1
|
Noor AAM, Nor AKCM, Redzwan NM. The immunological understanding on germinal center B cells in psoriasis. J Cell Physiol 2024; 239:e31266. [PMID: 38578060 DOI: 10.1002/jcp.31266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/16/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
The development of psoriasis is mainly driven by the dysregulation of T cells within the skin, marking a primary involvement of these cells in the pathogenesis. Although B cells are integral components of the immune system, their role in the initiation and progression of psoriasis is not as pivotal as that of T cells. The paradox of B cell suggests that, while it is crucial for adaptive immunity, B cells may contribute to the exacerbation of psoriasis. Numerous ideas proposed that there are potential relationships between psoriasis and B cells especially within germinal centers (GCs). Recent research projected that B cells might be triggered by autoantigens which then induced molecular mimicry to alter B cells activity within GC and generate autoantibodies and pro-inflammatory cytokines, form ectopic GC, and dysregulate the proliferation of keratinocytes. Hence, in this review, we gathered potential evidence indicating the participation of B cells in psoriasis within the context of GC, aiming to enhance our comprehension and advance treatment strategies for psoriasis thus inviting many new researchers to investigate this issue.
Collapse
Affiliation(s)
- Aina Akmal Mohd Noor
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Abdah Karimah Che Md Nor
- Central Research Laboratory, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Norhanani Mohd Redzwan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
2
|
Kim YJ, Choi J, Choi YS. Transcriptional regulation of Tfh dynamics and the formation of immunological synapses. Exp Mol Med 2024; 56:1365-1372. [PMID: 38825646 PMCID: PMC11263543 DOI: 10.1038/s12276-024-01254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Inside germinal centers (GCs), antigen-specific B cells rely on precise interactions with immune cells and strategic localization between the dark and light zones to clonally expand, undergo affinity maturation, and differentiate into long-lived plasma cells or memory B cells. Follicular helper T (Tfh) cells, the key gatekeepers of GC-dependent humoral immunity, exhibit remarkable dynamic positioning within secondary lymphoid tissues and rely on intercellular interactions with antigen-presenting cells (APCs) during their differentiation and execution of B-cell-facilitating functions within GCs. In this review, we briefly cover the transcriptional regulation of Tfh cell differentiation and function and explore the molecular mechanisms governing Tfh cell motility, their interactions with B cells within GCs, and the impact of their dynamic behavior on humoral responses.
Collapse
Affiliation(s)
- Ye-Ji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jinyong Choi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea.
- Transplantation Research Institute, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
3
|
Silva-Cayetano A, Fra-Bido S, Robert PA, Innocentin S, Burton AR, Watson EM, Lee JL, Webb LMC, Foster WS, McKenzie RCJ, Bignon A, Vanderleyden I, Alterauge D, Lemos JP, Carr EJ, Hill DL, Cinti I, Balabanian K, Baumjohann D, Espeli M, Meyer-Hermann M, Denton AE, Linterman MA. Spatial dysregulation of T follicular helper cells impairs vaccine responses in aging. Nat Immunol 2023; 24:1124-1137. [PMID: 37217705 PMCID: PMC10307630 DOI: 10.1038/s41590-023-01519-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/19/2023] [Indexed: 05/24/2023]
Abstract
The magnitude and quality of the germinal center (GC) response decline with age, resulting in poor vaccine-induced immunity in older individuals. A functional GC requires the co-ordination of multiple cell types across time and space, in particular across its two functionally distinct compartments: the light and dark zones. In aged mice, there is CXCR4-mediated mislocalization of T follicular helper (TFH) cells to the dark zone and a compressed network of follicular dendritic cells (FDCs) in the light zone. Here we show that TFH cell localization is critical for the quality of the antibody response and for the expansion of the FDC network upon immunization. The smaller GC and compressed FDC network in aged mice were corrected by provision of TFH cells that colocalize with FDCs using CXCR5. This demonstrates that the age-dependent defects in the GC response are reversible and shows that TFH cells support stromal cell responses to vaccines.
Collapse
Affiliation(s)
| | | | - Philippe A Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Translational Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | - Jia Le Lee
- Immunology Program, Babraham Institute, Cambridge, UK
| | | | | | | | | | | | - Dominik Alterauge
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Munich, Germany
| | - Julia P Lemos
- Université Paris Cité, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Edward J Carr
- Immunology Program, Babraham Institute, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- The Francis Crick Institute, London, UK
| | - Danika L Hill
- Immunology Program, Babraham Institute, Cambridge, UK
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Isabella Cinti
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Karl Balabanian
- Université Paris Cité, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Dirk Baumjohann
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Munich, Germany
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Marion Espeli
- Université Paris Cité, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Alice E Denton
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | | |
Collapse
|
4
|
Deng Y, Bartosovic M, Ma S, Zhang D, Kukanja P, Xiao Y, Su G, Liu Y, Qin X, Rosoklija GB, Dwork AJ, Mann JJ, Xu ML, Halene S, Craft JE, Leong KW, Boldrini M, Castelo-Branco G, Fan R. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 2022; 609:375-383. [PMID: 35978191 PMCID: PMC9452302 DOI: 10.1038/s41586-022-05094-1] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 07/08/2022] [Indexed: 12/12/2022]
Abstract
Cellular function in tissue is dependent on the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context1. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping2-5, but the ability to capture spatial epigenetic information of tissue at the cellular level and genome scale is lacking. Here we describe a method for spatially resolved chromatin accessibility profiling of tissue sections using next-generation sequencing (spatial-ATAC-seq) by combining in situ Tn5 transposition chemistry6 and microfluidic deterministic barcoding5. Profiling mouse embryos using spatial-ATAC-seq delineated tissue-region-specific epigenetic landscapes and identified gene regulators involved in the development of the central nervous system. Mapping the accessible genome in the mouse and human brain revealed the intricate arealization of brain regions. Applying spatial-ATAC-seq to tonsil tissue resolved the spatially distinct organization of immune cell types and states in lymphoid follicles and extrafollicular zones. This technology progresses spatial biology by enabling spatially resolved chromatin accessibility profiling to improve our understanding of cell identity, cell state and cell fate decision in relation to epigenetic underpinnings in development and disease.
Collapse
Affiliation(s)
- Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Marek Bartosovic
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sai Ma
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Di Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Petra Kukanja
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Graham Su
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Yang Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Xiaoyu Qin
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Gorazd B Rosoklija
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Macedonian Academy of Sciences & Arts, Skopje, Republic of Macedonia
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Macedonian Academy of Sciences & Arts, Skopje, Republic of Macedonia
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| | - Mina L Xu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph E Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Maura Boldrini
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden.
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
- Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Chudakov DB, Kotsareva OD, Konovalova MV, Tsaregorodtseva DS, Shevchenko MA, Sergeev AA, Fattakhova GV. Early IgE Production Is Linked with Extrafollicular B- and T-Cell Activation in Low-Dose Allergy Model. Vaccines (Basel) 2022; 10:vaccines10060969. [PMID: 35746576 PMCID: PMC9231339 DOI: 10.3390/vaccines10060969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Despite its paramount importance, the predominant association of early IgE production with harmless antigens, via germinal-center B- and T-cell subpopulations or extrafollicular activation, remains unresolved. The aim of this work was to clarify whether the reinforced IgE production following the subcutaneous immunization of BALB/c mice with low antigen doses in withers adipose tissue might be linked with intensified extrafollicular or germinal-center responses. The mice were immunized three times a week for 4 weeks in the withers region, which is enriched in subcutaneous fat and tissue-associated B cells, with high and low OVA doses and via the intraperitoneal route for comparison. During long-term immunization with both low and high antigen doses in the withers region, but not via the intraperitoneal route, we observed a significant accumulation of B220-CD1d-CD5-CD19+ B-2 extrafollicular plasmablasts in the subcutaneous fat and regional lymph nodes but not in the intraperitoneal fat. Only low antigen doses induced a significant accumulation of CXCR4+ CXCR5- CD4+ extrafollicular T helpers in the withers adipose tissue but not in the regional lymph nodes or abdominal fat. Only in subcutaneous fat was there a combination of extrafollicular helper accumulation. In conclusion, extrafollicular B- and T-cell activation are necessary for early IgE class switching.
Collapse
Affiliation(s)
- Dmitrii Borisovich Chudakov
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
- Correspondence: ; Tel.: +7-495-330-4011
| | - Olga Dmitrievna Kotsareva
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
| | - Maryia Vladimirovna Konovalova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
| | - Daria Sergeevna Tsaregorodtseva
- Faculty of Medical Biology, Sechenov First Moscow State Medical University, 2 Bolshaya Pirogovskaya St., 1194535 Moscow, Russia;
| | - Marina Alexandrovna Shevchenko
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
| | - Anton Andreevich Sergeev
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
| | - Gulnar Vaisovna Fattakhova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
| |
Collapse
|
6
|
Valentine KM, Mullins GN, Davalos OA, Seow LW, Hoyer KK. CD8 follicular T cells localize throughout the follicle during germinal center reactions and maintain cytolytic and helper properties. J Autoimmun 2021; 123:102690. [PMID: 34274825 DOI: 10.1016/j.jaut.2021.102690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
Follicular CXCR5+ PD-1+ CD8 T cells (CD8 Tfc) arise in multiple models of systemic autoimmunity yet their functional contribution to disease remains in debate. Here we define the follicular localization and functional interactions of CD8 Tfc with B cells during autoimmune disease. The absence of functional T regulatory cells in autoimmunity allows for CD8 Tfc development that then expands with lymphoproliferation. CD8 Tfc are identifiable within the lymph nodes and spleen during systemic autoimmunity, but not during tissue-restricted autoimmune disease. Autoimmune CD8 Tfc cells are polyfunctional, producing helper cytokines IL-21, IL-4, and IFNγ while maintaining cytolytic proteins CD107a, granzyme B, and TNF. During autoimmune disease, IL-2-KO CD8 T cells infiltrate the B cell follicle and germinal center, including the dark zone, and in vitro induce activation-induced cytidine deaminase in naïve B cells via IL-4 secretion. CD8 Tfc represent a unique CD8 T cell population with a diverse effector cytokine repertoire that can contribute to pathogenic autoimmune B cell response.
Collapse
Affiliation(s)
- Kristen M Valentine
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, 95343, USA
| | - Genevieve N Mullins
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, 95343, USA
| | - Oscar A Davalos
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, 95343, USA
| | - Lek Wei Seow
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Katrina K Hoyer
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, 95343, USA; Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA; Health Sciences Research Institute, University of California Merced, Merced, CA, 95343, USA.
| |
Collapse
|
7
|
Elsner RA, Shlomchik MJ. Germinal Center and Extrafollicular B Cell Responses in Vaccination, Immunity, and Autoimmunity. Immunity 2021; 53:1136-1150. [PMID: 33326765 DOI: 10.1016/j.immuni.2020.11.006] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Activated B cells participate in either extrafollicular (EF) or germinal center (GC) responses. Canonical responses are composed of a short wave of plasmablasts (PBs) arising from EF sites, followed by GC producing somatically mutated memory B cells (MBC) and long-lived plasma cells. However, somatic hypermutation (SHM) and affinity maturation can take place at both sites, and a substantial fraction of MBC are produced prior to GC formation. Infection responses range from GC responses that persist for months to persistent EF responses with dominant suppression of GCs. Here, we review the current understanding of the functional output of EF and GC responses and the molecular switches promoting them. We discuss the signals that regulate the magnitude and duration of these responses, and outline gaps in knowledge and important areas of inquiry. Understanding such molecular switches will be critical for vaccine development, interpretation of vaccine efficacy and the treatment for autoimmune diseases.
Collapse
Affiliation(s)
- Rebecca A Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
8
|
Friedrich SK, Schmitz R, Bergerhausen M, Lang J, Duhan V, Hardt C, Tenbusch M, Prinz M, Asano K, Bhat H, Hamdan TA, Lang PA, Lang KS. Replication of Influenza A Virus in Secondary Lymphatic Tissue Contributes to Innate Immune Activation. Pathogens 2021; 10:pathogens10050622. [PMID: 34069514 PMCID: PMC8160763 DOI: 10.3390/pathogens10050622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
The replication of viruses in secondary lymphoid organs guarantees sufficient amounts of pattern-recognition receptor ligands and antigens to activate the innate and adaptive immune system. Viruses with broad cell tropism usually replicate in lymphoid organs; however, whether a virus with a narrow tropism relies on replication in the secondary lymphoid organs to activate the immune system remains not well studied. In this study, we used the artificial intravenous route of infection to determine whether Influenza A virus (IAV) replication can occur in secondary lymphatic organs (SLO) and whether such replication correlates with innate immune activation. Indeed, we found that IAV replicates in secondary lymphatic tissue. IAV replication was dependent on the expression of Sialic acid residues in antigen-presenting cells and on the expression of the interferon-inhibitor UBP43 (Usp18). The replication of IAV correlated with innate immune activation, resulting in IAV eradication. The genetic deletion of Usp18 curbed IAV replication and limited innate immune activation. In conclusion, we found that IAV replicates in SLO, a mechanism which allows innate immune activation.
Collapse
Affiliation(s)
- Sarah-Kim Friedrich
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Rosa Schmitz
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Michael Bergerhausen
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Judith Lang
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Vikas Duhan
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Cornelia Hardt
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79106 Freiburg, Germany
- Centre for NeuroModulation (NeuroModBasics), University of Freiburg, 79106 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79106 Freiburg, Germany
| | - Kenichi Asano
- Laboratory of Immune Regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan;
| | - Hilal Bhat
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Robert Koch-Strasse 21, 50931 Köln, Germany
| | - Thamer A. Hamdan
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
- Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba, Amman 11821, Jordan
- Correspondence: (T.A.H.); (K.S.L.)
| | - Philipp Alexander Lang
- Institute of Molecular Medicine II, University of Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany;
| | - Karl Sebastian Lang
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
- Correspondence: (T.A.H.); (K.S.L.)
| |
Collapse
|
9
|
Delicate Role of PD-L1/PD-1 Axis in Blood Vessel Inflammatory Diseases: Current Insight and Future Significance. Int J Mol Sci 2020; 21:ijms21218159. [PMID: 33142805 PMCID: PMC7663405 DOI: 10.3390/ijms21218159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint molecules are the antigen-independent generator of secondary signals that aid in maintaining the homeostasis of the immune system. The programmed death ligand-1 (PD-L1)/PD-1 axis is one among the most extensively studied immune-inhibitory checkpoint molecules, which delivers a negative signal for T cell activation by binding to the PD-1 receptor. The general attributes of PD-L1's immune-suppressive qualities and novel mechanisms on the barrier functions of vascular endothelium to regulate blood vessel-related inflammatory diseases are concisely reviewed. Though targeting the PD-1/PD-L1 axis has received immense recognition-the Nobel Prize in clinical oncology was awarded in the year 2018 for this discovery-the use of therapeutic modulating strategies for the PD-L1/PD-1 pathway in chronic inflammatory blood vessel diseases is still limited to experimental models. However, studies using clinical specimens that support the role of PD-1 and PD-L1 in patients with underlying atherosclerosis are also detailed. Of note, delicate balances in the expression levels of PD-L1 that are needed to preserve T cell immunity and to curtail acute as well as chronic infections in underlying blood vessel diseases are discussed. A significant link exists between altered lipid and glucose metabolism in different cells and the expression of PD-1/PD-L1 molecules, and its possible implications on vascular inflammation are justified. This review summarizes the most recent insights concerning the role of the PD-L1/PD-1 axis in vascular inflammation and, in addition, provides an overview exploring the novel therapeutic approaches and challenges of manipulating these immune checkpoint proteins, PD-1 and PD-L1, for suppressing blood vessel inflammation.
Collapse
|
10
|
Choi A, Bouzya B, Cortés Franco KD, Stadlbauer D, Rajabhathor A, Rouxel RN, Mainil R, Van der Wielen M, Palese P, García-Sastre A, Innis BL, Krammer F, Schotsaert M, Mallett CP, Nachbagauer R. Chimeric Hemagglutinin-Based Influenza Virus Vaccines Induce Protective Stalk-Specific Humoral Immunity and Cellular Responses in Mice. Immunohorizons 2020; 3:133-148. [PMID: 31032479 DOI: 10.4049/immunohorizons.1900022] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The high variation of the influenza virus hemagglutinin (HA), particularly of its immunodominant head epitopes, makes it necessary to reformulate seasonal influenza virus vaccines every year. Novel influenza virus vaccines that redirect the immune response toward conserved epitopes of the HA stalk domain should afford broad and durable protection. Sequential immunization with chimeric HAs (cHAs) that express the same conserved HA stalk and distinct exotic HA heads has been shown to elicit high levels of broadly cross-reactive Abs. In the current mouse immunization studies, we tested this strategy using inactivated split virion cHA influenza virus vaccines (IIV) without adjuvant or adjuvanted with AS01 or AS03 to measure the impact of adjuvant on the Ab response. The vaccines elicited high levels of cross-reactive Abs that showed activity in an Ab-dependent, cell-mediated cytotoxicity reporter assay and were protective in a mouse viral challenge model after serum transfer. In addition, T cell responses to adjuvanted IIV were compared with responses to a cHA-expressing live attenuated influenza virus vaccine (LAIV). A strong but transient induction of Ag-specific T cells was observed in the spleens of mice vaccinated with LAIV. Interestingly, IIV also induced T cells, which were successfully recalled upon viral challenge. Groups that received AS01-adjuvanted IIV or LAIV 4 wk before the challenge showed the lowest level of viral replication (i.e., the highest level of protection). These studies provide evidence that broadly cross-reactive Abs elicited by cHA vaccination demonstrate Fc-mediated activity. In addition, cHA vaccination induced Ag-specific cellular responses that can contribute to protection upon infection.
Collapse
Affiliation(s)
- Angela Choi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | | | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Arvind Rajabhathor
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | | | | | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | | | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| |
Collapse
|
11
|
Popescu M, Cabrera-Martinez B, Winslow GM. TNF-α Contributes to Lymphoid Tissue Disorganization and Germinal Center B Cell Suppression during Intracellular Bacterial Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:2415-2424. [PMID: 31570507 DOI: 10.4049/jimmunol.1900484] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Bacterial, parasitic, and viral infections are well-known causes of lymphoid tissue disorganization, although the factors, both host and/or pathogen derived, that mediate these changes are largely unknown. Ehrlichia muris infection in mice causes a loss of germinal center (GC) B cells that is accompanied by the generation of extrafollicular T-bet+ CD11c+ plasmablasts and IgM memory B cells. We addressed a possible role for TNF-α in this process because this cytokine has been shown to regulate GC development. Ablation of TNF-α during infection resulted in an 8-fold expansion of GL7+ CD38lo CD95+ GC B cells, and a 2.5- and 5-fold expansion of CD138+ plasmablasts and T-bet+ memory cells, respectively. These changes were accompanied by a reduction in splenomegaly, more organized T and B cell zones, and an improved response to Ag challenge. CXCL13, the ligand for CXCR5, was detected at 6-fold higher levels following infection but was much reduced following TNF-α ablation, suggesting that CXCL13 dysregulation also contributes to loss of lymphoid tissue organization. T follicular helper cells, which also underwent expansion in infected TNF-α--deficient mice, may also have contributed to the expansion of T-bet+ B cells, as the latter are known to require T cell help. Our findings contrast with previously described roles for TNF-α in GCs and reveal how host-pathogen interactions can induce profound changes in cytokine and chemokine production that can alter lymphoid tissue organization, GC B cell development, and extrafollicular T-bet+ B cell generation.
Collapse
Affiliation(s)
- Maria Popescu
- Department of Microbiology and Immunology, Upstate Medical University, State University of New York, Syracuse, NY 13210
| | - Berenice Cabrera-Martinez
- Department of Microbiology and Immunology, Upstate Medical University, State University of New York, Syracuse, NY 13210
| | - Gary M Winslow
- Department of Microbiology and Immunology, Upstate Medical University, State University of New York, Syracuse, NY 13210
| |
Collapse
|
12
|
Pellefigues C, Mehta P, Prout MS, Naidoo K, Yumnam B, Chandler J, Chappell S, Filbey K, Camberis M, Le Gros G. The Basoph8 Mice Enable an Unbiased Detection and a Conditional Depletion of Basophils. Front Immunol 2019; 10:2143. [PMID: 31552058 PMCID: PMC6746837 DOI: 10.3389/fimmu.2019.02143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
Basophils are granulocytes involved in parasite immunity and allergic diseases, known for their potent secretion of type 2 cytokines. Identifying their functions has proven to be controversial due to their relative rarity and their complex lineage phenotype. Here, we show that the expression of basophils lineage markers CD200R3 and FcεRIα is highly variable in inflammatory settings and hinders basophils identification by flow cytometry across multiple disease states or tissues. Fluorophore-conjugated antibody staining of these lineage markers strongly activates basophil type 2 cytokine expression, and represents a potential bias for coculture or in vivo transfer experiments. The Basoph8 is a mouse model where basophils specifically express a strong fluorescent reporter and the Cre recombinase. Basophils can be identified and FACS sorted unambiguously by their expression of the enhanced yellow fluorescent protein (eYFP) in these mice. We show that the expression of the eYFP is robust in vivo during inflammation, and in vitro on living basophils for at least 72 h, including during the induction of anaphylactoid degranulation. We bred and characterized the Basoph8xiDTR mice, in which basophils specifically express eYFP and the simian diphtheria toxin receptor (DTR). This model enables basophils conditional depletion relatively specifically ex vivo and in vivo during allergic inflammation and their detection as eYFP+ cells. In conclusion, we report underappreciated benefits of the commercially available Basoph8 mice to study basophils function.
Collapse
Affiliation(s)
- Christophe Pellefigues
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Palak Mehta
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Melanie Sarah Prout
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Karmella Naidoo
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Bibek Yumnam
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Jodie Chandler
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Sally Chappell
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Kara Filbey
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Mali Camberis
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| | - Graham Le Gros
- The Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand
| |
Collapse
|
13
|
Stebegg M, Kumar SD, Silva-Cayetano A, Fonseca VR, Linterman MA, Graca L. Regulation of the Germinal Center Response. Front Immunol 2018; 9:2469. [PMID: 30410492 PMCID: PMC6209676 DOI: 10.3389/fimmu.2018.02469] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/05/2018] [Indexed: 12/24/2022] Open
Abstract
The germinal center (GC) is a specialized microstructure that forms in secondary lymphoid tissues, producing long-lived antibody secreting plasma cells and memory B cells, which can provide protection against reinfection. Within the GC, B cells undergo somatic mutation of the genes encoding their B cell receptors which, following successful selection, can lead to the emergence of B cell clones that bind antigen with high affinity. However, this mutation process can also be dangerous, as it can create autoreactive clones that can cause autoimmunity. Because of this, regulation of GC reactions is critical to ensure high affinity antibody production and to enforce self-tolerance by avoiding emergence of autoreactive B cell clones. A productive GC response requires the collaboration of multiple cell types. The stromal cell network orchestrates GC cell dynamics by controlling antigen delivery and cell trafficking. T follicular helper (Tfh) cells provide specialized help to GC B cells through cognate T-B cell interactions while Foxp3+ T follicular regulatory (Tfr) cells are key mediators of GC regulation. However, regulation of GC responses is not a simple outcome of Tfh/Tfr balance, but also involves the contribution of other cell types to modulate the GC microenvironment and to avoid autoimmunity. Thus, the regulation of the GC is complex, and occurs at multiple levels. In this review we outline recent developments in the biology of cell subsets involved in the regulation of GC reactions, in both secondary lymphoid tissues, and Peyer's patches (PPs). We discuss the mechanisms which enable the generation of potent protective humoral immunity whilst GC-derived autoimmunity is avoided.
Collapse
Affiliation(s)
| | - Saumya D Kumar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Valter R Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Centro Hospitalar Lisboa Norte-Hospital de Santa Maria, Lisbon, Portugal
| | | | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
14
|
Poultsidi A, Dimopoulos Y, He TF, Chavakis T, Saloustros E, Lee PP, Petrovas C. Lymph Node Cellular Dynamics in Cancer and HIV: What Can We Learn for the Follicular CD4 (Tfh) Cells? Front Immunol 2018; 9:2233. [PMID: 30319664 PMCID: PMC6170630 DOI: 10.3389/fimmu.2018.02233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022] Open
Abstract
Lymph nodes (LNs) are central in the generation of adaptive immune responses. Follicular helper CD4 T (Tfh) cells, a highly differentiated CD4 population, provide critical help for the development of antigen-specific B cell responses within the germinal center. Throughout the past decade, numerous studies have revealed the important role of Tfh cells in Human Immunodeficiency Virus (HIV) pathogenesis as well as in the development of neutralizing antibodies post-infection and post-vaccination. It has also been established that tumors influence various immune cell subsets not only in their proximity, but also in draining lymph nodes. The role of local or tumor associated lymph node Tfh cells in disease progression is emerging. Comparative studies of Tfh cells in chronic infections and cancer could therefore provide novel information with regards to their differentiation plasticity and to the mechanisms regulating their development.
Collapse
Affiliation(s)
- Antigoni Poultsidi
- Department of Surgery, Medical School, University of Thessaly, Larissa, Greece
| | - Yiannis Dimopoulos
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| | - Ting-Fang He
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Emmanouil Saloustros
- Department of Internal Medicine, Medical School, University of Thessaly, Larissa, Greece
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| |
Collapse
|
15
|
Song P, Zheng N, Liu Y, Tian C, Wu X, Ma X, Chen D, Zou X, Wang G, Wang H, Zhang Y, Lu S, Wu C, Wu Z. Deficient humoral responses and disrupted B-cell immunity are associated with fatal SFTSV infection. Nat Commun 2018; 9:3328. [PMID: 30127439 PMCID: PMC6102208 DOI: 10.1038/s41467-018-05746-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/24/2018] [Indexed: 02/06/2023] Open
Abstract
Severe Fever with Thrombocytopenia Syndrome (SFTS), an emerging infectious disease caused by a novel phlebovirus, is associated with high fatality. Therapeutic interventions are lacking and disease pathogenesis is yet to be fully elucidated. The anti-viral immune response has been reported, but humoral involvement in viral pathogenesis is poorly understood. Here we show defective serological responses to SFTSV is associated with disease fatality and a combination of B-cell and T-cell impairment contribute to disruption of anti-viral immunity. The serological profile in deceased patients is characterized by absence of specific IgG to viral nucleocapsid and glycoprotein due to failure of B-cell class switching. Expansion and impairment of antibody secretion is a signature of fatal SFTSV infection. Apoptosis of monocytes in the early stage of infection diminishes antigen-presentation by dendritic cells, impedes differentiation and function of T follicular helper cells, and contributes to failure of the virus-specific humoral response. SFTSV is a novel phlebovirus associated with high fatality, but understanding of pathogenesis is lacking. Here the authors show defective cellular immunity, deficient antibody production and defunct humoral immunity is associated with fatal infection in human cases of infection.
Collapse
Affiliation(s)
- Peixin Song
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Nan Zheng
- Center for Public Health Research, Nanjing University Medical School, Nanjing, People's Republic of China.,State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China.,Jiangsu Laboratory for Molecular Medicines, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Yong Liu
- Department of Experimental Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Chen Tian
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Xilin Wu
- Center for Public Health Research, Nanjing University Medical School, Nanjing, People's Republic of China.,Jiangsu Laboratory for Molecular Medicines, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Xiaohua Ma
- Y-Clone BioMedical, Ltd., Suzhou Hi-Tech Innovation Park, Suzhou, People's Republic of China
| | - Deyan Chen
- Center for Public Health Research, Nanjing University Medical School, Nanjing, People's Republic of China.,State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Xue Zou
- Center for Public Health Research, Nanjing University Medical School, Nanjing, People's Republic of China.,State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Guiyang Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Huanru Wang
- Center for Public Health Research, Nanjing University Medical School, Nanjing, People's Republic of China.,State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China
| | - Yongyang Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Sufang Lu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Zhiwei Wu
- Center for Public Health Research, Nanjing University Medical School, Nanjing, People's Republic of China. .,State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China. .,Jiangsu Laboratory for Molecular Medicines, Nanjing University Medical School, Nanjing, People's Republic of China.
| |
Collapse
|
16
|
Activation and Induction of Antigen-Specific T Follicular Helper Cells Play a Critical Role in Live-Attenuated Influenza Vaccine-Induced Human Mucosal Anti-influenza Antibody Response. J Virol 2018; 92:JVI.00114-18. [PMID: 29563292 PMCID: PMC5952133 DOI: 10.1128/jvi.00114-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/14/2018] [Indexed: 11/20/2022] Open
Abstract
There is increasing interest recently in developing intranasal vaccines against respiratory tract infections. The antibody response is critical for vaccine-induced protection, and T follicular helper cells (TFH) are considered important for mediating the antibody response. Most data supporting the role for TFH in the antibody response are from animal studies, and direct evidence from humans is limited, apart from the presence of TFH-like cells in blood. We studied the activation and induction of TFH and their role in the anti-influenza antibody response induced by a live-attenuated influenza vaccine (LAIV) in human nasopharynx-associated lymphoid tissue (NALT). TFH activation in adenotonsillar tissues was analyzed by flow cytometry, and anti-hemagglutinin (anti-HA) antibodies were examined following LAIV stimulation of tonsillar mononuclear cells (MNC). Induction of antigen-specific TFH by LAIV was studied by flow cytometry analysis of induced TFH and CD154 expression. LAIV induced TFH proliferation, which correlated with anti-HA antibody production, and TFH were shown to be critical for the antibody response. Induction of TFH from naive T cells by LAIV was shown in newly induced TFH expressing BCL6 and CD21, followed by the detection of anti-HA antibodies. Antigen specificity of LAIV-induced TFH was demonstrated by expression of the antigen-specific T cell activation marker CD154 upon challenge by H1N1 virus antigen or HA. LAIV-induced TFH differentiation was inhibited by BCL6, interleukin-21 (IL-21), ICOS, and CD40 signaling blocking, and that diminished anti-HA antibody production. In conclusion, we demonstrated the induction by LAIV of antigen-specific TFH in human NALT that provide critical support for the anti-influenza antibody response. Promoting antigen-specific TFH in NALT by use of intranasal vaccines may provide an effective vaccination strategy against respiratory infections in humans. IMPORTANCE Airway infections, such as influenza, are common in humans. Intranasal vaccination has been considered a biologically relevant and effective way of immunization against airway infection. The vaccine-induced antibody response is crucial for protection against infection. Recent data from animal studies suggest that one type of T cells, TFH, are important for the antibody response. However, data on whether TFH-mediated help for antibody production operates in humans are limited due to the lack of access to human immune tissue containing TFH. In this study, we demonstrate the induction of TFH in human immune tissue, providing critical support for the anti-influenza antibody response, by use of an intranasal influenza vaccine. Our findings provide direct evidence that TFH play a critical role in vaccine-induced immunity in humans and suggest a novel strategy for promoting such cells by use of intranasal vaccines against respiratory infections.
Collapse
|
17
|
Malkiel S, Barlev AN, Atisha-Fregoso Y, Suurmond J, Diamond B. Plasma Cell Differentiation Pathways in Systemic Lupus Erythematosus. Front Immunol 2018; 9:427. [PMID: 29556239 PMCID: PMC5845388 DOI: 10.3389/fimmu.2018.00427] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/16/2018] [Indexed: 01/20/2023] Open
Abstract
Plasma cells (PCs) are responsible for the production of protective antibodies against infectious agents but they also produce pathogenic antibodies in autoimmune diseases, such as systemic lupus erythematosus (SLE). Traditionally, high affinity IgG autoantibodies are thought to arise through germinal center (GC) responses. However, class switching and somatic hypermutation can occur in extrafollicular (EF) locations, and this pathway has also been implicated in SLE. The pathway from which PCs originate may determine several characteristics, such as PC lifespan and sensitivity to therapeutics. Although both GC and EF responses have been implicated in SLE, we hypothesize that one of these pathways dominates in each individual patient and genetic risk factors may drive this predominance. While it will be important to distinguish polymorphisms that contribute to a GC-driven or EF B cell response to develop targeted treatments, the challenge will be not only to identify the differentiation pathway but the molecular mechanisms involved. In B cells, this task is complicated by the cross-talk between the B cell receptor, toll-like receptors (TLR), and cytokine signaling molecules, which contribute to both GC and EF responses. While risk variants that affect the function of dendritic cells and T follicular helper cells are likely to primarily influence GC responses, it will be important to discover whether some risk variants in the interferon and TLR pathways preferentially influence EF responses. Identifying the pathways of autoreactive PC differentiation in SLE may help us to understand patient heterogeneity and thereby guide precision therapy.
Collapse
Affiliation(s)
- Susan Malkiel
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Ashley N Barlev
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Yemil Atisha-Fregoso
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Tecnologico de Monterrey, Monterrey, Mexico
| | - Jolien Suurmond
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Betty Diamond
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
18
|
Amodio D, Cotugno N, Macchiarulo G, Rocca S, Dimopoulos Y, Castrucci MR, De Vito R, Tucci FM, McDermott AB, Narpala S, Rossi P, Koup RA, Palma P, Petrovas C. Quantitative Multiplexed Imaging Analysis Reveals a Strong Association between Immunogen-Specific B Cell Responses and Tonsillar Germinal Center Immune Dynamics in Children after Influenza Vaccination. THE JOURNAL OF IMMUNOLOGY 2017; 200:538-550. [PMID: 29237774 DOI: 10.4049/jimmunol.1701312] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/07/2017] [Indexed: 01/03/2023]
Abstract
Generation of Ag-specific humoral responses requires the orchestrated development and function of highly specialized immune cells in secondary lymphoid organs. We used a multiparametric approach combining flow cytometry, confocal microscopy, and histocytometry to analyze, for the first time to our knowledge in children, tonsils from seasonal influenza-vaccinated children. We used these novel imaging assays to address the mucosal immune dynamics in tonsils investigating the spatial positioning, frequency, and phenotype of immune cells after vaccination. Vaccination was associated with a significantly higher frequency of follicular helper CD4 T cells compared with the unvaccinated control group. The imaging analysis revealed that potential suppressor (FOXP3hi) CD4 T cells are mainly located in extrafollicular areas. Furthermore, a significantly reduced frequency of both follicular and extrafollicular FOXP3hi CD4 T cells was found in the vaccine group compared with the control group. Levels of circulating CXCL13 were higher in those vaccinated compared with controls, mirroring an increased germinal center reactivity in the tonsils. Notably, a strong correlation was found between the frequency of tonsillar T follicular helper cells and tonsillar Ag-specific Ab-secreting cells. These data demonstrate that influenza vaccination promotes the prevalence of relevant immune cells in tonsillar follicles and support the use of tonsils as lymphoid sites for the study of germinal center reactions after vaccination in children.
Collapse
Affiliation(s)
- Donato Amodio
- Research Unit of Congenital and Perinatal Infections, Academic Department of Pediatrics, Bambino Gesù Children's Hospital-Research Institute, 00165 Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Nicola Cotugno
- Research Unit of Congenital and Perinatal Infections, Academic Department of Pediatrics, Bambino Gesù Children's Hospital-Research Institute, 00165 Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giulia Macchiarulo
- Research Unit of Congenital and Perinatal Infections, Academic Department of Pediatrics, Bambino Gesù Children's Hospital-Research Institute, 00165 Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Salvatore Rocca
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Yiannis Dimopoulos
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Maria Rita Castrucci
- National Influenza Centre, Department of Infectious, Parasitic and Immune-Mediated Diseases, National Institute of Health, 00161 Rome, Italy
| | - Rita De Vito
- Histopathology Unit, Bambino Gesù Children's Hospital-Research Institute, 00165 Rome, Italy
| | - Filippo M Tucci
- Unit of Head and Neck Surgery, Department of Surgery, Bambino Gesù Children's Hospital-Research Institute, 00165 Rome, Italy
| | - Adrian B McDermott
- Vaccine Immunogenicity Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Sandeep Narpala
- Vaccine Immunogenicity Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Paolo Rossi
- Research Unit of Congenital and Perinatal Infections, Academic Department of Pediatrics, Bambino Gesù Children's Hospital-Research Institute, 00165 Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Paolo Palma
- Research Unit of Congenital and Perinatal Infections, Academic Department of Pediatrics, Bambino Gesù Children's Hospital-Research Institute, 00165 Rome, Italy
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
19
|
Jandl C, Liu SM, Cañete PF, Warren J, Hughes WE, Vogelzang A, Webster K, Craig ME, Uzel G, Dent A, Stepensky P, Keller B, Warnatz K, Sprent J, King C. IL-21 restricts T follicular regulatory T cell proliferation through Bcl-6 mediated inhibition of responsiveness to IL-2. Nat Commun 2017; 8:14647. [PMID: 28303891 PMCID: PMC5357862 DOI: 10.1038/ncomms14647] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/20/2017] [Indexed: 12/21/2022] Open
Abstract
T follicular regulatory (Tfr) cells control the magnitude and specificity of the germinal centre reaction, but how regulation is contained to ensure generation of high-affinity antibody is unknown. Here we show that this balance is maintained by the reciprocal influence of interleukin (IL)-2 and IL-21. The number of IL-2-dependent FoxP3+ regulatory T cells is increased in the peripheral blood of human patients with loss-of-function mutations in the IL-21 receptor (IL-21R). In mice, IL-21:IL-21R interactions influence the phenotype of T follicular cells, reducing the expression of CXCR4 and inhibiting the expansion of Tfr cells after T-cell-dependent immunization. The negative effect of IL-21 on Tfr cells in mice is cell intrinsic and associated with decreased expression of the high affinity IL-2 receptor (CD25). Bcl-6, expressed in abundance in Tfr cells, inhibits CD25 expression and IL-21-mediated inhibition of CD25 is Bcl-6 dependent. These findings identify a mechanism by which IL-21 reinforces humoral immunity by restricting Tfr cell proliferation.
Collapse
Affiliation(s)
- Christoph Jandl
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
- Department of Medicine, St Vincent's Clinical School, University of NSW, Sydney, New South Wales 2010, Australia
| | - Sue M. Liu
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
- Department of Medicine, St Vincent's Clinical School, University of NSW, Sydney, New South Wales 2010, Australia
| | - Pablo F. Cañete
- Division of Immunology and Genetics, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Joanna Warren
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | - William E. Hughes
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | - Alexis Vogelzang
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | - Kylie Webster
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
- Department of Medicine, St Vincent's Clinical School, University of NSW, Sydney, New South Wales 2010, Australia
| | - Maria E. Craig
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, Locked Bag 4001, Westmead, New South Wales 2145, Australia
- School of Women's and Children's Health, University of New South Wales, High Street, Randwick, Sydney, New South Wales 2031, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-9806, USA
| | - Alexander Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Drive, MS 420, Indianapolis, Indiana 46202, USA
| | - Polina Stepensky
- Pediatric Hematology-Oncology and Bone Marrow Transplantation, Hadassah Hebrew University Hospital, Kiryat Hadassah, POB 12000, Jerusalem 91120, Israel
| | - Bärbel Keller
- Center for Chronic Immunodeficiency (CCI), University Medical Center and University of Freiburg, Breisacher Strasse 117, 79106 Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency (CCI), University Medical Center and University of Freiburg, Breisacher Strasse 117, 79106 Freiburg, Germany
| | - Jonathan Sprent
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
- Department of Medicine, St Vincent's Clinical School, University of NSW, Sydney, New South Wales 2010, Australia
| | - Cecile King
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
- Department of Medicine, St Vincent's Clinical School, University of NSW, Sydney, New South Wales 2010, Australia
| |
Collapse
|
20
|
Gregor CE, Foeng J, Comerford I, McColl SR. Chemokine-Driven CD4 + T Cell Homing: New Concepts and Recent Advances. Adv Immunol 2017; 135:119-181. [DOI: 10.1016/bs.ai.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Wu YY, Kumar R, Iida R, Bagavant H, Alarcón-Riquelme ME. BANK1 Regulates IgG Production in a Lupus Model by Controlling TLR7-Dependent STAT1 Activation. PLoS One 2016; 11:e0156302. [PMID: 27228057 PMCID: PMC4882053 DOI: 10.1371/journal.pone.0156302] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/30/2016] [Indexed: 11/18/2022] Open
Abstract
The purpose of our study was to investigate the effects of the adaptor Bank1 in TLR7 signaling using the B6.Sle1.yaa mouse, a lupus model that develops disease through exacerbated TLR7 expression. Crosses of B6.Sle1.yaa with Bank1-/- mice maintained several B and myeloid cell phenotypes close to normal wild-type levels. Most striking was the reduction in total serum IgG antibodies, but not of IgM, and reduced serum levels of autoantibodies, IL-6, and BAFF. Bank1 deficiency did modify numbers of MZ B cells and total B cell numbers, as well as expression of CXCR4 by follicular helper T cells. Other T cell changes were not observed. Bank1 deficiency did not modify numbers of germinal center B cells or plasma cells or clinical disease outcomes. Purified B cells from Bank1 deficient mice had strongly reduced Ifnb, Ifna4, Irf7, Aicda and Stat1 gene expression following TLR7 agonist stimulation. Interestingly, phosphorylation of Tyr701, but not of Ser727 of STAT1, was impaired in splenic B cells from B6.Sle1.yaa.Bank1-/- mice, as was the nuclear translocation of IRF7 in response to TLR7 agonist stimulation. Further, Bank1 deficiency in B6.Sle1.yaa mice reduced the production of IgG2c after in vitro TLR7 agonist stimulation. Our results demonstrate that Bank1 controls TLR7-mediated type I interferon production. Combined with the control of the nuclear translocation of IRF7, the modulation of STAT1 transcription and phosphorylation, Bank1 contributes to IgG production during development of autoimmune disease.
Collapse
Affiliation(s)
- Ying-Yu Wu
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States of America
| | - Ramesh Kumar
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States of America
| | - Ryuji Iida
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States of America
| | - Harini Bagavant
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States of America
| | - Marta E. Alarcón-Riquelme
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States of America
- Department of Medical Genomics, Pfizer/University of Granada/Andalusian Government Center for Genomics and Oncological Research (GENYO), 18016, Parque Tecnológico de la Salud (PTS), Granada, Spain
- * E-mail: ; ;
| |
Collapse
|
22
|
Leist SR, Pilzner C, van den Brand JMA, Dengler L, Geffers R, Kuiken T, Balling R, Kollmus H, Schughart K. Influenza H3N2 infection of the collaborative cross founder strains reveals highly divergent host responses and identifies a unique phenotype in CAST/EiJ mice. BMC Genomics 2016; 17:143. [PMID: 26921172 PMCID: PMC4769537 DOI: 10.1186/s12864-016-2483-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Influenza A virus is a zoonotic pathogen that poses a major threat to human and animal health. The severe course of influenza infection is not only influenced by viral virulence factors but also by individual differences in the host response. To determine the extent to which the genetic background can modulate severity of an infection, we studied the host responses to influenza infections in the eight genetically highly diverse Collaborative Cross (CC) founder mouse strains. RESULTS We observed highly divergent host responses between the CC founder strains with respect to survival, body weight loss, hematological parameters in the blood, relative lung weight and viral load. Mouse strain was the main factor with highest effect size on body weight loss after infection, demonstrating that this phenotype was highly heritable. Sex represented another significant main effect, although it was less strong. Analysis of survival rates and mean time to death suggested three groups of susceptibility phenotypes: highly susceptible (A/J, CAST/EiJ, WSB/EiJ), intermediate susceptible (C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ) and highly resistant strains (NZO/HlLtJ, PWK/PhJ). These three susceptibility groups were significantly different with respect to death/survival counts. Viral load was significantly different between susceptible and resistant strains but not between intermediate and highly susceptible strains. CAST/EiJ mice showed a unique phenotype. Despite high viral loads in their lungs, CAST/EiJ mice exhibited low counts of infiltrating granulocytes and showed increased numbers of macrophages in the lung. Histological studies of infected lungs and transcriptome analyses of peripheral blood cells and lungs confirmed an abnormal response in the leukocyte recruitment in CAST/EiJ mice. CONCLUSIONS The eight CC founder strains exhibited a large diversity in their response to influenza infections. Therefore, the CC will represent an ideal mouse genetic reference population to study the influence of genetic variation on the susceptibility and resistance to influenza infections which will be important to understand individual variations of disease severity in humans. The unique phenotype combination in the CAST/EiJ strain resembles human leukocyte adhesion deficiency and may thus represent a new mouse model to understand this and related abnormal immune responses to infections in humans.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | - Carolin Pilzner
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | | | - Leonie Dengler
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany. .,University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
23
|
A Simple Flow-Cytometric Method Measuring B Cell Surface Immunoglobulin Avidity Enables Characterization of Affinity Maturation to Influenza A Virus. mBio 2015; 6:e01156. [PMID: 26242629 PMCID: PMC4526714 DOI: 10.1128/mbio.01156-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antibody (Ab) affinity maturation enables an individual to maintain immunity to an increasing number of pathogens within the limits of a total Ig production threshold. A better understanding of this process is critical for designing vaccines that generate optimal Ab responses to pathogens. Our study describes a simple flow-cytometric method that enumerates virus-specific germinal center (GC) B cells as well as their AC50, a measure of Ab avidity, defined as the antigen concentration required to detect 50% of specific B cells. Using a model of mouse Ab responses to the influenza A virus hemagglutinin (IAV HA), we obtained data indicating that AC50 decreases with time postinfection in an affinity maturation-dependent process. As proof of principle of the utility of the method, our data clearly show that relative to intranasal IAV infection, intramuscular immunization against inactivated IAV in adjuvant results in a diminished GC HA B cell response, with increased AC50 correlating with an increased serum Ab off-rate. Enabling simultaneous interrogation of both GC HA B cell quantity and quality, this technique should facilitate study of affinity maturation and rational vaccine design. Though it was first described 50 years ago, little is known about how antibody affinity maturation contributes to immunity. This question is particularly relevant to developing more effective vaccines for influenza A virus (IAV) and other viruses that are difficult vaccine targets. Limitations in methods for characterizing antigen-specific B cells have impeded progress in characterizing the quality of immune responses to vaccine and natural immunogens. In this work, we describe a simple flow cytometry-based approach that measures both the number and affinity of IAV-binding germinal center B cells specific for the IAV HA, the major target of IAV-neutralizing antibodies. Using this method, we showed that the route and form of immunization significantly impacts the quality and quantity of B cell antibody responses. This method provides a relatively simple yet powerful tool for better understanding the contribution of affinity maturation to viral immunity.
Collapse
|
24
|
Elsner RA, Hastey CJ, Olsen KJ, Baumgarth N. Suppression of Long-Lived Humoral Immunity Following Borrelia burgdorferi Infection. PLoS Pathog 2015; 11:e1004976. [PMID: 26136236 PMCID: PMC4489802 DOI: 10.1371/journal.ppat.1004976] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/26/2015] [Indexed: 01/17/2023] Open
Abstract
Lyme Disease caused by infection with Borrelia burgdorferi is an emerging infectious disease and already by far the most common vector-borne disease in the U.S. Similar to many other infections, infection with B. burgdorferi results in strong antibody response induction, which can be used clinically as a diagnostic measure of prior exposure. However, clinical studies have shown a sometimes-precipitous decline of such antibodies shortly following antibiotic treatment, revealing a potential deficit in the host’s ability to induce and/or maintain long-term protective antibodies. This is further supported by reports of frequent repeat infections with B. burgdorferi in endemic areas. The mechanisms underlying such a lack of long-term humoral immunity, however, remain unknown. We show here that B. burgdorferi infected mice show a similar rapid disappearance of Borrelia-specific antibodies after infection and subsequent antibiotic treatment. This failure was associated with development of only short-lived germinal centers, micro-anatomical locations from which long-lived immunity originates. These showed structural abnormalities and failed to induce memory B cells and long-lived plasma cells for months after the infection, rendering the mice susceptible to reinfection with the same strain of B. burgdorferi. The inability to induce long-lived immune responses was not due to the particular nature of the immunogenic antigens of B. burgdorferi, as antibodies to both T-dependent and T-independent Borrelia antigens lacked longevity and B cell memory induction. Furthermore, influenza immunization administered at the time of Borrelia infection also failed to induce robust antibody responses, dramatically reducing the protective antiviral capacity of the humoral response. Collectively, these studies show that B. burgdorferi-infection results in targeted and temporary immunosuppression of the host and bring new insight into the mechanisms underlying the failure to develop long-term immunity to this emerging disease threat. Infections with the Lyme Disease agent, Borrelia burgdorferi, often fail to generate long-term protective immunity. We show here that this is because the immune system of the Borrelia-infected host generates only short-lived, structurally abnormal and non-functional germinal centers. These germinal centers fail to induce memory B cells and long-lived antibody-producing plasma cells, leaving the host susceptible to reinfection with Bb. This inability to induce long-term immunity was not due to the nature of Borrelia antigens, as even T-dependent antigens of Borrelia were unable to induce such responses. Moreover, influenza vaccine antigens, when applied during Borrelia-infection, failed to induce strong antibody responses and immune-protection from influenza challenge. This data illustrate the potent, if temporal, immune suppression induced by Borrelia-infection. Collectively, the data reveal a new mechanism by which B. burgdorferi subverts the adaptive immune response.
Collapse
Affiliation(s)
- Rebecca A. Elsner
- Center for Comparative Medicine, University of California, Davis, Davis, California, United States of America
- Microbiology Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Christine J. Hastey
- Center for Comparative Medicine, University of California, Davis, Davis, California, United States of America
- Microbiology Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Kimberly J. Olsen
- Center for Comparative Medicine, University of California, Davis, Davis, California, United States of America
| | - Nicole Baumgarth
- Center for Comparative Medicine, University of California, Davis, Davis, California, United States of America
- Microbiology Graduate Group, University of California, Davis, Davis, California, United States of America
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Lian J, Luster AD. Chemokine-guided cell positioning in the lymph node orchestrates the generation of adaptive immune responses. Curr Opin Cell Biol 2015; 36:1-6. [PMID: 26067148 DOI: 10.1016/j.ceb.2015.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023]
Abstract
The generation of adaptive immune responses occurs in the lymph node (LN) and requires that lymphocytes locate and interact with cognate antigen-bearing dendritic cells. This process requires the coordinated movement of both innate and adaptive immune cells, and is orchestrated by the chemokine family of chemotactic cytokines. Upon initiation of inflammation, the LN undergoes dramatic changes that include the marked induction of specific chemokines in distinct regions of the reactive LN. These chemokine rich domains establish LN niches that facilitate the differentiation of CD4+ T cells into effector cell subsets and the rapid activation of memory CD8+ T cells. This review will focus on recent advances highlighting the importance of LN chemokines for shaping adaptive immune responses by controlling immune cell migration, positioning, and interactions in the reactive LN.
Collapse
Affiliation(s)
- Jeffrey Lian
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Andrew D Luster
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States.
| |
Collapse
|
26
|
The regulation of T follicular helper responses during infection. Curr Opin Immunol 2015; 34:68-74. [PMID: 25726751 DOI: 10.1016/j.coi.2015.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 01/01/2023]
Abstract
Following infection, naïve CD4 T cells can differentiate into various functionally distinct effector and memory subsets, including T follicular helper (TFH) cells that orchestrate germinal center (GC) reactions necessary for high-affinity, pathogen-specific antibody responses. The origins and function of this cell type have been extensively examined in response to subunit immunization with model antigens. More recently, we are beginning to also appreciate the extent to which microbial infections shape the generation, function and maintenance of TFH cells. Here, we review recent advances and highlight additional knowledge gaps in our understanding of how microbial infections influence priming, differentiation, localization and activity of TFH cells following acute and chronic infections.
Collapse
|
27
|
CD4+ T cells promote antibody production but not sustained affinity maturation during Borrelia burgdorferi infection. Infect Immun 2014; 83:48-56. [PMID: 25312948 DOI: 10.1128/iai.02471-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CD4 T cells are crucial for enhancing B cell-mediated immunity, supporting the induction of high-affinity, class-switched antibody responses, long-lived plasma cells, and memory B cells. Previous studies showed that the immune response to Borrelia burgdorferi appears to lack robust T-dependent B cell responses, as neither long-lived plasma cells nor memory B cells form for months after infection, and nonswitched IgM antibodies are produced continuously during this chronic disease. These data prompted us to evaluate the induction and functionality of B. burgdorferi infection-induced CD4 T(FH) cells. We report that CD4 T cells were effectively primed and T(FH) cells induced after B. burgdorferi infection. These CD4 T cells contributed to the control of B. burgdorferi burden and supported the induction of B. burgdorferi-specific IgG responses. However, while affinity maturation of antibodies against a prototypic T-dependent B. burgdorferi protein, Arthritis-related protein (Arp), were initiated, these increases were reversed later, coinciding with the previously observed involution of germinal centers. The cessation of affinity maturation was not due to the appearance of inhibitory or exhausted CD4 T cells or a strong induction of regulatory T cells. In vitro T-B cocultures demonstrated that T cells isolated from B. burgdorferi-infected but not B. burgdorferi-immunized mice supported the rapid differentiation of B cells into antibody-secreting plasma cells rather than continued proliferation, mirroring the induction of rapid short-lived instead of long-lived T-dependent antibody responses in vivo. The data further suggest that B. burgdorferi infection drives the humoral response away from protective, high-affinity, and long-lived antibody responses and toward the rapid induction of strongly induced, short-lived antibodies of limited efficacy.
Collapse
|
28
|
Di-(2-ethylhexyl) phthalate adjuvantly induces imbalanced humoral immunity in ovalbumin-sensitized BALB/c mice ascribing to T follicular helper cells hyperfunction. Toxicology 2014; 324:88-97. [DOI: 10.1016/j.tox.2014.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022]
|
29
|
Winstead CJ. Follicular helper T cell-mediated mucosal barrier maintenance. Immunol Lett 2014; 162:39-47. [PMID: 25149860 DOI: 10.1016/j.imlet.2014.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/14/2014] [Accepted: 07/29/2014] [Indexed: 02/07/2023]
Abstract
The basic functions of the immune system are protection from pathogens and maintenance of tolerance to self. The maintenance of commensal microbiota at mucosal surfaces adds a layer of complexity to these basic functions. Recent reports suggest follicular helper T cells (Tfh), a CD4(+) T cell subset specialized to provide help to B cells undergoing isotype switching and affinity maturation in germinal centers (GC), interact with the microbiota and are essential to maintenance of mucosal barriers. Complicating the issue is ongoing controversy in the field regarding origin of the Tfh subset and its distinction from other effector CD4 T cell phenotypes (Th1/Th17/Treg). This review focuses on the differentiation, phenotypic plasticity, and function of CD4 T cells, with an emphasis on commensal-specific GC responses in the gut.
Collapse
Affiliation(s)
- Colleen J Winstead
- University of Alabama at Birmingham, Department of Pathology, Birmingham, AL, United States.
| |
Collapse
|
30
|
Chang JH, Hu H, Jin J, Puebla-Osorio N, Xiao Y, Gilbert BE, Brink R, Ullrich SE, Sun SC. TRAF3 regulates the effector function of regulatory T cells and humoral immune responses. J Exp Med 2014; 211:137-51. [PMID: 24378539 PMCID: PMC3892978 DOI: 10.1084/jem.20131019] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 12/03/2013] [Indexed: 12/01/2022] Open
Abstract
Regulatory T cells (Treg cells) control different aspects of immune responses, but how the effector functions of Treg cells are regulated is incompletely understood. Here we identified TNF receptor-associated factor 3 (TRAF3) as a regulator of Treg cell function. Treg cell-specific ablation of TRAF3 impaired CD4 T cell homeostasis, characterized by an increase in the Th1 type of effector/memory T cells. Moreover, the ablation of TRAF3 in Treg cells resulted in increased antigen-stimulated activation of follicular T helper cells (TFH cells), coupled with heightened formation of germinal centers and production of high-affinity IgG antibodies. Although the loss of TRAF3 did not reduce the overall frequency of Treg cells, it attenuated the antigen-stimulated production of follicular Treg cells (TFR cells). TRAF3 signaling in Treg cells was required to maintain high level expression of inducible co-stimulator (ICOS), which in turn was required for TFR cell generation and inhibition of antibody responses. These findings establish TRAF3 as a mediator of Treg cell function in the regulation of antibody responses and suggest a role for TRAF3 in mediating ICOS expression in Treg cells.
Collapse
Affiliation(s)
- Jae-Hoon Chang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, South Korea
| | - Hongbo Hu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jin Jin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Nahum Puebla-Osorio
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Yichuan Xiao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Brian E. Gilbert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Robert Brink
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Stephen E. Ullrich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030
| |
Collapse
|
31
|
McKinstry KK, Dutton RW, Swain SL, Strutt TM. Memory CD4 T cell-mediated immunity against influenza A virus: more than a little helpful. Arch Immunol Ther Exp (Warsz) 2013; 61:341-53. [PMID: 23708562 DOI: 10.1007/s00005-013-0236-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 05/13/2013] [Indexed: 12/22/2022]
Abstract
Recent observations have uncovered multiple pathways whereby CD4 T cells can contribute to protective immune responses against microbial threats. Incorporating the generation of memory CD4 T cells into vaccine strategies thus presents an attractive approach toward improving immunity against several important human pathogens, especially those against which antibody responses alone are inadequate to confer long-term immunity. Here, we review how memory CD4 T cells provide protection against influenza viruses. We discuss the complexities of protective memory CD4 T cell responses observed in animal models and the potential challenges of translating these observations into the clinic. Specifically, we concentrate on how better understanding of organ-specific heterogeneity of responding cells and defining multiple correlates of protection might improve vaccine-generated memory CD4 T cells to better protect against seasonal, and more importantly, pandemic influenza.
Collapse
Affiliation(s)
- K Kai McKinstry
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01583, USA,
| | | | | | | |
Collapse
|