1
|
Raines SLM, Falcinelli SD, Peterson JJ, Van Gulck E, Allard B, Kirchherr J, Vega J, Najera I, Boden D, Archin NM, Margolis DM. Nanoparticle delivery of Tat synergizes with classical latency reversal agents to express HIV antigen targets. Antimicrob Agents Chemother 2024; 68:e0020124. [PMID: 38829049 PMCID: PMC11232404 DOI: 10.1128/aac.00201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Limited cellular levels of the HIV transcriptional activator Tat are one contributor to proviral latency that might be targeted in HIV cure strategies. We recently demonstrated that lipid nanoparticles containing HIV tat mRNA induce HIV expression in primary CD4 T cells. Here, we sought to further characterize tat mRNA in the context of several benchmark latency reversal agents (LRAs), including inhibitor of apoptosis protein antagonists (IAPi), bromodomain and extra-Terminal motif inhibitors (BETi), and histone deacetylase inhibitors (HDACi). tat mRNA reversed latency across several different cell line models of HIV latency, an effect dependent on the TAR hairpin loop. Synergistic enhancement of tat mRNA activity was observed with IAPi, HDACi, and BETi, albeit to variable degrees. In primary CD4 T cells from durably suppressed people with HIV, tat mRNA profoundly increased the frequencies of elongated, multiply-spliced, and polyadenylated HIV transcripts, while having a lesser impact on TAR transcript frequencies. tat mRNAs alone resulted in variable HIV p24 protein induction across donors. However, tat mRNA in combination with IAPi, BETi, or HDACi markedly enhanced HIV RNA and protein expression without overt cytotoxicity or cellular activation. Notably, combination regimens approached or in some cases exceeded the latency reversal activity of maximal mitogenic T cell stimulation. Higher levels of tat mRNA-driven HIV p24 induction were observed in donors with larger mitogen-inducible HIV reservoirs, and expression increased with prolonged exposure time. Combination LRA strategies employing both small molecule inhibitors and Tat delivered to CD4 T cells are a promising approach to effectively target the HIV reservoir.
Collapse
Affiliation(s)
- Samuel L. M. Raines
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shane D. Falcinelli
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jackson J. Peterson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ellen Van Gulck
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Brigitte Allard
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jerel Vega
- Arcturus Therapeutics, Science Center Drive, San Diego, California, USA
| | - Isabel Najera
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Daniel Boden
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nancie M. Archin
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Abdalla AL, Guajardo-Contreras G, Mouland AJ. A Canadian Survey of Research on HIV-1 Latency-Where Are We Now and Where Are We Heading? Viruses 2024; 16:229. [PMID: 38400005 PMCID: PMC10891605 DOI: 10.3390/v16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Worldwide, almost 40 million people are currently living with HIV-1. The implementation of cART inhibits HIV-1 replication and reduces viremia but fails to eliminate HIV-1 from latently infected cells. These cells are considered viral reservoirs from which HIV-1 rebounds if cART is interrupted. Several efforts have been made to identify these cells and their niches. There has been little success in diminishing the pool of latently infected cells, underscoring the urgency to continue efforts to fully understand how HIV-1 establishes and maintains a latent state. Reactivating HIV-1 expression in these cells using latency-reversing agents (LRAs) has been successful, but only in vitro. This review aims to provide a broad view of HIV-1 latency, highlighting Canadian contributions toward these aims. We will summarize the research efforts conducted in Canadian labs to understand the establishment of latently infected cells and how this informs curative strategies, by reviewing how HIV latency is established, which cells are latently infected, what methodologies have been developed to characterize them, how new compounds are discovered and evaluated as potential LRAs, and what clinical trials aim to reverse latency in people living with HIV (PLWH).
Collapse
Affiliation(s)
- Ana Luiza Abdalla
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gabriel Guajardo-Contreras
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Andrew J. Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
3
|
Pardons M, Cole B, Lambrechts L, van Snippenberg W, Rutsaert S, Noppe Y, De Langhe N, Dhondt A, Vega J, Eyassu F, Nijs E, Van Gulck E, Boden D, Vandekerckhove L. Potent latency reversal by Tat RNA-containing nanoparticle enables multi-omic analysis of the HIV-1 reservoir. Nat Commun 2023; 14:8397. [PMID: 38110433 PMCID: PMC10728105 DOI: 10.1038/s41467-023-44020-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
The development of latency reversing agents that potently reactivate HIV without inducing global T cell activation would benefit the field of HIV reservoir research and could pave the way to a functional cure. Here, we explore the reactivation capacity of a lipid nanoparticle containing Tat mRNA (Tat-LNP) in CD4 T cells from people living with HIV undergoing antiretroviral therapy (ART). When combined with panobinostat, Tat-LNP induces latency reversal in a significantly higher proportion of latently infected cells compared to PMA/ionomycin (≈ 4-fold higher). We demonstrate that Tat-LNP does not alter the transcriptome of CD4 T cells, enabling the characterization of latently infected cells in their near-native state. Upon latency reversal, we identify transcriptomic differences between infected cells carrying an inducible provirus and non-infected cells (e.g. LINC02964, GZMA, CCL5). We confirm the transcriptomic differences at the protein level and provide evidence that the long non-coding RNA LINC02964 plays a role in active HIV infection. Furthermore, p24+ cells exhibit heightened PI3K/Akt signaling, along with downregulation of protein translation, suggesting that HIV-infected cells display distinct signatures facilitating their long-term persistence. Tat-LNP represents a valuable research tool for in vitro reservoir studies as it greatly facilitates the in-depth characterization of HIV reservoir cells' transcriptome and proteome profiles.
Collapse
Affiliation(s)
- Marion Pardons
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
| | - Basiel Cole
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
| | - Laurens Lambrechts
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
- BioBix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Willem van Snippenberg
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
| | - Ytse Noppe
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
| | - Nele De Langhe
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
| | - Annemieke Dhondt
- Department of Nephrology, Ghent University Hospital, 9000, Ghent, Belgium
| | - Jerel Vega
- Arcturus Therapeutics, 10628 Science Center Drive, Suite 250, San Diego, 92121, CA, USA
| | - Filmon Eyassu
- Computational biology, Johnson and Johnson, 2340, Beerse, Belgium
| | - Erik Nijs
- Janssen infectious diseases and diagnostics, Johnson and Johnson, 2340, Beerse, Belgium
| | - Ellen Van Gulck
- Janssen infectious diseases and diagnostics, Johnson and Johnson, 2340, Beerse, Belgium
| | - Daniel Boden
- Janssen Biopharma, Johnson and Johnson, South San Francisco, 94080, CA, USA
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
4
|
Van Gulck E, Pardons M, Nijs E, Verheyen N, Dockx K, Van Den Eynde C, Battivelli E, Vega J, Florence E, Autran B, Archin NM, Margolis DM, Katlama C, Hamimi C, Van Den Wyngaert I, Eyassu F, Vandekerckhove L, Boden D. A truncated HIV Tat demonstrates potent and specific latency reversal activity. Antimicrob Agents Chemother 2023; 67:e0041723. [PMID: 37874295 PMCID: PMC10649039 DOI: 10.1128/aac.00417-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/09/2023] [Indexed: 10/25/2023] Open
Abstract
A major barrier to HIV-1 cure is caused by the pool of latently infected CD4 T-cells that persist under combination antiretroviral therapy (cART). This latent reservoir is capable of producing replication-competent infectious viruses once prolonged suppressive cART is withdrawn. Inducing the reactivation of HIV-1 gene expression in T-cells harboring a latent provirus in people living with HIV-1 under cART may result in depletion of this latent reservoir due to cytopathic effects or immune clearance. Studies have investigated molecules that reactivate HIV-1 gene expression, but to date, no latency reversal agent has been identified to eliminate latently infected cells harboring replication-competent HIV in cART-treated individuals. Stochastic fluctuations in HIV-1 tat gene expression have been described and hypothesized to allow the progression into proviral latency. We hypothesized that exposing latently infected CD4+ T-cells to Tat would result in effective latency reversal. Our results indicate the capacity of a truncated Tat protein and mRNA to reactivate HIV-1 in latently infected T-cells ex vivo to a similar degree as the protein kinase C agonist: phorbol 12-myristate 13-acetate, without T-cell activation or any significant transcriptome perturbation.
Collapse
Affiliation(s)
- Ellen Van Gulck
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marion Pardons
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Erik Nijs
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nick Verheyen
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Koen Dockx
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Christel Van Den Eynde
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Emilie Battivelli
- Janssen Infectious Diseases, A Division of Janssen Pharmaceutica NV, Brisbane, California, USA
| | - Jerel Vega
- Arcturus Therapeutics, Science Center Drive, San Diego, California, USA
| | | | - Brigitte Autran
- Faculty of Medicine Sorbonne-University, CIMI-Paris, UPMC/Inserm, Paris, France
| | - Nancie M. Archin
- University of North Carolina School of Medicine and UNC, HIV Cure Center, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- University of North Carolina School of Medicine and UNC, HIV Cure Center, Chapel Hill, North Carolina, USA
| | - Christine Katlama
- Department Infectious Diseases, Hospital Pitié Salpetière, Sorbonne-University and IPLESP, Paris, France
| | - Chiraz Hamimi
- Faculty of Medicine Sorbonne-University, CIMI-Paris, UPMC/Inserm, Paris, France
| | - Ilse Van Den Wyngaert
- Discovery Sciences, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Filmon Eyassu
- Discovery Sciences, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Daniel Boden
- Janssen Infectious Diseases, A Division of Janssen Pharmaceutica NV, Brisbane, California, USA
| |
Collapse
|
5
|
Gotora PT, van der Sluis R, Williams ME. HIV-1 Tat amino acid residues that influence Tat-TAR binding affinity: a scoping review. BMC Infect Dis 2023; 23:164. [PMID: 36932337 PMCID: PMC10020771 DOI: 10.1186/s12879-023-08123-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
HIV-1 remains a global health concern and to date, nearly 38 million people are living with HIV. The complexity of HIV-1 pathogenesis and its subsequent prevalence is influenced by several factors including the HIV-1 subtype. HIV-1 subtype variation extends to sequence variation in the amino acids of the HIV-1 viral proteins. Of particular interest is the transactivation of transcription (Tat) protein due to its key function in viral transcription. The Tat protein predominantly functions by binding to the transactivation response (TAR) RNA element to activate HIV-1 transcriptional elongation. Subtype-specific Tat protein sequence variation influences Tat-TAR binding affinity. Despite several studies investigating Tat-TAR binding, it is not clear which regions of the Tat protein and/or individual Tat amino acid residues may contribute to TAR binding affinity. We, therefore, conducted a scoping review on studies investigating Tat-TAR binding. We aimed to synthesize the published data to determine (1) the regions of the Tat protein that may be involved in TAR binding, (2) key Tat amino acids involved in TAR binding and (3) if Tat subtype-specific variation influences TAR binding. A total of thirteen studies met our inclusion criteria and the key findings were that (1) both N-terminal and C-terminal amino acids outside the basic domain (47-59) may be important in increasing Tat-TAR binding affinity, (2) substitution of the amino acids Lysine and Arginine (47-59) resulted in a reduction in binding affinity to TAR, and (3) none of the included studies have investigated Tat subtype-specific substitutions and therefore no commentary could be made regarding which subtype may have a higher Tat-TAR binding affinity. Future studies investigating Tat-TAR binding should therefore use full-length Tat proteins and compare subtype-specific variations. Studies of such a nature may help explain why we see differential pathogenesis and prevalence when comparing HIV-1 subtypes.
Collapse
|
6
|
Ezeonwumelu IJ, García-Vidal E, Felip E, Puertas MC, Oriol-Tordera B, Gutiérrez-Chamorro L, Gohr A, Ruiz-Riol M, Massanella M, Clotet B, Martinez-Picado J, Badia R, Riveira-Muñoz E, Ballana E. IRF7 expression correlates with HIV latency reversal upon specific blockade of immune activation. Front Immunol 2022; 13:1001068. [PMID: 36131914 PMCID: PMC9484258 DOI: 10.3389/fimmu.2022.1001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The persistence of latent HIV reservoirs allows for viral rebound upon antiretroviral therapy interruption, hindering effective HIV-1 cure. Emerging evidence suggests that modulation of innate immune stimulation could impact viral latency and contribute to the clearing of HIV reservoir. Here, the latency reactivation capacity of a subclass of selective JAK2 inhibitors was characterized as a potential novel therapeutic strategy for HIV-1 cure. Notably, JAK2 inhibitors reversed HIV-1 latency in non-clonal lymphoid and myeloid in vitro models of HIV-1 latency and also ex vivo in CD4+ T cells from ART+ PWH, albeit its function was not dependent on JAK2 expression. Immunophenotypic characterization and whole transcriptomic profiling supported reactivation data, showing common gene expression signatures between latency reactivating agents (LRA; JAK2i fedratinib and PMA) in contrast to other JAK inhibitors, but with significantly fewer affected gene sets in the pathway analysis. In depth evaluation of differentially expressed genes, identified a significant upregulation of IRF7 expression despite the blockade of the JAK-STAT pathway and downregulation of proinflammatory cytokines and chemokines. Moreover, IRF7 expression levels positively correlated with HIV latency reactivation capacity of JAK2 inhibitors and also other common LRAs. Collectively, these results represent a promising step towards HIV eradication by demonstrating the potential of innate immune modulation for reducing the viral reservoir through a novel pathway driven by IRF7.
Collapse
Affiliation(s)
- Ifeanyi Jude Ezeonwumelu
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Edurne García-Vidal
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eudald Felip
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Medical Oncology Department, Catalan Institute of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria C. Puertas
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Bruna Oriol-Tordera
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Lucía Gutiérrez-Chamorro
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - André Gohr
- Scientific Computing Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Massanella
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Roger Badia
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eva Riveira-Muñoz
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ester Ballana
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
7
|
Chen J, Zhou T, Zhang Y, Luo S, Chen H, Chen D, Li C, Li W. The reservoir of latent HIV. Front Cell Infect Microbiol 2022; 12:945956. [PMID: 35967854 PMCID: PMC9368196 DOI: 10.3389/fcimb.2022.945956] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The persistence of latent reservoir of the human immunodeficiency virus (HIV) is currently the major challenge in curing HIV infection. After HIV infects the human body, the latent HIV is unable to be recognized by the body’s immune system. Currently, the widely adopted antiretroviral therapy (ART) is also unble to eliminate it, thus hindering the progress of HIV treatment. This review discusses the existence of latent HIV vault for HIV treatment, its formation and factors affecting its formation, cell, and tissue localization, methods for detection and removing latent reservoir, to provide a comprehensive understanding of latent HIV vault, in order to assist in the future research and play a potential role in achieving HIV treatment.
Collapse
Affiliation(s)
- Jing Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuan Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huan Chen
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuanyun Li, ; Weihua Li,
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuanyun Li, ; Weihua Li,
| |
Collapse
|
8
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
9
|
UHRF1 Suppresses HIV-1 Transcription and Promotes HIV-1 Latency by Competing with p-TEFb for Ubiquitination-Proteasomal Degradation of Tat. mBio 2021; 12:e0162521. [PMID: 34465029 PMCID: PMC8406157 DOI: 10.1128/mbio.01625-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
HIV-1 remains incurable due to viral reservoirs, which lead to durably latent HIV infection. Identifying novel host factors and deciphering the molecular mechanisms involved in the establishment and maintenance of latency are critical to discover new targets for the development of novel anti-HIV agents. Here, we show that ubiquitin-like with PHD and RING finger domain 1 (UHRF1) modulates HIV-1 5'-long terminal repeat (LTR)-driven transcription of the viral genome as a novel HIV-1 restriction factor. Correspondingly, UHRF1 depletion reversed the latency of HIV-1 proviruses. Mechanistically, UHRF1 competed with positive transcription factor b (p-TEFb) for the binding to the cysteine-rich motifs of HIV-1 Tat via its TTD, PHD, and RING finger domains. Furthermore, UHRF1 mediated K48-linked ubiquitination and proteasomal degradation of Tat in RING-dependent ways, leading to the disruption of Tat/cyclin T1/CDK9 complex and consequential impediment of transcription elongation. In summary, our findings revealed that UHRF1 is an important mediator of HIV-1 latency by controlling Tat-mediated transcriptional activation, providing novel insights on host-pathogen interaction for modulating HIV-1 latency, beneficial for the development of anti-AIDS therapies. IMPORTANCE HIV-1 latency is systematically modulated by host factors and viral proteins. In our work, we identified a critical role of host factor ubiquitin-like with PHD and RING finger domain 1 (UHRF1) in HIV-1 latency via the modulation of the viral protein Tat stability. By disrupting the Tat/cyclin T1/CDK9 complex, UHRF1 promotes the suppression of HIV-1 transcription and maintenance of HIV-1 latency. Our findings provide novel insights in controlling Tat expression via host-pathogen interaction for modulating HIV-1 latency. Based on our results, modulating UHRF1 expression or activity by specific inhibitors is a potential therapeutic strategy for latency reversal in HIV-1 patients.
Collapse
|
10
|
Khoury G, Lee MY, Ramarathinam SH, McMahon J, Purcell AW, Sonza S, Lewin SR, Purcell DFJ. The RNA-Binding Proteins SRP14 and HMGB3 Control HIV-1 Tat mRNA Processing and Translation During HIV-1 Latency. Front Genet 2021; 12:680725. [PMID: 34194479 PMCID: PMC8236859 DOI: 10.3389/fgene.2021.680725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/17/2021] [Indexed: 01/23/2023] Open
Abstract
HIV-1 Tat protein is essential for virus production. RNA-binding proteins that facilitate Tat production may be absent or downregulated in resting CD4+ T-cells, the main reservoir of latent HIV in people with HIV (PWH) on antiretroviral therapy (ART). In this study, we examined the role of Tat RNA-binding proteins on the expression of Tat and control of latent and productive infection. Affinity purification coupled with mass spectrometry analysis was used to detect binding partners of MS2-tagged tat mRNA in a T cell-line model of HIV latency. The effect of knockdown and overexpression of the proteins of interest on Tat transactivation and translation was assessed by luciferase-based reporter assays and infections with a dual color HIV reporter virus. Out of the 243 interactions identified, knockdown of SRP14 (Signal Recognition Particle 14) negatively affected tat mRNA processing and translation as well as Tat-mediated transactivation, which led to an increase in latent infection. On the other hand, knockdown of HMGB3 (High Mobility Group Box 3) resulted in an increase in Tat transactivation and translation as well as an increase in productive infection. Footprinting experiments revealed that SRP14 and HMGB3 proteins bind to TIM-TAM, a conserved RNA sequence-structure in tat mRNA that functions as a Tat IRES modulator of tat mRNA. Overexpression of SRP14 in resting CD4+ T-cells from patients on ART was sufficient to reverse HIV-1 latency and induce virus production. The role of SRP14 and HMGB3 proteins in controlling HIV Tat expression during latency will be further assessed as potential drug targets.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Michelle Y. Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Sri H. Ramarathinam
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - James McMahon
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Sharon R. Lewin
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Wang H, Song L, Zhou T, Zeng C, Jia Y, Zhao Y. A computational study of Tat-CDK9-Cyclin binding dynamics and its implication in transcription-dependent HIV latency. Phys Chem Chem Phys 2020; 22:25474-25482. [PMID: 33043947 DOI: 10.1039/d0cp03662e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
HIV is a virus that attacks the T cells. HIV may either actively replicate or become latent within host cells for years. Since HIV uses its own protein Tat to hijack the host CDK9-Cyclin complex for transcription, Tat is implicated in transcription-dependent HIV latency. To quantify the impact of Tat binding, we propose a computational framework to probe the dynamics of the CDK9-Cyclin interface and the ATP pocket reorganization upon binding by different Tat mutants. Specifically, we focus on mutations at three Tat residues P10, W11, and N12 that are known to interact directly with CDK9 based on the crystal structure of the Tat-CDK9-Cyclin complex. Our molecular dynamics simulations show that the CDK9-Cyclin interface becomes slightly weaker for P10S and W11R mutants but tighter for the K12N mutant. Furthermore, the side chain orientation of residue K48 in the ATP pocket of CDK9 is similar to the inactive state in P10S and W11R simulations, but similar to the active state in K12N simulations. These are consistent with some existing but puzzling observations of latency for these mutants. This framework may hence help gain a better understanding of the role of Tat in the transcription-dependent HIV latency establishment.
Collapse
Affiliation(s)
- Huiwen Wang
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China.
| | | | | | | | | | | |
Collapse
|
12
|
NF-κB-Interacting Long Noncoding RNA Regulates HIV-1 Replication and Latency by Repressing NF-κB Signaling. J Virol 2020; 94:JVI.01057-20. [PMID: 32581100 DOI: 10.1128/jvi.01057-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
NF-κB-interacting long noncoding RNA (NKILA) was recently identified as a negative regulator of NF-κB signaling and plays an important role in the development of various cancers. It is well known that NF-κB-mediated activation of human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR)-driven gene expression is required for HIV-1 transcription and reactivation of latency. However, whether NKILA plays essential roles in HIV-1 replication and latency is unclear. Here, by ectopic expression and silencing experiments, we demonstrate that NKILA potently inhibits HIV-1 replication in an NF-κB-dependent manner by suppressing HIV-1 LTR promoter activity. Moreover, NKILA showed broad-spectrum inhibition on the replication of HIV-1 clones with different coreceptor tropisms as well as on LTR activity of various HIV-1 clinical subtypes. Chromatin immunoprecipitation (ChIP) assays revealed that NKILA expression abolishes the recruitment of p65 to the duplicated κB binding sites in the HIV-1 LTR. NKILA mutants disrupting NF-κB inhibition also lost the ability to inhibit HIV-1 replication. Notably, HIV-1 infection or reactivation significantly downregulated NKILA expression in T cells in order to facilitate viral replication. Downregulated NKILA was mainly due to reduced acetylation of histone K27 on the promoter of NKILA by HIV-1 infection, which blocks NKILA expression. Knockdown of NKILA promoted the reactivation of latent HIV-1 upon phorbol myristate acetate (PMA) stimulation, while ectopic NKILA suppressed the reactivation in a well-established clinical model of withdrawal of azidothymidine (AZT) in vitro These findings improve our understanding of the functional suppression of HIV-1 replication and latency by NKILA through NF-κB signaling.IMPORTANCE The NF-κB pathway plays key roles in HIV-1 replication and reactivation of HIV-1 latency. A regulator inhibiting NF-κB activation may be a promising therapeutic strategy against HIV-1. Recently, NF-κB-interacting long noncoding RNA (NKILA) was identified to suppress the development of different human cancers by inhibiting IκB kinase (IKK)-induced IκB phosphorylation and NF-κB pathway activation, whereas the relationship between NKILA and HIV-1 replication is still unknown. Here, our results show that NKILA inhibits HIV-1 replication and reactivation by suppressing HIV-1 long terminal repeat (LTR)-driven transcription initiation. Moreover, NKILA inhibited the replication of HIV-1 clones with different coreceptor tropisms. This project may reveal a target for the development of novel anti-HIV drugs.
Collapse
|
13
|
Khoury G, Mackenzie C, Ayadi L, Lewin SR, Branlant C, Purcell DFJ. Tat IRES modulator of tat mRNA (TIM-TAM): a conserved RNA structure that controls Tat expression and acts as a switch for HIV productive and latent infection. Nucleic Acids Res 2020; 48:2643-2660. [PMID: 31875221 PMCID: PMC7049722 DOI: 10.1093/nar/gkz1181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
Tat protein is essential to fully activate HIV transcription and processing of viral mRNA, and therefore determines virus expression in productive replication and the establishment and maintenance of latent infection. Here, we used thermodynamic and structure analyses to define a highly conserved sequence-structure in tat mRNA that functions as Tat IRES modulator of tat mRNA (TIM-TAM). By impeding cap-dependent ribosome progression during authentic spliced tat mRNA translation, TIM-TAM stable structure impacts on timing and level of Tat protein hence controlling HIV production and infectivity along with promoting latency. TIM-TAM also adopts a conformation that mediates Tat internal ribosome entry site (IRES)-dependent translation during the early phases of infection before provirus integration. Our results document the critical role of TIM-TAM in Tat expression to facilitate virus reactivation from latency, with implications for HIV treatment and drug development.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia.,Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Charlene Mackenzie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Lilia Ayadi
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria 3010, Australia
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
14
|
Khan N, Chen X, Geiger JD. Role of Divalent Cations in HIV-1 Replication and Pathogenicity. Viruses 2020; 12:E471. [PMID: 32326317 PMCID: PMC7232465 DOI: 10.3390/v12040471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 12/22/2022] Open
Abstract
Divalent cations are essential for life and are fundamentally important coordinators of cellular metabolism, cell growth, host-pathogen interactions, and cell death. Specifically, for human immunodeficiency virus type-1 (HIV-1), divalent cations are required for interactions between viral and host factors that govern HIV-1 replication and pathogenicity. Homeostatic regulation of divalent cations' levels and actions appear to change as HIV-1 infection progresses and as changes occur between HIV-1 and the host. In people living with HIV-1, dietary supplementation with divalent cations may increase HIV-1 replication, whereas cation chelation may suppress HIV-1 replication and decrease disease progression. Here, we review literature on the roles of zinc (Zn2+), iron (Fe2+), manganese (Mn2+), magnesium (Mg2+), selenium (Se2+), and copper (Cu2+) in HIV-1 replication and pathogenicity, as well as evidence that divalent cation levels and actions may be targeted therapeutically in people living with HIV-1.
Collapse
Affiliation(s)
| | | | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA; (N.K.); (X.C.)
| |
Collapse
|
15
|
Ajasin D, Eugenin EA. HIV-1 Tat: Role in Bystander Toxicity. Front Cell Infect Microbiol 2020; 10:61. [PMID: 32158701 PMCID: PMC7052126 DOI: 10.3389/fcimb.2020.00061] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
HIV Tat protein is a critical protein that plays multiple roles in HIV pathogenesis. While its role as the transactivator of HIV transcription is well-established, other non-viral replication-associated functions have been described in several HIV-comorbidities even in the current antiretroviral therapy (ART) era. HIV Tat protein is produced and released into the extracellular space from cells with active HIV replication or from latently HIV-infected cells into neighboring uninfected cells even in the absence of active HIV replication and viral production due to effective ART. Neighboring uninfected and HIV-infected cells can take up the released Tat resulting in the upregulation of inflammatory genes and activation of pathways that leads to cytotoxicity observed in several comorbidities such as HIV associated neurocognitive disorder (HAND), HIV associated cardiovascular impairment, and accelerated aging. Thus, understanding how Tat modulates host and viral response is important in designing novel therapeutic approaches to target the chronic inflammatory effects of soluble viral proteins in HIV infection.
Collapse
Affiliation(s)
- David Ajasin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
16
|
Rezaei T, Khalili S, Baradaran B, Mosafer J, Rezaei S, Mokhtarzadeh A, de la Guardia M. Recent advances on HIV DNA vaccines development: Stepwise improvements to clinical trials. J Control Release 2019; 316:116-137. [PMID: 31669566 DOI: 10.1016/j.jconrel.2019.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023]
Abstract
According to WHO (World Health Organization) reports, more than 770,000 people died from HIV and almost 1.7 million people becoming newly infected in the worldwide in 2018. Therefore, many attempts should be done to produce a forceful vaccine to control the AIDS. DNA-based vaccines have been investigated for HIV vaccination by researches during the recent 20 years. The DNA vaccines are novel approach for induction of both type of immune responses (cellular and humoral) in the host cells and have many advantages including high stability, fast and easy of fabrication and absence of severe side effects when compared with other vaccination methods. Recent studies have been focused on vaccine design, immune responses and on the use of adjuvants as a promising strategy for increased level of responses, delivery approaches by viral and non-viral methods and vector design for different antigens of HIV virus. In this review, we outlined the aforementioned advances on HIV DNA vaccines. Then we described the future trends in clinical trials as a strong strategy even in healthy volunteers and the potential developments in control and prevention of HIV.
Collapse
Affiliation(s)
- Tayebeh Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Faculty of Sciences, Shahid Rajee Teacher Training University, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Sarah Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
17
|
Gagne M, Michaels D, Schiralli Lester GM, Gummuluru S, Wong WW, Henderson AJ. Strength of T cell signaling regulates HIV-1 replication and establishment of latency. PLoS Pathog 2019; 15:e1007802. [PMID: 31116788 PMCID: PMC6548398 DOI: 10.1371/journal.ppat.1007802] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/04/2019] [Accepted: 04/30/2019] [Indexed: 01/27/2023] Open
Abstract
A major barrier to curing HIV-1 is the long-lived latent reservoir that supports re-emergence of HIV-1 upon treatment interruption. Targeting this reservoir will require mechanistic insights into the establishment and maintenance of HIV-1 latency. Whether T cell signaling at the time of HIV-1 infection influences productive replication or latency is not fully understood. We used a panel of chimeric antigen receptors (CARs) with different ligand binding affinities to induce a range of signaling strengths to model differential T cell receptor signaling at the time of HIV-1 infection. Stimulation of T cell lines or primary CD4+ T cells expressing chimeric antigen receptors supported HIV-1 infection regardless of affinity for ligand; however, only signaling by the highest affinity receptor facilitated HIV-1 expression. Activation of chimeric antigen receptors that had intermediate and low binding affinities did not support provirus transcription, suggesting that a minimal signal is required for optimal HIV-1 expression. In addition, strong signaling at the time of infection produced a latent population that was readily inducible, whereas latent cells generated in response to weaker signals were not easily reversed. Chromatin immunoprecipitation showed HIV-1 transcription was limited by transcriptional elongation and that robust signaling decreased the presence of negative elongation factor, a pausing factor, by more than 80%. These studies demonstrate that T cell signaling influences HIV-1 infection and the establishment of different subsets of latently infected cells, which may have implications for targeting the HIV-1 reservoir.
Collapse
Affiliation(s)
- Matthew Gagne
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Daniel Michaels
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
- Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, United States of America
| | - Gillian M. Schiralli Lester
- Department of Pediatrics, Neonatology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Wilson W. Wong
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - Andrew J. Henderson
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
- Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, United States of America
| |
Collapse
|
18
|
Aguilera LU, Rodríguez-González J. Modeling the effect of tat inhibitors on HIV latency. J Theor Biol 2019; 473:20-27. [PMID: 31004612 DOI: 10.1016/j.jtbi.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
Abstract
Even in the presence of a successful combination therapy stalling the progress of AIDS, developing a cure for this disease is still an open question. One of the major steps towards a cure would be to be able to eradicate latent HIV reservoirs present in patients. During the last decade, multiple findings point to the dominant role of the viral protein Tat in the establishment of latency. Here we present a mathematical study to understand the potential role of Tat inhibitors as virus-suppressing agents. For this aim, we implemented a computational model that reproduces intracellular dynamics. Simulating an HIV-infected cell and its intracellular feedback we observed that removing Tat protein from the system via inhibitors resulted in a temporary and reversible viral suppression. In contrast, we observed that compounds that interact with Tat protein and disrupt the integrated viral genome produced a more permanent viral suppression.
Collapse
Affiliation(s)
- Luis U Aguilera
- Department of Modeling of Biological Processes, COS Heidelberg / Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg 69120, Germany; Colorado State University
| | - Jesús Rodríguez-González
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Via del Conocimiento 201, Parque PIIT, Apodaca CP 66600 NL, México.
| |
Collapse
|
19
|
Li C, Mousseau G, Valente ST. Tat inhibition by didehydro-Cortistatin A promotes heterochromatin formation at the HIV-1 long terminal repeat. Epigenetics Chromatin 2019; 12:23. [PMID: 30992052 PMCID: PMC6466689 DOI: 10.1186/s13072-019-0267-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcription from the integrated HIV-1 promoter is directly governed by its chromatin environment, and the nucleosome-1 downstream from the transcription start site directly impedes transcription from the HIV-1 promoter. The HIV-1 Tat protein regulates the passage from viral latency to active transcription by binding to the viral mRNA hairpin (TAR) and recruiting transcriptional factors to promote transcriptional elongation. The Tat inhibitor didehydro-Cortistatin A (dCA) inhibits transcription and overtime, the lack of low-grade transcriptional events, triggers epigenetic changes at the latent loci that "lock" HIV transcription in a latent state. RESULTS Here we investigated those epigenetic changes using multiple cell line models of HIV-1 latency and active transcription. We demonstrated that dCA treatment does not alter the classic nucleosome positioning at the HIV-1 promoter, but promotes tighter nucleosome/DNA association correlating with increased deacetylated H3 occupancy at nucleosome-1. Recruitment of the SWI/SNF chromatin remodeling complex PBAF, necessary for Tat-mediated transactivation, is also inhibited, while recruitment of the repressive BAF complex is enhanced. These results were supported by loss of RNA polymerase II recruitment on the HIV genome, even during strong stimulation with latency-reversing agents. No epigenetic changes were detected in cell line models of latency with Tat-TAR incompetent proviruses confirming the specificity of dCA for Tat. CONCLUSIONS We characterized the dCA-mediated epigenetic signature on the HIV genome, which translates into potent blocking effects on HIV expression, further strengthening the potential of Tat inhibitors in "block-and-lock" functional cure approaches.
Collapse
Affiliation(s)
- Chuan Li
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Guillaume Mousseau
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
20
|
Hashemi P, Barreto K, Bernhard W, Lomness A, Honson N, Pfeifer TA, Harrigan PR, Sadowski I. Compounds producing an effective combinatorial regimen for disruption of HIV-1 latency. EMBO Mol Med 2019; 10:160-174. [PMID: 29246970 PMCID: PMC5838563 DOI: 10.15252/emmm.201708193] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) has improved the outlook for the HIV epidemic, but does not provide a cure. The proposed “shock‐and‐kill” strategy is directed at inducing latent HIV reservoirs, which may then be purged via boosted immune response or targeting infected cells. We describe five novel compounds that are capable of reversing HIV latency without affecting the general T‐cell activation state. The new compounds exhibit synergy for reactivation of latent provirus with other latency‐reversing agents (LRAs), in particular ingenol‐3‐angelate/PEP005. One compound, designated PH02, was efficient at reactivating viral transcription in several cell lines bearing reporter HIV‐1 at different integration sites. Furthermore, it was capable of reversing latency in resting CD4+ T lymphocytes from latently infected aviremic patient cells on HAART, while producing minimal cellular toxicity. The combination of PH02 and PEP005 produces a strong synergistic effect for reactivation, as demonstrated through a quantitative viral outgrowth assay (qVOA), on CD4+ T lymphocytes from HIV‐1‐infected individuals. We propose that the PH02/PEP005 combination may represent an effective novel treatment for abrogating persistent HIV‐1 infection.
Collapse
Affiliation(s)
- Pargol Hashemi
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Kris Barreto
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Wendy Bernhard
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Adam Lomness
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Nicolette Honson
- The Centre for Drug Research and Development, Vancouver, BC, Canada
| | - Tom A Pfeifer
- The Centre for Drug Research and Development, Vancouver, BC, Canada
| | - P Richard Harrigan
- BC Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, BC, Canada
| | - Ivan Sadowski
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Vanhamel J, Bruggemans A, Debyser Z. Establishment of latent HIV-1 reservoirs: what do we really know? J Virus Erad 2019; 5:3-9. [PMID: 30800420 PMCID: PMC6362902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite our ability to suppress HIV-1 replication indefinitely in people on optimal combined antiretroviral therapy (cART), HIV-1 persists as a stably integrated and replication-competent provirus in a heterogeneous collection of long-lived cells (often referred to as 'latent reservoirs') in all individuals on treatment. Reactivation of these latent proviruses is believed to be responsible for the rebound viraemia that can be seen in nearly all people following treatment cessation. Hence, the persistence of HIV-1 in latent reservoirs remains one of the greatest challenges in current HIV cure research. Latent HIV-1 reservoirs are established early during the acute phase of the infection, possibly before the virus appears in the systemic circulation. As well as the issue of timing, we review the proposed hypotheses on the mechanisms by which this latent state is believed to be established early in the course of the infection and the effect of early initiation of cART on the size and stability of these reservoirs. We conclude that prevention of the establishment of latent HIV-1 reservoirs by even extremely early initiation of cART proves to be practically impossible. However, early treatment initiation remains one of the crucial interventions needed to achieve the ultimate goal of a functional cure for HIV-1 infection because of its ability to reduce the overall size of HIV-1 reservoirs. Together with other interventions, early cART initiation may thus eventually lead to a state of better control over the residual amount of virus in the body, allowing people to stay off treatment for prolonged periods of time.
Collapse
Affiliation(s)
- Jef Vanhamel
- Center for Molecular Medicine,
University of Leuven,
Leuven,
Belgium
| | - Anne Bruggemans
- Center for Molecular Medicine,
University of Leuven,
Leuven,
Belgium
| | - Zeger Debyser
- Center for Molecular Medicine,
University of Leuven,
Leuven,
Belgium
| |
Collapse
|
22
|
|
23
|
Yavuz B, Morgan JL, Showalter L, Horng KR, Dandekar S, Herrera C, LiWang P, Kaplan DL. Pharmaceutical Approaches to HIV Treatment and Prevention. ADVANCED THERAPEUTICS 2018; 1:1800054. [PMID: 32775613 PMCID: PMC7413291 DOI: 10.1002/adtp.201800054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) infection continues to pose a major infectious disease threat worldwide. It is characterized by the depletion of CD4+ T cells, persistent immune activation, and increased susceptibility to secondary infections. Advances in the development of antiretroviral drugs and combination antiretroviral therapy have resulted in a remarkable reduction in HIV-associated morbidity and mortality. Antiretroviral therapy (ART) leads to effective suppression of HIV replication with partial recovery of host immune system and has successfully transformed HIV infection from a fatal disease to a chronic condition. Additionally, antiretroviral drugs have shown promise for prevention in HIV pre-exposure prophylaxis and treatment as prevention. However, ART is unable to cure HIV. Other limitations include drug-drug interactions, drug resistance, cytotoxic side effects, cost, and adherence. Alternative treatment options are being investigated to overcome these challenges including discovery of new molecules with increased anti-viral activity and development of easily administrable drug formulations. In light of the difficulties associated with current HIV treatment measures, and in the continuing absence of a cure, the prevention of new infections has also arisen as a prominent goal among efforts to curtail the worldwide HIV pandemic. In this review, the authors summarize currently available anti-HIV drugs and their combinations for treatment, new molecules under clinical development and prevention methods, and discuss drug delivery formats as well as associated challenges and alternative approaches for the future.
Collapse
Affiliation(s)
- Burcin Yavuz
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| | - Jessica L Morgan
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Laura Showalter
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Katti R Horng
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Carolina Herrera
- Department of Medicine St. Mary's Campus Imperial College Room 460 Norfolk Place, London W2 1PG, UK
| | - Patricia LiWang
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
24
|
Kandathil AJ, Sugawara S, Goyal A, Durand CM, Quinn J, Sachithanandham J, Cameron AM, Bailey JR, Perelson AS, Balagopal A. No recovery of replication-competent HIV-1 from human liver macrophages. J Clin Invest 2018; 128:4501-4509. [PMID: 30198905 PMCID: PMC6159970 DOI: 10.1172/jci121678] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
Long-lived HIV-1 reservoirs that persist despite antiretroviral therapy (ART) are a major impediment to a cure for HIV-1. We examined whether human liver macrophages (LMs), the largest tissue macrophage population, comprise an HIV-1 reservoir. We purified LMs from liver explants and included treatment with a T cell immunotoxin to reduce T cells to 1% or less. LMs were purified from 9 HIV-1-infected persons, 8 of whom were on ART (range 8-140 months). Purified LMs were stimulated ex vivo and supernatants from 6 of 8 LMs from persons on ART transmitted infection. However, HIV-1 propagation from LMs was not sustained except in LMs from 1 person taking ART for less than 1 year. Bulk liver sequences matched LM-derived HIV-1 in 5 individuals. Additional in vitro experiments undertaken to quantify the decay of HIV-1-infected LMs from 3 healthy controls showed evidence of infection and viral release for prolonged durations (>170 days). Released HIV-1 propagated robustly in target cells, demonstrating that viral outgrowth was observable using our methods. The t1/2 of HIV-1-infected LMs ranged from 3.8-55 days. These findings suggest that while HIV-1 persists in LMs during ART, it does so in forms that are inert, suggesting that they are defective or restricted with regard to propagation.
Collapse
Affiliation(s)
| | - Sho Sugawara
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ashish Goyal
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Jeffrey Quinn
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Andrew M. Cameron
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Justin R. Bailey
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Ashwin Balagopal
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R. Barriers for HIV Cure: The Latent Reservoir. AIDS Res Hum Retroviruses 2018; 34:739-759. [PMID: 30056745 PMCID: PMC6152859 DOI: 10.1089/aid.2018.0118] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thirty-five years after the identification of HIV-1 as the causative agent of AIDS, we are still in search of vaccines and treatments to eradicate this devastating infectious disease. Progress has been made in understanding the molecular pathogenesis of this infection, which has been crucial for the development of the current therapy regimens. However, despite their efficacy at limiting active viral replication, these drugs are unable to purge the latent reservoir: a pool of cells that harbor transcriptionally inactive, but replication-competent HIV-1 proviruses, and that represent the main barrier to eradicate HIV-1 from affected individuals. In this review, we discuss advances in the field that have allowed a better understanding of HIV-1 latency, including the diverse cell types that constitute the latent reservoir, factors influencing latency, tools to study HIV-1 latency, as well as current and prospective therapeutic approaches to target these latently infected cells, so a functional cure for HIV/AIDS can become a reality.
Collapse
Affiliation(s)
- Sergio Castro-Gonzalez
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| | - Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Ruth Serra-Moreno
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| |
Collapse
|
26
|
Vargas-Garcia C, Zurakowski R, Singh A. Synaptic transmission may provide an evolutionary benefit to HIV through modulation of latency. J Theor Biol 2018; 455:261-268. [PMID: 30048721 DOI: 10.1016/j.jtbi.2018.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 06/06/2018] [Accepted: 07/22/2018] [Indexed: 10/28/2022]
Abstract
Transmission of HIV is known to occur by two mechanisms in vivo: the free virus pathway, where viral particles bud off an infected cell before attaching to an uninfected cell, and the cell-cell pathway, where infected cells form virological synapses through close contact with an uninfected cell. It has also been shown that HIV replication includes a positive feedback loop controlled by the viral protein Tat, which may act as a stochastic switch in determining whether an infected cell enters latency. In this paper, we introduce a simple mathematical model of HIV replication containing both the free virus and cell-cell pathways. Using this model, we demonstrate that the high multiplicity of infection in cell-cell transmission results in a suppression of latent infection, and that this modulation of latency through balancing the two transmission mechanisms can provide an evolutionary benefit to the virus. This benefit increases with decreasing overall viral fitness, which may provide a within-host evolutionary pressure toward more cell-cell transmission in late-stage HIV infection.
Collapse
Affiliation(s)
| | | | - Abhyudai Singh
- Department of Electrical and Computer Engineering, Biomedical Engineering, Mathematical Sciences, University of Delaware, Newark DE 19716, USA.
| |
Collapse
|
27
|
Abstract
BACKGROUND The viral transactivator Tat protein is a key modulator of HIV-1 replication, as it regulates transcriptional elongation from the integrated proviral genome. Tat recruits the human transcription elongation factor b, and other host proteins, such as the super elongation complex, to activate the cellular RNA polymerase II, normally stalled shortly after transcription initiation at the HIV promoter. By means of a complex set of interactions with host cellular factors, Tat determines the fate of viral activity within the infected cell. The virus will either actively replicate to promote dissemination in blood and tissues, or become dormant mostly in memory CD4+ T cells, as part of a small but long-living latent reservoir, the main obstacle for HIV eradication. OBJECTIVE In this review, we summarize recent advances in the understanding of the multi-step mechanism that regulates Tat-mediated HIV-1 transcription and RNA polymerase II release, to promote viral transcription elongation. Early events of the human transcription elongation factor b release from the inhibitory 7SK small nuclear ribonucleoprotein complex and its recruitment to the HIV promoter will be discussed. Specific roles of the super elongation complex subunits during transcription elongation, and insight on recently identified cellular factors and mechanisms regulating HIV latency will be detailed. CONCLUSION Understanding the complexity of HIV transcriptional regulation by host factors may open the door for development of novel strategies to eradicate the resilient latent reservoir.
Collapse
Affiliation(s)
- Guillaume Mousseau
- The Scripps Research Institute, Department of Immunology and Microbiology, 130 Scripps Way, Jupiter, FL 33458. United States
| | - Susana T Valente
- The Scripps Research Institute, Department of Immunology and Microbiology, 130 Scripps Way, Jupiter, FL 33458. United States
| |
Collapse
|
28
|
Xu M, Moresco JJ, Chang M, Mukim A, Smith D, Diedrich JK, Yates JR, Jones KA. SHMT2 and the BRCC36/BRISC deubiquitinase regulate HIV-1 Tat K63-ubiquitylation and destruction by autophagy. PLoS Pathog 2018; 14:e1007071. [PMID: 29791506 PMCID: PMC5988312 DOI: 10.1371/journal.ppat.1007071] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/05/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
HIV-1 Tat is a key regulator of viral transcription, however little is known about the mechanisms that control its turnover in T cells. Here we use a novel proteomics technique, called DiffPOP, to identify the molecular target of JIB-04, a small molecule compound that potently and selectively blocks HIV-1 Tat expression, transactivation, and virus replication in T cell lines. Mass-spectrometry analysis of whole-cell extracts from 2D10 Jurkat T cells revealed that JIB-04 targets Serine Hydroxymethyltransferase 2 (SHMT2), a regulator of glycine biosynthesis and an adaptor for the BRCC36 K63Ub-specific deubiquitinase in the BRISC complex. Importantly, knockdown of SHMT1,2 or BRCC36, or exposure of cells to JIB-04, strongly increased Tat K63Ub-dependent destruction via autophagy. Moreover, point mutation of multiple lysines in Tat, or knockdown of BRCC36 or SHMT1,2, was sufficient to prevent destruction of Tat by JIB-04. We conclude that HIV-1 Tat levels are regulated through K63Ub-selective autophagy mediated through SHMT1,2 and the BRCC36 deubiquitinase.
Collapse
Affiliation(s)
- Muyu Xu
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States of America
| | - James J. Moresco
- Mass Spectrometry Core for Proteomics and Metabolomics, The Salk Institute for Biological Studies, La Jolla, CA, United States of America
| | - Max Chang
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, United States of America
| | - Amey Mukim
- Division of Infectious Diseases, University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Davey Smith
- Division of Infectious Diseases, University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Jolene K. Diedrich
- Mass Spectrometry Core for Proteomics and Metabolomics, The Salk Institute for Biological Studies, La Jolla, CA, United States of America
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, United States of America
| | - John R. Yates
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, United States of America
| | - Katherine A. Jones
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
29
|
Mele AR, Marino J, Chen K, Pirrone V, Janetopoulos C, Wigdahl B, Klase Z, Nonnemacher MR. Defining the molecular mechanisms of HIV-1 Tat secretion: PtdIns(4,5)P 2 at the epicenter. Traffic 2018; 19:10.1111/tra.12578. [PMID: 29708629 PMCID: PMC6207469 DOI: 10.1111/tra.12578] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/18/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat) protein functions both intracellularly and extracellularly. Intracellularly, the main function is to enhance transcription of the viral promoter. However, this process only requires a small amount of intracellular Tat. The majority of Tat is secreted through an unconventional mechanism by binding to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2 ), a phospholipid in the inner leaflet of the plasma membrane that is required for secretion. This interaction is mediated by the basic domain of Tat (residues 48-57) and a conserved tryptophan (residue 11). After binding to PtdIns(4,5)P2 , Tat secretion diverges into multiple pathways, which we categorized as oligomerization-mediated pore formation, spontaneous translocation and incorporation into exosomes. Extracellular Tat has been shown to be neurotoxic and toxic to other cells of the central nervous system (CNS) and periphery, able to recruit immune cells to the CNS and cerebrospinal fluid, and alter the gene expression and morphology of uninfected cells. The effects of extracellular Tat have been examined in HIV-1-associated neurocognitive disorders (HAND); however, only a small number of studies have focused on the mechanisms underlying Tat secretion. In this review, the molecular mechanisms of Tat secretion will be examined in a variety of biologically relevant cell types.
Collapse
Affiliation(s)
- Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Jamie Marino
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Kenneth Chen
- Department of Biology, University of the Sciences, Philadelphia, Pennsylvania
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Chris Janetopoulos
- Department of Biology, University of the Sciences, Philadelphia, Pennsylvania
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zachary Klase
- Department of Biology, University of the Sciences, Philadelphia, Pennsylvania
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Cafaro A, Sgadari C, Picconi O, Tripiciano A, Moretti S, Francavilla V, Pavone Cossut MR, Buttò S, Cozzone G, Ensoli F, Monini P, Ensoli B. "cART intensification by the HIV-1 Tat B clade vaccine: progress to phase III efficacy studies". Expert Rev Vaccines 2017; 17:115-126. [PMID: 29243498 DOI: 10.1080/14760584.2018.1418666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION In spite of its success at suppressing HIV replication, combination antiretroviral therapy (cART) only partially reduces immune dysregulation and loss of immune functions. These cART-unmet needs appear to be due to persistent virus replication and cell-to-cell transmission in reservoirs, and are causes of increased patients' morbidity and mortality. Up to now, therapeutic interventions aimed at cART-intensification by attacking the virus reservoir have failed. AREAS COVERED We briefly review the rationale and clinical development of Tat therapeutic vaccine in cART-treated subjects in Italy and South Africa (SA). Vaccination with clade-B Tat induced cross-clade neutralizing antibodies, immune restoration, including CD4+ T cell increase particularly in low immunological responders, and reduction of proviral DNA. Phase III efficacy trials in SA are planned both in adult and pediatric populations. EXPERT COMMENTARY We propose the Tat therapeutic vaccine as a pathogenesis-driven intervention that effectively intensifies cART and may lead to a functional cure and provide new perspectives for prevention and virus eradication strategies.
Collapse
Affiliation(s)
- Aurelio Cafaro
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| | - Cecilia Sgadari
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| | - Orietta Picconi
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| | - Antonella Tripiciano
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| | - Sonia Moretti
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| | - Vittorio Francavilla
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| | | | - Stefano Buttò
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| | | | - Fabrizio Ensoli
- b Laboratory of Clinical Pathology and Microbiology, San Gallicano Institute , Istituti Fisioterapici Ospitalieri , Rome , Italy
| | - Paolo Monini
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| | - Barbara Ensoli
- a National HIV/AIDS Research Center , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
31
|
Advancements in Developing Strategies for Sterilizing and Functional HIV Cures. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6096134. [PMID: 28529952 PMCID: PMC5424177 DOI: 10.1155/2017/6096134] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022]
Abstract
Combined antiretroviral therapy (cART) has been successful in prolonging lifespan and reducing mortality of patients infected with human immunodeficiency virus (HIV). However, the eradication of latent HIV reservoirs remains a challenge for curing HIV infection (HIV cure) because of HIV latency in primary memory CD4+ T cells. Currently, two types of HIV cures are in development: a “sterilizing cure” and a “functional cure.” A sterilizing cure refers to the complete elimination of replication-competent proviruses in the body, while a functional cure refers to the long-term control of HIV replication without treatment. Based on these concepts, significant progress has been made in different areas. This review focuses on recent advancements and future prospects for HIV cures.
Collapse
|
32
|
Romani B, Allahbakhshi E. Underlying mechanisms of HIV-1 latency. Virus Genes 2017; 53:329-339. [PMID: 28258391 DOI: 10.1007/s11262-017-1443-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/27/2017] [Indexed: 02/07/2023]
Abstract
Similarly to other retroviruses, HIV-1 integrates its genome into the cellular chromosome. Expression of viral genes from the integrated viral DNA could then be regulated by the host genome. If the infected cell suppresses viral gene expression, the virus will undergo latency. The latently infected cells cannot be detected or cleared by the immune system since they do not express viral antigens. These cells remain undetected for several years, even under antiretroviral treatments. The silenced HIV-1 DNA could be reactivated under certain conditions. Despite the efficient use of antiretroviral drugs, HIV-1 latently infected cells remain the major obstacles to a permanent cure. In this review, we discuss the cellular and molecular mechanisms through which HIV-1 establishes latency.
Collapse
Affiliation(s)
- Bizhan Romani
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), 61357-15794, Ahvaz, Iran.,Department of Biology, Faculty of Science, University of Isfahan, 81746-73441, Isfahan, Iran
| | - Elham Allahbakhshi
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), 61357-15794, Ahvaz, Iran.
| |
Collapse
|
33
|
Kamori D, Ueno T. HIV-1 Tat and Viral Latency: What We Can Learn from Naturally Occurring Sequence Variations. Front Microbiol 2017; 8:80. [PMID: 28194140 PMCID: PMC5276809 DOI: 10.3389/fmicb.2017.00080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/11/2017] [Indexed: 01/25/2023] Open
Abstract
Despite the effective use of antiretroviral therapy, the remainder of a latently HIV-1-infected reservoir mainly in the resting memory CD4+ T lymphocyte subset has provided a great setback toward viral eradication. While host transcriptional silencing machinery is thought to play a dominant role in HIV-1 latency, HIV-1 protein such as Tat, may affect both the establishment and the reversal of latency. Indeed, mutational studies have demonstrated that insufficient Tat transactivation activity can result in impaired transcription of viral genes and the establishment of latency in cell culture experiments. Because Tat protein is one of highly variable proteins within HIV-1 proteome, it is conceivable that naturally occurring Tat mutations may differentially modulate Tat functions, thereby influencing the establishment and/or the reversal of viral latency in vivo. In this mini review, we summarize the recent findings of Tat naturally occurring polymorphisms associating with host immune responses and we highlight the implication of Tat sequence variations in relation to HIV latency.
Collapse
Affiliation(s)
- Doreen Kamori
- Center for AIDS Research, Kumamoto University Kumamoto, Japan
| | - Takamasa Ueno
- Center for AIDS Research, Kumamoto UniversityKumamoto, Japan; International Research Center for Medical Sciences, Kumamoto UniversityKumamoto, Japan
| |
Collapse
|
34
|
Tsunetsugu-Yokota Y, Kobayahi-Ishihara M, Wada Y, Terahara K, Takeyama H, Kawana-Tachikawa A, Tokunaga K, Yamagishi M, Martinez JP, Meyerhans A. Homeostatically Maintained Resting Naive CD4 + T Cells Resist Latent HIV Reactivation. Front Microbiol 2016; 7:1944. [PMID: 27990142 PMCID: PMC5130990 DOI: 10.3389/fmicb.2016.01944] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/18/2016] [Indexed: 02/03/2023] Open
Abstract
Homeostatic proliferation (HSP) is a major mechanism by which long-lived naïve and memory CD4+ T cells are maintained in vivo and suggested to contribute to the persistence of the latent HIV-1 reservoir. However, while many in vitro latency models rely on CD4+ T cells that were initially differentiated via T-cell receptor (TCR) stimulation into memory/effector cells, latent infection of naïve resting CD4+ T cells maintained under HSP conditions has not been fully addressed. Here, we describe an in vitro HSP culture system utilizing the cytokines IL-7 and IL-15 that allows studying latency in naïve resting CD4+ T cells. CD4+ T cells isolated from several healthy donors were infected with HIV pseudotypes expressing GFP and cultured under HSP conditions or TCR conditions as control. Cell proliferation, phenotype, and GFP expression were analyzed by flow cytometry. RNA expression was quantified by qRT-PCR. Under HSP culture conditions, latently HIV-1 infected naïve cells are in part maintained in the non-dividing (= resting) state. Although a few HIV-1 provirus+ cells were present in these resting GFP negative cells, the estimated level of GFP transcripts per infected cell seems to indicate a block at the post-transcriptional level. Interestingly, neither TCR nor the prototypic HDAC inhibitor SAHA were able to reactivate HIV-1 provirus from these cells. This lack of reactivation was not due to methylation of the HIV LTR. These results point to a mechanism of HIV control in HSP-cultured resting naïve CD4+ T cells that may be distinct from that in TCR-stimulated memory/effector T cells.
Collapse
Affiliation(s)
- Yasuko Tsunetsugu-Yokota
- Department of Medical Technology, School of Human Sciences, Tokyo University of TechnologyTokyo, Japan; Department of Immunology, National Institute of Infectious DiseasesTokyo, Japan
| | | | - Yamato Wada
- Department of Immunology, National Institute of Infectious DiseasesTokyo, Japan; Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda UniversityTokyo, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases Tokyo, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases Tokyo, Japan
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases Tokyo, Japan
| | - Makoto Yamagishi
- Graduate School of Frontier Sciences, University of Tokyo Tokyo, Japan
| | - Javier P Martinez
- Infection Biology Group, Department of Experimental and Health Sciences, University Pompeu Fabra Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Group, Department of Experimental and Health Sciences, University Pompeu FabraBarcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, Spain
| |
Collapse
|
35
|
HIV Cell-to-Cell Spread Results in Earlier Onset of Viral Gene Expression by Multiple Infections per Cell. PLoS Pathog 2016; 12:e1005964. [PMID: 27812216 PMCID: PMC5094736 DOI: 10.1371/journal.ppat.1005964] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023] Open
Abstract
Cell-to-cell spread of HIV, a directed mode of viral transmission, has been observed to be more rapid than cell-free infection. However, a mechanism for earlier onset of viral gene expression in cell-to-cell spread was previously uncharacterized. Here we used time-lapse microscopy combined with automated image analysis to quantify the timing of the onset of HIV gene expression in a fluorescent reporter cell line, as well as single cell staining for infection over time in primary cells. We compared cell-to-cell spread of HIV to cell-free infection, and limited both types of transmission to a two-hour window to minimize differences due to virus transit time to the cell. The mean time to detectable onset of viral gene expression in cell-to-cell spread was accelerated by 19% in the reporter cell line and by 35% in peripheral blood mononuclear cells relative to cell-free HIV infection. Neither factors secreted by infected cells, nor contact with infected cells in the absence of transmission, detectably changed onset. We recapitulated the earlier onset by infecting with multiple cell-free viruses per cell. Surprisingly, the acceleration in onset of viral gene expression was not explained by cooperativity between infecting virions. Instead, more rapid onset was consistent with a model where the fastest expressing virus out of the infecting virus pool sets the time for infection independently of the other co-infecting viruses. How quickly infection occurs should be an important determinant of viral fitness, but mechanisms which could accelerate the onset of viral gene expression were previously undefined. In this work we use time-lapse microscopy to quantify the timing of the HIV viral cycle and show that onset of viral gene expression can be substantially accelerated. This occurs during cell-to-cell spread of HIV, a mode of directed viral infection where multiple virions are transmitted between cells. Surprisingly, we found that neither cooperativity between infecting viruses, nor trans-acting factors from already infected cells, influence the timing of infection. Rather, we show experimentally that a more rapid onset of infection is explained by a first-past-the-post mechanism, where the fastest expressing virus out of the infecting virus pool sets the time for the onset of viral gene expression of an individual cell independently of other infections of the same cell. Fast onset of viral gene expression in cell-to-cell spread may play an important role in seeding the HIV reservoir, which rapidly makes infection irreversible.
Collapse
|
36
|
HIV Provirus Stably Reproduces Parental Latent and Induced Transcription Phenotypes Regardless of the Chromosomal Integration Site. J Virol 2016; 90:5302-14. [PMID: 26984732 PMCID: PMC4934743 DOI: 10.1128/jvi.02842-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
Understanding the mechanisms of HIV proviral latency is essential for development of a means to eradicate infection and achieve a cure. We have previously described an in vitro latency model that reliably identifies HIV expression phenotypes of infected cells using a dual-fluorescence reporter virus. Our results have demonstrated that ∼50% of infected cells establish latency immediately upon integration of provirus, a phenomenon termed early latency, which appears to occur by mechanisms that are distinct from epigenetic silencing observed with HIV provirus that establishes productive infections. In this study, we have used a mini-dual HIV reporter virus (mdHIV) to compare the long-term stability of provirus produced as early latent or productive infections using Jurkat-Tat T cell clones. Cloned lines bearing mdHIV provirus integrated at different chromosomal locations display unique differences in responsiveness to signaling agonists and chromatin-modifying compounds, and they also produce characteristic expression patterns from the 5′ long terminal repeat (LTR) dsRed and internal EIF1α-enhanced green fluorescent protein (EIF1α-eGFP) reporters. Furthermore, reporter expression profiles of single cell sorted subcultures faithfully reproduce expression profiles identical to that of their original parental population, following prolonged growth in culture, without shifting toward expression patterns resembling that of cell subclones at the time of sorting. Comparison of population dispersion coefficient (CV) and mean fluorescence intensity (MFI) of the subcloned lines showed that both untreated and phorbol myristate acetate (PMA)-ionomycin-stimulated cultures produce expression patterns identical to those of their parental lines. These results indicate that HIV provirus expression characteristics are strongly influenced by the epigenetic landscape at the site of chromosomal integration.
IMPORTANCE There is currently considerable interest in development of therapies to eliminate latently infected cells from HIV-infected patients on antiretroviral therapy. One proposed strategy, known as “shock and kill,” would involve treatment with therapies capable of inducing expression of latent provirus, with the expectation that the latently infected cells could be killed by a host immune response or virus-induced apoptosis. In clinical trials, histone deacetylase (HDAC) inhibitors were shown to cause reactivation of latent provirus but did not produce a significant effect toward eliminating the latently infected population. Results shown here indicate that integration of HIV provirus at different chromosomal locations produces significant effects on the responsiveness of virus expression to T cell signaling agonists and chromatin-modifying compounds. Given the variety of phenotypes produced by integrated provirus, it is unlikely that any single potential shock-and-kill therapy will be effective toward purging the latently infected population.
Collapse
|
37
|
A Minor Subset of Super Elongation Complexes Plays a Predominant Role in Reversing HIV-1 Latency. Mol Cell Biol 2016; 36:1194-205. [PMID: 26830226 DOI: 10.1128/mcb.00994-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/21/2016] [Indexed: 11/20/2022] Open
Abstract
Promoter-proximal pausing by RNA polymerase II (Pol II) is a key rate-limiting step in HIV-1 transcription and latency reversal. The viral Tat protein recruits human super elongation complexes (SECs) to paused Pol II to overcome this restriction. Despite the recent progress in understanding the functions of different subsets of SECs in controlling cellular and Tat-activated HIV transcription, little is known about the SEC subtypes that help reverse viral latency in CD4(+) T cells. Here, we used the CRISPR-Cas9 genome-editing tool to knock out the gene encoding the SEC subunit ELL2, AFF1, or AFF4 in Jurkat/2D10 cells, a well-characterized HIV-1 latency model. Depletion of these proteins drastically reduced spontaneous and drug-induced latency reversal by suppressing HIV-1 transcriptional elongation. Surprisingly, a low-abundance subset of SECs containing ELL2 and AFF1 was found to play a predominant role in cooperating with Tat to reverse latency. By increasing the cellular level/activity of these Tat-friendly SECs, we could potently activate latent HIV-1 without using any drugs. These results implicate the ELL2/AFF1-SECs as an important target in the future design of a combinatorial therapeutic approach to purge latent HIV-1.
Collapse
|
38
|
Timilsina U, Gaur R. Modulation of apoptosis and viral latency - an axis to be well understood for successful cure of human immunodeficiency virus. J Gen Virol 2016; 97:813-824. [PMID: 26764023 DOI: 10.1099/jgv.0.000402] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus (HIV) is the causative agent of the deadly disease AIDS, which is characterized by the progressive decline of CD4(+)T-cells. HIV-1-encoded proteins such as envelope gp120 (glycoprotein gp120), Tat (trans-activator of transcription), Nef (negative regulatory factor), Vpr (viral protein R), Vpu (viral protein unique) and protease are known to be effective in modulating host cell signalling pathways that lead to an alteration in apoptosis of both HIV-infected and uninfected bystander cells. Depending on the stage of the virus life cycle and host cell type, these viral proteins act as mediators of pro- or anti-apoptotic signals. HIV latency in viral reservoirs is a persistent phenomenon that has remained beyond the control of the human immune system. To cure HIV infections completely, it is crucial to reactivate latent HIV from cellular pools and to drive these apoptosis-resistant cells towards death. Several previous studies have reported the role of HIV-encoded proteins in apoptosis modulation, but the molecular basis for apoptosis evasion of some chronically HIV-infected cells and reactivated latently HIV-infected cells still needs to be elucidated. The current review summarizes our present understanding of apoptosis modulation in HIV-infected cells, uninfected bystander cells and latently infected cells, with a focus on highlighting strategies to activate the apoptotic pathway to kill latently infected cells.
Collapse
Affiliation(s)
- Uddhav Timilsina
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi- 110021, India
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi- 110021, India
| |
Collapse
|
39
|
Abstract
Antiretroviral therapy can effectively suppress HIV-1 infection but is ineffective against integrated proviruses. A latent viral reservoir composed of latently infected CD4(+)T cells persists under suppressive therapy, and infected individuals must remain indefinitely on antiretroviral therapy to prevent viral reactivation and propagation. Despite therapy, some degree of low-level ongoing replication is detected and transient viral reactivation may replenish the latent reservoir. An analog of the natural compound, Cortistatin A, blocks HIV-1 transcription by specifically targeting the viral transactivator, Tat. Treatment of latently infected cells with this Tat inhibitor promotes a state of deep-latency from which HIV reactivation capacity is greatly diminished. Here we discuss the use of Tat inhibitors to limit the latent reservoir to achieve a functional cure.
Collapse
Affiliation(s)
- Guillaume Mousseau
- a Department of Immunology and Microbial Science , The Scripps Research Institute , Jupiter , FL , USA
| | - Susana T Valente
- a Department of Immunology and Microbial Science , The Scripps Research Institute , Jupiter , FL , USA
| |
Collapse
|
40
|
Gérard A, Ségéral E, Naughtin M, Abdouni A, Charmeteau B, Cheynier R, Rain JC, Emiliani S. The integrase cofactor LEDGF/p75 associates with Iws1 and Spt6 for postintegration silencing of HIV-1 gene expression in latently infected cells. Cell Host Microbe 2015; 17:107-17. [PMID: 25590759 DOI: 10.1016/j.chom.2014.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/13/2014] [Accepted: 11/14/2014] [Indexed: 12/11/2022]
Abstract
The persistence of a latent reservoir containing transcriptionally silent, but replication-competent, integrated provirus is a serious challenge to HIV eradication. HIV integration is under the control of LEDGF/p75, the cellular cofactor of viral integrase. Investigating possible postintegration roles for LEDGF/p75, we find that LEDGF/p75 represses HIV expression in latently infected cells. LEDGF/p75 associated with two proteins involved in the control of gene expression and chromatin structure, Spt6 and Iws1, to form a stable complex. Iws1 plays a role in the establishment of latent infection, whereas Spt6 functions to recruit Iws1 and LEDGF/p75 to the silenced provirus and maintains histone occupancy at the HIV promoter. In latently infected cells, depletion of the complex results in reactivation of HIV expression Altogether, our results indicate that a complex containing LEDGF/p75, Iws1, and Spt6 participates in regulating postintegration steps of HIV latency.
Collapse
Affiliation(s)
- Annabelle Gérard
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; Université Paris Descartes, 75014 Paris, France.
| | - Emmanuel Ségéral
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; Université Paris Descartes, 75014 Paris, France
| | - Monica Naughtin
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; Université Paris Descartes, 75014 Paris, France
| | - Ahmed Abdouni
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; Université Paris Descartes, 75014 Paris, France
| | - Bénédicte Charmeteau
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; Université Paris Descartes, 75014 Paris, France
| | - Rémi Cheynier
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; Université Paris Descartes, 75014 Paris, France
| | | | - Stéphane Emiliani
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France; Université Paris Descartes, 75014 Paris, France.
| |
Collapse
|
41
|
Abstract
Antiretroviral therapy (ART) inhibits HIV-1 replication, but the virus persists in latently infected resting memory CD4+ T cells susceptible to viral reactivation. The virus-encoded early gene product Tat activates transcription of the viral genome and promotes exponential viral production. Here we show that the Tat inhibitor didehydro-cortistatin A (dCA), unlike other antiretrovirals, reduces residual levels of viral transcription in several models of HIV latency, breaks the Tat-mediated transcriptional feedback loop, and establishes a nearly permanent state of latency, which greatly diminishes the capacity for virus reactivation. Importantly, treatment with dCA induces inactivation of viral transcription even after its removal, suggesting that the HIV promoter is epigenetically repressed. Critically, dCA inhibits viral reactivation upon CD3/CD28 or prostratin stimulation of latently infected CD4+ T cells from HIV-infected subjects receiving suppressive ART. Our results suggest that inclusion of a Tat inhibitor in current ART regimens may contribute to a functional HIV-1 cure by reducing low-level viremia and preventing viral reactivation from latent reservoirs. Antiretroviral therapy (ART) reduces HIV-1 replication to very low levels, but the virus persists in latently infected memory CD4+ T cells, representing a long-lasting source of resurgent virus upon ART interruption. Based on the mode of action of didehydro-cortistatin A (dCA), a Tat-dependent transcription inhibitor, our work highlights an alternative approach to current HIV-1 eradication strategies to decrease the latent reservoir. In our model, dCA blocks the Tat feedback loop initiated after low-level basal reactivation, blocking transcriptional elongation and hence viral production from latently infected cells. Therefore, dCA combined with ART would be aimed at delaying or halting ongoing viral replication, reactivation, and replenishment of the latent viral reservoir. Thus, the latent pool of cells in an infected individual would be stabilized, and death of the long-lived infected memory T cells would result in a continuous decay of this pool over time, possibly culminating in the long-awaited sterilizing cure.
Collapse
|
42
|
Razooky BS, Pai A, Aull K, Rouzine IM, Weinberger LS. A hardwired HIV latency program. Cell 2015; 160:990-1001. [PMID: 25723172 DOI: 10.1016/j.cell.2015.02.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/09/2014] [Accepted: 02/05/2015] [Indexed: 12/11/2022]
Abstract
Biological circuits can be controlled by two general schemes: environmental sensing or autonomous programs. For viruses such as HIV, the prevailing hypothesis is that latent infection is controlled by cellular state (i.e., environment), with latency simply an epiphenomenon of infected cells transitioning from an activated to resting state. However, we find that HIV expression persists despite the activated-to-resting cellular transition. Mathematical modeling indicates that HIV's Tat positive-feedback circuitry enables this persistence and strongly controls latency. To overcome the inherent crosstalk between viral circuitry and cellular activation and to directly test this hypothesis, we synthetically decouple viral dependence on cellular environment from viral transcription. These circuits enable control of viral transcription without cellular activation and show that Tat feedback is sufficient to regulate latency independent of cellular activation. Overall, synthetic reconstruction demonstrates that a largely autonomous, viral-encoded program underlies HIV latency—potentially explaining why cell-targeted latency-reversing agents exhibit incomplete penetrance.
Collapse
Affiliation(s)
- Brandon S Razooky
- The Gladstone Institutes (Virology and Immunology), San Francisco, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158; Biophysics Graduate Group, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158
| | - Anand Pai
- The Gladstone Institutes (Virology and Immunology), San Francisco, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158; Department of Biochemistry and Biophysics, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158
| | - Katherine Aull
- Biophysics Graduate Group, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158
| | - Igor M Rouzine
- The Gladstone Institutes (Virology and Immunology), San Francisco, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158
| | - Leor S Weinberger
- The Gladstone Institutes (Virology and Immunology), San Francisco, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158; Department of Biochemistry and Biophysics, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158; QB3, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158.
| |
Collapse
|
43
|
p53-derived host restriction of HIV-1 replication by protein kinase R-mediated Tat phosphorylation and inactivation. J Virol 2015; 89:4262-80. [PMID: 25653431 DOI: 10.1128/jvi.03087-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Tumor suppressor p53 has been suggested to be a host restriction factor against HIV-1 replication, but the detailed molecular mechanism has remained elusive for decades. Here, we demonstrate that p53-mediated HIV-1 suppression is attributed to double-stranded RNA (dsRNA)-dependent protein kinase (PKR)-mediated HIV-1 trans-activator (Tat) phosphorylation and inactivation. p53 silencing significantly enhanced HIV-1 replication in infected cells. Ectopic expression of p53 suppressed Tat activity, which was rescued by PKR silencing. In addition, ectopic expression of PKR abolished Tat activity in p53(-/-) and eIF2α(CA) cells. Finally, we found that HIV-1 infection activates p53, followed by the induction and activation of PKR. PKR directly interacted with HIV-1 Tat and phosphorylates the first exon of Tat exclusively at five Ser/Thr residues (T23, T40, S46, S62, and S68), which inhibits Tat-mediated provirus transcription in three critical steps: (i) phosphorylation near the arginine-rich motif (ARM) inhibits Tat translocation into the nucleus, (ii) accumulation of Tat phosphorylation abolishes Tat-Tat-responsive region (TAR) binding, and (iii) Tat phosphorylation at T23 and/or T40 obliterates the Tat-cyclin T1 interaction. These five Ser/Thr sites on Tat were highly conserved in HIV-1 strains prevalent in Europe and the United States. Taken together, our findings indicate that p53-derived host restriction of HIV-1 replication is likely attributable, at least in part, to a noncanonical p53/PKR/Tat phosphorylation and inactivation pathway in HIV-1 infection and AIDS pathogenesis. IMPORTANCE HIV-1-mediated disease progression to AIDS lasts for years to decades after primary infection. Host restriction and associated viral latency have been studied for several decades. p53 has been suggested as an important host restriction factor against HIV-1 replication. However, the detailed molecular mechanism is still unclear. In the present study, we found that the p53-mediated HIV-1 restriction is attributed to a p53/PKR/Tat-inactivation pathway. HIV-1 infection activated p53, which subsequently induced PKR expression and activation. PKR directly phosphorylated Tat exclusively at five specific Ser/Thr residues, which was accompanied by significant suppression of HIV-1 replication. Accumulation of Tat phosphorylation at these sites inhibited Tat function by blocking Tat nuclear localization, Tat binding to TAR, and Tat-cyclin T1 interaction. Our findings provide a better understanding of the p53-derived host restriction mechanism against HIV-1 replication in AIDS pathogenesis and may contribute to further research focusing on the investigation of potential therapeutic targets for HIV-1.
Collapse
|
44
|
Aguilera LU, Rodríguez-González J. Studying HIV latency by modeling the interaction between HIV proteins and the innate immune response. J Theor Biol 2014; 360:67-77. [DOI: 10.1016/j.jtbi.2014.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/30/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
|
45
|
Fitness impaired drug resistant HIV-1 is not compromised in cell-to-cell transmission or establishment of and reactivation from latency. Viruses 2014; 6:3487-99. [PMID: 25243372 PMCID: PMC4189035 DOI: 10.3390/v6093487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/01/2014] [Accepted: 09/17/2014] [Indexed: 12/24/2022] Open
Abstract
Both the presence of latently infected cells and cell-to-cell viral transmission are means whereby HIV can partially evade the inhibitory activities of antiretroviral drugs. The clinical use of a novel integrase inhibitor, dolutegravir (DTG), has established hope that this compound may limit HIV persistence, since no treatment-naïve patient treated with DTG has yet developed resistance against this drug, even though a R263K substitution in integrase confers low-level resistance to this drug in tissue culture. Here, we have studied the impact of R263K on HIV replication capacity and the ability of HIV to establish or be reactivated from latency and/or spread through cell-to-cell transmission. We affirm that DTG-resistant viruses have diminished capacity to replicate and establish infection. However, DTG-resistant viruses were efficiently transmitted via cell-to-cell contacts, and were as likely to establish and be reactivated from latent infection as wildtype viruses. Both cell-to-cell transmission of HIV and the establishment of and reemergence from latency are important for the establishment and maintenance of viral reservoirs. Since the DTG and other drug-resistant viruses studied here do not seem to have been impaired in regard to these activities, studies should be undertaken to characterize HIV reservoirs in patients who have been treated with DTG.
Collapse
|
46
|
Abstract
Objectives: The transcriptional silencing of HIV type 1 (HIV-1) provirus in latently infected cells is a major hurdle on the pathway to HIV-1 elimination. The epigenetic mechanisms established by histone modifications may affect the transcriptional silencing of HIV-1 and viral latency. A systematic epigenome profiling could be applicable to develop new epigenetic diagnostic markers for detecting HIV-1 latency. Design: The HIV-1 latency cell lines (NCHA1, NCHA2 and ACH2] were compared with CD4+ T-cell line (A3.01). Methods: The histone modification profiles obtained from chromatin immunoprecipiation followed by sequencing (ChIP-Seq) for histone H3K4me3 and H3K9ac were systematically examined and differential gene expression patterns along with levels of histone modifications were used for network analysis. Results: The HIV-1 latency gave rise to downregulation of histone H3K4me3 and H3K9ac levels in 387 and 493 regions and upregulation in 451 and 962 sites, respectively. By network analysis, five gene clusters were associated with downregulated histone modifications and six gene clusters came up with upregulated histone modifications. Integration of gene expression with epigenetic information revealed that the cell cycle regulatory genes such as CDKN1A (p21) and cyclin D2 (CCND2) identified by differentially modified histones might play an important role in maintaining the HIV-1 latency. Conclusion: The transcriptional regulation by epigenetic memory should play a key role in the evolution and maintenance of HIV-1 latency accompanied by modulation of signalling molecules in the host cells.
Collapse
|
47
|
Wang S, Rong L. Stochastic population switch may explain the latent reservoir stability and intermittent viral blips in HIV patients on suppressive therapy. J Theor Biol 2014; 360:137-148. [PMID: 25016044 DOI: 10.1016/j.jtbi.2014.06.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 05/18/2014] [Accepted: 06/30/2014] [Indexed: 01/06/2023]
Abstract
Highly active antiretroviral therapy can suppress plasma viral loads of HIV-1 infected individuals to below the detection limit of standard clinical assays. However, low-level viremia still persists. Many patients also have transient viral load measurements above the detection limit (the so-called "viral blips"). The latent reservoir consisting of latently infected CD4+ T cells represents a major obstacle to HIV-1 eradication. These cells can be activated to produce virions but the size of the latent reservoir is relatively stable. The mechanisms underlying low viral load persistence, emergence of intermittent viral blips and stability of the latent reservoir are not well understood. Cellular and viral transcription factors play an important role in the establishment and maintenance of HIV-1 latency. Infected cells with intermediate transcriptional activities may either revert to a latent state or become highly activated and produce virions due to intracellular perturbations. Here we develop a mathematical model that includes such stochastic population switch. We demonstrate that the model can generate a stable latent reservoir, intermittent viral blips, as well as low-level viremia persistence. Latently infected cells with intermediate transcription activities may maintain their size through a high level of homeostatic proliferation, while cells with low transcriptional activities are likely to be maintained through the reversion from cells with intermediate transcription activities. Simulations also suggest that treatment intensification or activation therapy may not help to eradicate the latent reservoir. Blocking the proliferation of latently infected cells might be a good strategy. These results provide more insights into the long-term dynamics of virus and latently infected cells in HIV patients on suppressive therapy and may help to develop novel treatment strategies.
Collapse
Affiliation(s)
- Sunpeng Wang
- Department of Biology, New York University, New York, NY 10012, USA
| | - Libin Rong
- Department of Mathematics and Statistics, and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
48
|
Bernhard W, Barreto K, Raithatha S, Sadowski I. An upstream YY1 binding site on the HIV-1 LTR contributes to latent infection. PLoS One 2013; 8:e77052. [PMID: 24116200 PMCID: PMC3792934 DOI: 10.1371/journal.pone.0077052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/28/2013] [Indexed: 02/03/2023] Open
Abstract
During HIV-1 infection a population of latently infected cells is established. This population is the major obstacle preventing total eradication of the virus from AIDS patients. HIV-1 latency is thought to arise by various mechanisms including repressive chromatin modifications. Transcription factors such as YY1 have been shown to facilitate repressive chromatin modifications by the recruitment of histone deacetylases. In this study, we identified a novel binding site for YY1 on the HIV-1 LTR, 120 nucleotides upstream of the transcription start site. We show that YY1 can bind to this site in vitro and in vivo and that binding to the LTR is dissociated upon T cell activation. Overexpression of YY1 causes an increase in the proportion of cells that produce latent infections. These observations, in combination with previous results, demonstrate that YY1 plays a prominent role in controlling the establishment and maintenance of latent HIV-1 provirus in unstimulated cells.
Collapse
Affiliation(s)
- Wendy Bernhard
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kris Barreto
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sheetal Raithatha
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
49
|
Latent HIV-1 can be reactivated by cellular superinfection in a Tat-dependent manner, which can lead to the emergence of multidrug-resistant recombinant viruses. J Virol 2013; 87:9620-32. [PMID: 23804632 DOI: 10.1128/jvi.01165-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HIV-1 latent reservoir represents an important source of genetic diversity that could contribute to viral evolution and multidrug resistance following latent virus reactivation. This could occur by superinfection of a latently infected cell. We asked whether latent viruses might be reactivated when their host cells are superinfected, and if so, whether they could contribute to the generation of recombinant viruses. Using populations of latently infected Jurkat cells, we found that latent viruses were efficiently reactivated upon superinfection. Pathways leading to latent virus reactivation via superinfection might include gp120-CD4/CXCR4-induced signaling, modulation of the cellular environment by Nef, and/or the activity of Tat produced upon superinfection. Using a range of antiviral compounds and genetic approaches, we show that gp120 and Nef are not required for latent virus reactivation by superinfection, but this process depends on production of functional Tat by the superinfecting virus. In a primary cell model of latency in unstimulated CD4 T cells, superinfection also led to latent virus reactivation. Drug-resistant latent viruses were also reactivated following superinfection in Jurkat cells and were able to undergo recombination with the superinfecting virus. Under drug-selective pressure, this generated multidrug-resistant recombinants that were identified by unique restriction digestion band patterns and by population-level sequencing. During conditions of poor drug adherence, treatment interruption or treatment failure, or in drug-impermeable sanctuary sites, reactivation of latent viruses by superinfection or other means could provide for the emergence or spread of replicatively fit viruses in the face of strong selective pressures.
Collapse
|
50
|
Lu H, Li Z, Xue Y, Zhou Q. Viral-host interactions that control HIV-1 transcriptional elongation. Chem Rev 2013; 113:8567-82. [PMID: 23795863 DOI: 10.1021/cr400120z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huasong Lu
- School of Pharmaceutical Sciences, Xiamen University , Xiamen, Fujian 361005, China
| | | | | | | |
Collapse
|