1
|
Sun G, Kropp KA, Kirchner M, Plückebaum N, Selich A, Serrero M, Dhingra A, Cabrera JR, Ritter B, Bauerfeind R, Wyler E, Landthaler M, Schambach A, Sodeik B, Mertins P, Viejo-Borbolla A. Herpes simplex virus type 1 modifies the protein composition of extracellular vesicles to promote neurite outgrowth and neuroinfection. mBio 2024; 15:e0330823. [PMID: 38275838 PMCID: PMC10865794 DOI: 10.1128/mbio.03308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The highly prevalent herpes simplex virus type 1 (HSV-1) causes a range of diseases, including cold sores, blinding keratitis, and life-threatening encephalitis. HSV-1 initially replicates in epithelial cells, enters the peripheral nervous system via neurites, and establishes lifelong infection in the neuronal cell bodies. Neurites are highly dynamic structures that grow or retract in response to attractive or repulsive cues, respectively. Here, we show that infection with HSV-1, but not with a mutant virus lacking glycoprotein G (gG), reduced the repulsive effect of epithelial cells on neurite outgrowth and facilitated HSV-1 invasion of neurons. HSV-1 gG was required and sufficient to induce neurite outgrowth by modifying the protein composition of extracellular vesicles, increasing the amount of neurotrophic and neuroprotective proteins, including galectin-1. Antibodies directed against galectin-1 neutralized the capacity of extracellular vesicles released from HSV-1-infected cells to promote neurite outgrowth. Our study provides new insights into the neurotropism of HSV-1 and identifies a viral protein that modifies the protein composition of extracellular vesicles to stimulate neurite outgrowth and invasion of the nervous system.IMPORTANCEHerpes simplex virus type 1 (HSV-1) must infect neurites (or nerve endings) to establish a chronic infection in neurons. Neurites are highly dynamic structures that retract or grow in the presence of repulsive or attractive proteins. Some of these proteins are released by epithelial cells in extracellular vesicles and act upon interaction with their receptor present on neurites. We show here that HSV-1 infection of epithelial cells modulated their effect on neurites, increasing neurite growth. Mechanistically, HSV-1 glycoprotein G (gG) modifies the protein composition of extracellular vesicles released by epithelial cells, increasing the amount of attractive proteins that enhance neurite outgrowth and facilitate neuronal infection. These results could inform of therapeutic strategies to block HSV-1 induction of neurite outgrowth and, thereby, neuronal infection.
Collapse
Affiliation(s)
- Guorong Sun
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Marieluise Kirchner
- Proteomics platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Nina Plückebaum
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Manutea Serrero
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Akshay Dhingra
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jorge Rubén Cabrera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| | - Birgit Ritter
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Rudolf Bauerfeind
- Research Core Unit for Laser Microscopy, Hannover Medical School, Hannover, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Biology, Humboldt University of Berlin, Berlin, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Philipp Mertins
- Proteomics platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Kropp KA, Sun G, Viejo-Borbolla A. Colonization of peripheral ganglia by herpes simplex virus type 1 and 2. Curr Opin Virol 2023; 60:101333. [PMID: 37267706 DOI: 10.1016/j.coviro.2023.101333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) and 2 (HSV-2) infect and establish latency in neurons of the peripheral nervous system to persist lifelong in the host and to cause recurrent disease. During primary infection, HSV replicates in epithelial cells in the mucosa and skin and then infects neurites, highly dynamic structures that grow or retract in the presence of attracting or repelling cues, respectively. Following retrograde transport in neurites, HSV establishes latency in the neuronal nucleus. Viral and cellular proteins participate in the chromatinization of the HSV genome that regulates gene expression, persistence, and reactivation. HSV-2 modulates neurite outgrowth during primary infection and upon reactivation, probably to facilitate infection and survival of neurons. Whether HSV-1 modulates neurite outgrowth and the underlying mechanism is currently under investigation. This review deals with HSV-1 and HSV-2 colonization of peripheral neurons, with a focus on the modulation of neurite outgrowth by these viruses.
Collapse
Affiliation(s)
- Kai A Kropp
- Institute of Virology, Hannover Medical School, Carl-Neuberg Strasse 1, Hannover, Germany
| | - Guorong Sun
- Institute of Virology, Hannover Medical School, Carl-Neuberg Strasse 1, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Carl-Neuberg Strasse 1, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
4
|
Kropp KA, Srivaratharajan S, Ritter B, Yu P, Krooss S, Polten F, Pich A, Alcami A, Viejo-Borbolla A. Identification of the Cleavage Domain within Glycoprotein G of Herpes Simplex Virus Type 2. Viruses 2020; 12:v12121428. [PMID: 33322659 PMCID: PMC7763493 DOI: 10.3390/v12121428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Glycoprotein G (gG) from herpes simplex virus type 1 and 2 (HSV-1 and HSV-2, respectively) functions as a viral chemokine binding protein (vCKBP). Soluble recombinant forms of gG of HSV-1 and HSV-2 (SgG1 and SgG2, respectively) enhance chemokine-mediated leukocyte migration, in contrast to most known vCKBPs, including those from animal alpha-herpesviruses. Furthermore, both proteins bind to nerve growth factor (NGF), but only SgG2 enhances NGF-dependent neurite outgrowth. The basis and implications of this functional difference between the two proteins are still unknown. While gG1 and gG2 are positional homologues in the genome, they share very limited sequence homology. In fact, US4, the open reading frame encoding gG is the most divergent genetic locus between these viruses. Full-length gG1 and gG2 are type I transmembrane proteins located on the plasma membrane of infected cells and at the viral envelope. However, gG2 is larger than gG1 and is cleaved during protein maturation, secreting the N-terminal domain to the supernatant of infected cells, whereas gG1 is not. The enzyme involved in gG2 cleavage and the functional relevance of gG2 cleavage and secretion are unknown. We aim to identify the gG2 sequence required for cleavage to determine its functional role in future experiments. Our results prove the existence of at least two cleavage motifs in gG2 within the amino acid region 314-343. Transfer of this sequence to a fusion protein results in cleavage. Finally, we show that propeptide convertases like furin are responsible for gG2 cleavage.
Collapse
Affiliation(s)
- Kai A. Kropp
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (K.A.K.); (S.S.); (B.R.); (P.Y.); (S.K.)
| | - Sangar Srivaratharajan
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (K.A.K.); (S.S.); (B.R.); (P.Y.); (S.K.)
| | - Birgit Ritter
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (K.A.K.); (S.S.); (B.R.); (P.Y.); (S.K.)
| | - Pengfei Yu
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (K.A.K.); (S.S.); (B.R.); (P.Y.); (S.K.)
| | - Simon Krooss
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (K.A.K.); (S.S.); (B.R.); (P.Y.); (S.K.)
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Felix Polten
- Core Facility Proteomics, Hannover Medical School, 30625 Hannover, Germany; (F.P.); (A.P.)
| | - Andreas Pich
- Core Facility Proteomics, Hannover Medical School, 30625 Hannover, Germany; (F.P.); (A.P.)
- Institute for Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (K.A.K.); (S.S.); (B.R.); (P.Y.); (S.K.)
- Correspondence:
| |
Collapse
|
5
|
Herpes Simplex Virus 2 Counteracts Neurite Outgrowth Repulsion during Infection in a Nerve Growth Factor-Dependent Manner. J Virol 2020; 94:JVI.01370-20. [PMID: 32669337 PMCID: PMC7527038 DOI: 10.1128/jvi.01370-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a prevalent human pathogen that establishes lifelong latency in neurons of the peripheral nervous system. Colonization of neurons is required for HSV-2 persistence and pathogenesis. The viral and cellular factors required for efficient infection of neurons are not fully understood. We show here that nonneuronal cells repel neurite outgrowth of sensory neurons, while HSV-2 infection overcomes this inhibition and, rather, stimulates neurite outgrowth. HSV-2 glycoprotein G and nerve growth factor contribute to this phenotype, which may attract neurites to sites of infection and facilitate virus spread to neurons. Understanding the mechanisms that modulate neurite outgrowth and facilitate HSV-2 infection of neurons might foster the development of therapeutics to reduce HSV-2 colonization of the nervous system and provide insights on neurite outgrowth and regeneration. During primary infection, herpes simplex virus 2 (HSV-2) replicates in epithelial cells and enters neurites to infect neurons of the peripheral nervous system. Growth factors and attractive and repulsive directional cues influence neurite outgrowth and neuronal survival. We hypothesized that HSV-2 modulates the activity of such cues to increase neurite outgrowth. To test this hypothesis, we exposed sensory neurons to nerve growth factor (NGF) and mock- or HSV-2-infected HEK-293T cells, since they express repellents of neurite outgrowth. We show that HEK-293T cells secrete factors that inhibit neurite outgrowth, while infection with HSV-2 strains MS and 333 reduces this repelling phenotype, increasing neurite numbers. The HSV-2-mediated restoration of neurite outgrowth required the activity of NGF. In the absence of infection, however, NGF did not overcome the repulsion mediated by HEK-293T cells. We previously showed that recombinant, soluble glycoprotein G of HSV-2 (rSgG2) binds and enhances NGF activity, increasing neurite outgrowth. However, the effect of gG2 during infection has not been investigated. Therefore, we addressed whether gG2 contributes to overcoming neurite outgrowth repulsion. To do so, we generated viruses lacking gG2 expression and complemented them by exogenous expression of gG2. Overall, our results suggest that HSV-2 infection of nonneuronal cells reduces their repelling effect on neurite outgrowth in an NGF-dependent manner. gG2 contributed to this phenotype, but it was not the only factor. The enhanced neurite outgrowth may facilitate HSV-2 spread from epithelial cells into neurons expressing NGF receptors and increase HSV-2-mediated pathogenesis. IMPORTANCE Herpes simplex virus 2 (HSV-2) is a prevalent human pathogen that establishes lifelong latency in neurons of the peripheral nervous system. Colonization of neurons is required for HSV-2 persistence and pathogenesis. The viral and cellular factors required for efficient infection of neurons are not fully understood. We show here that nonneuronal cells repel neurite outgrowth of sensory neurons, while HSV-2 infection overcomes this inhibition and, rather, stimulates neurite outgrowth. HSV-2 glycoprotein G and nerve growth factor contribute to this phenotype, which may attract neurites to sites of infection and facilitate virus spread to neurons. Understanding the mechanisms that modulate neurite outgrowth and facilitate HSV-2 infection of neurons might foster the development of therapeutics to reduce HSV-2 colonization of the nervous system and provide insights on neurite outgrowth and regeneration.
Collapse
|
6
|
Martínez-Martín N, Viejo-Borbolla A, Alcami A. Herpes simplex virus particles interact with chemokines and enhance cell migration. J Gen Virol 2016; 97:3007-3016. [DOI: 10.1099/jgv.0.000616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Nadia Martínez-Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas – Universidad Autónoma de Madrid, Madrid, Spain
| | - Abel Viejo-Borbolla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas – Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas – Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
7
|
González-Motos V, Kropp KA, Viejo-Borbolla A. Chemokine binding proteins: An immunomodulatory strategy going viral. Cytokine Growth Factor Rev 2016; 30:71-80. [DOI: 10.1016/j.cytogfr.2016.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/27/2016] [Indexed: 01/13/2023]
|
8
|
Cabrera JR, Viejo-Borbolla A, Martinez-Martín N, Blanco S, Wandosell F, Alcamí A. Secreted herpes simplex virus-2 glycoprotein G modifies NGF-TrkA signaling to attract free nerve endings to the site of infection. PLoS Pathog 2015; 11:e1004571. [PMID: 25611061 PMCID: PMC4303327 DOI: 10.1371/journal.ppat.1004571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 11/12/2014] [Indexed: 12/26/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) and HSV-2 are highly prevalent viruses that cause a variety of diseases, from cold sores to encephalitis. Both viruses establish latency in peripheral neurons but the molecular mechanisms facilitating the infection of neurons are not fully understood. Using surface plasmon resonance and crosslinking assays, we show that glycoprotein G (gG) from HSV-2, known to modulate immune mediators (chemokines), also interacts with neurotrophic factors, with high affinity. In our experimental model, HSV-2 secreted gG (SgG2) increases nerve growth factor (NGF)-dependent axonal growth of sympathetic neurons ex vivo, and modifies tropomyosin related kinase (Trk)A-mediated signaling. SgG2 alters TrkA recruitment to lipid rafts and decreases TrkA internalization. We could show, with microfluidic devices, that SgG2 reduced NGF-induced TrkA retrograde transport. In vivo, both HSV-2 infection and SgG2 expression in mouse hindpaw epidermis enhance axonal growth modifying the termination zone of the NGF-dependent peptidergic free nerve endings. This constitutes, to our knowledge, the discovery of the first viral protein that modulates neurotrophins, an activity that may facilitate HSV-2 infection of neurons. This dual function of the chemokine-binding protein SgG2 uncovers a novel strategy developed by HSV-2 to modulate factors from both the immune and nervous systems.
Collapse
Affiliation(s)
- Jorge Rubén Cabrera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigaciones Biologicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Abel Viejo-Borbolla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| | - Nadia Martinez-Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| | - Soledad Blanco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigaciones Biologicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Enhancement of chemokine function as an immunomodulatory strategy employed by human herpesviruses. PLoS Pathog 2012; 8:e1002497. [PMID: 22319442 PMCID: PMC3271085 DOI: 10.1371/journal.ppat.1002497] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/06/2011] [Indexed: 01/10/2023] Open
Abstract
Herpes simplex virus (HSV) types 1 and 2 are highly prevalent human neurotropic pathogens that cause a variety of diseases, including lethal encephalitis. The relationship between HSV and the host immune system is one of the main determinants of the infection outcome. Chemokines play relevant roles in antiviral response and immunopathology, but the modulation of chemokine function by HSV is not well understood. We have addressed the modulation of chemokine function mediated by HSV. By using surface plasmon resonance and crosslinking assays we show that secreted glycoprotein G (SgG) from both HSV-1 and HSV-2 binds chemokines with high affinity. Chemokine binding activity was also observed in the supernatant of HSV-2 infected cells and in the plasma membrane of cells infected with HSV-1 wild type but not with a gG deficient HSV-1 mutant. Cell-binding and competition experiments indicate that the interaction takes place through the glycosaminoglycan-binding domain of the chemokine. The functional relevance of the interaction was determined both in vitro, by performing transwell assays, time-lapse microscopy, and signal transduction experiments; and in vivo, using the air pouch model of inflammation. Interestingly, and in contrast to what has been observed for previously described viral chemokine binding proteins, HSV SgGs do not inhibit chemokine function. On the contrary, HSV SgGs enhance chemotaxis both in vitro and in vivo through increasing directionality, potency and receptor signaling. This is the first report, to our knowledge, of a viral chemokine binding protein from a human pathogen that increases chemokine function and points towards a previously undescribed strategy of immune modulation mediated by viruses. Chemokines are chemotactic cytokines that direct the flux of leukocytes to the site of injury and infection, playing a relevant role in the antiviral response. An uncontrolled, unorganized chemokine response is beneath the onset and maintenance of several immunopathologies. During millions of years of evolution, viruses have developed strategies to modulate the host immune system. One of such strategies consists on the secretion of viral proteins that bind to and inhibit the function of chemokines. However, the modulation of the chemokine network mediated by the highly prevalent human pathogen herpes simplex virus (HSV) is unknown. We have addressed this issue and show that HSV-1, causing cold sores and encephalitis and HSV-2, causing urogenital tract infections, interact with chemokines. We determined that the viral protein responsible for such activity is glycoprotein G (gG). gG binds chemokines with high affinity and, in contrast to all viral chemokine binding proteins described to date that inhibit chemokine function, we found that HSV gG potentiates chemokine function in vitro and in vivo. The implications of such potentiation in HSV viral cycle, pathogenesis and chemokine function are discussed.
Collapse
|
10
|
Abstract
Pseudorabies virus (PRV), a member of the Alphaherpesvirinae, has a complex multilayered extracellular virion that is structurally conserved among other herpesviruses. PRV virions contain a double-stranded DNA genome within a proteinaceous capsid surrounded by the tegument, a layer of viral and cellular proteins. The envelope layer, which encloses the capsid and tegument, contains viral transmembrane proteins anchored in a phospholipid bilayer. The viral and host proteins contained within virions execute important functions during viral spread and pathogenesis, but a detailed understanding of the composition of PRV virions has been lacking. In this report, we present the first comprehensive proteomic characterization of purified PRV virions by mass spectrometry using two complementary approaches. To exclude proteins present in the extracellular medium that may nonspecifically associate with virions, we also analyzed virions treated with proteinase K and samples prepared from mock-infected cells. Overall, we identified 47 viral proteins associated with PRV virions, 40 of which were previously localized to the capsid, tegument, and envelope layers using traditional biochemical approaches. Additionally, we identified seven viral proteins that were previously undetected in virions, including pUL8, pUL20, pUL32, pUL40 (RR2), pUL42, pUL50 (dUTPase), and Rsp40/ICP22. Furthermore, although we did not enrich for posttranslational modifications, we detected phosphorylation of four virion proteins: pUL26, pUL36, pUL46, and pUL48. Finally, we identified 48 host proteins associated with PRV virions, many of which have known functions in important cellular pathways such as intracellular signaling, mRNA translation and processing, cytoskeletal dynamics, and membrane organization. This analysis extends previous work aimed at determining the composition of herpesvirus virions and provides novel insights critical for understanding the mechanisms underlying PRV entry, assembly, egress, spread, and pathogenesis.
Collapse
|
11
|
Cepeda V, Fraile-Ramos A. A role for the SNARE protein syntaxin 3 in human cytomegalovirus morphogenesis. Cell Microbiol 2011; 13:846-58. [PMID: 21371234 DOI: 10.1111/j.1462-5822.2011.01583.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As an enveloped virus, replication of human cytomegalovirus (HCMV) is dependent on interaction with cellular membrane systems. Its final envelopment occurs into intracellular membranes prior to its secretion. However the mechanisms underlying these processes are poorly understood. Here, we show that HCMV infection induces expression of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 3 (STX3), a component of the cellular machinery for membrane fusion. STX3 was located at the plasma membrane and at the assembly site where it was found associated with virus wrapping membranes by immunogold labelling. Depletion of STX3 using RNA interference reduced HCMV production, while expression of a STX3 construct resistant to RNAi inhibition enhanced virus production. Ultrastructural examination of the assembly site in HCMV-infected STX3-depleted cells showed fewer mature virions and more viruses undergoing final envelopment. In contrast, silencing of STX3 did not affect herpes simplex virus type 1 production. The mechanism through which STX3 affected HCMV morphogenesis likely involved late endosomes/lysosomes since STX3 depletion reduced the expression of lysosomal membrane glycoproteins. Our results demonstrate a function for STX3 in HCMV morphogenesis, and unravel a new role for this SNARE protein in late endosomes/lysosomes compartments.
Collapse
Affiliation(s)
- Victoria Cepeda
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, Madrid 28049, Spain
| | | |
Collapse
|
12
|
Zhao Y, Wang JW, Ma B, Liu F. Molecular analysis of duck enteritis virus US3, US4, and US5 gene. Virus Genes 2009; 38:289-94. [PMID: 19153825 DOI: 10.1007/s11262-008-0326-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 12/30/2008] [Indexed: 10/21/2022]
Abstract
Here, we first present unique short (US)3, US4, and US5 gene sequences, with analysis, of duck enteritis virus (DEV) vaccine strain C-KCE. The assembled sequence comprises 5,742 nucleotides, which are amplified from the DEV genome by single oligonucleotide-nested polymerase chain reaction with primers designed according to our previous acquired sequence deposited in GenBank (accession no. EF619046). The predicted gene arrangement is colinear with the alphaherpesvirus herpes simplex virus within the US region. The N-glycosylated sites, signal peptide, transmembrane helices, RNA polymerase II transcriptional control elements, and polyadenylation signal, were predicted with network prediction programs. Phylogenetic analysis of the three putative proteins revealed that they had a close evolutionary relationship with the subfamily of Alphaherpesvirinae.
Collapse
Affiliation(s)
- Yan Zhao
- Northeast Agricultural University, Harbin, 150030, China
| | | | | | | |
Collapse
|
13
|
|
14
|
Kasubi MJ, Nilsen A, Marsden HS, Bergström T, Langeland N, Haarr L. Prevalence of antibodies against herpes simplex virus types 1 and 2 in children and young people in an urban region in Tanzania. J Clin Microbiol 2006; 44:2801-7. [PMID: 16891495 PMCID: PMC1594616 DOI: 10.1128/jcm.00180-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is transmitted by close contact, both sexual and nonsexual, and infections are acquired during childhood and adolescence. Herpes simplex virus type 2 (HSV-2), however, is thought to be transmitted mainly by sexual contact. Most HSV-2 infections are consequently expected to occur after the onset of sexual activity. Recent reports indicate an increasing prevalence of HSV-2 on the African continent, but most studies have been performed on adult cohorts. In the present study, we collected sera from Tanzanian children and young persons from 1 to 20 years old, with at least 100 individuals in each age group. Antibodies against HSV-1 and HSV-2 were detected by an in-house Western blot method which was shown to perform well in comparison with a commercial Western blot assay. Type-specific antibodies were also analyzed by two noncommercial enzyme-linked immunosorbent assay methods based upon the antigenicities of branched synthetic oligopeptides corresponding to epitopes in glycoprotein G of HSV-1 or HSV-2. The prevalence of HSV-1 antibodies increased gradually from 73% for the age group of 1 to 4 years to 92% for the age group of 17 to 20 years. The prevalence of HSV-2 antibodies was unexpectedly high, as 15% of the children were infected by the age of 8 years, with the incidence increasing gradually to 40% in the age group of 17 to 20 years. The reason for this unexpectedly high frequency is not clear but could suggest that nonsexual transmission of HSV-2 is more common than previously thought. There was no statistically significant association between seropositivities for HSV-2 and human immunodeficiency virus.
Collapse
|
15
|
Costes B, Thirion M, Dewals B, Mast J, Ackermann M, Markine-Goriaynoff N, Gillet L, Vanderplasschen A. Felid herpesvirus 1 glycoprotein G is a structural protein that mediates the binding of chemokines on the viral envelope. Microbes Infect 2006; 8:2657-67. [PMID: 16962359 DOI: 10.1016/j.micinf.2006.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Revised: 07/17/2006] [Accepted: 07/19/2006] [Indexed: 11/18/2022]
Abstract
Glycoprotein G (gG) orthologues have been described in several alphaherpesviruses. gG is expressed both as a membrane-anchored form on infected cells and as a secreted form. Recently, we reported that both forms of gG encoded by alphaherpesviruses infecting large herbivores and by Felid herpesvirus 1 (FeHV-1) bind with high affinity to a broad range of CXC, CC and C-chemokines. Based on the viral species, gG has been reported either as a structural or a non-structural protein. To date, the incorporation of FeHV-1 gG into virions has never been tested, nor the property of alphaherpesvirus structural gG to bind chemokines on the virion surface. In the present study, to address these questions, various FeHV-1 gG recombinant strains were produced using an original technique based on an infectious FeHV-1 BAC clone and restriction endonuclease mediated recombination. Using the recombinants produced, we were able to determine that FeHV-1 gG is a structural protein that acts as a chemokine-binding protein on the virion surface. In the light of these results, putative roles of gG in alphaherpesvirus infections are discussed, and an evolutionary scenario is proposed to explain the structural versus non-structural property of gG amongst alphaherpesviruses.
Collapse
Affiliation(s)
- Bérénice Costes
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Costes B, Ruiz-Argüello MB, Bryant NA, Alcami A, Vanderplasschen A. Both soluble and membrane-anchored forms of Felid herpesvirus 1 glycoprotein G function as a broad-spectrum chemokine-binding protein. J Gen Virol 2005; 86:3209-3214. [PMID: 16298965 DOI: 10.1099/vir.0.81388-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recently, glycoprotein G (gG) of several alphaherpesviruses infecting large herbivores was shown to belong to a new family of chemokine-binding proteins (vCKBPs). In the present study, the function of Felid herpesvirus 1 (FeHV-1) gG as a vCKBP was investigated and the following conclusions were reached: (i) FeHV-1 secreted gG is a high-affinity broad-spectrum vCKBP that binds CC, CXC and C chemokines; (ii) gG is the only vCKBP expressed by FeHV-1 that binds CCL3 and CXCL1; (iii) secreted gG blocks chemokine activity by preventing their interaction with high-affinity cellular receptors; (iv) the membrane-anchored form of gG expressed on the surface of infected cells is also able to bind chemokines; and (v) the vCKBP activity is conserved among different field isolates of FeHV-1. Altogether, these data demonstrate that FeHV-1 gG is a new member of the vCKBP-4 family. Moreover, this study is the first to demonstrate that gG expressed at the surface of FeHV-1-infected cells can also bind chemokines.
Collapse
Affiliation(s)
- B Costes
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases (B43b), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | - M B Ruiz-Argüello
- Centro de Investigación en Sanidad Animal (INIA), Valdeolmos, 28130 Madrid, Spain
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - N A Bryant
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - A Alcami
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - A Vanderplasschen
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases (B43b), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
17
|
Bryant NA, Davis-Poynter N, Vanderplasschen A, Alcami A. Glycoprotein G isoforms from some alphaherpesviruses function as broad-spectrum chemokine binding proteins. EMBO J 2003; 22:833-46. [PMID: 12574120 PMCID: PMC145452 DOI: 10.1093/emboj/cdg092] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mimicry of host chemokines and chemokine receptors to modulate chemokine activity is a strategy encoded by beta- and gammaherpesviruses, but very limited information is available on the anti-chemokine strategies encoded by alphaherpesviruses. The secretion of chemokine binding proteins (vCKBPs) has hitherto been considered a unique strategy encoded by poxviruses and gammaherpesviruses. We describe a family of novel vCKBPs in equine herpesvirus 1, bovine herpesvirus 1 and 5, and related alphaherpesviruses with no sequence similarity to chemokine receptors or other vCKBPs. We show that glycoprotein G (gG) is secreted from infected cells, binds a broad range of chemokines with high affinity and blocks chemokine activity by preventing their interaction with specific receptors. Moreover, gG also blocks chemokine binding to glycosaminoglycans, an interaction required for the correct presentation and function of chemokines in vivo. In contrast to other vCKBPs, gG may also be membrane anchored and, consistently, we show chemokine binding activity at the surface of cells expressing full-length protein. These alphaherpesvirus vCKBPs represent a novel family of proteins that bind chemokines both at the membrane and in solution.
Collapse
Affiliation(s)
| | - Nick Davis-Poynter
- Department of Medicine and Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ,
Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK and Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, B43b, University of Liège, B-4000 Liège, Belgium Corresponding author e-mail:
| | - Alain Vanderplasschen
- Department of Medicine and Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ,
Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK and Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, B43b, University of Liège, B-4000 Liège, Belgium Corresponding author e-mail:
| | - Antonio Alcami
- Department of Medicine and Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ,
Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK and Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, B43b, University of Liège, B-4000 Liège, Belgium Corresponding author e-mail:
| |
Collapse
|
18
|
Ikoma M, Liljeqvist JA, Groen J, Glazenburg KL, The TH, Welling-Wester S. Use of a fragment of glycoprotein G-2 produced in the baculovirus expression system for detecting herpes simplex virus type 2-specific antibodies. J Clin Microbiol 2002; 40:2526-32. [PMID: 12089274 PMCID: PMC120576 DOI: 10.1128/jcm.40.7.2526-2532.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2001] [Revised: 01/24/2002] [Accepted: 03/30/2002] [Indexed: 11/20/2022] Open
Abstract
Fragments of glycoprotein G (gG-2(281-594His)), comprising residues 281 to 594 of herpes simplex virus type 2 (HSV-2), glycoprotein G of HSV-1 (gG-1(t26-189His)), and glycoprotein D of HSV-1 (gD-1(1-313)), were expressed in the baculovirus expression system to develop an assay for the detection of HSV-1 and HSV-2 type-specific antibodies. The expression of the gG-1(t26-189His) and gG-2(281-594His) fragments was analyzed by Western blotting using monoclonal antibodies LP10 and AP1, respectively. The molecular masses of the major products of gG-1(t26-189His) and the fragment of gG-2(281-594His) were 36 to 39 kDa and 64 to 72 kDa, respectively. Human sera positive for HSV-1 reacted with gG-1(t26-189His), sera positive for HSV-2 reacted with the gG-2(281-594His) fragment, and sera positive for both types reacted with gG-1(t26-189His) and gG-2(281-594His) in Western blotting. The human sera recognized polypeptides of gG-2(281-594His) with molecular masses of 57 to 67 and 120 to 150 kDa and additional faint bands of 21, 29, and 45 kDa. The recombinant gG-1(t26-189His) and the recombinant gG-2(281-594His) fragment were used as type-specific antigens for the detection of HSV-1- and HSV-2-specific antibody responses in human sera, respectively. As type-common antigens, an extract of HSV-1-infected Vero cells and recombinant gD-1(1-313) were used. An enzyme-linked immunosorbent assay to detect type-specific antibodies was developed, and the sensitivity and specificity were evaluated by comparison with commercial tests by using sera obtained from different sources. The sensitivity and specificity were 91.5 and 95.5%, respectively, compared to the Gull assay. The gG-2(281-594His) fragment can be obtained in relatively large quantities at low cost.
Collapse
Affiliation(s)
- Minako Ikoma
- Department of Medical Microbiology, University of Groningen, 9713 GZ Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
A number of herpes simplex virus (HSV) glycoproteins are found in oligomeric states: glycoprotein E (gE)-gI and gH-gL form heterodimers, and both gB and gC have been detected as homodimers. We have further explored the organization of glycoproteins in the virion envelope by using both purified virions to quantitate glycoprotein amounts and proportions and chemical cross-linkers to detect oligomers. We purified gB, gC, gD, and gH from cells infected with HSV type 1 and used these as immunological standards. Glycoproteins present in sucrose gradient-purified preparations of two strains of HSV type 1, KOS and NS, were detected with antibodies to each of the purified proteins. From these data, glycoprotein molar ratios of 1:2:11:16 and 1:1:14:9 were calculated for gB/gC/gD/gH in KOS and NS, respectively. gL was also detected in virions, although we lacked a purified gL standard for quantitation. We then asked whether complexes of these glycoproteins could be identified, and if they existed as homo- or hetero-oligomers. Purified KOS was incubated at 4 degrees C with bis (sulfosuccinimidyl) suberate (BS3), an 11.4 A (1A = 0.1 mm) noncleavable, water-soluble cross-linker. Virus extracts were examined by Western blotting (immunoblotting), or immunoprecipitation followed by Western blotting, to assay for homo- and hetero-oligomers. Homodimers of gB, gC, and gD were detected, and hetero-oligomers containing gB cross-linked to gC, gC to gD, and gD to gB were also identified. gH and gL were detected as a hetero-oligomeric pair and could be cross-linked to gD or gC but not to gB. We conclude that these glycoproteins are capable of forming associations with one another. These studies suggest that glycoproteins are closely associated in virions and have the potential to function as oligomeric complexes.
Collapse
Affiliation(s)
- C G Handler
- School of Dental Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
20
|
Keil GM, Engelhardt T, Karger A, Enz M. Bovine herpesvirus 1 U(s) open reading frame 4 encodes a glycoproteoglycan. J Virol 1996; 70:3032-8. [PMID: 8627780 PMCID: PMC190163 DOI: 10.1128/jvi.70.5.3032-3038.1996] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sequence analysis of the short unique (Us) segment of the bovine herpesvirus 1 (BHV-1) genome predicted that the Us open reading frame (ORF) 4 encodes a protein with homology to glycoprotein G (gG) of other alpha-herpesviruses (P. Leung-Tack, J.-C. Audonnet, and M. Riviere, Virology 199:409-421, 1994). RNA analysis showed that the Us ORF4 is contained within two transcripts of 3.5 and 1.8 kb. The 3.5 kb RNA represents a structurally bicistronic RNA which encompasses the Us ORF3 and Us ORF4, whereas the 1.8-kb RNA constitutes the monocistronic Us ORF4 mRNA. To identify the predicted BHV-I gG, recombinant vaccinia virus expressing the Us ORF4 was used to raise specific antibodies in rabbits. The antiserum recognized a 65-kDa polypeptide and a very diffusely migrating species of proteins with an apparent molecular mass of between 90 and greater than 240 kDa in supernatants of BHV-1-infected cells which was also precipitated together with 61- and 70-kDa polypeptides from cell-associated proteins. The specificity of the reaction was demonstrated by the absence of these proteins from the supernatant of cells infected with the Us ORF4 deletion mutant BHV-l/gp1-8. Treatment of the immunoprecipitated proteins with glycosidases and chondroitinase AC showed that the 65-kDa protein constitutes gG, which contains both N- and O-linked carbohydrates, and that the high-molecular-mass proteins contain glycosaminoglycans linked to a 65-kDa glycoprotein that is antigenically related to gG. These molecules were therefore named glycoproteoglycan C (gpgG). Pulse chase experiments indicated that gG and gpgG were processed from a common precursor molecule with an apparent molecular mass of 61 kDa via a 70-kDa intermediate. Both gG and gpgG could not be found associated with purified virions. In summary, our results identify the BHV-I gG protein and demonstrate the presence of a form of posttranslational modification, glycosamino-glycosylation, that has not yet been described for a herpesvirus-encoded protein.
Collapse
Affiliation(s)
- G M Keil
- Institute for Molecular and Cellular Virology, Insel Riems, Germany
| | | | | | | |
Collapse
|
21
|
Haarr L, Skulstad S. The herpes simplex virus type 1 particle: structure and molecular functions. Review article. APMIS 1994; 102:321-46. [PMID: 8024735 DOI: 10.1111/j.1699-0463.1994.tb04882.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review is a summary of our present knowledge with respect to the structure of the virion of herpes simplex virus type 1. The virion consists of a capsid into which the DNA is packaged, a tegument and an external envelope. The protein compositions of the structures outside the genome are described as well as the functions of individual proteins. Seven capsid proteins are identified, and two of them are mainly present in precursors of mature DNA-containing capsids. The protein components of the 150 hexamers and 12 pentamers in the icosahedral capsid are known. These capsomers all have a central channel and are connected by Y-shaped triplexes. In contrast to the capsid, the tegument has a less defined structure in which 11 proteins have been identified so far. Most of them are phosphorylated. Eleven virus-encoded glycoproteins are present in the envelope, and there may be a few more membrane proteins not yet identified. Functions of these glycoproteins include attachment to and penetration of the cellular membrane. The structural proteins, their functions, coding genes and localizations are listed in table form.
Collapse
Affiliation(s)
- L Haarr
- National Centre for Research in Virology, University of Bergen, Norway
| | | |
Collapse
|
22
|
Eberle R, Zhang M, Black DH. Gene mapping and sequence analysis of the unique short region of the simian herpesvirus SA 8 genome. Arch Virol 1993; 130:391-411. [PMID: 8390827 DOI: 10.1007/bf01309669] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A 10.5 kbp BamHI restriction fragment representing most of the unique short (Us) region of the genome of the simian alpha-herpesvirus SA8 was identified and cloned. Partial sequencing of this DNA fragment identified regions of sequence homology with eight open reading frames (ORFs) of HSV1 and/or HSV2. Sequence and size analysis of subcloned fragments of the SA8 Us region and comparison with homologous HSV Us sequences determined that the number, order, size, and orientation of SA8 Us ORFs are comparable to those of HSV. Based on the location of transcriptional control elements, transcription of SA8 Us genes appears to be organized into 3' co-terminal mRNA sets as in HSV, although the grouping of the gene sets is different. The SA8 US4 (gG) ORF is more similar to that of HSV2 than HSV1, both in size and predicted amino acid sequence. Complete sequences were determined for five SA8 genes which represent homologs of the HSV gD, gE, gI, US5, and US9 genes. The predicted polypeptides encoded by SA8 are similar to the corresponding HSV polypeptides. All SA8 Us genes were more closely related to those of HSV than to related gene homologs of other mammalian alpha-herpesviruses.
Collapse
Affiliation(s)
- R Eberle
- Department of Veterinary Parasitology, College of Veterinary Medicine, Oklahoma State University, Stillwater
| | | | | |
Collapse
|
23
|
Rasile L, Ghosh K, Raviprakash K, Ghosh HP. Effects of deletions in the carboxy-terminal hydrophobic region of herpes simplex virus glycoprotein gB on intracellular transport and membrane anchoring. J Virol 1993; 67:4856-66. [PMID: 8392620 PMCID: PMC237873 DOI: 10.1128/jvi.67.8.4856-4866.1993] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The gB glycoprotein of herpes simplex virus type 1 is involved in viral entry and fusion and contains a predicted membrane-anchoring sequence of 69 hydrophobic amino acids, which can span the membrane three times, near the carboxy terminus. To define the membrane-anchoring sequence and the role of this hydrophobic stretch, we have constructed deletion mutants of gB-1, lacking one, two, or three predicted membrane-spanning segments within the 69 amino acids. Expression of the wild-type and mutant glycoproteins in COS-1 cells show that mutant glycoproteins lacking segment 3 (amino acids 774 to 795 of the gB-1 protein) were secreted from the cells. Protease digestion and alkaline extraction of microsomes containing labeled mutant proteins further showed that segment 3 was sufficient for stable membrane anchoring of the glycoproteins, indicating that this segment may specify the transmembrane domain of the gB glycoprotein. Also, the mutant glycoproteins containing segment 3 were localized in the nuclear envelop, which is the site of virus budding. Deletion of any of the hydrophobic segments, however, affected the intracellular transport and processing of the mutant glycoproteins. The mutant glycoproteins, although localized in the nuclear envelope, failed to complement the gB-null virus (K082). These results suggest that the carboxy-terminal hydrophobic region contains essential structural determinants of the functional gB glycoprotein.
Collapse
Affiliation(s)
- L Rasile
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Gilbert R, Ghosh HP. Immunoelectron microscopic localization of herpes simplex virus glycoprotein gB in the nuclear envelope of infected cells. Virus Res 1993; 28:217-31. [PMID: 8394040 DOI: 10.1016/0168-1702(93)90023-g] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herpesvirus, such as herpes simplex type 1 (HSV-1) acquire their envelope by budding through a modified inner membrane of the nuclear envelope which forms thick and dense patches at the site of budding. This suggests that some of the viral envelope glycoproteins must be transported to the nuclear envelope in order to be incorporated into the virus. In an effort to establish the localization of the HSV-1 glycoprotein gB-1 in the nuclear envelope of HSV-1 infected cells directly, we have studied the distribution of the glycoprotein gB-1 by immunoelectron microscopy using a polyclonal anti gB-1 antibody. A specific accumulation of gB-1 in the nuclear envelope, which was five times more labeled than the plasma membrane was observed. The glycoprotein gB-1 was localized in both the outer and the inner membrane of the nuclear envelope. The labeling over the nuclear envelope was distributed evenly and no preferential concentration of gB-1 around or within the patches where the virus buds was detected. The nucleocapsids were found to be labeled only when they become associated with the nuclear envelope indicating that gB-1 is incorporated into the virus at this site.
Collapse
Affiliation(s)
- R Gilbert
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
25
|
Su HK, Fetherston JD, Smith ME, Courtney RJ. Orientation of the cleavage site of the herpes simplex virus glycoprotein G-2. J Virol 1993; 67:2954-9. [PMID: 8386284 PMCID: PMC237626 DOI: 10.1128/jvi.67.5.2954-2959.1993] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
During the synthesis of glycoprotein G-2 (gG-2) of herpes simplex virus type 2, the 104,000-Da gG-2 precursor (104K precursor) is cleaved to generate the 72K and the 31K intermediates. The 72K product is processed to generate the mature gG-2 (molecular mass, 108,000 Da), while the 31K product is additionally processed and secreted into the extracellular medium as the 34K component (H. K. Su, R. Eberle, and R. J. Courtney, J. Virol. 61:1735-1737, 1987). In this study, the orientations of the 31K and 72K products on the 104K precursor were determined by using two antipeptide sera produced in rabbits and a monoclonal antibody, 13 alpha C6, directed against gG-2. The sera prepared against synthetic peptides corresponding to the terminal amino acid residues 67 to 78 and an internal peptide at amino acids 247 to 260 of gG-2 recognized the 104K precursor and the 31K cleavage product but not the 72K intermediate. In contrast, 13 alpha C6 detected the 72K cleavage product and the uncleaved precursor but not the 31K cleavage component. The epitope recognized by 13 alpha C6 was mapped within amino acids 486 to 566. These results suggest that the 31K cleavage product is derived from the amino-terminal portion of the 104K precursor molecule and that the 72K intermediate is derived from the carboxyl terminus. In support of our model described above for the synthesis of gG-2, antibodies recognizing either of the cleavage products reacted with the uncleaved precursor but not with the other cleavage product. By using partial endo-beta-N-acetylglucosaminidase H analysis, two N-linked glycosylation sites were found on each of the cleavage products. The distribution of the N-linked glycosylation sites and the reactivities of the antipeptide sera allowed the cleavage region on the precursor to be mapped to within amino acids 260 to 437.
Collapse
Affiliation(s)
- H K Su
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033
| | | | | | | |
Collapse
|
26
|
Ghiasi H, Kaiwar R, Nesburn AB, Wechsler SL. Baculovirus-expressed glycoprotein G of herpes simplex virus type 1 partially protects vaccinated mice against lethal HSV-1 challenge. Virology 1992; 190:233-9. [PMID: 1529531 DOI: 10.1016/0042-6822(92)91209-d] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The DNA sequence encoding the complete HSV-1 glycoprotein G (gG) was inserted into a baculovirus transfer vector and recombinant viruses expressing gG were isolated. Three gG-related recombinant baculovirus expressed peptides of 37, 42, and 44 kDa were detected by Western blotting using monoclonal antibody to gG. The 42- and 44-kDa species were susceptible to tunicamycin, Endoglycosidase H (Endo-H), and N-glycosidase F (PNGase F) treatments, suggesting that they were glycosylated. Although only very low levels (approximately 1:10) of HSV-1-neutralizing antibody were produced in mice vaccinated with the baculovirus gG, these mice were partially protected from lethal challenge with HSV-1 (75-78% survival) and this level of protection was highly significant (P = 0.002). This is the first report to show that vaccination with HSV-1 gG can provide mice with any level of protection against lethal HSV-1 challenge.
Collapse
Affiliation(s)
- H Ghiasi
- Ophthalmology Research, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | | | | | | |
Collapse
|
27
|
Crabb BS, Nagesha HS, Studdert MJ. Identification of equine herpesvirus 4 glycoprotein G: a type-specific, secreted glycoprotein. Virology 1992; 190:143-54. [PMID: 1529525 DOI: 10.1016/0042-6822(92)91200-e] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Equine herpesvirus 4 (EHV4) glycoproteins of M(r) 63K and 250K were identified in the supernatant of infected cell cultures. The 63K glycoprotein was type-specific; that is, it reacted with monospecific sera from horses that had been immunized or infected with EHV4, but not with monospecific sera from horses immunized or infected with EHV1, a closely related alphaherpesvirus. It was postulated that the secreted protein may be the homologue of similarly secreted glycoproteins of herpes simplex virus 2 glycoprotein G (HSV2 gG) and pseudorabies virus (PRV) gX, which is the homologue of HSV2 gG. The US region of the EHV4 genome, toward the internal repeat structure, was sequenced. Four open reading frames (ORFs) were identified of which ORF4 showed 52% similarity to the gene-encoding PRV gX in a 650-nucleotide region. ORF4 coded for a primary translational product of 405 amino acids which has a predicted size of 44K. The amino acid sequence of ORF4 showed 28% identity with PRV gX and 16% identity with HSV2 gG, although significantly greater identity was observed in the N-terminal region including the conservation of 4 cysteine residues. Accordingly, we designate ORF4 as EHV4 gG. The predicted amino acid sequence of the EHV4 gG showed characteristics of an envelope glycoprotein. Expression of the entire EHV4 gG gene in the bacterial expression vector pGEX-3X produced a type-specific fusion protein of M(r) 70K of which the gG portion composes 43K. Antibody that was affinity purified from selected portions of Western blots containing the 70K gG fusion protein reacted with the 63K secreted glycoprotein. Conversely, antibody affinity purified to the 63K secreted product reacted with the 70K gG fusion protein. These results showed that the EHV4 63K secreted glycoprotein was EHV4 gG, the third alphaherpesvirus gG homologue known to be, at least in part, secreted. The type-specificity of this glycoprotein provides, for the first time, the opportunity to differentiate between antibodies present in polyclonal sera from EHV4, EHV1, and dual-infected horses and this has important implications for understanding the epidemiology of these viruses.
Collapse
Affiliation(s)
- B S Crabb
- School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
28
|
Ghiasi H, Kaiwar R, Nesburn AB, Wechsler SL. Expression of herpes simplex virus type 1 glycoprotein I in baculovirus: preliminary biochemical characterization and protection studies. J Virol 1992; 66:2505-9. [PMID: 1548774 PMCID: PMC289047 DOI: 10.1128/jvi.66.4.2505-2509.1992] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have constructed a recombinant baculovirus expressing the herpes simplex virus type 1 (HSV-1) glycoprotein I (gI). Sf9 cells infected with this recombinant virus synthesized gI-related polypeptides with apparent molecular sizes of 52 and 56 kDa. The recombinant gI appeared to be glycosylated, since it was susceptible to both tunicamycin and endoglycosidase H, and the expressed gI was transported to the surface of infected cells as judged by indirect immunofluorescence. Antibodies to the recombinant gI raised in mice neutralized HSV-1 infectivity. Finally, we show here for the first time that vaccination with gI can protect mice against HSV-1 challenge.
Collapse
Affiliation(s)
- H Ghiasi
- Ophthalmology Research, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | | | | | | |
Collapse
|
29
|
|
30
|
Ghiasi H, Nesburn AB, Wechsler SL. Cell surface expression of herpes simplex virus type 1 glycoprotein H in recombinant baculovirus-infected cells. Virology 1991; 185:187-94. [PMID: 1656584 DOI: 10.1016/0042-6822(91)90766-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNA encoding the complete sequence for the herpes simplex virus type 1 (HSV-1) glycoprotein H (gH) was inserted into a baculovirus transfer vector under control of the baculovirus polyhedrin gene promoter. After co-transfection with wild-type baculovirus DNA, recombinants expressing gH were isolated by plaque purification. The baculovirus-expressed HSV-1 gH represented a significant portion of total cellular protein and was several hundred fold more abundant than gH in HSV-1-infected Vero cells. The expressed gH appeared to be glycosylated, since it was similar in size to wild-type HSV-1 gH, was susceptible to both tunicamycin and endoglycosidase-H treatment, and was labeled by [3H]mannose. In contrast to previous reports of gH expressed in mammalian cells, the baculovirus recombinant-expressed gH was abundant on the cell surface as judged by indirect immunofluorescence. To our knowledge, this is the first report of expressed HSV-1 gH being transported to the cell surface in the absence of other HSV-1 gene products and the first report of expressed gH with an apparent molecular weight similar to authentic HSV-1 gH.
Collapse
Affiliation(s)
- H Ghiasi
- Ophthalmology Research, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | | | | |
Collapse
|
31
|
Highlander SL, Goins WF, Person S, Holland TC, Levine M, Glorioso JC. Oligomer formation of the gB glycoprotein of herpes simplex virus type 1. J Virol 1991; 65:4275-83. [PMID: 1649330 PMCID: PMC248865 DOI: 10.1128/jvi.65.8.4275-4283.1991] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Oligomer formation of the gB glycoprotein of herpes simplex virus type 1 was studied by sedimentation analysis of radioactively labeled infected cell and virion lysates. Fractions from sucrose gradients were precipitated with a pool of gB-specific monoclonal antibodies and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Pulse-labeled gB from infected cell was synthesized as monomers and converted to oligomers posttranslationally. The oligomers from infected cells and from virions sedimented as dimers, and there was no evidence of higher-molecular-weight forms. To identify amino acid sequences of gB that contribute to oligomer formation, pairs of mutant plasmids were transfected into Vero cells and superinfected with a gB-null mutant virus to stimulate plasmid-specified gene expression. Radioactively labeled lysates were precipitated with antibodies and examined by SDS-PAGE. Polypeptides from cotransfections were precipitated with an antibody that recognized amino acid sequences present in only one of the two polypeptides. A coprecipitated polypeptide lacking the antibody target epitope was presumed to contain the sequences necessary for oligomer formation. Using this technique, two noncontiguous sites for oligomer formation were detected. An upstream site was localized between residues 93 and 282, and a downstream site was localized between residues 596 and 711. Oligomer formation resulted from molecular interactions between two upstream sites, between two downstream sites, and between an upstream and a downstream site. A schematic diagram of a gB oligomer is presented that is consistent with these data.
Collapse
Affiliation(s)
- S L Highlander
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor 48109
| | | | | | | | | | | |
Collapse
|
32
|
Elton DM, Halliburton IW, Killington RA, Meredith DM, Bonass WA. Sequence analysis of the 4.7-kb BamHI-EcoRI fragment of the equine herpesvirus type-1 short unique region. Gene 1991; 101:203-8. [PMID: 1647359 DOI: 10.1016/0378-1119(91)90412-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To localize gene that may encode immunogens potentially important for recombinant vaccine design, we have analysed a region of the equine herpesvirus type-1 (EHV-1) genome where a glycoprotein-encoding gene had previously been mapped. The 4707-bp BamHI-EcoRI fragment from the short unique region of the EHV-1 genome was sequenced. This sequence contains three entire open reading frames (ORFs), and portions of two more. ORF1 codes for 161 amino acids (aa), and represents the C terminus of a possible membrane-bound protein. ORF2 (424 aa) and ORF3 (550 aa) are potential glycoprotein-encoding genes; the predicted aa sequences contain possible signal sequences, N-linked glycosylation sites and transmembrane domains; they also show homology to the glycoproteins gI and gE of herpes simplex virus type-1 (HSV-1), and the related proteins of pseudorabies virus and varicella-zoster virus. The predicted aa sequence of ORF4 shares no homology with other known herpesvirus proteins, but the nucleotide sequence shows a high level of homology with the corresponding region of the EHV-4 genome. ORF5 may be related to US9 of HSV-1.
Collapse
Affiliation(s)
- D M Elton
- Department of Microbiology, University of Leeds, U.K
| | | | | | | | | |
Collapse
|
33
|
Sánchez-Martínez D, Pellett PE. Expression of HSV-1 and HSV-2 glycoprotein G in insect cells by using a novel baculovirus expression vector. Virology 1991; 182:229-38. [PMID: 1850903 DOI: 10.1016/0042-6822(91)90666-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) glycoprotein G (gG-1 and gG-2) were expressed in insect cells from recombinant baculoviruses (AcDSMgG-1 and AcDSMgG-2, respectively) constructed using a novel baculovirus transfer vector, pAcDSM. This vector allows the coding region of a foreign gene to be precisely linked to the baculovirus polyhedrin gene at the translation initiation site and retains the native polyhedrin translation initiation environment. Fourfold more gG-1, with a higher ratio of glycosylated to unglycosylated product, was produced by AcDSMgG-1 than by Ac373'gG-1, a recombinant baculovirus which differs from AcDSMgG-1 by the presence of 21 extraneous nucleotides in the 5' nontranslated sequence. gG-1 and gG-2 expressed in recombinant baculovirus-infected insect cells undergo cotranslational N-linked glycosylation, but the overall processing of the proteins differs from that observed in HSV-1 or HSV-2-infected cells. Despite these differences, baculovirus-expressed gG-1 and gG-2 were recognized in a HSV type-specific manner by human serum specimens.
Collapse
Affiliation(s)
- D Sánchez-Martínez
- Molecular Biology Department, Biokit S.A., Lliçà d'Amunt, Barcelona, Spain
| | | |
Collapse
|
34
|
Gompels UA, Carss AL, Saxby C, Hancock DC, Forrester A, Minson AC. Characterization and sequence analyses of antibody-selected antigenic variants of herpes simplex virus show a conformationally complex epitope on glycoprotein H. J Virol 1991; 65:2393-401. [PMID: 1707982 PMCID: PMC240591 DOI: 10.1128/jvi.65.5.2393-2401.1991] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Thirteen antigenic variants of herpes simplex virus which were resistant to neutralization by monoclonal antibody 52S or LP11 were isolated and characterized. The antibodies in the absence of complement potently neutralize infectivity of wild-type virus as well as inhibit the transfer of virus from infected to uninfected cells ("plaque inhibition") and decrease virus-induced cell fusion by syncytial strains. The first variant isolated arose in vivo. Of 66 type 1 isolates analyzed from typing studies of 100 clinical isolates, one was identified as resistant to neutralization by LP11 antibody. The glycoprotein H (gH) sequence was derived and compared with those of wild-type and syncytial laboratory strains SC16, strain 17, and HFEM. The sequences were highly conserved in contrast to the diversity observed between gH sequences from herpesviruses of different subgroups. Only four coding changes were present in any of the comparisons, and only one unique coding change was observed between the laboratory strains and the clinical isolate (Asp-168 to Gly). These sequences were compared with those of antigenic variants selected by antibody in tissue culture. Twelve variants were independently selected with antibody LP11 or 52S from parent strain SC16 or HFEM. For each variant, the gH nucleotide sequence was derived and a point mutation was identified giving rise to a single amino acid substitution. The LP11-resistant viruses encoded gH sequences with amino acid substitutions at sites distributed over one-half of the gH external domain, Glu-86, Asp-168, or Arg-329, while the 52S-resistant mutant viruses had substitutions at adjacent positions Ser-536 and Ala-537. One LP11 mutant virus had a point mutation in the gH gene that was identical to that of the clinical isolate, giving rise to a substitution of Asp-168 with Gly. Both LP11 and 52S appeared to recognize distinct gH epitopes as mutant virus resistant to neutralization and immunoprecipitation with LP11 remained sensitive to 52S and the converse was shown for the 52S-resistant mutant virus. This is consistent with previous studies which showed that while the 52S epitope could be formed in the absence of other virus products, virus gene expression was required for stable presentation of the LP11 epitope, and for transport of gH to the cell surface (Gompels and Minson, J. Virol. 63:4744-4755, 1989). All mutant viruses produced numbers of infectious particles that were similar to those produced by the wild-type virus, with the exception of one variant which produced lower yields.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- U A Gompels
- Department of Pathology, Cambridge University, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Foà-Tomasi L, Avitabile E, Boscaro A, Brandimarti R, Gualandri R, Manservigi R, Dall'Olio F, Serafini-Cessi F, Fiume GC. Herpes simplex virus (HSV) glycoprotein H is partially processed in a cell line that expresses the glycoprotein and fully processed in cells infected with deletion or ts mutants in the known HSV glycoproteins. Virology 1991; 180:474-82. [PMID: 1846486 DOI: 10.1016/0042-6822(91)90061-f] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell lines that constitutively express herpes simplex virus 1 (HSV-1) glycoprotein H (gH-1) failed to synthesize the mature form of gH and accumulated a precursor-like form of the glycoprotein, which was retained intracellularly, most likely in RER. Fine-structure analysis of the oligosaccharides present in recombinant gH revealed oligosaccharides processed by RER enzymes; sialylated complex-type and biantennary oligosaccharides, which are assembled in the trans-Golgi, were absent. A small fraction had the characteristics of oligosaccharides processed by the early mannosidases of the Golgi. These findings suggest that a defect in the transport out of RER to the Golgi may account for the intracellular retention of the immature form of gH in cells that express the glycoprotein constitutively. Upon superinfection of cells expressing gH-1 with HSV-2, recombinant gH-1 underwent maturation, indicating that a viral function is required to attain full processing of gH. The known HSV glycoproteins do not appear to carry out this function, since in cells infected with deletion mutants in gD, gG, gE, and gE-gI, with a spontaneous gC- mutant, or with a temperature-sensitive mutant in gB, maturation of gH occurred independently of the presence or of the maturation of the single glycoproteins tested. The present findings together with previous observations on HSV, human CMV, and the EBV homologue of gH suggest that inability of gH to undergo full processing in the absence of viral protein(s) is a property of gH.
Collapse
Affiliation(s)
- L Foà-Tomasi
- Section on Microbiology and Virology, University of Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Banfield BW, Tufaro F. Herpes simplex virus particles are unable to traverse the secretory pathway in the mouse L-cell mutant gro29. J Virol 1990; 64:5716-29. [PMID: 2173764 PMCID: PMC248713 DOI: 10.1128/jvi.64.12.5716-5729.1990] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The mouse L-cell mutant gro29 was selected for its ability to survive infection by herpes simplex virus type 1 (HSV-1) and is defective in the propagation of HSV-1 and vesicular stomatitis virus (F. Tufaro, M. D. Snider, and S. L. McKnight, J. Cell Biol. 105:647-657, 1987). In this report, we show that gro29 cells harbor a lesion that inhibits the egress of HSV-1 virions during infection. We also found that HSV-1 glycoprotein D was slow to traverse the secretory pathway en route to the plasma membrane of infected gro29 cells. The movement of glycoproteins was not blocked entirely, however, and immunofluorescence experiments revealed that infected gro29 cells contained roughly 10% of the expected amount of glycoprotein D on their cell surface at 12 h postinfection. Furthermore, nucleocapsids and virions assembled inside the cells during infection, suggesting that the lesion in gro29 cells impinged on a late step in virion maturation. Electron micrographs of infected cells revealed that many of the intracellular virions were contained in irregular cytoplasmic vacuoles, similar to those that accumulate in HSV-1-infected cells treated with the ionophore monensin. We conclude from these results that gro29 harbors a defect that blocks the egress of HSV-1 virions from the infected cell without seriously impeding the flux of individual glycoproteins to the cell surface. We infer that HSV-1 maturation and egress require a host cell component that is either reduced or absent in gro29 cells and that this lesion, although not lethal to the host cell, cannot be tolerated by HSV-1 during its life cycle.
Collapse
Affiliation(s)
- B W Banfield
- Department of Microbiology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
37
|
Blacklaws BA, Krishna S, Minson AC, Nash AA. Immunogenicity of herpes simplex virus type 1 glycoproteins expressed in vaccinia virus recombinants. Virology 1990; 177:727-36. [PMID: 2164732 DOI: 10.1016/0042-6822(90)90539-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vaccinia virus recombinants expressing glycoproteins B (vgB11), D (VgD52), E (gE/7.5 and gE/4B), G (gG-vac), H (gH-vac), and I (gI-vac) of HSV-1 were used to compare the protective response to these individual glycoproteins in the mouse. Glycoprotein D induced the best neutralizing antibody titers and the most increased rates of HSV clearance from the ear as well as good protection from the establishment of latent HSV infections in the sensory ganglia. Glycoprotein B also induced good neutralizing antibody titers and as great a protection from the establishment of latency as gD although the rate of virus clearance from the ear was not as great as after immunization with gD. Glycoprotein E induced weak neutralizing antibody but gG, gH, and gI did not show a neutralizing antibody response. At higher challenge doses of virus (10(6) PFU HSV-1 in the ear), gE induced a protective response by increasing the rate of virus clearance and reducing the acute infection of ganglia as compared to negative control immunized mice. However there was no protection from the establishment of latent infections after immunization with gE. No protective response was seen to gG, gH, or gl.
Collapse
Affiliation(s)
- B A Blacklaws
- Department of Pathology, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
38
|
Guo PX, Goebel S, Perkus ME, Taylor J, Norton E, Allen G, Languet B, Desmettre P, Paoletti E. Coexpression by vaccinia virus recombinants of equine herpesvirus 1 glycoproteins gp13 and gp14 results in potentiated immunity. J Virol 1990; 64:2399-406. [PMID: 2157895 PMCID: PMC249404 DOI: 10.1128/jvi.64.5.2399-2406.1990] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The equine herpesvirus 1 glycoprotein 14 (EHV-1 gp14) gene was cloned, sequenced, and expressed by vaccinia virus recombinants. Recombinant virus vP613 elicited the production of EHV-1-neutralizing antibodies in guinea pigs and was effective in protecting hamsters from subsequent lethal EHV-1 challenge. Coexpression of EHV-1 gp14 in vaccinia virus recombinant vP634 along with EHV-1 gp13 (P. Guo, S. Goebel, S. Davis, M. E. Perkus, B. Languet, P. Desmettre, G. Allen, and E. Paoletti, J. Virol. 63:4189-4198, 1989) greatly enhanced the protective efficacy in the hamster challenge model over that obtained with single recombinants. The inoculum doses (log10) required for protection of 50% of hamsters were 6.1 (EHV-1 gp13), 5.2 (EHV-1 gp14), and less than 3.6 (vaccinia virus recombinant expressing both EHV-1 glycoproteins [gp13 and gp14]).
Collapse
Affiliation(s)
- P X Guo
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Seidel-Dugan C, Ponce de Leon M, Friedman HM, Eisenberg RJ, Cohen GH. Identification of C3b-binding regions on herpes simplex virus type 2 glycoprotein C. J Virol 1990; 64:1897-906. [PMID: 2157859 PMCID: PMC249343 DOI: 10.1128/jvi.64.5.1897-1906.1990] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glycoprotein C from herpes simplex viruses types 1 and 2 (gC-1 and gC-2) acts as a receptor for the C3b fragment of the third component of complement. Our goal is to identify domains on gC involved in C3b receptor activity. Here, we used in-frame linker-insertion mutagenesis of the cloned gene for gC-2 to identify regions of the protein involved in C3b binding. We constructed 41 mutants of gC-2, each having a single, double, or triple insertion of four amino acids at sites spread across the protein. A transient transfection assay was used to characterize the expressed mutant proteins. All of the proteins were expressed on the transfected cell surface, exhibited processing of N-linked oligosaccharides, and bound one or more monoclonal antibodies recognizing distinct antigenic sites on native gC-2. This suggested that each of the mutant proteins was folded into a native structure and that a loss of C3b binding by any of the mutants could be attributed to the disruption of a specific functional domain. When the panel of insertion mutants was assayed for C3b receptor activity, we identified three distinct regions that are important for C3b binding, since an insertion within those regions abolished C3b receptor activity. Region I was located between amino acids 102 and 107, region II was located between residues 222 and 279, and region III was located between residues 307 and 379. In addition, region III has some structural features similar to a conserved motif found in complement receptor 1, the human C3b receptor. Finally, blocking experiments indicated that gC-1 and gC-2 bind to similar locations on the C3b molecule.
Collapse
Affiliation(s)
- C Seidel-Dugan
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104-6003
| | | | | | | | | |
Collapse
|
40
|
Bell S, Cranage M, Borysiewicz L, Minson T. Induction of immunoglobulin G Fc receptors by recombinant vaccinia viruses expressing glycoproteins E and I of herpes simplex virus type 1. J Virol 1990; 64:2181-6. [PMID: 2157879 PMCID: PMC249377 DOI: 10.1128/jvi.64.5.2181-2186.1990] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glycoprotein E (gE) of herpes simplex virus type 1 (HSV-1) will bind immunoglobulin G (IgG) (Fc) affinity columns (R. B. Bauke and P. G. Spear, J. Virol. 32:779-789, 1979), but recent evidence suggests that the HSV-1 Fc receptor is composed of a complex of gE and glycoprotein I (gI) and that both gI and gE are required for Fc receptor activity (D. C. Johnson and V. Feenstra, J. Virol. 61:2208-2216, 1987; D. C. Johnson, M. C. Frame, M. W. Ligas, A. M. Cross, and N. D. Stow, J. Virol. 62:1347-1354, 1988). We have expressed gE and gI, either alone or in combination, on the surface of HeLa cells by using recombinant vaccinia viruses and have measured Fc receptor activity by Fc-rosetting or IgG-binding assays. Expression of gE alone resulted in the induction of Fc receptor activity, while expression of gI alone gave no detectable Fc binding. Coexpression of gE and gI resulted in higher levels of IgG binding than did expression of gE alone, despite the fact that under conditions of coexpression, the levels of surface gE were reduced. We propose that gE and gI together form a receptor of higher affinity than gE alone and that HSV-1 therefore has the potential to induce two Fc receptors of different affinities.
Collapse
Affiliation(s)
- S Bell
- Department of Medicine, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
41
|
|
42
|
Raviprakash K, Rasile L, Ghosh K, Ghosh HP. Shortened cytoplasmic domain affects intracellular transport but not nuclear localization of a viral glycoprotein. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40084-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
43
|
Gompels UA, Minson AC. Antigenic properties and cellular localization of herpes simplex virus glycoprotein H synthesized in a mammalian cell expression system. J Virol 1989; 63:4744-55. [PMID: 2552150 PMCID: PMC251111 DOI: 10.1128/jvi.63.11.4744-4755.1989] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Herpes simplex virus type 1 glycoprotein H (HSV-1 gH) was synthesized in an inducible mammalian cell expression system, and its properties were examined. The gH coding sequence, together with the stable 5' untranslated leader sequence from xenopus beta-globin, was placed under control of the strong promoter from the human cytomegalovirus major immediate-early gene in an amplifiable plasmid which contains the simian virus 40 (SV40) virus origin for replication (ori). This expression vector was transfected into ts COS cells constitutively expressing a temperature-sensitive SV40 T antigen which allows utilization of the SV40 ori at permissive temperatures. The results of transient expression assays at the permissive temperature showed that HSV-1 gH could be synthesized in greater amounts than those produced by a high-multiplicity virus infection. The proteins produced were detected in Western blots (immunoblots) with a HSV-1 gH-specific polyclonal serum raised against a TrpE-gH fusion protein. The transfected gH had an apparent molecular weight of approximately 105,000, intermediate in size to those of the precursor (100,000) and fully processed forms (110,000) of HSV-1 gH from infections. Antigenicity was investigated by reactions with three virus-neutralizing monoclonal antibodies specific for conformational epitopes on gH. Only one of these monoclonal antibodies could immunoprecipitate the synthesized gH. However, equal recognition of the transfected gH was achieved by superinfection with virus. In addition, detectable amounts of gH were not expressed on the cell surface unless the cells were superinfected with virus. Studies with a temperature-sensitive mutant, ts1201, defective in encapsidation showed that the changes in antigenic structure and cell surface expression caused by superinfection with virus were not due simply to incorporation of gH into virions. These results suggest that gH requires additional virus gene products for cell surface localization and formation of an antigenic structure important for its function in mediating infectivity.
Collapse
Affiliation(s)
- U A Gompels
- Department of Pathology, University of Cambridge, United Kingdom
| | | |
Collapse
|
44
|
Johnson RM, Spear PG. Herpes simplex virus glycoprotein D mediates interference with herpes simplex virus infection. J Virol 1989; 63:819-27. [PMID: 2536105 PMCID: PMC247755 DOI: 10.1128/jvi.63.2.819-827.1989] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We showed that the expression of a single protein, glycoprotein D (gD-1), specified by herpes simplex virus type 1 (HSV-1) renders cells resistant to infection by HSV but not to infection by other viruses. Mouse (LMtk-) and human (HEp-2) cell lines containing the gene for gD-1 under control of the human metallothionein promoter II expressed various levels of gD-1 constitutively and could be induced to express higher levels with heavy metal ions. Radiolabeled viruses bound equally well to gD-1-expressing and control cell lines. Adsorbed viruses were unable to penetrate cells expressing sufficient levels of gD-1, based on lack of any cytopathic effects of the challenge virus and on failure to detect either the induction of viral protein synthesis or the shutoff of host protein synthesis normally mediated by a virion-associated factor. The resistance to HSV infection conferred by gD-1 expression was not absolute and depended on several variables, including the amount of gD-1 expressed, the dosage of the challenge virus, the serotype of the challenge virus, and the properties of the cells themselves. The interference activity of gD-1 is discussed in relation to the role of gD-1 in virion infectivity and its possible role in permitting escape of progeny HSV from infected cells.
Collapse
Affiliation(s)
- R M Johnson
- Department of Molecular, Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | |
Collapse
|
45
|
Johnson DC, Ligas MW. Herpes simplex viruses lacking glycoprotein D are unable to inhibit virus penetration: quantitative evidence for virus-specific cell surface receptors. J Virol 1988; 62:4605-12. [PMID: 2846873 PMCID: PMC253572 DOI: 10.1128/jvi.62.12.4605-4612.1988] [Citation(s) in RCA: 146] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Herpes simplex virus (HSV) glycoprotein D (gD) plays an essential role in the entry of virus into cells. HSV mutants unable to express gD were constructed. The mutants can be propagated on VD60 cells, which supply the viruses with gD; however, virus particles lacking gD were produced in mutant-infected Vero cells. Virus particles with or without gD adsorbed to a large number (greater than 4 x 10(4] of sites on the cell surface; however, virions lacking gD did not enter cells. Cells pretreated with UV-inactivated virions containing gD (approximately 5 x 10(3) particles per cell) were resistant to infection with HSV type 1 (HSV-1) and HSV-2. In contrast, cells pretreated with UV-inactivated virions lacking gD could be infected with HSV-1 and HSV-2. If infectious HSV-1 was added prior to UV-inactivated virus particles containing gD, the infectious virus entered cells and replicated. Therefore, virus particles containing gD appear to block specific cell surface receptors which are very limited in number. Particles lacking gD are presumably unable to interact with these receptors, suggesting that gD is an essential receptor-binding polypeptide.
Collapse
Affiliation(s)
- D C Johnson
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
46
|
Su HK, Courtney RJ. Inducible expression of herpes simplex virus type 2 glycoprotein gene gG-2 in a mammalian cell line. J Virol 1988; 62:3668-74. [PMID: 2843667 PMCID: PMC253509 DOI: 10.1128/jvi.62.10.3668-3674.1988] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The gG-2 glycoprotein gene of herpes simplex virus type 2 (HSV-2) was cloned into the mammalian expression vector pMSG under the control of the inducible mouse mammary tumor virus promoter. Transfection of this cloned gG-2 construct into NIH 3T3 cells resulted in the stable expression of gG-2 upon induction with dexamethasone. In addition, the 104,000-molecular-weight (104K) and 72K gG-2 precursors as well as the 34K secreted component were generated in the transformed cells. The synthesis of gG-2 in these transformed cells appeared to follow the same cleavage-processing pathway as gG-2 synthesis during an HSV-2 infection. These results indicate that the processing of gG-2 can occur in the absence of an HSV-2 infection.
Collapse
Affiliation(s)
- H K Su
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932
| | | |
Collapse
|
47
|
Campadelli-Fiume G, Avitabile E, Fini S, Stirpe D, Arsenakis M, Roizman B. Herpes simplex virus glycoprotein D is sufficient to induce spontaneous pH-independent fusion in a cell line that constitutively expresses the glycoprotein. Virology 1988; 166:598-602. [PMID: 3051654 DOI: 10.1016/0042-6822(88)90533-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Spontaneous small polykaryocytes were detected in a cell line designated BJ-o that harbors the BamHI J fragment of herpes simplex virus 1 DNA and expresses constitutively glycoprotein D (gD). The fusion activity of BJ-o cells correlated with gD production and was drastically reduced following exposure of the cells to monoclonal antibody HD1 to gD. Studies on the characteristics and requirements of cell fusion dependent on gD led to the conclusion that the characteristics and requirements for gD-mediated fusion activity of BJ-o cells are similar to those previously reported for cell fusion induced by the virus in that (i) polykaryocytosis was not augmented by exposure to medium of low pH with or without prior exposure to trypsin, (ii) the number of polykaryocytes was reduced following removal of terminal sialic acid residues by neuraminidase, and (iii) the number of polykaryocytes was augmented by masking of high-mannose N-linked oligosaccharides with concanavalin A or with its reduced form, succinyl concanavalin A. This effect was reversed by competition with mannose.
Collapse
|
48
|
Allen GP, Coogle LD. Characterization of an equine herpesvirus type 1 gene encoding a glycoprotein (gp13) with homology to herpes simplex virus glycoprotein C. J Virol 1988; 62:2850-8. [PMID: 2455821 PMCID: PMC253721 DOI: 10.1128/jvi.62.8.2850-2858.1988] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The molecular structure of the equine herpesvirus type 1 (EHV-1) gene encoding glycoprotein 13 (gp13) was analyzed. The gene is contained within a 1.8-kilobase AccI-EcoRI restriction fragment mapping at map coordinates 0.136 to 0.148 in the UL region of the EHV-1 genome and is transcribed from right to left. Determination of the nucleotide sequence of the DNA fragment revealed a complete transcriptional unit composed of typical regulatory promoter elements upstream to a long open reading frame (1,404 base pairs) that encoded a 468-amino-acid primary translation product of 51 kilodaltons. The predicted protein has the characteristic features of a membrane-spanning protein: an N-terminal signal sequence, a hydrophobic membrane anchor region, a charged C-terminal cytoplasmic tail, and an exterior domain with nine potential N-glycosylation sites. The EHV-1 DNA sequences expressed in lambda gt11 as gp13 epitopes were present in the open reading frame. Amino acid sequences composing a major antigenic site, recognized by 35% of a panel of 42 anti-gp13 monoclonal antibodies, were identified in the N-terminal surface domain of the deduced gp13 molecule. Comparison of the EHV-1 gp13 DNA sequence with that encoding glycoproteins of other alphaherpesviruses revealed no detectable homology. However, a search for homology at the amino acid level showed regions of significant sequence similarity between the amino acids of the carboxy half of EHV-1 gp13 and those of the same region of gC-like glycoproteins of herpes simplex virus (gC-1 and gC-2), pseudorabies herpesvirus (gIII), and varicella-zoster virus (gp66). The sequences of the N-terminal portion of gp13, by contrast, were much less conserved. The results of these studies indicate that EHV-1 gp13 is the structural homolog of herpes simplex virus glycoprotein C and further suggest that the epitope-containing N-terminal amino acid sequences of the herpesvirus gC-like glycoproteins have undergone more extensive evolutionary divergence than the C-terminal sequences.
Collapse
Affiliation(s)
- G P Allen
- Department of Veterinary Science, University of Kentucky, Lexington 40546-0099
| | | |
Collapse
|
49
|
Cai WZ, Person S, DebRoy C, Gu BH. Functional regions and structural features of the gB glycoprotein of herpes simplex virus type 1. An analysis of linker insertion mutants. J Mol Biol 1988; 201:575-88. [PMID: 2843650 DOI: 10.1016/0022-2836(88)90639-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Glycoprotein B (gB) of Herpes simplex virus type 1 (HSV-1) plays an essential role in viral entry. A set of more than 100 HpaI (GTTAAC) linker insertion mutations and their derivatives were isolated in plasmids specifying the gB coding and flanking sequences. Mutations including addition, deletion and nonsense mutations at 34 independent sites were identified by DNA sequence analysis of 48 plasmids. A map was constructed for the ability of addition mutants to complement a gB-null virus. The expression of gB activity for some plasmids was temperature-dependent. Many complementation-negative plasmids inhibited the complementation activity of a plasmid specifying wild-type gB, suggesting an interaction between active and inactive molecules to form oligomers. The interaction was localized to 328 of the total of 904 amino acids comprising gB. Partial Endo H digestion of nonsense polypeptides revealed that five of the six potential N-linked oligosaccharide sites are glycosylated; the most C-terminal site appears not to be glycosylated. A number of mutations, including some on the cytoplasmic side, were identified that blocked processing, transport and secretion. Addition mutations that blocked processing of membrane polypeptides also blocked processing and secretion when combined into a nonsense mutant that by itself was processed and secreted. The previously predicted membrane spanning domain and the membrane orientation of the N-terminal portion of gB were confirmed.
Collapse
Affiliation(s)
- W Z Cai
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | | | |
Collapse
|
50
|
Ackermann M. The construction, selection, characterization, and application of recombinant herpes viruses. ZENTRALBLATT FUR VETERINARMEDIZIN. REIHE B. JOURNAL OF VETERINARY MEDICINE. SERIES B 1988; 35:379-96. [PMID: 3051804 DOI: 10.1111/j.1439-0450.1988.tb00510.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|