 39464800 PMCID: PMC11507615 DOI: 10.3390/jvd3020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
People living with HIV (PLWH) face a growing burden of chronic diseases, owing to the combinations of aging, environmental triggers, lifestyle choices, and virus-induced chronic inflammation. The rising incidence of pulmonary vascular diseases represents a major concern for PLWH. The study of HIV-associated pulmonary vascular complications ideally requires a strong understanding of pulmonary vascular cell biology and HIV pathogenesis at the molecular level for effective applications in infectious diseases and vascular medicine. Active HIV infection and/or HIV proteins disturb the delicate balance between vascular tone and constriction, which is pivotal for maintaining pulmonary vascular health. One of the defining features of HIV is its high genetic diversity owing to several factors including its high mutation rate, recombination between viral strains, immune selective pressures, or even geographical factors. The intrinsic HIV genetic diversity has several important implications for pathogenic outcomes of infection and the overall battle to combat HIV. Challenges in the field present themselves from two sides of the same coin: those imposed by the virus itself and those stemming from the host. The field may be advanced by further developing in vivo and in vitro models that are well described for both pulmonary vascular diseases and HIV for mechanistic studies. In essence, the study of HIV-associated pulmonary vascular complications requires a multidisciplinary approach, drawing upon insights from both infectious diseases and vascular medicine. In this review article, we discuss the fundamentals of HIV virology and their impact on pulmonary disease, aiming to enhance the understanding of either area or both simultaneously. Bridging the gap between preclinical research findings and clinical practice is essential for improving patient care. Addressing these knowledge gaps requires interdisciplinary collaborations, innovative research approaches, and dedicated efforts to prioritize HIV-related pulmonary complications on the global research agenda.
Collapse
Affiliation(s)
- Amanda K. Garcia
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Sharilyn Almodovar
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
- Center for Tropical Medicine & Infectious Diseases, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| |
Collapse
|
3
|
Ireland J, Segura J, Shi G, Buchwald J, Roth G, Shen TJ, Wang R, Ji X, Fischer ER, Moir S, Chun TW, Sun PD. Inhibition of HIV-1 release by ADAM metalloproteinase inhibitors. Front Microbiol 2024; 15:1385775. [PMID: 38572241 PMCID: PMC10987949 DOI: 10.3389/fmicb.2024.1385775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
HIV-1 gp120 glycan binding to C-type lectin adhesion receptor L-selectin/CD62L on CD4 T cells facilitates viral attachment and entry. Paradoxically, the adhesion receptor impedes HIV-1 budding from infected T cells and the viral release requires the shedding of CD62L. To systematically investigate CD62L-shedding mediated viral release and its potential inhibition, we screened compounds specific for serine-, cysteine-, aspartyl-, and Zn-dependent proteases for CD62L shedding inhibition and found that a subclass of Zn-metalloproteinase inhibitors, including BB-94, TAPI, prinomastat, GM6001, and GI25423X, suppressed CD62L shedding. Their inhibition of HIV-1 infections correlated with enzymatic suppression of both ADAM10 and 17 activities and expressions of these ADAMs were transiently induced during the viral infection. These metalloproteinase inhibitors are distinct from the current antiretroviral drug compounds. Using immunogold labeling of CD62L, we observed association between budding HIV-1 virions and CD62L by transmission electron microscope, and the extent of CD62L-tethering of budding virions increased when the receptor shedding is inhibited. Finally, these CD62L shedding inhibitors suppressed the release of HIV-1 virions by CD4 T cells of infected individuals and their virion release inhibitions correlated with their CD62L shedding inhibitions. Our finding reveals a new therapeutic approach targeted at HIV-1 viral release.
Collapse
Affiliation(s)
- Joanna Ireland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Jason Segura
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Genbin Shi
- Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Julianna Buchwald
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Gwynne Roth
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Thomas Juncheng Shen
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ruipeng Wang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Xinhua Ji
- Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Elizabeth R. Fischer
- Electron Microscopy Unit, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Peter D. Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
4
|
Köppke J, Keller LE, Stuck M, Arnow ND, Bannert N, Doellinger J, Cingöz O. Direct translation of incoming retroviral genomes. Nat Commun 2024; 15:299. [PMID: 38182622 PMCID: PMC10770327 DOI: 10.1038/s41467-023-44501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
Viruses that carry a positive-sense, single-stranded (+ssRNA) RNA translate their genomes soon after entering the host cell to produce viral proteins, with the exception of retroviruses. A distinguishing feature of retroviruses is reverse transcription, where the +ssRNA genome serves as a template to synthesize a double-stranded DNA copy that subsequently integrates into the host genome. As retroviral RNAs are produced by the host cell transcriptional machinery and are largely indistinguishable from cellular mRNAs, we investigated the potential of incoming retroviral genomes to directly express proteins. Here we show through multiple, complementary methods that retroviral genomes are translated after entry. Our findings challenge the notion that retroviruses require reverse transcription to produce viral proteins. Synthesis of retroviral proteins in the absence of productive infection has significant implications for basic retrovirology, immune responses and gene therapy applications.
Collapse
Affiliation(s)
- Julia Köppke
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany
| | - Luise-Elektra Keller
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
| | - Michelle Stuck
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany
- Department of Chemistry, Heidelberg University, Heidelberg, Germany
| | - Nicolas D Arnow
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany
| | - Norbert Bannert
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany
| | - Joerg Doellinger
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Berlin, Germany
| | - Oya Cingöz
- Robert Koch Institute, Department of Infectious Diseases, Unit of Sexually Transmitted Bacterial Pathogens and HIV (FG18), Berlin, Germany.
| |
Collapse
|
5
|
Linkner TR, Ambrus V, Kunkli B, Szojka ZI, Kalló G, Csősz É, Kumar A, Emri M, Tőzsér J, Mahdi M. Comparative Analysis of Differential Cellular Transcriptome and Proteome Regulation by HIV-1 and HIV-2 Pseudovirions in the Early Phase of Infection. Int J Mol Sci 2023; 25:380. [PMID: 38203551 PMCID: PMC10779251 DOI: 10.3390/ijms25010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
In spite of the similar structural and genomic organization of human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2), striking differences exist between them in terms of replication dynamics and clinical manifestation of infection. Although the pathomechanism of HIV-1 infection is well characterized, relatively few data are available regarding HIV-2 viral replication and its interaction with host-cell proteins during the early phase of infection. We utilized proteo-transcriptomic analyses to determine differential genome expression and proteomic changes induced by transduction with HIV-1/2 pseudovirions during 8, 12 and 26 h time-points in HEK-293T cells. We show that alteration in the cellular milieu was indeed different between the two pseudovirions. The significantly higher number of genes altered by HIV-2 in the first two time-points suggests a more diverse yet subtle effect on the host cell, preparing the infected cell for integration and latency. On the other hand, GO analysis showed that, while HIV-1 induced cellular oxidative stress and had a greater effect on cellular metabolism, HIV-2 mostly affected genes involved in cell adhesion, extracellular matrix organization or cellular differentiation. Proteomics analysis revealed that HIV-2 significantly downregulated the expression of proteins involved in mRNA processing and translation. Meanwhile, HIV-1 influenced the cellular level of translation initiation factors and chaperones. Our study provides insight into the understudied replication cycle of HIV-2 and enriches our knowledge about the use of HIV-based lentiviral vectors in general.
Collapse
Affiliation(s)
- Tamás Richárd Linkner
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Viktor Ambrus
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Balázs Kunkli
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Zsófia Ilona Szojka
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, 22100 Lund, Sweden
| | - Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Ajneesh Kumar
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Miklós Emri
- Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
| |
Collapse
|
6
|
Han R, Dai B, Chen Y. Chemotaxis-driven stationary and oscillatory patterns in a diffusive HIV-1 model with CTL immune response and general sensitivity. CHAOS (WOODBURY, N.Y.) 2023; 33:073142. [PMID: 37463094 DOI: 10.1063/5.0150072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
In this paper, a reaction-diffusion-chemotaxis HIV-1 model with a cytotoxic T lymphocyte (CTL) immune response and general sensitivity is investigated. We first prove the global classical solvability and L∞-boundedness for the considered model in a bounded domain with arbitrary spatial dimensions, which extends the previous existing results. Then, we apply the global existence result to the case with a linear proliferation immune response and an incidence rate. We study the spatiotemporal dynamics about the three types of spatially homogeneous steady states: infection-free steady state S0, CTL-inactivated infection steady state S1, and CTL-activated infection steady state S∗. Our analyses indicate that S0 is globally asymptotically stable if the basic reproduction number R0 is less than 1; if R0 is between 1 and a threshold, then S1 is globally asymptotically stable. However, if R0 is larger than the threshold, then the chemoattraction and chemorepulsion can destabilize S∗, and thus, a spatiotemporal pattern forms as the chemotactic sensitivity crosses certain critical values. We obtain two kinds of important patterns, which are induced by chemotaxis: stationary Turing pattern and irregular oscillatory pattern. We also find that different chemotactic response functions can affect system's dynamics. Based on some empirical parameter values, numerical simulations are given to illustrate the effectiveness of the theoretical predications.
Collapse
Affiliation(s)
- Renji Han
- School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| | - Binxiang Dai
- School of Mathematics and Statistics, Central South University, Changsha 410083, People's Republic of China
| | - Yuming Chen
- Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| |
Collapse
|
7
|
Wang W, Artiles KL, Machida S, Benkirane M, Jain N, Fire AZ. Combined direct/indirect detection allows identification of DNA termini in diverse sequencing datasets and supports a multiple-initiation-site model for HIV plus-strand synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544617. [PMID: 37398293 PMCID: PMC10312614 DOI: 10.1101/2023.06.12.544617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Replication of genetic material involves the creation of characteristic termini. Determining these termini is important to refine our understanding of the mechanisms involved in maintaining the genomes of cellular organisms and viruses. Here we describe a computational approach combining direct and indirect readouts to detect termini from next-generation short-read sequencing. While a direct inference of termini can come from mapping the most prominent start positions of captured DNA fragments, this approach is insufficient in cases where the DNA termini are not captured, whether for biological or technical reasons. Thus, a complementary (indirect) approach to terminus detection can be applied, taking advantage of the imbalance in coverage between forward and reverse sequence reads near termini. A resulting metric ("strand bias") can be used to detect termini even where termini are naturally blocked from capture or ends are not captured during library preparation (e.g., in tagmentation-based protocols). Applying this analysis to datasets where known DNA termini are present, such as from linear double-stranded viral genomes, yielded distinct strand bias signals corresponding to these termini. To evaluate the potential to analyze a more complex situation, we applied the analysis to examine DNA termini present early after HIV infection in a cell culture model. We observed both the known termini expected based on standard models of HIV reverse transcription (the U5-right-end and U3-left-end termini) as well as a signal corresponding to a previously described additional initiation site for plus-strand synthesis (cPPT [central polypurine tract]). Interestingly, we also detected putative terminus signals at additional sites. The strongest of these are a set that share several characteristics with the previously characterized plus-strand initiation sites (the cPPT and 3' PPT [polypurine tract] sites): (i) an observed spike in directly captured cDNA ends, an indirect terminus signal evident in localized strand bias, (iii) a preference for location on the plus-strand, (iv) an upstream purine-rich motif, and (v) a decrease in terminus signal at late time points after infection. These characteristics are consistent in duplicate samples in two different genotypes (wild type and integrase-lacking HIV). The observation of distinct internal termini associated with multiple purine-rich regions raises a possibility that multiple internal initiations of plus-strand synthesis might contribute to HIV replication.
Collapse
|
8
|
Masenga SK, Mweene BC, Luwaya E, Muchaili L, Chona M, Kirabo A. HIV-Host Cell Interactions. Cells 2023; 12:1351. [PMID: 37408185 DOI: 10.3390/cells12101351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The development of antiretroviral drugs (ARVs) was a great milestone in the management of HIV infection. ARVs suppress viral activity in the host cell, thus minimizing injury to the cells and prolonging life. However, an effective treatment has remained elusive for four decades due to the successful immune evasion mechanisms of the virus. A thorough understanding of the molecular interaction of HIV with the host cell is essential in the development of both preventive and curative therapies for HIV infection. This review highlights several inherent mechanisms of HIV that promote its survival and propagation, such as the targeting of CD4+ lymphocytes, the downregulation of MHC class I and II, antigenic variation and an envelope complex that minimizes antibody access, and how they collaboratively render the immune system unable to mount an effective response.
Collapse
Affiliation(s)
- Sepiso K Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Bislom C Mweene
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Emmanuel Luwaya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Lweendo Muchaili
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Makondo Chona
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Annet Kirabo
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| |
Collapse
|
9
|
Fray EJ, Wu F, Simonetti FR, Zitzmann C, Sambaturu N, Molina-Paris C, Bender AM, Liu PT, Ventura JD, Wiseman RW, O'Connor DH, Geleziunas R, Leitner T, Ribeiro RM, Perelson AS, Barouch DH, Siliciano JD, Siliciano RF. Antiretroviral therapy reveals triphasic decay of intact SIV genomes and persistence of ancestral variants. Cell Host Microbe 2023; 31:356-372.e5. [PMID: 36809762 PMCID: PMC10583177 DOI: 10.1016/j.chom.2023.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 01/24/2023] [Indexed: 02/22/2023]
Abstract
The decay kinetics of HIV-1-infected cells are critical to understand virus persistence. We evaluated the frequency of simian immunodeficiency virus (SIV)-infected cells for 4 years of antiretroviral therapy (ART). The intact proviral DNA assay (IPDA) and an assay for hypermutated proviruses revealed short- and long-term infected cell dynamics in macaques starting ART ∼1 year after infection. Intact SIV genomes in circulating CD4+T cells showed triphasic decay with an initial phase slower than the decay of the plasma virus, a second phase faster than the second phase decay of intact HIV-1, and a stable third phase reached after 1.6-2.9 years. Hypermutated proviruses showed bi- or mono-phasic decay, reflecting different selective pressures. Viruses replicating at ART initiation had mutations conferring antibody escape. With time on ART, viruses with fewer mutations became more prominent, reflecting decay of variants replicating at ART initiation. Collectively, these findings confirm ART efficacy and indicate that cells enter the reservoir throughout untreated infection.
Collapse
Affiliation(s)
- Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | - Alexandra M Bender
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Po-Ting Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - John D Ventura
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Roger W Wiseman
- Wisconsin National Primate Research Center, Madison, WI 53715, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, Madison, WI 53715, USA
| | | | - Thomas Leitner
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ruy M Ribeiro
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Rezounenko A. Viral Infection Model with Diffusion and Distributed Delay: Finite-Dimensional Global Attractor. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS 2022; 22:11. [PMID: 36532123 PMCID: PMC9746596 DOI: 10.1007/s12346-022-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
We study a virus dynamics model with reaction-diffusion, logistic growth terms and a general non-linear infection rate functional response. The model has a distributed delay, including the case of state-selective delay. We construct a dynamical system in a Hilbert space and prove the existence of a finite-dimensional global attractor.
Collapse
|
11
|
Alshorman A, Al-Hosainat N, Jackson T. Analysis of HIV latent infection model with multiple infection stages and different drug classes. JOURNAL OF BIOLOGICAL DYNAMICS 2022; 16:713-732. [PMID: 36264087 DOI: 10.1080/17513758.2022.2113828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
Latently infected CD4+ T cells represent one of the major obstacles to HIV eradication even after receiving prolonged highly active anti-retroviral therapy (HAART). Long-term use of HAART causes the emergence of drug-resistant virus which is then involved in HIV transmission. In this paper, we develop mathematical HIV models with staged disease progression by incorporating entry inhibitor and latently infected cells. We find that entry inhibitor has the same effect as protease inhibitor on the model dynamics and therefore would benefit HIV patients who developed resistance to many of current anti-HIV medications. Numerical simulations illustrate the theoretical results and show that the virus and latently infected cells reach an infected steady state in the absence of treatment and are eliminated under treatment whereas the model including homeostatic proliferation of latently infected cells maintains the virus at low level during suppressive treatment. Therefore, complete cure of HIV needs complete eradication of latent reservoirs.
Collapse
Affiliation(s)
- Areej Alshorman
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| | | | - Trachette Jackson
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Dharan A, Campbell EM. Teaching old dogmas new tricks: recent insights into the nuclear import of HIV-1. Curr Opin Virol 2022; 53:101203. [PMID: 35121335 PMCID: PMC9175559 DOI: 10.1016/j.coviro.2022.101203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 01/08/2023]
Abstract
A hallmark feature of lentiviruses, which separates them from other members of the retrovirus family, is their ability to infect non-dividing cells by traversing the nuclear pore complex. The viral determinant that mediates HIV-1 nuclear import is the viral capsid (CA) protein, which forms the conical core protecting the HIV-1 genome in a mature virion. Recently, a series of novel approaches developed to monitor post-fusion events in infection have challenged previous textbook models of the viral life cycle, which envisage reverse transcription and disassembly of the capsid core as events that complete in the cytoplasm. In this review, we summarize these recent findings and describe their implications on our understanding of the spatiotemporal staging of HIV-1 infection with a focus on the nuclear import and its implications in other aspects of the viral lifecycle.
Collapse
Affiliation(s)
- Adarsh Dharan
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA.
| |
Collapse
|
13
|
Arya RK, Verros GD, Thapliyal D. Towards a Mathematical Model for the Viral Progression in the Pharynx. Healthcare (Basel) 2021; 9:healthcare9121766. [PMID: 34946492 PMCID: PMC8701019 DOI: 10.3390/healthcare9121766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/03/2022] Open
Abstract
In this work, a comprehensive model for the viral progression in the pharynx has been developed. This one-dimension model considers both Fickian diffusion and convective flow coupled with chemical reactions, such as virus population growth, infected and uninfected cell accumulation as well as virus clearance. The effect of a sterilizing agent such as an alcoholic solution on the viral progression in the pharynx was taken into account and a parametric analysis for the effect of kinetic rate parameters on virus propagation was made. Moreover, different conditions caused by further medical treatment, such as a decrease in virus yield per infected cell, were examined. It is shown that the infection fails to establish by decreasing the virus yield per infected cell. It is believed that this work could be used to further investigate the medical treatment of viral progression in the pharynx.
Collapse
Affiliation(s)
- Raj Kumar Arya
- Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144011, India;
- Correspondence: or
| | - George D. Verros
- Laboratory of Polymer and Colour Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki (AUTH), P.O. Box 454, Plagiari, Epanomi, 57500 Thessaloniki, Greece;
| | - Devyani Thapliyal
- Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144011, India;
| |
Collapse
|
14
|
Kim J, Vasan S, Kim JH, Ake JA. Current approaches to HIV vaccine development: a narrative review. J Int AIDS Soc 2021; 24 Suppl 7:e25793. [PMID: 34806296 PMCID: PMC8606871 DOI: 10.1002/jia2.25793] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The development of an effective vaccine to protect against HIV is a longstanding global health need complicated by challenges inherent to HIV biology and to the execution of vaccine efficacy testing in the context of evolving biomedical prevention interventions. This review describes lessons learnt from previous efficacy trials, highlights unanswered questions, and surveys new approaches in vaccine development addressing these gaps. METHODS We conducted a targeted peer-reviewed literature search of articles and conference abstracts from 1989 through 2021 for HIV vaccine studies and clinical trials. The US National Library of Medicine's Clinical Trials database was accessed to further identify clinical trials involving HIV vaccines. The content of the review was also informed by the authors' own experience and engagement with collaborators in HIV vaccine research. DISCUSSION The HIV vaccine field has successfully developed multiple vaccine platforms through advanced clinical studies; however, the modest efficacy signal of the RV144 Thai trial remains the only demonstration of HIV vaccine protection in humans. Current vaccine strategies include prime-boost strategies to improve elicitation of immune correlates derived from RV144, combination mosaic antigens, novel viral vectors, antigens designed to elicit broadly neutralizing antibody, new nucleic acid platforms and potent adjuvants to enhance immunogenicity across multiple classes of emerging vaccine candidates. CONCLUSIONS HIV vaccine developers have applied lessons learnt from previous successes and failures to innovative vaccine design approaches. These strategies have yielded novel mosaic antigen constructs now in efficacy testing, produced a diverse pipeline of early-stage immunogens and novel adjuvants, and advanced the field towards a globally effective HIV vaccine.
Collapse
Affiliation(s)
- Jiae Kim
- US Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Sandhya Vasan
- US Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | | | - Julie A. Ake
- US Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
| |
Collapse
|
15
|
Cardozo-Ojeda EF, Perelson AS. Modeling HIV-1 Within-Host Dynamics After Passive Infusion of the Broadly Neutralizing Antibody VRC01. Front Immunol 2021; 12:710012. [PMID: 34531859 PMCID: PMC8438300 DOI: 10.3389/fimmu.2021.710012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022] Open
Abstract
VRC01 is a broadly neutralizing antibody that targets the CD4 binding site of HIV-1 gp120. Passive administration of VRC01 in humans has assessed the safety and the effect on plasma viremia of this monoclonal antibody (mAb) in a phase 1 clinical trial. After VRC01 infusion, the plasma viral load in most of the participants was reduced but had particular dynamics not observed during antiretroviral therapy. In this paper, we introduce different mathematical models to explain the observed dynamics and fit them to the plasma viral load data. Based on the fitting results we argue that a model containing reversible Ab binding to virions and clearance of virus-VRC01 complexes by a two-step process that includes (1) saturable capture followed by (2) internalization/degradation by phagocytes, best explains the data. This model predicts that VRC01 may enhance the clearance of Ab-virus complexes, explaining the initial viral decay observed immediately after antibody infusion in some participants. Because Ab-virus complexes are assumed to be unable to infect cells, i.e., contain neutralized virus, the model predicts a longer-term viral decay consistent with that observed in the VRC01 treated participants. By assuming a homogeneous viral population sensitive to VRC01, the model provides good fits to all of the participant data. However, the fits are improved by assuming that there were two populations of virus, one more susceptible to antibody-mediated neutralization than the other.
Collapse
Affiliation(s)
- E Fabian Cardozo-Ojeda
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
16
|
Bekerman E, Cox S, Babusis D, Campigotto F, Das M, Barouch DH, Cihlar T, Callebaut C. Two-dose emtricitabine/tenofovir alafenamide plus bictegravir prophylaxis protects macaques against SHIV infection. J Antimicrob Chemother 2021; 76:692-698. [PMID: 33202006 PMCID: PMC7879143 DOI: 10.1093/jac/dkaa476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Current prophylaxis options for people at risk for HIV infection include two US FDA-approved daily pre-exposure prophylaxis (PrEP) regimens and guidelines for a 2-1-1 event-driven course specifically for men who have sex with men. Despite this, PrEP use rates remain suboptimal, and additional PrEP options may help to improve uptake among diverse populations. Here, we evaluated protective efficacy of two-dose PrEP and two-dose postexposure prophylaxis (PEP) schedules with emtricitabine (FTC)/tenofovir alafenamide (TAF) with or without bictegravir (BIC) in an SHIV macaque model. METHODS Macaques received one oral dose of 200 mg emtricitabine, 25 mg tenofovir alafenamide and 25-100 mg of bictegravir to establish pharmacokinetic profiles of each drug either in the plasma or the peripheral blood mononuclear cells. Protective efficacy of multiple two-dose PrEP and PEP schedules with FTC/TAF with or without bictegravir was then assessed in two repeat low-dose rectal SHIV challenge studies. RESULTS The data revealed over 95% per-exposure risk reduction with FTC/TAF PrEP initiated 2 h before the exposure, but a loss of significant protection with treatment initiation postexposure. In contrast, FTC/TAF plus BIC offered complete protection as PrEP and greater than 80% per-exposure risk reduction with treatment initiation up to 24 h postexposure. CONCLUSIONS Together, these results demonstrate that two-dose schedules can protect macaques against SHIV acquisition and highlight the protective advantage of adding the integrase inhibitor bictegravir to the reverse transcriptase inhibitors emtricitabine and tenofovir alafenamide as part of event-driven prophylaxis.
Collapse
Affiliation(s)
| | | | | | | | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | |
Collapse
|
17
|
Duerr R, Crosse KM, Valero-Jimenez AM, Dittmann M. SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms 2021; 9:1389. [PMID: 34198973 PMCID: PMC8307803 DOI: 10.3390/microorganisms9071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 and HIV are zoonotic viruses that rapidly reached pandemic scale, causing global losses and fear. The COVID-19 and AIDS pandemics ignited massive efforts worldwide to develop antiviral strategies and characterize viral architectures, biological and immunological properties, and clinical outcomes. Although both viruses have a comparable appearance as enveloped viruses with positive-stranded RNA and envelope spikes mediating cellular entry, the entry process, downstream biological and immunological pathways, clinical outcomes, and disease courses are strikingly different. This review provides a systemic comparison of both viruses' structural and functional characteristics, delineating their distinct strategies for efficient spread.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (K.M.C.); (A.M.V.-J.); (M.D.)
| | | | | | | |
Collapse
|
18
|
Evans N, Martinez E, Petrosillo N, Nichols J, Islam E, Pruitt K, Almodovar S. SARS-CoV-2 and Human Immunodeficiency Virus: Pathogen Pincer Attack. HIV AIDS (Auckl) 2021; 13:361-375. [PMID: 33833585 PMCID: PMC8020331 DOI: 10.2147/hiv.s300055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Paramount efforts worldwide are seeking to increase understanding of the basic virology of SARS-CoV-2, characterize the spectrum of complications associated with COVID-19, and develop vaccines that can protect from new and recurrent infections with SARS-CoV-2. While we continue learning about this new virus, it is clear that 1) the virus is spread via the respiratory route, primarily by droplets and contact with contaminated surfaces and fomites, as well as by aerosol formation during invasive respiratory procedures; 2) the airborne route is still controversial; and 3) that those infected can spread the virus without necessarily developing COVID-19 (ie, asymptomatic). With the number of SARS-CoV-2 infections increasing globally, the possibility of co-infections and/or co-morbidities is becoming more concerning. Co-infection with Human Immunodeficiency Virus (HIV) is one such example of polyparasitism of interest. This military-themed comparative review of SARS-CoV-2 and HIV details their virology and describes them figuratively as separate enemy armies. HIV, an old enemy dug into trenches in individuals already infected, and SARS-CoV-2 the new army, attempting to attack and capture territories, tissues and organs, in order to provide resources for their expansion. This analogy serves to aid in discussion of three main areas of focus and draw attention to how these viruses may cooperate to gain the upper hand in securing a host. Here we compare their target, the key receptors found on those tissues, viral lifecycles and tactics for immune response surveillance. The last focus is on the immune response to infection, addressing similarities in cytokines released. While the majority of HIV cases can be successfully managed with antiretroviral therapy nowadays, treatments for SARS-CoV-2 are still undergoing research given the novelty of this army.
Collapse
Affiliation(s)
- Nicholas Evans
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| | - Edgar Martinez
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| | - Nicola Petrosillo
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | - Jacob Nichols
- Texas Tech University Health Sciences Center, Department of Internal Medicine, Lubbock, TX, USA
| | - Ebtesam Islam
- Texas Tech University Health Sciences Center, Department of Internal Medicine, Lubbock, TX, USA
| | - Kevin Pruitt
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| | - Sharilyn Almodovar
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| |
Collapse
|
19
|
Nilavar NM, Raghavan SC. HIV integrase inhibitors that inhibit strand transfer interact with RAG1 and hamper its activities. Int Immunopharmacol 2021; 95:107515. [PMID: 33735713 DOI: 10.1016/j.intimp.2021.107515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Multiple steps of the retroviral infection process have been targeted over the years to develop therapeutic approaches, starting from the entry of the virus into the cell till the viral DNA integration to host genome. Inhibitors against the Human Immunodeficiency Virus (HIV) integrase is the newest among the therapies employed against HIV. Recombination activating gene 1 (RAG1) is an integral protein involved in the generation of diversity of antibodies and T-cell receptors and is one of the partners of the RAG complex. Studies have shown structural and functional similarities between the HIV integrase and RAG1. Recently, we and others have shown that some of the integrase inhibitors can interfere with RAG binding and cleavage, hindering its physiological functions. This mini review focuses on the HIV integrase, integrase inhibitors and their effect on RAG activities.
Collapse
Affiliation(s)
- Namrata M Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
20
|
Schank M, Zhao J, Moorman JP, Yao ZQ. The Impact of HIV- and ART-Induced Mitochondrial Dysfunction in Cellular Senescence and Aging. Cells 2021; 10:cells10010174. [PMID: 33467074 PMCID: PMC7830696 DOI: 10.3390/cells10010174] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
According to the WHO, 38 million individuals were living with human immunodeficiency virus (HIV), 25.4 million of which were using antiretroviral therapy (ART) at the end of 2019. Despite ART-mediated suppression of viral replication, ART is not a cure and is associated with viral persistence, residual inflammation, and metabolic disturbances. Indeed, due to the presence of viral reservoirs, lifelong ART therapy is required to control viremia and prevent disease progression into acquired immune deficiency syndrome (AIDS). Successful ART treatment allows people living with HIV (PLHIV) to achieve a similar life expectancy to uninfected individuals. However, recent studies have illustrated the presence of increased comorbidities, such as accelerated, premature immune aging, in ART-controlled PLHIV compared to uninfected individuals. Studies suggest that both HIV-infection and ART-treatment lead to mitochondrial dysfunction, ultimately resulting in cellular exhaustion, senescence, and apoptosis. Since mitochondria are essential cellular organelles for energy homeostasis and cellular metabolism, their compromise leads to decreased oxidative phosphorylation (OXPHOS), ATP synthesis, gluconeogenesis, and beta-oxidation, abnormal cell homeostasis, increased oxidative stress, depolarization of the mitochondrial membrane potential, and upregulation of mitochondrial DNA mutations and cellular apoptosis. The progressive mitochondrial damage induced by HIV-infection and ART-treatment likely contributes to accelerated aging, senescence, and cellular dysfunction in PLHIV. This review discusses the connections between mitochondrial compromise and cellular dysfunction associated with HIV- and ART-induced toxicities, providing new insights into how HIV and current ART directly impact mitochondrial functions and contribute to cellular senescence and aging in PLHIV. Identifying this nexus and potential mechanisms may be beneficial in developing improved therapeutics for treating PLHIV.
Collapse
Affiliation(s)
- Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (M.S.); (J.Z.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (M.S.); (J.Z.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (M.S.); (J.Z.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (M.S.); (J.Z.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
- Correspondence: ; Tel.: +423-439-8063; Fax: +423-439-7010
| |
Collapse
|
21
|
Venanzi Rullo E, Pinzone MR, Cannon L, Weissman S, Ceccarelli M, Zurakowski R, Nunnari G, O'Doherty U. Persistence of an intact HIV reservoir in phenotypically naive T cells. JCI Insight 2020; 5:133157. [PMID: 33055422 PMCID: PMC7605525 DOI: 10.1172/jci.insight.133157] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/10/2020] [Indexed: 12/25/2022] Open
Abstract
Despite the efficacy of antiretroviral therapy (ART), HIV persists in a latent form and remains a hurdle to eradication. CD4+ T lymphocytes harbor the majority of the HIV reservoir, but the role of individual subsets remains unclear. CD4+ T cells were sorted into central, transitional, effector memory, and naive T cells. We measured HIV DNA and performed proviral sequencing of more than 1900 proviruses in 2 subjects at 2 and 9 years after ART initiation to estimate the contribution of each subset to the reservoir. Although our study was limited to 2 subjects, we obtained comparable findings with publicly available sequences. While the HIV integration levels were lower in naive compared with memory T cells, naive cells were a major contributor to the intact proviral reservoir. Notably, proviral sequences isolated from naive cells appeared to be unique, while those retrieved from effector memory cells were mainly clonal. The number of clones increased as cells differentiated from a naive to an effector memory phenotype, suggesting naive cells repopulate the effector memory reservoir as previously shown for central memory cells. Naive T cells contribute substantially to the intact HIV reservoir and represent a significant hurdle for HIV eradication.
Collapse
Affiliation(s)
- Emmanuele Venanzi Rullo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - LaMont Cannon
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for the Study of Biological Complexity, Virginia Commonwealth University, Virginia, USA
| | - Sam Weissman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manuela Ceccarelli
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Ryan Zurakowski
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Massud I, Ruone S, Zlotorzynska M, Haaland R, Mills P, Cong ME, Kelley K, Johnson R, Holder A, Dinh C, Khalil G, Pan Y, Kelley CF, Sanchez T, Heneine W, García-Lerma JG. Single oral dose for HIV pre or post-exposure prophylaxis: user desirability and biological efficacy in macaques. EBioMedicine 2020; 58:102894. [PMID: 32707451 PMCID: PMC7381488 DOI: 10.1016/j.ebiom.2020.102894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Daily oral pre- or post-exposure prophylaxis (PrEP or PEP) is highly effective in preventing HIV infection. However, many people find it challenging to adhere to a daily oral regimen. Chemoprophylaxis with single oral doses of antiretroviral drugs taken before or after sex may better adapt to changing or unanticipated sexual practices and be a desirable alternative to daily PrEP or PEP. We investigated willingness to use a single oral pill before or after sex among men who have sex with men (MSM) and assessed the biological efficacy of a potent antiretroviral combination containing elvitegravir (EVG), emtricitabine (FTC), and tenofovir alafenamide (TAF). METHODS Data on willingness to use single-dose PrEP or PEP were obtained from the 2017 cycle of the American Men's Internet Survey (AMIS), an annual online behavioral surveillance survey of MSM in the United States. Antiretroviral drug levels were measured in humans and macaques to define drug distribution in rectal tissue and identify clinically relevant doses for macaque modeling studies. The biological efficacy of a single dose of FTC/TAF/EVG as PrEP or PEP was investigated using a repeat-challenge macaque model of rectal HIV infection. FINDINGS Through pharmacokinetic assessment in humans and macaques we found that EVG penetrates and concentrates in rectal tissues supporting its addition to FTC/TAF to boost and extend chemoprophylactic activity. Efficacy estimates for a single oral dose given to macaques 4h before or 2h after SHIV exposure was 91•7%[35•7%-98•9%] and 100%, respectively, compared to 80•1%[13•9%-95•4%] and 64•6%[-19•4%-89•5%] when single doses were given 6 and 24h post challenge, respectively. A two-dose regimen at 24h and 48h after exposure was also protective [77•1%[1•7%-94•7%]. INTERPRETATION Informed by user willingness, human and macaque pharmacokinetic data, and preclinical efficacy we show that single-dose prophylaxis before or after sex is a promising HIV prevention strategy. Carefully designed clinical trials are needed to determine if any of these strategies will be effective in humans. FUNDING Funded by CDC intramural funds, CDC contract HCVJCG2-2016-03948 (to CFK), and a grant from the MAC AIDS Fund and by the National Institutes of Health [P30AI050409] - the Emory Center for AIDS Research (to MZ and TS).
Collapse
Affiliation(s)
- Ivana Massud
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - Susan Ruone
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - Maria Zlotorzynska
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Richard Haaland
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - Patrick Mills
- Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Disease, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Mian-Er Cong
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - Kristen Kelley
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - Ryan Johnson
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - Angela Holder
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - Chuong Dinh
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - George Khalil
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - Yi Pan
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - Colleen F Kelley
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Travis Sanchez
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Walid Heneine
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - J Gerardo García-Lerma
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States.
| |
Collapse
|
23
|
Greenwood EJD, Williamson JC, Sienkiewicz A, Naamati A, Matheson NJ, Lehner PJ. Promiscuous Targeting of Cellular Proteins by Vpr Drives Systems-Level Proteomic Remodeling in HIV-1 Infection. Cell Rep 2020; 27:1579-1596.e7. [PMID: 31042482 PMCID: PMC6506760 DOI: 10.1016/j.celrep.2019.04.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/19/2019] [Accepted: 04/02/2019] [Indexed: 12/26/2022] Open
Abstract
HIV-1 encodes four “accessory proteins” (Vif, Vpr, Vpu, and Nef), dispensable for viral replication in vitro but essential for viral pathogenesis in vivo. Well characterized cellular targets have been associated with Vif, Vpu, and Nef, which counteract host restriction and promote viral replication. Conversely, although several substrates of Vpr have been described, their biological significance remains unclear. Here, we use complementary unbiased mass spectrometry-based approaches to demonstrate that Vpr is both necessary and sufficient for the DCAF1/DDB1/CUL4 E3 ubiquitin ligase-mediated degradation of at least 38 cellular proteins, causing systems-level changes to the cellular proteome. We therefore propose that promiscuous targeting of multiple host factors underpins complex Vpr-dependent cellular phenotypes and validate this in the case of G2/M cell cycle arrest. Our model explains how Vpr modulates so many cell biological processes and why the functional consequences of previously described Vpr targets, identified and studied in isolation, have proved elusive. HIV-1 Vpr is responsible for almost all proteomic changes in HIV-1-infected cells Vpr directly targets multiple nuclear proteins for degradation Vpr cellular phenotypes (e.g., cell cycle arrest) stem from broad substrate targeting Targeting of a few proteins is conserved across diverse primate lentiviral species
Collapse
Affiliation(s)
- Edward J D Greenwood
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
| | - James C Williamson
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Agata Sienkiewicz
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK
| | - Adi Naamati
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK
| | - Nicholas J Matheson
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK
| | - Paul J Lehner
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
24
|
Burns AL, Dans MG, Balbin JM, de Koning-Ward TF, Gilson PR, Beeson JG, Boyle MJ, Wilson DW. Targeting malaria parasite invasion of red blood cells as an antimalarial strategy. FEMS Microbiol Rev 2019; 43:223-238. [PMID: 30753425 PMCID: PMC6524681 DOI: 10.1093/femsre/fuz005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Plasmodium spp. parasites that cause malaria disease remain a significant global-health burden. With the spread of parasites resistant to artemisinin combination therapies in Southeast Asia, there is a growing need to develop new antimalarials with novel targets. Invasion of the red blood cell by Plasmodium merozoites is essential for parasite survival and proliferation, thus representing an attractive target for therapeutic development. Red blood cell invasion requires a co-ordinated series of protein/protein interactions, protease cleavage events, intracellular signals, organelle release and engagement of an actin-myosin motor, which provide many potential targets for drug development. As these steps occur in the bloodstream, they are directly susceptible and exposed to drugs. A number of invasion inhibitors against a diverse range of parasite proteins involved in these different processes of invasion have been identified, with several showing potential to be optimised for improved drug-like properties. In this review, we discuss red blood cell invasion as a drug target and highlight a number of approaches for developing antimalarials with invasion inhibitory activity to use in future combination therapies.
Collapse
Affiliation(s)
- Amy L Burns
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | - Madeline G Dans
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Deakin University, School of Medicine, Waurn Ponds, Victoria, Australia 3216
| | - Juan M Balbin
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | | | - Paul R Gilson
- Burnet Institute, Melbourne, Victoria, Australia 3004
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Central Clinical School and Department of Microbiology, Monash University 3004.,Department of Medicine, University of Melbourne, Australia 3052
| | - Michelle J Boyle
- Burnet Institute, Melbourne, Victoria, Australia 3004.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia 4006
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005.,Burnet Institute, Melbourne, Victoria, Australia 3004
| |
Collapse
|
25
|
BCL6 Inhibitor-Mediated Downregulation of Phosphorylated SAMHD1 and T Cell Activation Are Associated with Decreased HIV Infection and Reactivation. J Virol 2019; 93:JVI.01073-18. [PMID: 30355686 DOI: 10.1128/jvi.01073-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
Clearance of HIV-infected germinal center (GC) CD4+ follicular helper T cells (Tfh) after combination antiretroviral therapy (ART) is essential to an HIV cure. Blocking B cell lymphoma 6 (BCL6; the master transcription factor for Tfh cells) represses HIV infection of tonsillar CD4+ Tfh ex vivo, reduces GC formation, and limits immune activation in vivo We assessed the anti-HIV activity of a novel BCL6 inhibitor, FX1, in Tfh/non-Tfh CD4+ T cells and its impact on T cell activation and SAMHD1 phosphorylation (Thr592). FX1 repressed HIV-1 infection of peripheral CD4+ T cells and tonsillar Tfh/non-Tfh CD4+ T cells (P < 0.05) and total elongated and multispliced HIV-1 RNA production during the first round of viral life cycle (P < 0.01). Using purified circulating CD4+ T cells from uninfected donors, we demonstrate that FX1 treatment resulted in downregulation pSAMHD1 expression (P < 0.05) and T cell activation (HLA-DR, CD25, and Ki67; P < 0.01) ex vivo corresponding with inhibition of HIV-1 and HIV-2 replication. Ex vivo HIV-1 reactivation using purified peripheral CD4+ T cells from HIV-infected ART-suppressed donors was also blocked by FX1 treatment (P < 0.01). Our results indicate that BCL6 function contributes to Tfh/non-Tfh CD4+ T cell activation and cellular susceptibility to HIV infection. BCL6 inhibition represents a novel therapeutic strategy to potentiate HIV suppression in Tfh/non-Tfh CD4+ T cells without reactivation of latent virus.IMPORTANCE The expansion and accumulation of HIV-infected BCL6+ Tfh CD4+ T cells are thought to contribute to the persistence of viral reservoirs in infected subjects undergoing ART. Two mechanisms have been raised for the preferential retention of HIV within Tfh CD4+ T cells: (i) antiretroviral drugs have limited tissue distribution, resulting in insufficient tissue concentration and lower efficacy in controlling HIV replication in lymphoid tissues, and (ii) cytotoxic CD8+ T cells within lymphoid tissues express low levels of chemokine receptor (CXCR5), thus limiting their ability to enter the GCs to control/eliminate HIV-infected Tfh cells. Our results indicate that the BCL6 inhibitor FX1 can not only repress HIV infection of tonsillar Tfh ex vivo but also suppress HIV infection and reactivation in primary, non-Tfh CD4+ T cells. Our study provides a rationale for targeting BCL6 protein to extend ART-mediated reduction of persistent HIV and/or support strategies toward HIV remission beyond ART cessation.
Collapse
|
26
|
Kim S, Traore YL, Ho EA, Shafiq M, Kim SH, Liu S. Design and development of pH-responsive polyurethane membranes for intravaginal release of nanomedicines. Acta Biomater 2018; 82:12-23. [PMID: 30296620 DOI: 10.1016/j.actbio.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/16/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022]
Abstract
The objective of this study was to develop and characterize a novel intravaginal membrane platform for pH-triggered release of nanoparticles (NPs), which is essential for efficient intravaginal delivery of certain effective but acid-labile therapeutic agents for sexually transmitted infections, such as small interfering RNA (siRNA). A pH-responsive polyurethane (PU) was electrospun into a porous nanofibrous membrane. The diameters of the fibers, as well as the thickness and pore sizes of the membrane under dry and wet conditions (pH 4.5 and 7.0), were determined from scanning electron microscopy (SEM) micrographs. pH-dependent zeta-potential (ζ) of the membrane was evaluated using a SurPASS electrokinetic analyzer. Visiblex™ color-dyed polystyrene NPs (PSNs, 200 nm, COOH) and CCR5 siRNA-encapsulated solid lipid NPs (SLNs) were used for in vitro NP release studies in a vaginal fluid simulant (VFS) at pH 4.5 (normal physiological vaginal pH) and 7.0 (vaginal pH neutralization by semen). During 24 h of incubation in VFS, close-to-zero PSNs (2 ± 1%) and 28 ± 4% SLNs were released through the PU membrane at pH 4.5, whereas the release of PSNs and SLNs significantly increased to 60 ± 6% and 59 ± 8% at pH 7.0, respectively. The pH-responsive release of NPs hinged on the electrostatic interaction between the pH-responsive membrane and the anionic NPs, and the change in pH-responsive morphology of the membrane. In vitro biocompatibility studies of the membrane showed no significant cytotoxicity to VK2/E6E7 human epithelial cells and Sup-T1 human T-cells and no significant changes in the expression of pro-inflammatory cytokines (IL-6, IL-8, and IL-1β). Overall, the porous pH-responsive PU membrane demonstrated its potential in serving as a "window" membrane in reservoir-type intravaginal rings (IVRs) for pH-responsive intravaginal release of NPs. STATEMENT OF SIGNIFICANCE: Stimuli-responsive intravaginal nanoparticle release is achieved for the first time through a new electrospun pH-responsive polyurethane (PU) semi-permeable membrane, which can serve as a "window" membrane in the reservoir-type IVR for the prevention of human immunodeficiency virus (HIV) transmission. Almost no release of nanoparticles was observed at normal pH in the female genital tract (in vaginal fluid simulant [VFS], at pH 4.5); however, a continuous release of NPs was observed at elevated pH in the female genital tract (in VFS, at pH 7.0). This pH-responsive intravaginal release can reduce side effect and drug resistance by avoiding unnecessary exposure. The PU semi-permeable membrane demonstrated potential use as biomaterials for "smart" intravaginal nanoparticle release and has great potential to protect women from HIV.
Collapse
|
27
|
Bejarano DA, Puertas MC, Börner K, Martinez-Picado J, Müller B, Kräusslich HG. Detailed Characterization of Early HIV-1 Replication Dynamics in Primary Human Macrophages. Viruses 2018; 10:v10110620. [PMID: 30423802 PMCID: PMC6266216 DOI: 10.3390/v10110620] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 02/04/2023] Open
Abstract
Macrophages are natural target cells of human immunodeficiency virus type 1 (HIV-1). Viral replication appears to be delayed in these cells compared to lymphocytes; however, little is known about the kinetics of early post-entry events. Time-of-addition experiments using several HIV-1 inhibitors and the detection of reverse transcriptase (RT) products with droplet digital PCR (ddPCR) revealed that early replication was delayed in primary human monocyte-derived macrophages of several donors and peaked late after infection. Direct imaging of reverse-transcription and pre-integration complexes (RTC/PIC) by click-labeling of newly synthesized DNA further confirmed our findings and showed a concomitant shift to the nuclear stage over time. Altering the entry pathway enhanced infectivity but did not affect kinetics of viral replication. The addition of viral protein X (Vpx) enhanced productive infection and accelerated completion of reverse transcription and nuclear entry. We propose that sterile alpha motif (SAM) and histidine/aspartate (HD) domain-containing protein 1 (SAMHD1) activity lowering deoxyribonucleotide triphosphate (dNTP) pools is the principal factor delaying early HIV-1 replication in macrophages.
Collapse
Affiliation(s)
- David Alejandro Bejarano
- Department of Infectious Diseases, Virology, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Maria C Puertas
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Cièncias de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain.
| | - Kathleen Börner
- Department of Infectious Diseases, Virology, University of Heidelberg, 69120 Heidelberg, Germany.
- German Center for Infection Research, Partner Site Heidelberg, 69120 Heidelberg, Germany.
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Cièncias de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain.
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University of Heidelberg, 69120 Heidelberg, Germany.
- German Center for Infection Research, Partner Site Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Cardozo EF, Apetrei C, Pandrea I, Ribeiro RM. The dynamics of simian immunodeficiency virus after depletion of CD8+ cells. Immunol Rev 2018; 285:26-37. [PMID: 30129200 PMCID: PMC6352983 DOI: 10.1111/imr.12691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus infection is still one of the most important causes of morbidity and mortality in the world, with a disproportionate human and economic burden especially in poorer countries. Despite many years of intense research, an aspect that still is not well understood is what (immune) mechanisms control the viral load during the prolonged asymptomatic stage of infection. Because CD8+ T cells have been implicated in this control by multiple lines of evidence, there has been a focus on understanding the potential mechanisms of action of this immune effector population. One type of experiment used to this end has been depleting these cells with monoclonal antibodies in the simian immunodeficiency virus-macaque model and then studying the effect of that depletion on the viral dynamics. Here we review what these experiments have told us. We emphasize modeling studies to interpret the changes in viral load observed in these experiments, including discussion of alternative models, assumptions and interpretations, as well as potential future experiments.
Collapse
Affiliation(s)
- Erwing Fabian Cardozo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
- Laboratorio de Biomatematica, Faculdade de Medicina da Universidade de Lisboa, Portugal
| |
Collapse
|
29
|
El-Diwany R, Soliman M, Sugawara S, Breitwieser F, Skaist A, Coggiano C, Sangal N, Chattergoon M, Bailey JR, Siliciano RF, Blankson JN, Ray SC, Wheelan SJ, Thomas DL, Balagopal A. CMPK2 and BCL-G are associated with type 1 interferon-induced HIV restriction in humans. SCIENCE ADVANCES 2018; 4:eaat0843. [PMID: 30083606 PMCID: PMC6070316 DOI: 10.1126/sciadv.aat0843] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/19/2018] [Indexed: 05/14/2023]
Abstract
Type 1 interferons (IFN) are critical for host control of HIV and simian immunodeficiency virus. However, it is unknown which of the hundreds of interferon-stimulated genes (ISGs) restrict HIV in vivo. We sequenced RNA from cells that support HIV replication (activated CD4+ T cells) in 19 HIV-infected people before and after interferon-α2b (IFN-α2b) injection. IFN-α2b administration reduced plasma HIV RNA and induced mRNA expression in activated CD4+ T cells: The IFN-α2b-induced change of each mRNA was compared to the change in plasma HIV RNA. Of 99 ISGs, 13 were associated in magnitude with plasma HIV RNA decline. In addition to well-known restriction factors among the 13 ISGs, two novel genes, CMPK2 and BCL-G, were identified and confirmed for their ability to restrict HIV in vitro: The effect of IFN on HIV restriction in culture was attenuated with RNA interference to CMPK2, and overexpression of BCL-G diminished HIV replication. These studies reveal novel antiviral molecules that are linked with IFN-mediated restriction of HIV in humans.
Collapse
Affiliation(s)
- Ramy El-Diwany
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mary Soliman
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sho Sugawara
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Florian Breitwieser
- Center for Computational Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alyza Skaist
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Candelaria Coggiano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Neel Sangal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Chattergoon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Justin R. Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel N. Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stuart C. Ray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah J. Wheelan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David L. Thomas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ashwin Balagopal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
30
|
Lopes RS, Queiroz MAF, Gomes STM, Vallinoto ACR, Goulart LR, Ishak R. Phage display: an important tool in the discovery of peptides with anti-HIV activity. Biotechnol Adv 2018; 36:1847-1854. [PMID: 30012540 DOI: 10.1016/j.biotechadv.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/14/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
Human immunodeficiency virus (HIV) remains a worldwide health problem despite huge investments and research breakthroughs, and no single drug is effective in killing the virus yet. Among new strategies to control HIV infection, the phage display (PD) technology has become a promising tool in the discovery of peptides that can be used as new drugs, or also as possible vaccine candidates. This review discusses basic aspects of PD and its use to advance two main objectives related to combating HIV-1 infection: the identification of peptides that inhibit virus replication and the identification of peptides that induce the production of neutralizing antibodies. We will cover the different approaches used for mapping and selection of mimotopes, and discuss the promising results of these biologicals as antiviral agents.
Collapse
Affiliation(s)
- Ronaldo Souza Lopes
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| | - Maria Alice Freitas Queiroz
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil
| | - Samara Tatielle Monteiro Gomes
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlândia (Universidade Federal de Uberlândia - UFU), Laboratory of Nanobiotechnology, Av. Amazonas s/n, Bloco 2E, Sala 248 - Campus Umuarama, Uberlândia, MG, CEP 38400-902, Brazil.
| | - Ricardo Ishak
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| |
Collapse
|
31
|
Murray JM, Ribeiro RM. Special Issue "Mathematical Modeling of Viral Infections". Viruses 2018; 10:v10060303. [PMID: 29866993 PMCID: PMC6024780 DOI: 10.3390/v10060303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- John M Murray
- School of Mathematics and Statistics, UNSW Australia, Sydney 2052, Australia.
- Cancer Research Division, Cancer Council NSW, Woolloomooloo NSW 2011, Australia.
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
- Laboratorio de Biomatematica, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
32
|
Cabrera A, Hernández LH, Chávez D, Medina-Franco JL. Molecular Modeling of Potential Dual Inhibitors of HIV Reverse Transcriptase and Integrase. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/cmb.2018.81001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Cardozo EF, Andrade A, Mellors JW, Kuritzkes DR, Perelson AS, Ribeiro RM. Treatment with integrase inhibitor suggests a new interpretation of HIV RNA decay curves that reveals a subset of cells with slow integration. PLoS Pathog 2017; 13:e1006478. [PMID: 28678879 PMCID: PMC5513547 DOI: 10.1371/journal.ppat.1006478] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/17/2017] [Accepted: 06/18/2017] [Indexed: 02/07/2023] Open
Abstract
The kinetics of HIV-1 decay under treatment depends on the class of antiretrovirals used. Mathematical models are useful to interpret the different profiles, providing quantitative information about the kinetics of virus replication and the cell populations contributing to viral decay. We modeled proviral integration in short- and long-lived infected cells to compare viral kinetics under treatment with and without the integrase inhibitor raltegravir (RAL). We fitted the model to data obtained from participants treated with RAL-containing regimes or with a four-drug regimen of protease and reverse transcriptase inhibitors. Our model explains the existence and quantifies the three phases of HIV-1 RNA decay in RAL-based regimens vs. the two phases observed in therapies without RAL. Our findings indicate that HIV-1 infection is mostly sustained by short-lived infected cells with fast integration and a short viral production period, and by long-lived infected cells with slow integration but an equally short viral production period. We propose that these cells represent activated and resting infected CD4+ T-cells, respectively, and estimate that infection of resting cells represent ~4% of productive reverse transcription events in chronic infection. RAL reveals the kinetics of proviral integration, showing that in short-lived cells the pre-integration population has a half-life of ~7 hours, whereas in long-lived cells this half-life is ~6 weeks. We also show that the efficacy of RAL can be estimated by the difference in viral load at the start of the second phase in protocols with and without RAL. Overall, we provide a mechanistic model of viral infection that parsimoniously explains the kinetics of viral load decline under multiple classes of antiretrovirals.
Collapse
Affiliation(s)
- E Fabian Cardozo
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Adriana Andrade
- The Johns Hopkins University, Baltimore, MD, United States of America
| | - John W Mellors
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Daniel R Kuritzkes
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America.,Laboratório de Biomatemática, Faculdade de Medicina, Universidade de Lisboa. Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
34
|
Garcia V, Feldman MW. Within-Epitope Interactions Can Bias CTL Escape Estimation in Early HIV Infection. Front Immunol 2017; 8:423. [PMID: 28507544 PMCID: PMC5410659 DOI: 10.3389/fimmu.2017.00423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/27/2017] [Indexed: 01/03/2023] Open
Abstract
As human immunodeficiency virus (HIV) begins to replicate within hosts, immune responses are elicited against it. Escape mutations in viral epitopes—immunogenic peptide parts presented on the surface of infected cells—allow HIV to partially evade these responses, and thus rapidly go to fixation. The faster they go to fixation, i.e., the higher their escape rate, the larger the selective pressure exerted by the immune system is assumed to be. This relation underpins the rationale for using escapes to assess the strength of immune responses. However, escape rate estimates are often obtained by employing an aggregation procedure, where several mutations that affect the same epitope are aggregated into a single, composite epitope mutation. The aggregation procedure thus rests upon the assumption that all within-epitope mutations have indistinguishable effects on immune recognition. In this study, we investigate how violation of this assumption affects escape rate estimates. To this end, we extend a previously developed simulation model of HIV that accounts for mutation, selection, and recombination to include different distributions of fitness effects (DFEs) and inter-mutational genomic distances. We use this discrete time Wright–Fisher based model to simulate early within-host evolution of HIV for DFEs and apply standard estimation methods to infer the escape rates. We then compare true with estimated escape rate values. We also compare escape rate values obtained by applying the aggregation procedure with values estimated without use of that procedure. We find that across the DFEs analyzed, the aggregation procedure alters the detectability of escape mutations: large-effect mutations are overrepresented while small-effect mutations are concealed. The effect of the aggregation procedure is similar to extracting the largest-effect mutation appearing within an epitope. Furthermore, the more pronounced the over-exponential decay of the DFEs, the more severely true escape rates are underestimated. We conclude that the aggregation procedure has two main consequences. On the one hand, it leads to a misrepresentation of the DFE of fixed mutations. On the other hand, it conceals within-epitope interactions that may generate irregularities in mutation frequency trajectories that are thus left unexplained.
Collapse
Affiliation(s)
- Victor Garcia
- Department of Biology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
35
|
Cheng Z, Hoffmann A. A stochastic spatio-temporal (SST) model to study cell-to-cell variability in HIV-1 infection. J Theor Biol 2016; 395:87-96. [PMID: 26860658 DOI: 10.1016/j.jtbi.2016.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Although HIV viremia in infected patients proceeds in a manner that may be accounted for by deterministic mathematical models, single virus-cell encounters following initial HIV exposure result in a variety of outcomes, only one of which results in a productive infection. The development of single molecule tracking techniques in living cells allows studies of intracellular transport of HIV, but it remains less clear what its impact may be on viral integration efficiency. Here, we present a stochastic intracellular mathematical model of HIV replication that incorporates microtubule transport of viral components. Using this model, we could study single round infections and observe how viruses entering cells reach one of three potential fates - degradation of the viral RNA genome, formation of LTR circles, or successful integration and establishment of a provirus. Our model predicts global trafficking properties, such as the probability and the mean time for a HIV viral particle to reach the nuclear pore. Interestingly, our model predicts that trafficking determines neither the probability or time of provirus establishment - instead, they are a function of vRNA degradation and reverse transcription reactions. Thus, our spatio-temporal model provides novel insights into the HIV infection process and may constitute a useful tool for the identification of promising drug targets.
Collapse
Affiliation(s)
- Zhang Cheng
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), and Institute for Quantitative and Computational Biosciences (QCB), UC, Los Angeles, CA 92093, United States.
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), and Institute for Quantitative and Computational Biosciences (QCB), UC, Los Angeles, CA 92093, United States.
| |
Collapse
|
36
|
Wang X, Song X, Tang S, Rong L. Dynamics of an HIV Model with Multiple Infection Stages and Treatment with Different Drug Classes. Bull Math Biol 2016; 78:322-49. [PMID: 26842389 DOI: 10.1007/s11538-016-0145-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023]
Abstract
Highly active antiretroviral therapy can effectively control HIV replication in infected individuals. Some clinical and modeling studies suggested that viral decay dynamics may depend on the inhibited stages of the viral replication cycle. In this paper, we develop a general mathematical model incorporating multiple infection stages and various drug classes that can interfere with specific stages of the viral life cycle. We derive the basic reproductive number and obtain the global stability results of steady states. Using several simple cases of the general model, we study the effect of various drug classes on the dynamics of HIV decay. When drugs are assumed to be 100% effective, drugs acting later in the viral life cycle lead to a faster or more rapid decay in viremia. This is consistent with some patient and experimental data, and also agrees with previous modeling results. When drugs are not 100% effective, the viral decay dynamics are more complicated. Without a second population of long-lived infected cells, the viral load decline can have two phases if drugs act at an intermediate stage of the viral replication cycle. The slopes of viral load decline depend on the drug effectiveness, the death rate of infected cells at different stages, and the transition rate of infected cells from one to the next stage. With a second population of long-lived infected cells, the viral load decline can have three distinct phases, consistent with the observation in patients receiving antiretroviral therapy containing the integrase inhibitor raltegravir. We also fit modeling prediction to patient data under efavirenz (a nonnucleoside reverse-transcriptase inhibitor) and raltegravir treatment. The first-phase viral load decline under raltegravir therapy is longer than that under efavirenz, resulting in a lower viral load at initiation of the second-phase decline in patients taking raltegravir. This explains why patients taking a raltegravir-based therapy were faster to achieve viral suppression than those taking an efavirenz-based therapy. Taken together, this work provides a quantitative and systematic comparison of the effect of different drug classes on HIV decay dynamics and can explain the viral load decline in HIV patients treated with raltegravir-containing regimens.
Collapse
Affiliation(s)
- Xia Wang
- School of Mathematics and Information Sciences, Shaanxi Normal University, Xi'an, 710062, China
- College of Mathematics and Information Science, Xinyang Normal University, Xinyang, 464000, China
| | - Xinyu Song
- College of Mathematics and Information Science, Xinyang Normal University, Xinyang, 464000, China
| | - Sanyi Tang
- School of Mathematics and Information Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Libin Rong
- Department of Mathematics and Statistics, and Center for Biomedical Research, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
37
|
Garcia V, Feldman MW, Regoes RR. Investigating the Consequences of Interference between Multiple CD8+ T Cell Escape Mutations in Early HIV Infection. PLoS Comput Biol 2016; 12:e1004721. [PMID: 26829720 PMCID: PMC4735108 DOI: 10.1371/journal.pcbi.1004721] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/18/2015] [Indexed: 12/14/2022] Open
Abstract
During early human immunodeficiency virus (HIV) infection multiple CD8+ T cell responses are elicited almost simultaneously. These responses exert strong selective pressures on different parts of HIV’s genome, and select for mutations that escape recognition and are thus beneficial to the virus. Some studies reveal that the later these escape mutations emerge, the more slowly they go to fixation. This pattern of escape rate decrease(ERD) can arise by distinct mechanisms. In particular, in large populations with high beneficial mutation rates interference among different escape strains –an effect that can emerge in evolution with asexual reproduction and results in delayed fixation times of beneficial mutations compared to sexual reproduction– could significantly impact the escape rates of mutations. In this paper, we investigated how interference between these concurrent escape mutations affects their escape rates in systems with multiple epitopes, and whether it could be a source of the ERD pattern. To address these issues, we developed a multilocus Wright-Fisher model of HIV dynamics with selection, mutation and recombination, serving as a null-model for interference. We also derived an interference-free null model assuming initial neutral evolution before immune response elicitation. We found that interference between several equally selectively advantageous mutations can generate the observed ERD pattern. We also found that the number of loci, as well as recombination rates substantially affect ERD. These effects can be explained by the underexponential decline of escape rates over time. Lastly, we found that the observed ERD pattern in HIV infected individuals is consistent with both independent, interference-free mutations as well as interference effects. Our results confirm that interference effects should be considered when analyzing HIV escape mutations. The challenge in estimating escape rates and mutation-associated selective coefficients posed by interference effects cannot simply be overcome by improved sampling frequencies or sizes. This problem is a consequence of the fundamental shortcomings of current estimation techniques under interference regimes. Hence, accounting for the stochastic nature of competition between mutations demands novel estimation methodologies based on the analysis of HIV strains, rather than mutation frequencies. Within-host evolution of human immunodeficiency virus (HIV) is shaped by strong immune responses mounted against the virus. Multiple CD8+ T cell populations, each recognizing a specific part of an HIV protein, simultaneously suppress HIV growth. Escape mutations that arise in HIV genome regions coding for these virion protein parts, impair CD8+ T cell recognition and are consequently strongly selected. The emergence and rise of these escape mutations exhibits an intriguing temporal pattern: the earlier an escape mutation arises, the faster it goes to fixation. This pattern is termed escape rate decrease (ERD). In this paper, we tested computationally whether interference, i.e. the coexistence of multiple genetically distinct HIV strains engaged in competitive interaction within the host, could be a possible source of ERD. As an alternative, we also mathematically derived the temporal pattern of escapes under interference-free conditions, and compared this with data. We found that interference between multiple beneficial mutations could generate ERD. However, ERD does not imply the presence of interference. Thus, more detailed data is required to unambiguously determine whether interference effects influence ERD generation. Nevertheless, interference should be considered when studying the within-host evolution of HIV. Ignoring its effects on population dynamics can severely underestimate the protective capacity of CD8+ T cells.
Collapse
Affiliation(s)
- Victor Garcia
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- * E-mail:
| | - Marcus W. Feldman
- Department of Biological Sciences, Stanford University, Stanford, California, United States of America
| | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Early HIV RNA decay during raltegravir-containing regimens exhibits two distinct subphases (1a and 1b). AIDS 2015; 29:2419-26. [PMID: 26558541 DOI: 10.1097/qad.0000000000000843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We analyzed the early kinetics with integrase inhibitor treatment to gain new insights into viral dynamics. METHODOLOGY We analyzed data from 39 HIV-1 infected, treatment-naive, participants: 28 treated with raltegravir (RAL; multiple doses) monotherapy for 9 days, and 11 with RAL 400 mg twice daily and emtricitabine (200 mg daily)/tenofovir disoproxil fumarate (300 mg daily). Plasma HIV-1 RNA was measured frequently; the data was fitted using a mathematical model of viral dynamics distinguishing between infected cells with unintegrated HIV DNA and productively infected cells. Parameters were estimated using mixed-effect models. RESULTS RAL treatment led to a biphasic viral decline with a rapid first phase (1a) lasting approximately 5 days followed by a slower phase (1b). Phase 1a is attributed to the rapid elimination of productively infected cells. Phase 1b reflects the loss of infected cells with nonintegrated provirus due to cell loss and integration of HIV DNA. The half-lives of productively infected cells and of infected cells that had completed reverse transcription but had not yet integrated HIV DNA were approximately 19 h and between 3.6 and 5.8 days, respectively. The effectiveness of RAL in preventing proviral integration was 94% and 99.7%, for the combination therapy and monotherapy groups, respectively. CONCLUSION We found that the first phase of viral decay with RAL therapy was composed of two subphases corresponding to the half-lives of infected cells with integrated proviruses and with unintegrated HIV-DNA.
Collapse
|
39
|
Uchida N, Green R, Ballantine J, Skala LP, Hsieh MM, Tisdale JF. Kinetics of lentiviral vector transduction in human CD34(+) cells. Exp Hematol 2015; 44:106-15. [PMID: 26499040 DOI: 10.1016/j.exphem.2015.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/05/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022]
Abstract
Unlike cell lines, human hematopoietic stem cells (HSCs) are less efficiently transduced with HIV-1 vectors, potentially limiting this approach. To investigate which step (internalization, reverse transcription, nuclear transport, and integration) limits lentiviral transduction, we evaluated the kinetics of lentiviral transduction in human CD34(+) cells. We transduced HeLa and CD34(+) cells with self-inactivating HIV-1 vector at low and tenfold higher multiplicity of infection (MOI) and evaluated vector amounts at various time points based on the rationale that if a given step was not limiting, tenfold greater vector amounts would be obtained at the tenfold higher MOI. We observed slower internalization (>60 min), a peak in reverse transcription at 24 hours, and completion of integration at 3 days in CD34(+) cells. In HeLa cells, there were approximately tenfold greater amounts at high MOI at all time points. When compared with HeLa cells, CD34(+) cells exhibited larger differences in vector amounts between high and low MOIs at 2-6 hours and a smaller difference at 12 hours to 10 days, revealing a limitation in human CD34(+) cell transduction around 12 hours, which corresponds to reverse transcription. In serial measurements of reverse transcription at 24 hours, vector amounts did not decrease once detected among CD34(+) cells. When using an HSC expansion medium, we observed less limitation for starting reverse transcription and more efficient transduction among CD34(+) cells in vitro and in xenografted mice. These data suggest that it is the initiation of reverse transcription that limits lentiviral transduction of human CD34(+) cells. Our findings provide an avenue for optimizing human CD34(+) cell transduction.
Collapse
Affiliation(s)
- Naoya Uchida
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD.
| | - Rashidah Green
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD
| | - Josiah Ballantine
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD
| | - Luke P Skala
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD
| | - Matthew M Hsieh
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD
| | - John F Tisdale
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
40
|
Holmes M, Zhang F, Bieniasz PD. Single-Cell and Single-Cycle Analysis of HIV-1 Replication. PLoS Pathog 2015; 11:e1004961. [PMID: 26086614 PMCID: PMC4472667 DOI: 10.1371/journal.ppat.1004961] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
The dynamics of the late stages of the HIV-1 life cycle are poorly documented. Viral replication dynamics are typically measured in populations of infected cells, but asynchrony that is introduced during the early steps of HIV-1 replication complicates the measurement of the progression of subsequent steps and can mask replication dynamics and their variation in individual infected cells. We established microscopy-based methods to dynamically measure HIV-1-encoded reporter gene and antiviral gene expression in individual infected cells. We coupled these measurements with conventional analyses to quantify delays in the HIV-1 replication cycle imposed by the biphasic nature of HIV-1 gene expression and by the assembly-inhibiting property of the matrix domain of Gag. We further related the dynamics of restriction factor (APOBEC3G) removal to the dynamics of HIV-1 replication in individual cells. These studies provide a timeline for key events in the HIV-1 replication cycle, and reveal that the interval between the onset of early and late HIV-1 gene expression is only ~3h, but matrix causes a ~6–12h delay in the generation of extracellular virions. Interestingly, matrix delays particle assembly to a time at which APOBEC3G has largely been removed from the cell. Thus, a need to prepare infected cells to be efficient producers of infectious HIV-1 may provide an impetus for programmed delays in HIV-1 virion genesis. Our findings also emphasize the significant heterogeneity in the length of the HIV-1 replication cycle in homogenous cell populations and suggest that a typical infected cell generates new virions for only a few hours at the end of a 48h lifespan. Therefore, small changes in the lifespan of infected cells might have a large effect on viral yield in a single cycle and the overall clinical course in infected individuals. The HIV-1 replication cycle is composed of several sequential steps. While the timing of the early steps of HIV-1 replication is quite well understood, measuring the duration of later steps is complicated by the fact that asynchrony is introduced into populations of infected cells during early steps. We devised imaging methods for measuring the duration of late steps in HIV-1 replication in single infected cells, circumventing the problems associated with measurements in populations of asynchronously infected cells. By combining these measurements with conventional analyses of HIV-1 replication in populations of cells, we derived a time-line of key events during the late steps of the HIV-1 life cycle. We find that the delay between early and late gene expression is small but that a subsequent programmed delay in virus assembly enables HIV-1 to remove a host antiviral protein from infected cells before new virions are generated. In so doing, HIV-1 may prevent futile virion production.
Collapse
Affiliation(s)
- Mowgli Holmes
- Columbia University, New York, New York, United States of America
- Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Fengwen Zhang
- Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Paul D. Bieniasz
- Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
41
|
Affiliation(s)
- Ashish Goyal
- School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
| | - John M Murray
- School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
42
|
Guedj J, Canini L, Cotler S, Dahari H. Reply: To PMID 25098971. Hepatology 2015; 61:2118-9. [PMID: 25363327 PMCID: PMC4739520 DOI: 10.1002/hep.27594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Jeremie Guedj
- IAME, UMR 1137, INSERM, Paris, France
- IAME, UMR 1137, Université Paris 7 Diderot, Sorbonne Paris Cité, Paris, France
| | - Laetitia Canini
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Scott Cotler
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM
| |
Collapse
|
43
|
Simple mathematical models do not accurately predict early SIV dynamics. Viruses 2015; 7:1189-217. [PMID: 25781919 PMCID: PMC4379566 DOI: 10.3390/v7031189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 02/07/2023] Open
Abstract
Upon infection of a new host, human immunodeficiency virus (HIV) replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV). First, we found that the mode of virus production by infected cells (budding vs. bursting) has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral dose. These results suggest that, in order to appropriately model early HIV/SIV dynamics, additional factors must be considered in the model development. These may include variability in monkey susceptibility to infection, within-host competition between different viruses for target cells at the initial site of virus replication in the mucosa, innate immune response, and possibly the inclusion of several different tissue compartments. The sobering news is that while an increase in model complexity is needed to explain the available experimental data, testing and rejection of more complex models may require more quantitative data than is currently available.
Collapse
|
44
|
Klasse PJ. Molecular determinants of the ratio of inert to infectious virus particles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:285-326. [PMID: 25595808 DOI: 10.1016/bs.pmbts.2014.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ratio of virus particles to infectious units is a classic measurement in virology and ranges widely from several million to below 10 for different viruses. Much evidence suggests a distinction be made between infectious and infecting particles or virions: out of many potentially infectious virions, few infect under regular experimental conditions, largely because of diffusion barriers. Still, some virions are inert from the start; others become defective through decay. And with increasing cell- and molecular-biological knowledge of each step in the replicative cycle for different viruses, it emerges that many processes entail considerable losses of potential viral infectivity. Furthermore, all-or-nothing assumptions about virion infectivity are flawed and should be replaced by descriptions that allow for spectra of infectious propensities. A more realistic understanding of the infectivity of individual virions has both practical and theoretical implications for virus neutralization, vaccine research, antiviral therapy, and the use of viral vectors.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA.
| |
Collapse
|
45
|
Gu WG, Zhang X, Ip DTM, Yang LM, Zheng YT, Wan DCC. Discovery of a novel HIV-1 integrase inhibitor from natural compounds through structure based virtual screening and cell imaging. FEBS Lett 2014; 588:3461-8. [DOI: 10.1016/j.febslet.2014.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/26/2014] [Accepted: 08/04/2014] [Indexed: 01/06/2023]
|
46
|
Okamoto KW, Amarasekare P, Petty ITD. Modeling oncolytic virotherapy: is complete tumor-tropism too much of a good thing? J Theor Biol 2014; 358:166-78. [PMID: 24810840 DOI: 10.1016/j.jtbi.2014.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 12/21/2022]
Abstract
The specific targeting of tumor cells by replication-competent oncolytic viruses is considered indispensable for realizing the potential of oncolytic virotherapy. Yet off-target infections by oncolytic viruses may increase virus production, further reducing tumor load. This ability may be critical when tumor-cell scarcity or the onset of an adaptive immune response constrain viral anti-tumoral efficacy. Here we develop a mathematical framework for assessing whether oncolytic viruses with reduced tumor-specificity can more effectively eliminate tumors while keeping losses to normal cell populations low. We find viruses that infect some normal cells can potentially balance the competing goals of tumor elimination and minimizing the effects on normal cell populations. Particularly when infected tissues can be regenerated, moderating rather than completely eliminating the ability of oncolytic viruses to infect and lyse normal cells could improve cancer treatment, with potentially fewer side-effects than conventional treatments such as chemotherapy.
Collapse
Affiliation(s)
- Kenichi W Okamoto
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA; Department of Entomology, North Carolina State University, Raleigh, NC 27695-7613, USA.
| | - Priyanga Amarasekare
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.
| | - Ian T D Petty
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA.
| |
Collapse
|
47
|
De Hoffer L, Di Biagio A, Bruzzone B, Sticchi L, Prinapori R, Gerbaldo D, Gotta C, Viscoli C. Use of raltegravir in a late presenter HIV-1 woman in advanced gestational age: case report and literature review. J Chemother 2013; 25:181-3. [PMID: 23783144 DOI: 10.1179/1973947812y.0000000066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Vertical transmission of human immunodeficiency virus (HIV) represents an important worldwide health problem and rapid decline in viral load is essential for HIV pregnant women to prevent mother to child transmission. Specific issues such as late presentation of pregnant HIV-infected women remain a clinical challenge. We present a case of an HIV-infected woman who presented to our hospital at 35 weeks of pregnancy, who was successfully treated with raltegravir-based first-line combined antiretroviral regimen. Even though there is limited information about safety and tolerability of the use of raltegravir in pregnancy, in our case this drug resulted in a rapid decline in HIV-RNA viral load, without side effects. The aim of the present study and literature review was to demonstrate that raltegravir can be a good treatment choice for very late presenting pregnant women.
Collapse
Affiliation(s)
- Laura De Hoffer
- School of Medicine, University of Genoa, at San Martino Hospital, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Desimmie BA, Schrijvers R, Demeulemeester J, Borrenberghs D, Weydert C, Thys W, Vets S, Van Remoortel B, Hofkens J, De Rijck J, Hendrix J, Bannert N, Gijsbers R, Christ F, Debyser Z. LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology 2013; 10:57. [PMID: 23721378 PMCID: PMC3671127 DOI: 10.1186/1742-4690-10-57] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/07/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND LEDGINs are novel allosteric HIV integrase (IN) inhibitors that target the lens epithelium-derived growth factor (LEDGF)/p75 binding pocket of IN. They block HIV-1 integration by abrogating the interaction between LEDGF/p75 and IN as well as by allosterically inhibiting the catalytic activity of IN. RESULTS Here we demonstrate that LEDGINs reduce the replication capacity of HIV particles produced in their presence. We systematically studied the molecular basis of this late effect of LEDGINs and demonstrate that HIV virions produced in their presence display a severe replication defect. Both the late effect and the previously described, early effect on integration contribute to LEDGIN antiviral activity as shown by time-of-addition, qPCR and infectivity assays. The late effect phenotype requires binding of LEDGINs to integrase without influencing proteolytic cleavage or production of viral particles. LEDGINs augment IN multimerization during virion assembly or in the released viral particles and severely hamper the infectivity of progeny virions. About 70% of the particles produced in LEDGIN-treated cells do not form a core or display aberrant empty cores with a mislocalized electron-dense ribonucleoprotein. The LEDGIN-treated virus displays defective reverse transcription and nuclear import steps in the target cells. The LEDGIN effect is possibly exerted at the level of the Pol precursor polyprotein. CONCLUSION Our results suggest that LEDGINs modulate IN multimerization in progeny virions and impair the formation of regular cores during the maturation step, resulting in a decreased infectivity of the viral particles in the target cells. LEDGINs thus profile as unique antivirals with combined early (integration) and late (IN assembly) effects on the HIV replication cycle.
Collapse
Affiliation(s)
- Belete Ayele Desimmie
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Rik Schrijvers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Jonas Demeulemeester
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Doortje Borrenberghs
- Laboratory for Photochemistry and Spectroscopy, KU Leuven, Celestijnenlaan 200F, Heverlee, Flanders, 3001, Belgium
| | - Caroline Weydert
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Wannes Thys
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Sofie Vets
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Barbara Van Remoortel
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, KU Leuven, Celestijnenlaan 200F, Heverlee, Flanders, 3001, Belgium
| | - Jan De Rijck
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, KU Leuven, Celestijnenlaan 200F, Heverlee, Flanders, 3001, Belgium
| | - Norbert Bannert
- Robert Koch Institute, Centre for HIV and Retrovirology, Nordufer 20, Berlin, 13353, Germany
| | - Rik Gijsbers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Frauke Christ
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Zeger Debyser
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| |
Collapse
|
49
|
Turing Patterns from Dynamics of Early HIV Infection. Bull Math Biol 2013; 75:774-95. [DOI: 10.1007/s11538-013-9834-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 03/12/2013] [Indexed: 11/27/2022]
|
50
|
Gilmore JB, Kelleher AD, Cooper DA, Murray JM. Explaining the determinants of first phase HIV decay dynamics through the effects of stage-dependent drug action. PLoS Comput Biol 2013; 9:e1002971. [PMID: 23555209 PMCID: PMC3610612 DOI: 10.1371/journal.pcbi.1002971] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/21/2013] [Indexed: 01/06/2023] Open
Abstract
A recent investigation of the effect of different antiretroviral drug classes on first phase dynamics of HIV RNA plasma virus levels has indicated that drugs acting at stages closer to viral production, such as the integrase inhibitor raltegravir, can produce a steeper first phase decay slope that may not be due to drug efficacy. Moreover it was found that for most drug classes the first phase transitions from a faster (phase IA) to a slightly slower decay region (phase IB) before the start of the usual second phase. Neither of these effects has been explained to date. We use a mathematical model that incorporates the different stages of the HIV viral life cycle in CD4+ T cells: viral entry, reverse transcription, integration, and viral production, to investigate the intracellular HIV mechanisms responsible for these complex plasma virus decay dynamics. We find differences in the phase IA slope across drug classes arise from a higher death rate of cells when they enter the productively infected stage post-integration, with a half-life of approximately 8 hours in this stage, whereas cells in earlier stages of the infection cycle have half-lives similar to uninfected cells. This implies any immune clearance is predominantly limited to the productive infection stage. We also show that the slowing of phase IA to phase IB at day 2 to 4 of monotherapy, depending on drug class, is a result of new rounds of infection. The level at which this slowing occurs is a better indicator of drug efficacy than the slope of the initial decay. The infection of a cell by HIV proceeds through a series of stages and each stage can now be inhibited by an available antiretroviral drug class. It is known that different drug classes can result in different decay curves of plasma viral levels that are not well explained by current mathematical models of HIV dynamics. Here we develop a mathematical model that incorporates these stages of infection and show how it successfully reproduces plasma decay curves for the five classes of currently available antiretroviral drugs. Our modeling indicates that the efficacy of antiretroviral drugs is not solely described by the rate of decay of plasma viral levels as currently thought. Drugs such as the integrase inhibitor raltegravir will result in a faster initial decline of plasma viral levels compared to a drug that acts further from viral integration and production such as the CCR5 inhibitor maraviroc, even though they may have the same efficacy. Moreover, we find that infected cells only die at rates above the background level when they are in the productive phase, indicating that immune clearance is mostly absent from the early stages of HIV cellular infection. This is of particular concern given that most infected cells are in these early stages of infection.
Collapse
Affiliation(s)
- James B. Gilmore
- School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
- The Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Anthony D. Kelleher
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Applied Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - David A. Cooper
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Applied Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - John M. Murray
- School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|