1
|
Lawson JS, Glenn WK. The viral origins of breast cancer. Infect Agent Cancer 2024; 19:39. [PMID: 39187871 PMCID: PMC11346025 DOI: 10.1186/s13027-024-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
During the past two decades evidence has been developed that indicates a handful of viruses with known oncogenic capacity, have potential roles in breast cancer. These viruses are mouse mammary tumour virus (MMTV - the cause of breast cancer in mice), high-risk human papilloma viruses (HPV-the cause of cervical cancer), Epstein Barr virus (EBV-the cause of lymphomas and naso-pharyngeal cancer) and bovine leukemia virus (BLV - the cause of cancers in cattle). These viruses may act alone or in combination. Each of these viruses are significantly more prevalent in breast cancers than in normal and benign breast tissue controls. The odds ratios for the prevalence of these viruses in breast cancer compared to normal and benign breast controls, are based on case control studies - MMTV 13·40, HPV 5.56, EBV 4·43 and BLV 2·57. The odds ratios for MMTV are much greater compared to the other three viruses. The evidence for a causal role for mouse mammary tumour virus and high risk for cancer human papilloma viruses in human breast cancer is increasingly comprehensive. The evidence for Epstein Barr virus and bovine leukemia virus is more limited. Overall the evidence is substantial in support of a viral cause of breast cancer.
Collapse
|
2
|
Hochman J, Braitbard O. Life after Cleavage: The Story of a β-Retroviral (MMTV) Signal Peptide-From Murine Lymphoma to Human Breast Cancer. Viruses 2022; 14:v14112435. [PMID: 36366533 PMCID: PMC9694287 DOI: 10.3390/v14112435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
An increasing body of evidence in recent years supports an association of the betaretrovirus mouse mammary tumor virus (MMTV) with human breast cancer. This is an issue that still raises heated controversy. We have come to address this association using the signal peptide p14 of the MMTV envelope precursor protein as a key element of our strategy. In addition to its signal peptide function, p14 has some significant post endoplasmic reticulum (ER)-targeting characteristics: (1) it localizes to nucleoli where it binds key proteins (RPL5 and B23) involved (among other activities) in the regulation of nucleolar stress response, ribosome biogenesis and p53 stabilization; (2) p14 is a nuclear export factor; (3) it is expressed on the cell surface of infected cells, and as such, is amenable to, and successfully used, in preventive vaccination against experimental tumors that harbor MMTV; (4) the growth of such tumors is impaired in vivo using a combination of monoclonal anti-p14 antibodies or adoptive T-cell transfer treatments; (5) p14 is a phospho-protein endogenously phosphorylated by two different serine kinases. The phosphorylation status of the two sites determines whether p14 will function in an oncogenic or tumor-suppressing capacity; (6) transcriptional activation of genes (RPL5, ErbB4) correlates with the oncogenic potential of MMTV; (7) finally, polyclonal anti-p14 antibodies have been applied in immune histochemistry analyses of breast cancer cases using formalin fixed paraffin-embedded sections, supporting the associations of MMTV with the disease. Taken together, the above findings constitute a road map towards the diagnosis and possible prevention and treatment of MMTV-associated breast cancer.
Collapse
Affiliation(s)
- Jacob Hochman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Correspondence: ; Tel.: +972-54-441-4370
| | - Ori Braitbard
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Department of Bioinformatics, The Faculty of Life and Health Sciences, Jerusalem College of Technology, Jerusalem 9372115, Israel
| |
Collapse
|
3
|
Sacco MA, Lau J, Godinez-Vidal D, Kaloshian I. Non-canonical nematode endogenous retroviruses resulting from RNA virus glycoprotein gene capture by a metavirus. J Gen Virol 2022; 103. [PMID: 35550022 DOI: 10.1099/jgv.0.001739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reverse-transcribing retroviruses exist as horizontally transmitted infectious agents or vertically transmitted endogenous retroviruses (ERVs) resident in eukaryotic genomes, and they are phylogenetically related to the long terminal repeat (LTR) class of retrotransposons. ERVs and retrotransposons are often distinguished only by the presence or absence of a gene encoding the envelope glycoprotein (env). Endogenous elements of the virus family Metaviridae include the insect-restricted Errantivirus genus of ERVs, for which some members possess env, and the pan-eukaryotic Metavirus genus that lacks an envelope glycoprotein gene. Here we report a novel Nematoda endogenous retrovirus (NERV) clade with core retroviral genes arranged uniquely as a continuous gag-env-pro-pol ORF. Reverse transcriptase sequences were phylogenetically related to metaviruses, but envelope glycoprotein sequences resembled those of the Nyamiviridae and Chrysoviridae RNA virus families, suggesting env gene capture during host cell infection by an RNA virus. NERVs were monophyletic, restricted to the nematode subclass Chromadoria, and included additional ORFs for a small hypothetical protein or a large Upf1-like RNA-dependent AAA-ATPase/helicase indicative of viral transduction of a host gene. Provirus LTR identity, low copy number, ORF integrity and segregation of three loci in Meloidogyne incognita, taken together with detection of NERV transcriptional activity, support potential infectivity of NERVs, along with their recent emergence and integration. Altogether, NERVs constitute a new and distinct Metaviridae lineage demonstrating retroviral evolution through sequential heterologous gene capture events.
Collapse
Affiliation(s)
- Melanie Ann Sacco
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University, Fullerton, CA 92834-6850, USA
| | - Jonathan Lau
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University, Fullerton, CA 92834-6850, USA
| | - Damaris Godinez-Vidal
- Institute for Integrative Genome Biology, Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Isgouhi Kaloshian
- Institute for Integrative Genome Biology, Department of Nematology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
4
|
Lawson JS, Glenn WK. Mouse Mammary Tumour Virus (MMTV) in Human Breast Cancer-The Value of Bradford Hill Criteria. Viruses 2022; 14:721. [PMID: 35458452 PMCID: PMC9028876 DOI: 10.3390/v14040721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
For many decades, the betaretrovirus, mouse mammary tumour virus (MMTV), has been a causal suspect for human breast cancer. In recent years, substantial new evidence has been developed. Based on this evidence, we hypothesise that MMTV has a causal role. We have used an extended version of the classic A. Bradford Hill causal criteria to assess the evidence. 1. Identification of MMTV in human breast cancers: The MMTV 9.9 kb genome in breast cancer cells has been identified. The MMTV genome in human breast cancer is up to 98% identical to MMTV in mice. 2. EPIDEMIOLOGY The prevalence of MMTV positive human breast cancer is about 35 to 40% of breast cancers in Western countries and 15 to 20% in China and Japan. 3. Strength of the association between MMTV and human breast cancer: Consistency-MMTV env gene sequences are consistently five-fold higher in human breast cancer as compared to benign and normal breast controls. 4. Temporality (timing) of the association: MMTV has been identified in benign and normal breast tissues up to 10 years before the development of MMTV positive breast cancer in the same patient. 5. EXPOSURE Exposure of humans to MMTV leads to development of MMTV positive human breast cancer. 6. Experimental evidence: MMTVs can infect human breast cells in culture; MMTV proteins are capable of malignantly transforming normal human breast epithelial cells; MMTV is a likely cause of biliary cirrhosis, which suggests a link between MMTV and the disease in humans. 7. Coherence-analogy: The life cycle and biology of MMTV in humans is almost the same as in experimental and feral mice. 8. MMTV Transmission: MMTV has been identified in human sputum and human milk. Cereals contaminated with mouse fecal material may transmit MMTV. These are potential means of transmission. 9. Biological plausibility: Retroviruses are the established cause of human cancers. Human T cell leukaemia virus type I (HTLV-1) causes adult T cell leukaemia, and human immunodeficiency virus infection (HIV) is associated with lymphoma and Kaposi sarcoma. 10. Oncogenic mechanisms: MMTV oncogenesis in humans probably differs from mice and may involve the enzyme APOBEC3B. CONCLUSION In our view, the evidence is compelling that MMTV has a probable causal role in a subset of approximately 40% of human breast cancers.
Collapse
Affiliation(s)
- James S. Lawson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia;
| | | |
Collapse
|
5
|
Abumsimir B, Mrabti M, Laraqui A, Ameur A, Koraishi S, Mzibri M, Lamsisi M, Ennaji Y, Almahasneh I, Ennaji M. Molecular characterization of human papillomavirus and mouse mammary tumor virus‑ like infections in prostate cancer tissue and relevance with tumor characteristics. Mol Clin Oncol 2022; 16:97. [PMID: 35400121 PMCID: PMC8985070 DOI: 10.3892/mco.2022.2530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/11/2022] [Indexed: 11/09/2022] Open
Abstract
The suspected roles of human Papillomavirus (HPV) and mouse mammary tumor virus (MMTV) infections in prostate tumor development were recently reported. To detect the frequency of HPV and MMTV-like infections and clinical correlates of tumor characteristics, DNA samples from 50 men treated at Teaching Hospital of Rabat City (Morocco) between June 2017 and February 2019, were genotyped and confirmed by Sanger sequencing. Eight infections of HPV18 and two infections of MMTV-like were detected, and 50% of patients were at a Gleason score of 6. A significant association between Gleason score and HPV or MMTV-like infection was noted (P=0.0008); 90% of patients with viral infections presented with T1 and T2 pathological stage tumors. Yet, no significant differences were found between infected and noninfected men regarding other pathological parameters including prostate-specific antigen (PSA), tumor histological stage, age at diagnosis and radical prostatectomy treatment (P=0.2179, 0.4702, 0.8101, and 0.9644, respectively). The molecular evolution of HPV and MMTV in comparison with previously aligned sequences was discussed. Our findings provide a highlight on the correlations between the clinical-pathological parameters of prostate tumors and HPV and MMTV infections. Prospective studies with a wide sample size are needed for more statistical clarification of the association between viral infections with prostate tumor criteria.
Collapse
Affiliation(s)
- Berjas Abumsimir
- Pharmacological and Diagnostic Research Centre (PDRC), Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al‑Ahliyya Amman University (AAU), Amman 19328, Jordan
| | - Mohammed Mrabti
- Research and Biosafety Laboratory, Mohammed V Construction Teaching Hospital, Rabat 6203, Morocco
| | - Abdelilah Laraqui
- Research and Biosafety Laboratory, Mohammed V Construction Teaching Hospital, Rabat 6203, Morocco
| | - Ahmed Ameur
- Research and Biosafety Laboratory, Mohammed V Construction Teaching Hospital, Rabat 6203, Morocco
| | - Saad Koraishi
- Innovation Centre, LBM Laboratory, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University‑Fes, Fes 1796, Morocco
| | - Mohammed Mzibri
- Biology and Medical Research Unit, CNESTEN‑Rabat, Rabat 1382, Morocco
| | - Maryame Lamsisi
- Team of Virology, Cancerology, and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality and Medical Biotechnologies/ETB, Faculty of Sciences and Techniques‑Mohammedia, Hassan II University of Casablanca, Mohammedia 20650, Morocco
| | - Youssef Ennaji
- Team of Virology, Cancerology, and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality and Medical Biotechnologies/ETB, Faculty of Sciences and Techniques‑Mohammedia, Hassan II University of Casablanca, Mohammedia 20650, Morocco
| | - Ihsan Almahasneh
- Department of Biotechnology, Faculty of Science, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Moulay Ennaji
- Team of Virology, Cancerology, and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality and Medical Biotechnologies/ETB, Faculty of Sciences and Techniques‑Mohammedia, Hassan II University of Casablanca, Mohammedia 20650, Morocco
| |
Collapse
|
6
|
Lawson JS, Mazzanti C, Civita P, Menicagli M, Ngan CC, Whitaker NJ, Hochman J, Braitbard O, Yosufi B, Glenn WK. Association of Mouse Mammary Tumor Virus With Human Breast Cancer: Histology, Immunohistochemistry and Polymerase Chain Reaction Analyses. Front Oncol 2018; 8:141. [PMID: 29868468 PMCID: PMC5950654 DOI: 10.3389/fonc.2018.00141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022] Open
Abstract
Purpose The purpose of this study is to determine whether mouse mammary tumor virus (MMTV)-associated human breast cancer has the same or similar histology to MMTV-associated mouse mammary tumors. Such associations may indicate a role for MMTV in human breast cancer. Methods Immunohistochemical techniques (using antibodies directed against the signal peptide p14 of the envelope precursor protein of MMTV) and polymerase chain reaction (PCR) analyses were used to identify MMTV proteins and MMTV-like envelope gene sequences in a series of breast cancers from Australian women. The histological characteristics of these human breast cancer specimens were compared with MMTV positive mouse mammary tumors. The same methods were used to study benign breast tissues which 1–11 years later developed into breast cancer. Results MMTV p14 proteins were identified in 27 (54%) of 50 human breast cancers. MMTV env gene sequences were identified by PCR in 12 (27%) of 45 human breast cancers. There was a significant correlation between the presence of MMTV (identified by p14 immunohistochemistry) in human breast cancers and histological characteristics similar to MMTV positive mouse mammary tumors (p = 0.001). There was a non-significant correlation between the presence of MMTV env gene sequences (identified by PCR) in human breast cancers and histological characteristics similar to MMTV positive mouse mammary tumors (p = 0.290). MMTV p14 proteins were identified in 7 (54%) of 13 benign breast specimens that later developed into human breast cancers. MMTV by PCR was identified in two benign specimens one of whom later developed MMTV positive breast cancer. Discussion These observations offer evidence that MMTV may be associated with characteristic human breast cancer histology. p14-based immunohistochemistry appears to be a more reliable technique than PCR for the identification of MMTV in human breast cancer. Identification of MMTV-associated p14 proteins in benign breast tissues confirms prior PCR-based studies that MMTV infection occurs before the development of MMTV positive breast cancer. Conclusion Many MMTV positive human breast cancers have similar histology to MMTV positive mouse mammary tumors. MMTV infection identified in benign breast tissues precedes development of MMTV positive human breast cancer. When considered in the context of prior studies, these observations indicate a likely role for MMTV in human breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jacob Hochman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Braitbard
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benafsha Yosufi
- Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia
| | - Wendy K Glenn
- University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
7
|
Lawson JS, Salmons B, Glenn WK. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV), Bovine Leukemia Virus (BLV), Human Papilloma Virus (HPV), and Epstein-Barr Virus (EBV). Front Oncol 2018; 8:1. [PMID: 29404275 PMCID: PMC5786831 DOI: 10.3389/fonc.2018.00001] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
Abstract
Background Although the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV), bovine leukemia virus (BLV), human papilloma viruses (HPVs), and Epstein–Barr virus (EBV-also known as human herpes virus type 4). Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence. The evidence MMTV and human breast cancer—the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer—the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer—the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer—the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal. Conclusion The influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.
Collapse
Affiliation(s)
- James S Lawson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Wendy K Glenn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
8
|
Lamb R, Bonuccelli G, Ozsvári B, Peiris-Pagès M, Fiorillo M, Smith DL, Bevilacqua G, Mazzanti CM, McDonnell LA, Naccarato AG, Chiu M, Wynne L, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells: Understanding WNT/FGF-driven anabolic signaling. Oncotarget 2016; 6:30453-71. [PMID: 26421711 PMCID: PMC4741544 DOI: 10.18632/oncotarget.5852] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/22/2015] [Indexed: 12/19/2022] Open
Abstract
Here, we developed an isogenic cell model of "stemness" to facilitate protein biomarker discovery in breast cancer. For this purpose, we used knowledge gained previously from the study of the mouse mammary tumor virus (MMTV). MMTV initiates mammary tumorigenesis in mice by promoter insertion adjacent to two main integration sites, namely Int-1 (Wnt1) and Int-2 (Fgf3), which ultimately activates Wnt/β-catenin signaling, driving the propagation of mammary cancer stem cells (CSCs). Thus, to develop a humanized model of MMTV signaling, we over-expressed WNT1 and FGF3 in MCF7 cells, an ER(+) human breast cancer cell line. We then validated that MCF7 cells over-expressing both WNT1 and FGF3 show a 3.5-fold increase in mammosphere formation, and that conditioned media from these cells is also sufficient to promote stem cell activity in untransfected parental MCF7 and T47D cells, as WNT1 and FGF3 are secreted factors. Proteomic analysis of this model system revealed the induction of i) EMT markers, ii) mitochondrial proteins, iii) glycolytic enzymes and iv) protein synthesis machinery, consistent with an anabolic CSC phenotype. MitoTracker staining validated the expected WNT1/FGF3-induced increase in mitochondrial mass and activity, which presumably reflects increased mitochondrial biogenesis. Importantly, many of the proteins that were up-regulated by WNT/FGF-signaling in MCF7 cells, were also transcriptionally over-expressed in human breast cancer cells in vivo, based on the bioinformatic analysis of public gene expression datasets of laser-captured patient samples. As such, this isogenic cell model should accelerate the discovery of new biomarkers to predict clinical outcome in breast cancer, facilitating the development of personalized medicine.Finally, we used mitochondrial mass as a surrogate marker for increased mitochondrial biogenesis in untransfected MCF7 cells. As predicted, metabolic fractionation of parental MCF7 cells, via MitoTracker staining, indicated that high mitochondrial mass is a new metabolic biomarker for the enrichment of anabolic CSCs, as functionally assessed by mammosphere-forming activity. This observation has broad implications for understanding the role of mitochondrial biogenesis in the propagation of stem-like cancer cells. Technically, this general metabolic approach could be applied to any cancer type, to identify and target the mitochondrial-rich CSC population.The implications of our work for understanding the role of mitochondrial metabolism in viral oncogenesis driven by random promoter insertions are also discussed, in the context of MMTV and ALV infections.
Collapse
Affiliation(s)
- Rebecca Lamb
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Gloria Bonuccelli
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Béla Ozsvári
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Maria Peiris-Pagès
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Marco Fiorillo
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Duncan L Smith
- The Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Generoso Bevilacqua
- FPS - The Pisa Science Foundation, Pisa, Italy.,Department of Pathology, Pisa University Hospital, Pisa, Italy
| | | | | | | | - Maybo Chiu
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Luke Wynne
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | | | - Federica Sotgia
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Michael P Lisanti
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Green L, Goff SP. Translational readthrough-promoting drugs enhance pseudoknot-mediated suppression of the stop codon at the Moloney murine leukemia virus gag–pol junction. J Gen Virol 2016; 96:3411-3421. [PMID: 26382736 DOI: 10.1099/jgv.0.000284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Translational readthrough-promoting drugs enhance the incorporation of amino acids at stop codons and can thus bypass premature termination during protein synthesis. The polymerase (Pol) proteins of Moloney murine leukemia virus (MoMLV) are synthesized as a large Gag–Pol fusion protein, formed by the readthrough of a stop codon at the end of the gag ORF. The downstream pol ORF lacks its own start codon, and Pol protein synthesis is wholly dependent on translation of the upstream gag gene and the readthrough event for expression. Here, we explored the effects of readthrough-promoting drugs – aminoglycoside antibiotics and the small molecule ataluren – on the efficiency of readthrough of the stop codon in the context of the MoMLV genome. We showed that these compounds increased readthrough of the stop codon at the MoMLV gag–pol junction in vivo above the already high basal level and that the resulting elevated gag–pol readthrough had deleterious effects on virus replication. We also showed that readthrough efficiency could be driven to even higher levels in vitro, and that the combination of the small molecules and the RNA structure at the MoMLV stop codon could achieve extremely high readthrough efficiencies.
Collapse
Affiliation(s)
- Lisa Green
- Department of Biological Sciences, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.,Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
11
|
Cáceres CJ, Contreras N, Angulo J, Vera-Otarola J, Pino-Ajenjo C, Llorian M, Ameur M, Lisboa F, Pino K, Lowy F, Sargueil B, López-Lastra M. Polypyrimidine tract-binding protein binds to the 5' untranslated region of the mouse mammary tumor virus mRNA and stimulates cap-independent translation initiation. FEBS J 2016; 283:1880-901. [PMID: 26972759 DOI: 10.1111/febs.13708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 12/23/2022]
Abstract
The 5' untranslated region (UTR) of the full-length mRNA of the mouse mammary tumor virus (MMTV) harbors an internal ribosomal entry site (IRES). In this study, we show that the polypyrimidine tract-binding protein (PTB), an RNA-binding protein with four RNA recognition motifs (RRMs), binds to the MMTV 5' UTR stimulating its IRES activity. There are three isoforms of PTB: PTB1, PTB2, and PTB4. Results show that PTB1 and PTB4, but not PTB2, stimulate MMTV-IRES activity. PTB1 promotes MMTV-IRES-mediated initiation more strongly than PTB4. When expressed in combination, PTB1 further enhanced PTB4 stimulation of the MMTV-IRES, while PTB2 fully abrogates PTB4-induced stimulation. PTB1-induced stimulation of MMTV-IRES was not altered in the presence of PTB4 or PTB2. Mutational analysis reveals that stimulation of MMTV-IRES activity is abrogated when PTB1 is mutated either in RRM1/RRM2 or RRM3/RRM4. In contrast, a PTB4 RRM1/RRM2 mutant has reduced effect over MMTV-IRES activity, while stimulation of the MMTV-IRES activity is still observed when the PTB4 RRM3/RMM4 mutant is used. Therefore, PTB1 and PTB4 differentially stimulate the IRES activity. In contrast, PTB2 acts as a negative modulator of PTB4-induced stimulation of MMTV-IRES. We conclude that PTB1 and PTB4 act as IRES trans-acting factors of the MMTV-IRES.
Collapse
Affiliation(s)
- Carlos J Cáceres
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nataly Contreras
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Constanza Pino-Ajenjo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Melissa Ameur
- Centre national de la Recherche Scientifique, Unité Mixte de Recherche 8015, Laboratoire de Cristallographie et RMN Biologique, Université Paris Descartes, France
| | - Francisco Lisboa
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Lowy
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bruno Sargueil
- Centre national de la Recherche Scientifique, Unité Mixte de Recherche 8015, Laboratoire de Cristallographie et RMN Biologique, Université Paris Descartes, France
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Aktar SJ, Vivet-Boudou V, Ali LM, Jabeen A, Kalloush RM, Richer D, Mustafa F, Marquet R, Rizvi TA. Structural basis of genomic RNA (gRNA) dimerization and packaging determinants of mouse mammary tumor virus (MMTV). Retrovirology 2014; 11:96. [PMID: 25394412 PMCID: PMC4264320 DOI: 10.1186/s12977-014-0096-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 10/23/2014] [Indexed: 11/13/2022] Open
Abstract
Background One of the hallmarks of retroviral life cycle is the efficient and specific packaging of two copies of retroviral gRNA in the form of a non-covalent RNA dimer by the assembling virions. It is becoming increasingly clear that the process of dimerization is closely linked with gRNA packaging, and in some retroviruses, the latter depends on the former. Earlier mutational analysis of the 5’ end of the MMTV genome indicated that MMTV gRNA packaging determinants comprise sequences both within the 5’ untranslated region (5’ UTR) and the beginning of gag. Results The RNA secondary structure of MMTV gRNA packaging sequences was elucidated employing selective 2’hydroxyl acylation analyzed by primer extension (SHAPE). SHAPE analyses revealed the presence of a U5/Gag long-range interaction (U5/Gag LRI), not predicted by minimum free-energy structure predictions that potentially stabilizes the global structure of this region. Structure conservation along with base-pair covariations between different strains of MMTV further supported the SHAPE-validated model. The 5’ region of the MMTV gRNA contains multiple palindromic (pal) sequences that could initiate intermolecular interaction during RNA dimerization. In vitro RNA dimerization, SHAPE analysis, and structure prediction approaches on a series of pal mutants revealed that MMTV RNA utilizes a palindromic point of contact to initiate intermolecular interactions between two gRNAs, leading to dimerization. This contact point resides within pal II (5’ CGGCCG 3’) at the 5’ UTR and contains a canonical “GC” dyad and therefore likely constitutes the MMTV RNA dimerization initiation site (DIS). Further analyses of these pal mutants employing in vivo genetic approaches indicate that pal II, as well as pal sequences located in the primer binding site (PBS) are both required for efficient MMTV gRNA packaging. Conclusions Employing structural prediction, biochemical, and genetic approaches, we show that pal II functions as a primary point of contact between two MMTV RNAs, leading to gRNA dimerization and its subsequent encapsidation into the assembling virus particles. The results presented here enhance our understanding of the MMTV gRNA dimerization and packaging processes and the role of structural motifs with respect to RNA-RNA and possibly RNA-protein interactions that might be taking place during MMTV life cycle. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0096-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suriya J Aktar
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Valérie Vivet-Boudou
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg cedex, France.
| | - Lizna M Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Ayesha Jabeen
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Rawan M Kalloush
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Delphine Richer
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg cedex, France.
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg cedex, France.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
13
|
Cai G, Krychiw JF, Myers K, Fry WE, Hillman BI. A new virus from the plant pathogenic oomycete Phytophthora infestans with an 8 kb dsRNA genome: The sixth member of a proposed new virus genus. Virology 2013; 435:341-9. [DOI: 10.1016/j.virol.2012.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/25/2012] [Accepted: 10/06/2012] [Indexed: 12/18/2022]
|
14
|
Abstract
Expression of retroviral replication enzymes (Pol) requires a controlled translational recoding event to bypass the stop codon at the end of gag. This recoding event occurs either by direct suppression of termination via the insertion of an amino acid at the stop codon (readthrough) or by alteration of the mRNA reading frame (frameshift). Here we report the effects of a host protein, large ribosomal protein 4 (RPL4), on the efficiency of recoding. Using a dual luciferase reporter assay, we found that transfection of cells with a plasmid encoding RPL4 cDNA increases recoding efficiency in a dose-dependent manner, with a maximal enhancement of nearly twofold. Expression of RPL4 increases recoding of reporters containing retroviral readthrough and frameshift sequences, as well as the Sindbis virus leaky termination signal. RPL4-induced enhancement of recoding is cell line specific and appears to be specific to RPL4 among ribosomal proteins. Cotransfection of RPL4 cDNA with Moloney murine leukemia proviral DNA results in Gag processing defects and a reduction of viral particle formation, presumably caused by the RPL4-dependent alteration of the Gag-to-Gag-Pol ratio required for virion assembly and release.
Collapse
|
15
|
Piekna-Przybylska D, Bambara RA. Requirements for efficient minus strand strong-stop DNA transfer in human immunodeficiency virus 1. RNA Biol 2011; 8:230-6. [PMID: 21444998 DOI: 10.4161/rna.8.2.14802] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
After HIV-1 enters a human cell, its RNA genome is converted into double stranded DNA during the multistep process of reverse transcription. First (minus) strand DNA synthesis is initiated near the 5' end of the viral RNA, where only a short fragment of the genome is copied. In order to continue DNA synthesis the virus employs a complicated mechanism, which enables transferring of the growing minus strand DNA to a remote position at the genomic 3' end. This is called minus strand DNA transfer. The transfer enables regeneration of long terminal repeat sequences, which are crucial for viral genomic DNA integration into the host chromosome. Numerous factors have been identified that stimulate minus strand DNA transfer. In this review we focus on describing protein-RNA and RNA-RNA interactions, as well as RNA structural features, known to facilitate this step in reverse transcription.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of Biochemistry and Biophysics, and the Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | |
Collapse
|
16
|
Mertz JA, Chadee AB, Byun H, Russell R, Dudley JP. Mapping of the functional boundaries and secondary structure of the mouse mammary tumor virus Rem-responsive element. J Biol Chem 2009; 284:25642-52. [PMID: 19632991 DOI: 10.1074/jbc.m109.012476] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) is a complex retrovirus that encodes at least three regulatory and accessory proteins, including Rem. Rem is required for nuclear export of unspliced viral RNA and efficient expression of viral proteins. Our previous data indicated that sequences at the envelope-3' long terminal repeat junction are required for proper export of viral RNA. To further map the Rem-responsive element (RmRE), reporter vectors containing various portions of the viral envelope gene and the 3' long terminal repeat were tested in the presence and absence of Rem in transient transfection assays. A 476-bp fragment that spans the envelope-long terminal repeat junction had activity equivalent to the entire 3'-end of the mouse mammary tumor virus genome, but further deletions at the 5'- or 3'-ends reduced Rem responsiveness. RNase structure mapping of the full-length RmRE and a 3'-truncation suggested multiple domains with local base pairing and intervening single-stranded segments. A secondary structure model constrained by these data is reminiscent of the RNA response elements of other complex retroviruses, with numerous local stem-loops and long-range base pairs near the 5'- and 3'-boundaries, and differs substantially from an earlier model generated without experimental constraints. Covariation analysis provides limited support for basic features of our model. Reporter assays in human and mouse cell lines revealed similar boundaries, suggesting that the RmRE does not require cell type-specific proteins to form a functional structure.
Collapse
Affiliation(s)
- Jennifer A Mertz
- Section of Molecular Genetics and Microbiology, The University of Texas, Austin, Texas 78712-0162, USA
| | | | | | | | | |
Collapse
|
17
|
Acha-Orbea H, Held W, Scarpellino L, Shakhov AN. Mls: A Link Between Immunology and Retrovirology. Int Rev Immunol 2009; 8:327-36. [PMID: 1351535 DOI: 10.3109/08830189209053516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The nature of the mysterious minor lymphocyte stimulating (Mls) antigens has recently been clarified. These molecules which were key elements for our current understanding of immune tolerance, have a strong influence on the mouse immune system and are encoded by the open reading frame (orf) of endogenous and exogenous mouse mammary tumor viruses (MMTV's). The knowledge that these antigens are encoded by cancerogenic retroviruses opens an interdisciplinary approach for understanding the mechanisms of immune responses and immune tolerance, retroviral carcinogenesis, and retroviral strategies for infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Viral/immunology
- CD4-Positive T-Lymphocytes/immunology
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/immunology
- Minor Lymphocyte Stimulatory Antigens/genetics
- Minor Lymphocyte Stimulatory Antigens/immunology
- Molecular Sequence Data
- Open Reading Frames
- Proviruses/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- H Acha-Orbea
- Ludwig Institute for Cancer Research, Lausanne Branch, Epalinges, Switzerland
| | | | | | | |
Collapse
|
18
|
Müllner M, Salmons B, Günzburg WH, Indik S. Identification of the Rem-responsive element of mouse mammary tumor virus. Nucleic Acids Res 2008; 36:6284-94. [PMID: 18835854 PMCID: PMC2577329 DOI: 10.1093/nar/gkn608] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) has previously been shown to encode a functional homolog of the human immunodeficiency virus-1 (HIV-1) nuclear export protein Rev, termed Rem. Here, we show that deletion of the rem gene from a MMTV molecular clone interfered with the nucleo-cytoplasmic transport of genomic length viral mRNA and resulted in a loss of viral capsid (Gag) protein production. Interestingly, nuclear export of single-spliced env mRNA was only moderately affected, suggesting that this transcript is, at least to some extent, transported via a distinct, Rem-independent export mechanism. To identify and characterize a cis-acting RNA element required for Rem responsiveness (RmRE), extensive computational and functional analyses were performed. By these means a region of 490 nt corresponding to positions nt 8517–nt 9006 in the MMTV reference strain was identified as RmRE. Deletion of this fragment, which spans the env-U3 junction region, abolished Gag expression. Furthermore, insertion of this sequence into a heterologous HIV-1-based reporter construct restored, in the presence of Rem, HIV-1 Gag expression to levels determined for the Rev/RRE export system. These results clearly demonstrate that the identified region, whose geometry resembles that of other retroviral-responsive elements, is capable to functionally substitute, in the presence of Rem, for Rev/RRE and thus provide unequivocal evidence that MMTV is a complex retrovirus.
Collapse
Affiliation(s)
- Matthias Müllner
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Austria
| | | | | | | |
Collapse
|
19
|
Etkind PR, Stewart AF, Wiernik PH. Mouse mammary tumor virus (MMTV)-like DNA sequences in the breast tumors of father, mother, and daughter. Infect Agent Cancer 2008; 3:2. [PMID: 18307792 PMCID: PMC2277433 DOI: 10.1186/1750-9378-3-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 02/28/2008] [Indexed: 02/08/2023] Open
Abstract
Background The diagnosis of late onset breast cancer in a father, mother, and daughter living in the same house for decades suggested the possibility of an environmental agent as a common etiological factor. Both molecular and epidemiological data have indicated a possible role for the mouse mammary tumor virus (MMTV), the etiological agent of breast cancer in mice, in a certain percentage of human breast tumors. The aim of this study was to determine if MMTV might be involved in the breast cancer of this cluster of three family members. Results MMTV-like envelope (env) and long terminal repeat (LTR) sequences containing the MMTV superantigen gene (sag) were detected in the malignant tissues of all three family members. The amplified env gene sequences were 98.0%–99.6% homologous to the MMTV env sequences found in the GR, C3H, and BR6 mouse strains. The amplified LTR sequences containing sag sequences segregated to specific branches of the MMTV phylogenetic tree and did not form a distinct branch of their own. Conclusion The presence of MMTV-like DNA sequences in the malignant tissues of all three family members suggests the possibility of MMTV as an etiological agent. Phylogenetic data suggest that the MMTV-like DNA sequences are mouse and not human derived and that the ultimate reservoir of MMTV is most likely the mouse. Although the route by which these family members came to be infected with MMTV is unknown, the possibility exists that such infection may have resulted from a shared exposure to mice.
Collapse
Affiliation(s)
- Polly R Etkind
- Our Lady of Mercy Medical Center-Comprehensive Cancer Center, New York Medical College, Bronx, New York, USA.
| | | | | |
Collapse
|
20
|
Brandt S, Grunwald T, Lucke S, Stang A, Überla K. Functional replacement of the R region of simian immunodeficiency virus-based vectors by heterologous elements. J Gen Virol 2006; 87:2297-2307. [PMID: 16847126 DOI: 10.1099/vir.0.81883-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Substitution of lentiviral cis-acting elements by heterologous sequences might allow the safety of lentiviral vectors to be enhanced by reducing the risk of homologous recombination and vector mobilization. Therefore, a substitution and deletion analysis of the R region of simian immunodeficiency virus (SIV)-based vectors was performed and the effect of the modifications on packaging and transfer by SIV and human immunodeficiency virus type 1 (HIV-1) particles was analysed. Deletion of the first 7 nt of R reduced vector titres by 10- to 20-fold, whilst deletion of the entire R region led to vector titres that were 1500-fold lower. Replacement of the R region of SIV-based vectors by HIV-1 or Moloney murine sarcoma virus R regions partially restored vector titres. A non-retroviral cellular sequence was also functional, although to a lesser extent. In the absence of tat, modification of the R region had only minor effects on cytoplasmic RNA stability, steady-state levels of vector RNA and packaging, consistent with the known primary function of R during reverse transcription. Although the SIV R region of SIV-based vectors could be replaced functionally by heterologous sequences, the same modifications of R led to a severe replication defect in the context of a replication-competent SIV. As SIV-based vectors containing the HIV-1 R region were transferred less efficiently by HIV-1 particles than wild-type SIV vectors, a match between R and cis-acting elements of the vector construct seems to be more important than a match between R and the Gag or Pol proteins of the vector particle.
Collapse
Affiliation(s)
- Sabine Brandt
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Thomas Grunwald
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Susann Lucke
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Alexander Stang
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
21
|
Swanson I, Jude BA, Zhang AR, Pucker A, Smith ZE, Golovkina TV. Sequences within the gag gene of mouse mammary tumor virus needed for mammary gland cell transformation. J Virol 2006; 80:3215-24. [PMID: 16537589 PMCID: PMC1440402 DOI: 10.1128/jvi.80.7.3215-3224.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we identified a group of replication-competent exogenous mouse mammary tumor viruses that failed to induce mammary tumors in susceptible mice. Sequence comparison of tumorigenic and tumor-attenuated virus variants has linked the ability of virus to cause high-frequency mammary tumors to the gag gene. To determine the specific sequences within the gag gene that contribute to tumor induction, we constructed five distinct chimeric viruses that have various amino acid coding sequences of gag derived from a tumor-attenuated virus replaced by those of highly tumorigenic virus and tested these viruses for tumorigenic capacities in virus-susceptible C3H/HeN mice. Comparing the tumorigenic potentials of these viruses has allowed us to map the region responsible for tumorigenesis to a 253-amino-acid region within the CA and NC regions of the Gag protein. Unlike C3H/HeN mice, BALB/cJ mice develop tumors when infected with all viral variants, irrespective of the gag gene sequences. Using genetic crosses between BALB/cJ and C3H/HeN mice, we were able to determine that the mechanism that confers susceptibility to Gag-independent mammary tumors in BALB/cJ mice is inherited as a dominant trait and is controlled by a single gene, called mammary tumor susceptibility (mts), that maps to chromosome 14.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Western
- Cell Transformation, Neoplastic
- Chromosome Mapping
- Chromosomes
- Cloning, Molecular
- Conserved Sequence
- Crosses, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Genes, gag
- Genetic Engineering
- Haplotypes
- Mammary Neoplasms, Experimental/etiology
- Mammary Neoplasms, Experimental/virology
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/pathogenicity
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Transgenic
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis
Collapse
|
22
|
Mitchell MS, Tözsér J, Princler G, Lloyd PA, Auth A, Derse D. Synthesis, processing, and composition of the virion-associated HTLV-1 reverse transcriptase. J Biol Chem 2005; 281:3964-71. [PMID: 16368688 DOI: 10.1074/jbc.m507660200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is not known whether the low infectivity and low virion-associated polymerase activity of human T-cell lymphotropic virus type-1 (HTLV-1) are due to the quantity or quality of the reverse transcriptase (RT), because the protein has not yet been fully characterized. We have developed anti-RT antibodies and constructed HTLV-1 expression plasmids that express truncated or hemagglutinin-tagged Pol polyproteins to examine the maturation and composition of HTLV-1 RT. We detected virion-associated proteins corresponding to RT-integrase (IN) (pr98) and RT (p62) as well as smaller proteins containing the polymerase (p49) or RNase H domains. We have identified the amino acid sequences in the Pol polyprotein that are cleaved by HTLV-1 protease to yield RT and IN. We have also identified the cleavage sites within RT that give rise to the p49 polymerase fragment. Immunoprecipitation of an epitope-tagged p62 subunit coprecipitated p49, indicating that the HTLV-1 RT complex can exist as a p62/p49 heterodimer analogous to the RT of HIV-1 (p66/p51).
Collapse
|
23
|
Sakalian M, Rapp ND. Rescue of internal scaffold-deleted Mason-Pfizer monkey virus particle production by plasma membrane targeting. Virology 2005; 345:317-27. [PMID: 16297423 DOI: 10.1016/j.virol.2005.09.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/12/2005] [Accepted: 09/15/2005] [Indexed: 11/19/2022]
Abstract
The Mason-Pfizer monkey virus (M-PMV) Gag protein follows a morphogenesis pathway in which immature capsids are preassembled within the cytoplasm before interaction with and budding through the plasma membrane. Intracytoplasmic assembly is facilitated by sequences within the p12 domain of Gag that we have termed the Internal Scaffold Domain (ISD). If M-PMV utilizes an ISD then what provides the equivalent function for most other retroviruses that assemble at the plasma membrane? To investigate the possibility that the membrane itself fulfills this role, we have combined functional deletion of the ISD with a mutation that disrupts intracellular targeting or with a plasma membrane targeting signal. By either modification, targeting of ISD-deleted Gag to the plasma membrane restores particle production. These results provide support for a model in which the plasma membrane and the D-type ISD provide an interchangeable scaffold-like function in retrovirus assembly.
Collapse
Affiliation(s)
- Michael Sakalian
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, 73104, USA.
| | | |
Collapse
|
24
|
Gifford R, Kabat P, Martin J, Lynch C, Tristem M. Evolution and distribution of class II-related endogenous retroviruses. J Virol 2005; 79:6478-86. [PMID: 15858031 PMCID: PMC1091674 DOI: 10.1128/jvi.79.10.6478-6486.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Endogenous retroviruses (ERVs) are widespread in vertebrate genomes and have been loosely grouped into "classes" on the basis of their phylogenetic relatedness to the established genera of exogenous retroviruses. Four of these genera-the lentiviruses, alpharetroviruses, betaretroviruses, and deltaretroviruses-form a well-supported clade in retroviral phylogenies, and ERVs that group with these genera have been termed class II ERVs. We used PCR amplification and sequencing of retroviral fragments from more than 130 vertebrate taxa to investigate the evolution of the class II retroviruses in detail. We confirm that class II retroviruses are largely confined to mammalian and avian hosts and provide evidence for a major novel group of avian retroviruses, and we identify additional members of both the alpha- and the betaretrovirus genera. Phylogenetic analyses demonstrated that the avian and mammalian viruses form distinct monophyletic groups, implying that interclass transmission has occurred only rarely during the evolution of the class II retroviruses. In contrast to previous reports, the lentiviruses clustered as sister taxa to several endogenous retroviruses derived from rodents and insectivores. This topology was further supported by the shared loss of both the class II PR-Pol frameshift site and the class II retrovirus G-patch domain.
Collapse
Affiliation(s)
- Robert Gifford
- Division of Virology, Windeyer Institute of Medical Sciences, 46 Cleveland St., London W1F 4JF, United Kingdom.
| | | | | | | | | |
Collapse
|
25
|
Etkind PR, Stewart AFR, Dorai T, Purcell DJ, Wiernik PH. Clonal isolation of different strains of mouse mammary tumor virus-like DNA sequences from both the breast tumors and non-Hodgkin's lymphomas of individual patients diagnosed with both malignancies. Clin Cancer Res 2005; 10:5656-64. [PMID: 15355890 DOI: 10.1158/1078-0432.ccr-03-0364] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE In a previous study, we had detected the presence of mouse mammary tumor virus (MMTV)-like envelope (ENV) gene sequences in both the breast tumors and non-Hodgkin's lymphoma tissue of two of our breast tumor patients who had been diagnosed simultaneously with both malignancies. The aim of this study was to determine if MMTV-like DNA sequences are present in the breast tumors and non-Hodgkin's lymphomas of additional patients suffering from both malignancies and if so to characterize these sequences in detail. EXPERIMENTAL DESIGN DNA was extracted from formalin-fixed, paraffin-embedded tissue sample blocks of breast tumors and non-Hodgkin's lymphomas from patients suffering from both malignancies. A 250-bp region of the MMTV ENV gene and a 630-bp region of the MMTV long terminal repeat (LTR) open reading frame (ORF) that encodes the MMTV superantigen (sag) gene were amplified by PCR from the isolated DNA. Amplified products were analyzed by Southern blotting, cloned, and sequenced. RESULTS MMTV-like ENV and LTR sequences were detected in both the breast tumors and non-Hodgkin's lymphomas of 6 of 12 patients suffering from both malignancies. A novel mutant of the MMTV ENV gene was identified in these patients. Characterization of the MMTV-like LTR highly variable sag sequences revealed total or nearly total identity to three distinct MMTV proviruses from two different branches of the MMTV phylogenetic tree. CONCLUSIONS The presence of MMTV-like ENV and LTR sequences in both the breast tumors and non-Hodgkin's lymphomas of 6 additional patients suggests a possible involvement of these sequences in these two malignancies. MMTV-like LTR sequence homology to different MMTV proviruses revealed the presence of more than one strain of MMTV-like sequences in each individual suggesting the possibility of multiple infections in these patients.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antigens, Viral/genetics
- Base Sequence
- Blotting, Southern
- Breast Neoplasms/complications
- Breast Neoplasms/virology
- DNA, Viral/genetics
- Female
- Genes, env/genetics
- Humans
- Lymphoma, Non-Hodgkin/complications
- Lymphoma, Non-Hodgkin/virology
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/isolation & purification
- Middle Aged
- Molecular Sequence Data
- Open Reading Frames
- Phylogeny
- Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Superantigens/genetics
- Terminal Repeat Sequences
Collapse
Affiliation(s)
- Polly R Etkind
- Our Lady of Mercy Medical Center-Comprehensive Cancer Center, New York Medical College, Bronx, New York, USA
| | | | | | | | | |
Collapse
|
26
|
Sarkar NH, Golovkina T, Uz-Zaman T. RIII/Sa mice with a high incidence of mammary tumors express two exogenous strains and one potential endogenous strain of mouse mammary tumor virus. J Virol 2004; 78:1055-62. [PMID: 14694140 PMCID: PMC368770 DOI: 10.1128/jvi.78.2.1055-1062.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inbred mouse strain RIII has long been known for shedding large amounts of mouse mammary tumor virus (MMTV) particles in milk and for the development of hormone-dependent early mammary tumors at a very high incidence (>90%). We have established one RIII subline (RIII/Sa) that shows a pattern of virus expression and tumor incidence similar to that in RIII mice. In the present study, we analyzed the milk and mammary tumors of RIII/Sa mice for virus characterization by reverse transcriptase PCR (RT-PCR) cloning and sequencing of the open reading frame (ORF) of the MMTV long terminal repeats (LTRs). Our results show that these mice express a mixture of at least three different MMTV strains, two of which, designated here as RIII/Sa MMTV-1 and RIII/Sa MMTV-2, are exogenous. The third virus, RIII/Sa MMTV-3, appears to carry the signature of an endogenous provirus, Mtv-17. Similar studies done with the milk and mammary glands of another subline, RIIIS/J, revealed that they do not express MMTV in their milk. The RIII/Sa and RIIIS/J mice also exhibited differences in their endogenous proviral contents. Twelve spontaneously developed mammary tumors of RIII/Sa mice were examined for possible Wnt-1 and/or int-2/Fgf3 mutations that are usually found to occur in most mouse mammary tumors as a consequence of MMTV proviral integration. This work led to the isolation of one MMTV-Wnt-1 junction fragment and one MMTV-int-2/Fgf3 junction fragment from 2 of the 12 tumors. Further analyses showed that both junction fragments contained the RIII/Sa MMTV-2-specific LTR ORF, indicating that this virus was involved in the development of both tumors. Whether RIII/Sa MMTV-1 and/or RIII/Sa MMTV-3 plays any role in mammary tumor development in RIII/Sa mice remains to be established. Overall, the present study demonstrates, to our surprise, that (i) RIII/Sa mice express, unlike other native mouse strains, three strains of MMTVs; and (ii) the virions are completely different from the virus expressed by another subline of RIII mice, the BR6 mice.
Collapse
Affiliation(s)
- Nurul H Sarkar
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | |
Collapse
|
27
|
Quinn G, Wood J, Suling K, Arn S, Sachs DH, Schuurman HJ, Patience C. Genotyping of porcine endogenous retroviruses from a family of miniature swine. J Virol 2004; 78:314-9. [PMID: 14671113 PMCID: PMC303422 DOI: 10.1128/jvi.78.1.314-319.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The identification of animals in an inbred miniature swine herd that consistently fail to produce replication- competent humantropic porcine endogenous retrovirus (PERV) has prompted studies on the biology of PERV in transmitter and nontransmitter animals. We analyzed PERV RNA transcript profiles in a family of inbred miniature swine (SLA(d/d) haplotype) in which individual members differed in their capacity to generate humantropic and ecotropic (i.e., pigtropic) virus. We identified unique HaeIII and HpaII gag restriction fragment length polymorphism (RFLP) profiles resulting from single nucleotide polymorphisms in blood cells; these were found only in animals that produced humantropic PERV. These HaeIII and HpaII gag RFLP profiles proved to be components of humantropic PERV as they were transmitted to 293 human target cells in vitro. The humantropic HaeIII and HpaII gag RFLP genotypes in the family of study were not present in other miniature swine in the herd that produced humantropic PERV, indicating that these RFLP profiles relate specifically to this family's lineage.
Collapse
Affiliation(s)
- Gary Quinn
- Immerge BioTherapeutics Inc., Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Barabás O, Rumlová M, Erdei A, Pongrácz V, Pichová I, Vértessy BG. dUTPase and nucleocapsid polypeptides of the Mason-Pfizer monkey virus form a fusion protein in the virion with homotrimeric organization and low catalytic efficiency. J Biol Chem 2003; 278:38803-12. [PMID: 12869552 DOI: 10.1074/jbc.m306967200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Betaretroviruses encode dUTPase, an essential factor in DNA metabolism and repair, in the pro open reading frame located between gag and pol. Ribosomal frame-shifts during expression of retroviral proteins provide a unique possibility for covalent joining of nucleocapsid (NC) and dUTPase within Gag-Pro polyproteins. By developing an antibody against the prototype betaretrovirus Mason-Pfizer monkey virus dUTPase, we demonstrate that i) the NC-dUTPase fusion protein exists both within the virions and infected cells providing the only form of dUTPase, and ii) the retroviral protease does not cleave NC-dUTPase either in the virion or in vitro. We show that recombinant betaretroviral NC-dUTPase and dUTPase are both inefficient catalysts compared with all other dUTPases. Dynamic light scattering and gel filtration confirm that the homotrimeric organization, common among dUTPases, is retained in the NC-dUTPase fusion protein. The betaretroviral dUTPase has been crystallized and single crystals contain homotrimers. Oligonucleotide and Zn2+ binding is well retained in the fusion protein, which is the first example of acquisition of a functional nucleic acid binding module by the DNA repair factor dUTPase. Binding of the hexanucleotide ACTGCC or the octanucleotide (TG)4 to NC-dUTPase modulates enzymatic function, indicating that the low catalytic activity may be compensated by adequate localization.
Collapse
Affiliation(s)
- Orsolya Barabás
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, POB 7, H-1518, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
29
|
Uz-Zaman T, Ignatowicz L, Sarkar NH. Mouse mammary tumor viruses expressed by RIII/Sa mice with a high incidence of mammary tumors interact with the Vβ-2- and Vβ-8-specific T cells during viral infection. Virology 2003; 314:294-304. [PMID: 14517082 DOI: 10.1016/s0042-6822(03)00429-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mouse mammary tumor viruses (MMTVs) that induce mammary adenocarcinomas in mice are transmitted from mother to offspring through milk. MMTV infection results in the deletion of specific T cells as a consequence of interaction between the MMTV-encoded superantigen (Sag) and specific V beta chains of the T cell receptor. The specificity and kinetics of T cell deletion for a number of highly oncogenic MMTVs, such as C3H- and GR-MMTVs, have been studied in great detail. Some work has also been done with the MMTVs expressed in two substrains of RIII mice, BR6 and RIIIS/J, but the nature of the interaction between T cells and the virus(es) that the parental RIII-strain of mice express has not been investigated. Since RIII mice (designated henceforth as RIII/Sa) have a very high incidence (90-98%) of mammary tumors, and they have been extensively used in studies of the biology of mammary tumor development, we have presently determined the pattern of V beta-T cell deletion caused by RIII/Sa-MMTV-Sag(s) during viral infection. T cells were isolated from lymph nodes and thymus of young RIII/Sa mice, as well as from BALB/c (BALB/cfRIII/Sa), C57BL (C57BLfRIII/Sa), and RIIIS/J (RIIIS/JfRIII/Sa) mice after they were infected with RIII/Sa-MMTV(s) by foster nursing. The composition of the T cells was analyzed by FACS using a panel of monoclonal antibodies specific to a variety of V betas. Our results show that milk-borne RIII/Sa-MMTV(s) infection leads to the deletion of CD4(+) V beta-2, and to a lesser extent V beta-8 bearing peripheral and central T cells in RIII/Sa, RIIIS/J, BALB/c, and C57BL mice. Our results are in contrast to the findings that C3H-, GR-, and BR6-MMTVs delete V beta-14- and/or V beta-15-specific T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Viral
- CD4-Positive T-Lymphocytes/metabolism
- Female
- Incidence
- Lactation
- Mammary Neoplasms, Experimental/virology
- Mammary Tumor Virus, Mouse/metabolism
- Mammary Tumor Virus, Mouse/pathogenicity
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Milk/virology
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Retroviridae Infections/virology
- Tumor Virus Infections/virology
Collapse
Affiliation(s)
- Taher Uz-Zaman
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
30
|
Entin-Meer M, Avidan O, Hizi A. The mature reverse transcriptase molecules in virions of mouse mammary tumor virus possess protease-derived sequences. Virology 2003; 310:157-62. [PMID: 12788639 DOI: 10.1016/s0042-6822(03)00113-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Our efforts to express in bacteria the enzymatically active reverse transcriptase (RT) of mouse mammary tumor virus (MMTV) have shown that the RT is active only after adding 27 amino acid residues, which are derived from the end of the pro gene, to the amino-terminus of the RT (Biochem, J. (1998) 329, 579-587). In the present study we have tested whether the mature RT found in virions is also fused to protease-derived sequences. To this end, we have analyzed the RT molecules in virions of MMTV by using two antisera directed against peptides, derived from either the carboxyl-terminus of MMTV protease or the middle of MMTV RT. The data suggest that the mature RT, located in virions, contains at its amino-terminus sequences from the carboxyl-terminus of the protease protein. This finding supports previous suggestions that MMTV RT is a transframe protein (derived from both pro and pol reading frames of MMTV) and that amino acid residues located at the carboxyl-terminus of the protease have a dual usage as integral parts of both the protease and the RT enzymes.
Collapse
Affiliation(s)
- Michal Entin-Meer
- Department of Cell Biology and Histology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
31
|
Entin-Meer M, Sevilya Z, Hizi A. The role of phenylalanine-119 of the reverse transcriptase of mouse mammary tumour virus in DNA synthesis, ribose selection and drug resistance. Biochem J 2002; 367:381-91. [PMID: 12097136 PMCID: PMC1222887 DOI: 10.1042/bj20020712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2002] [Revised: 06/25/2002] [Accepted: 07/03/2002] [Indexed: 12/16/2022]
Abstract
Phe-119 in the reverse transcriptase (RT) of mouse mammary tumour virus (MMTV) is homologous with Tyr-115 in HIV type 1 (HIV-1) RT and to Phe-155 in murine leukaemia virus (MLV) RT. By mutating these residues in HIV-1 and MLV RTs (which are strict DNA polymerases) the enzymes were shown to function also as RNA polymerases. Owing to the uniqueness of MMTV as a type B retrovirus, we have generated a Phe-119-Val mutant of MMTV RT to study the involvement of this residue in affecting the catalytic features of this RT. The data presented here show that the mutant MMTV RT can incorporate both deoxyribonucleosides and ribonucleosides while copying either RNA or DNA. In addition, this mutant RT shows resistance to nucleoside analogues and an enhanced fidelity of DNA synthesis; all relative to the wild-type enzyme. The Phe-119-Val mutant is also different from the wild-type enzyme in its preference for most template primers tested and in its ability to synthesize DNA under non-processive and processive conditions. Overall, it is likely that the aromatic side chain of Phe-119 is located at the dNTP-binding site of MMTV RT and thus might be part of a putative "steric gate" that prevents the incorporation of nucleoside triphosphates. Since the only three-dimensional structures of RTs published so far are those of HIV-1 and MLV, it is likely that MMTV RT folds quite similarly to these RTs.
Collapse
Affiliation(s)
- Michal Entin-Meer
- Department of Cell Biology and Histology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
32
|
Wang Y, Wills NM, Du Z, Rangan A, Atkins JF, Gesteland RF, Hoffman DW. Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral gag-pro frameshift site. RNA (NEW YORK, N.Y.) 2002; 8:981-96. [PMID: 12212853 PMCID: PMC1370320 DOI: 10.1017/s1355838202024044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mutational and NMR methods were used to investigate features of sequence, structure, and dynamics that are associated with the ability of a pseudoknot to stimulate a -1 frameshift. In vitro frameshift assays were performed on retroviral gag-pro frameshift-stimulating pseudoknots and their derivatives, a pseudoknot from the gene 32 mRNA of bacteriophage T2 that is not naturally associated with frameshifting, and hybrids of these pseudoknots. Results show that the gag-pro pseudoknot from human endogenous retrovirus-K10 (HERV) stimulates a -1 frameshift with an efficiency similar to that of the closely related retrovirus MMTV. The bacteriophage T2 mRNA pseudoknot was found to be a poor stimulator of frameshifting, supporting a hypothesis that the retroviral pseudoknots have distinctive properties that make them efficient frameshift stimulators. A hybrid, designed by combining features of the bacteriophage and retroviral pseudoknots, was found to stimulate frameshifting while retaining significant structural similarity to the nonframeshifting bacteriophage pseudoknot. Mutational analyses of the retroviral and hybrid pseudoknots were used to evaluate the effects of an unpaired (wedged) adenosine at the junction of the pseudoknot stems, changing the base pairs near the junction of the two stems, and changing the identity of the loop 2 nucleotide nearest the junction of the stems. Pseudoknots both with and without the wedged adenosine can stimulate frameshifting, though the identities of the nucleotides near the stem1/stem2 junction do influence efficiency. NMR data showed that the bacteriophage and hybrid pseudoknots are similar in their local structure at the junction of the stems, indicating that pseudoknots that are similar in this structural feature can differ radically in their ability to stimulate frameshifting. NMR methods were used to compare the internal motions of the bacteriophage T2 pseudoknot and representative frameshifting pseudoknots. The stems of the investigated pseudoknots are similarly well ordered on the time scales to which nitrogen-15 relaxation data are sensitive; however, solvent exchange rates for protons at the junction of the two stems of the nonframeshifting bacteriophage pseudoknot are significantly slower than the analogous protons in the representative frameshifting pseudoknots.
Collapse
Affiliation(s)
- Yue Wang
- Department of Chemistry and Biochemistry, Institute for Cell and Molecular Biology, University of Texas at Austin, 78712, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Griffiths DJ, Voisset C, Venables PJW, Weiss RA. Novel endogenous retrovirus in rabbits previously reported as human retrovirus 5. J Virol 2002; 76:7094-102. [PMID: 12072509 PMCID: PMC136318 DOI: 10.1128/jvi.76.14.7094-7102.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human retrovirus 5 (HRV-5) represented a fragment of a novel retrovirus sequence identified in human RNA and DNA preparations. In this study, the genome of HRV-5 was cloned and sequenced and integration sites were analyzed. Using PCR and Southern hybridization, we showed that HRV-5 is not integrated into human DNA. A survey of other species revealed that HRV-5 is present in the genomic DNA of the European rabbit (Oryctolagus cuniculus) and belongs to an endogenous retrovirus family found in rabbits. The presence of rabbit sequences flanking HRV-5 proviruses in human DNA extracts suggested that rabbit DNA was present in our human extracts, and this was confirmed by PCR analysis that revealed the presence of rabbit mitochondrial DNA sequences in four of five human DNA preparations tested. The origin of the rabbit DNA and HRV-5 in human DNA preparations remains unclear, but laboratory contamination cannot explain the preferential detection of HRV-5 in inflammatory diseases and lymphomas reported previously. This is the first description of a retrovirus genome in rabbits, and sequence analysis shows that it is related to but distinct from A-type retroelements of mice and other rodents. The species distribution of HRV-5 is restricted to rabbits; other species, including other members of the order Lagomorpha, do not contain this sequence. Analysis of HRV-5 expression by Northern hybridization and reverse transcriptase PCR indicates that the virus is transcribed at a low level in many rabbit tissues. In light of these findings we propose that the sequence previously designated HRV-5 should now be denoted RERV-H (for rabbit endogenous retrovirus H).
Collapse
Affiliation(s)
- David J Griffiths
- Wohl Virion Centre, Windeyer Institute of Medical Sciences, University College London, United Kingdom.
| | | | | | | |
Collapse
|
34
|
Gonzalez RA, Flint SJ. Effects of mutations in the adenoviral E1B 55-kilodalton protein coding sequence on viral late mRNA metabolism. J Virol 2002; 76:4507-19. [PMID: 11932416 PMCID: PMC155063 DOI: 10.1128/jvi.76.9.4507-4519.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Accepted: 01/30/2002] [Indexed: 11/20/2022] Open
Abstract
The human subgroup C adenoviral E1B 55-kDa protein cooperates with the viral E4 Orf6 protein to induce selective export of viral, late mRNAs from the nucleus to the cytoplasm. Previous studies have suggested that such preferential transport of viral mRNA and the concomitant inhibition of export of cellular mRNAs are the result of viral colonization of specialized microenvironments within the nucleus. However, neither the molecular basis of this phenomenon nor the mechanism by which the E1B 55-kDa protein acts has been elucidated. We therefore examined viral late mRNA metabolism in HeLa cells infected with a series of mutant viruses that carry insertions at various positions in the E1B protein coding sequence (P. R. Yew, C. C. Kao, and A. J. Berk, Virology 179:795-805, 1990). All the mutations examined impaired cytoplasmic accumulation of viral L2 mRNAs and reduced L2 mRNA export efficiency. However, in most cases these defects could be ascribed to reduced E1B 55-kDa protein concentration or the unexpected failure of the altered E1B proteins to enter the nucleus efficiently. The latter property, the pleiotropic defects associated with all the mutations that impaired nuclear entry of the E1B protein, and consideration of its primary sequence suggest that these insertions result in misfolding of the protein. Insertion of four amino acids at residue 143 also inhibited viral mRNA export but resulted in increased rather than decreased accumulation of the E1B 55-kDa protein in the nucleus. This mutation specifically impaired the previously described association of the E1B protein with intranuclear structures that correspond to sites of adenoviral DNA replication and transcription (D. Ornelles and T. Shenk, J. Virol. 65:424-439, 1991) and the colocalization of the E1B and E4 Orf6 proteins. As this insertion has been shown to inhibit the interaction of the E1B with the E4 Orf6 protein in infected cell extracts (S. Rubenwolf, H. Schütt, M. Nevels, H. Wolf, and T. Dobner, J. Virol. 71:1115-1123, 1997), these phenotypes provide direct support for the hypothesis that selective viral mRNA export is determined by the functional organization of the infected cell nucleus.
Collapse
Affiliation(s)
- Ramon A Gonzalez
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
35
|
Popken-Harris P, Pliml L, Harris L. Sequence and genetic analyses of the 3' terminus and integration sites of the RIII/Sa mouse mammary tumor (MMTV) exogenous provirus. Virus Genes 2002; 23:35-43. [PMID: 11556399 DOI: 10.1023/a:1011175112113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The RIII/Sa mouse mammary tumor virus (MMTV) is one of several exogenous MMTV viruses transmitted to suckling mice through the milk. We report herein the nucleotide sequence of the exogenous RIII/Sa provirus from the central Eco RI site through to the end of the U5 region encoded by the 3' LTR. We also provide a detailed sequence analysis often different 3' terminal exogenous MMTV proviral integration sites within mammary tumor DNA obtained by the technique of genome walking. Using a combination of Southern blotting with 3' end probes and PCR utilizing a unique RIII/Sa specific 3' primer, we confirm that the RIII/Sa provirus integrates multiple times in mouse mammary tumors but that little or no integration occurs in various normal tissues. Southern blotting analyses with 3' end probes also indicate that RIII/Sa mice contain two additional endogenous MMTV loci, mtv-6 and mtv- 17, not previously reported. The combined genetic analyses reported herein distinguish between exogenous proviral integrants and endogenous germline MMTV.
Collapse
Affiliation(s)
- P Popken-Harris
- David F. Hickok Memorial Cancer Research Laboratory, Abbott Northwestern Hospital, the Minneapolis, MN 55407, USA
| | | | | |
Collapse
|
36
|
Agbuya PG, Sherman NE, Moen LK. Proteolytic processing of the human T-cell lymphotropic virus 1 reverse transcriptase: identification of the N-terminal cleavage site by mass spectrometry. Arch Biochem Biophys 2001; 392:93-102. [PMID: 11469799 DOI: 10.1006/abbi.2001.2432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human T-cell lymphotropic virus 1 (HTLV-1) is a type C human retrovirus, which is the causative agent of Adult T-cell Leukemia and other diseases. The reverse transcriptase of HTLV-1 (E.C. 2.7.7.49) is synthesized as part of a Gag--Pro--Pol precursor protein, and the mature Gag, Pro, and Pol proteins, including the reverse transcriptase, are created by proteolytic processing catalyzed by the viral protease. The location of the proteolytic cleavage site, which creates the N-terminus of mature HTLV-1 reverse transcriptase, has not been previously identified. By using sequence comparisons of several retroviral polymerases, as well as information about the location of the ribosomal frameshift, we tentatively identified this N-terminal processing site. PCR amplification was used to construct a clone, which spans a region of the pro--pol junction of HTLV-1, to produce a recombinant Pro--Pol protein spanning the locations of those cleavage sites proposed by others as well as the one identified by our sequence alignment. Cleavage of the recombinant Pro--Pol protein by HTLV-1 protease generated a 5.5-kDa fragment. Analysis of this fragment by capillary LC-MS and MS/MS revealed the N-terminal cleavage site to be between Leu(147)--Pro(148) of the pro ORF. This is the first physical identification of the authentic amino acid sequence of the reverse transcriptase of HTLV-1. The data reported here provides a basis for further investigation of the function and structural aspects of protein-nucleic interaction.
Collapse
Affiliation(s)
- P G Agbuya
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, USA
| | | | | |
Collapse
|
37
|
Sen N, Simmons WJ, Thomas RM, Erianne G, Zhang DJ, Jaeggli NS, Huang C, Xiong X, Tsiagbe VK, Ponzio NM, Thorbecke GJ. META-controlled env-initiated transcripts encoding superantigens of murine Mtv29 and Mtv7 and their possible role in B cell lymphomagenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5422-9. [PMID: 11313379 DOI: 10.4049/jimmunol.166.9.5422] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Spontaneous germinal center (GC)-derived B cell lymphomas of SJL mice (RCS) transcribe a 1.8-kb Mtv-29 mRNA under control of the META-env promoter. The encoded vSAg29 stimulates syngeneic Vbeta16(+) CD4(+) T cells, thereby acquiring T cell help necessary for RCS growth. Other strains of B cell lymphoma-prone mice include Mtv29(+) C57L and MA/MyJ, and the Mtv29(-) Mtv7(+)-recombinant inbred strain, SW x J-1. The lymphomas of these mice produce similar mouse mtv-vSAg-encoding mRNA, as characterized by Northern blotting, PCR, and RNase protection. A 1.8-kb mRNA in C57L/J and MA/MyJ lymphomas hybridized with an Mtv29-specific oligonucleotide, whereas SW x J-1 lymphomas produced 1.8-kb transcripts hybridizing with an Mtv7-specific oligonucleotide. Similar META-env-initiated transcripts were absent from LPS-activated B cells from any strain examined but were detected in Peyer's patch RNA from SJL mice. Like typical SJL-derived RCS, all these lymphomas stimulated syngeneic CD4(+) T cells and Vbeta16(+) T hybridoma cells. Immunohistochemical staining of primary tumors showed the presence of peanut agglutinin binding (PNA(+)) highly mitotic lymphoblasts, suggesting their GC derivation. The findings indicate that this novel mRNA for Mtv29 is present in B cell lymphomas from several Mtv29(+) mouse strains. Additionally, this is the first description of the ability of Mtv7 to produce transcripts that are controlled and spliced identically to those of Mtv29 and that are expressed in SW x J-1, I-A(s+), lymphomas that also stimulate Vbeta16(+) T cells. Our results suggest an important role for mouse mtv-vSAgs and Vbeta16 T cell stimulation in the development of GC-derived murine B cell lymphomas.
Collapse
MESH Headings
- Animals
- Antigens, Viral
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/virology
- Crosses, Genetic
- Enhancer Elements, Genetic/immunology
- Female
- Genes, env/immunology
- Hybridomas
- Lymphocyte Activation/genetics
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Male
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Inbred NOD
- Promoter Regions, Genetic/immunology
- Retroviridae Infections/genetics
- Retroviridae Infections/immunology
- Retroviridae Infections/pathology
- Species Specificity
- Superantigens/genetics
- Superantigens/immunology
- T-Lymphocyte Subsets/immunology
- Transcription, Genetic/immunology
- Tumor Cells, Cultured
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- N Sen
- Department of Pathology and Comprehensive Kaplan Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dang Q, Hu WS. Effects of homology length in the repeat region on minus-strand DNA transfer and retroviral replication. J Virol 2001; 75:809-20. [PMID: 11134294 PMCID: PMC113977 DOI: 10.1128/jvi.75.2.809-820.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homology between the two repeat (R) regions in the retroviral genome mediates minus-strand DNA transfer during reverse transcription. We sought to define the effects of R homology lengths on minus-strand DNA transfer. We generated five murine leukemia virus (MLV)-based vectors that contained identical sequences but different lengths of the 3' R (3, 6, 12, 24 and 69 nucleotides [nt]); 69 nt is the full-length MLV R. After one round of replication, viral titers from the vector with a full-length downstream R were compared with viral titers generated from the other four vectors with reduced R lengths. Viral titers generated from vectors with R lengths reduced to one-third (24 nt) or one-sixth (12 nt) that of the wild type were not significantly affected; however, viral titers generated from vectors with only 3- or 6-nt homology in the R region were significantly lower. Because expression and packaging of the RNA were similar among all the vectors, the differences in the viral titers most likely reflected the impact of the homology lengths on the efficiency of minus-strand DNA transfer. The molecular nature of minus-strand DNA transfer was characterized in 63 proviruses. Precise R-to-R transfer was observed in most proviruses generated from vectors with 12-, 24-, or 69-nt homology in R, whereas aberrant transfers were predominantly used to generate proviruses from vectors with 3- or 6-nt homology. Reverse transcription using RNA transcribed from an upstream promoter, termed read-in RNA transcripts, resulted in most of the aberrant transfers. These data demonstrate that minus-strand DNA transfer is homology driven and a minimum homology length is required for accurate and efficient minus-strand DNA transfer.
Collapse
Affiliation(s)
- Q Dang
- Department of Microbiology and Immunology, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
39
|
Mustafa F, Lozano M, Dudley JP. C3H mouse mammary tumor virus superantigen function requires a splice donor site in the envelope gene. J Virol 2000; 74:9431-40. [PMID: 11000212 PMCID: PMC112372 DOI: 10.1128/jvi.74.20.9431-9440.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) encodes a superantigen (Sag) that is required for efficient milk-borne transmission of virus from mothers to offspring. The mRNA used for Sag expression is controversial, and at least four different promoters (two in the long terminal repeat and two in the envelope gene) for sag mRNA have been reported. To determine which RNA is responsible for Sag function during milk-borne MMTV transmission, we mutated a splice donor site unique to a spliced sag RNA from the 5' envelope promoter. The splice donor mutation in an infectious provirus was transfected into XC cells and injected into BALB/c mice. Mice injected with wild-type provirus showed Sag activity by the deletion of Sag-specific T cells and induction of mammary tumors in 100% of injected animals. However, mice injected with the splice donor mutant gave sporadic and delayed T-cell deletion and a low percentage of mammary tumors with a long latency, suggesting that the resulting tumors were due to the generation of recombinants with endogenous MMTVs. Third-litter offspring of mice injected with wild-type provirus showed Sag-specific T-cell deletion and developed mammary tumors with kinetics similar to those for mice infected by nursing on MMTV-infected mothers, whereas the third-litter offspring of the splice donor mutant-injected mice did not. One of the fifth-litter progeny of splice donor mutant-injected mice showed C3H Sag activity and had recombinants that repaired the splice donor mutation, thus confirming the necessity for the splice donor site for Sag function. These experiments are the first to show that the spliced sag mRNA from the 5' envelope promoter is required for efficient milk-borne transmission of C3H MMTV.
Collapse
Affiliation(s)
- F Mustafa
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78705, USA
| | | | | |
Collapse
|
40
|
Tovar Sepúlveda VA, Berdel B, Coffin JM, Reuss FU. Mouse mammary tumor virus superantigen expression is reduced by glucocorticoid treatment. Virology 2000; 275:98-106. [PMID: 11017791 DOI: 10.1006/viro.2000.0491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of mouse mammary tumor virus (MMTV)-encoded superantigens in B lymphocytes are required for viral transmission and pathogenesis. Due to problems with detection and quantification of the superantigen protein, most reports about the mechanism of superantigen expression from the viral sag gene rely on the quantitative analysis of putative sag mRNAs. The description of multiple promoters as a source of putative sag mRNA has complicated the situation even further. All conclusions about the level of superantigen protein expression based on these data remain circumstantial. To test the effect of the glucocorticoid hormone dexamethasone on the total superantigen expression from an infectious MMTV provirus we used a quantitative assay that is based on a superantigen-luciferase fusion protein. MMTV gene expression from the major promoter in the 5' long terminal repeat (LTR) is strongly induced in the presence of glucocorticoid hormones. We now demonstrate that, in the presence of dexamethasone, sag gene expression is reduced despite increased transcription from the MMTV 5' LTR and increased amounts of putative sag mRNA initiated at the LTR promoter. These data show that the expression of the MMTV sag gene does not correlate with the activity of the major LTR promoter and thus differs from all other MMTV genes.
Collapse
MESH Headings
- Animals
- Cell Line
- Dexamethasone/pharmacology
- Dexamethasone/therapeutic use
- Gene Expression Regulation, Viral/drug effects
- Genes, Reporter/genetics
- Genes, Viral/genetics
- Glucocorticoids/pharmacology
- Glucocorticoids/therapeutic use
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/virology
- Mammary Tumor Virus, Mouse/drug effects
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/immunology
- Mice
- Promoter Regions, Genetic/genetics
- Proviruses/drug effects
- Proviruses/genetics
- Proviruses/immunology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Viral/analysis
- RNA, Viral/genetics
- Recombinant Fusion Proteins/genetics
- Superantigens/genetics
- Terminal Repeat Sequences/genetics
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Transfection
Collapse
Affiliation(s)
- V A Tovar Sepúlveda
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie F0400, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
41
|
Sei S, Yang QE, O'Neill D, Yoshimura K, Nagashima K, Mitsuya H. Identification of a key target sequence to block human immunodeficiency virus type 1 replication within the gag-pol transframe domain. J Virol 2000; 74:4621-33. [PMID: 10775598 PMCID: PMC111982 DOI: 10.1128/jvi.74.10.4621-4633.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the full sequence of the human immunodeficiency virus type 1 (HIV-1) genome has been known for more than a decade, effective genetic antivirals have yet to be developed. Here we show that, of 22 regions examined, one highly conserved sequence (ACTCTTTGGCAACGA) near the 3' end of the HIV-1 gag-pol transframe region, encoding viral protease residues 4 to 8 and a C-terminal Vpr-binding motif of p6(Gag) protein in two different reading frames, can be successfully targeted by an antisense peptide nucleic acid oligomer named PNA(PR2). A disrupted translation of gag-pol mRNA induced at the PNA(PR2)-annealing site resulted in a decreased synthesis of Pr160(Gag-Pol) polyprotein, hence the viral protease, a predominant expression of Pr55(Gag) devoid of a fully functional p6(Gag) protein, and the excessive intracellular cleavage of Gag precursor proteins, hindering the processes of virion assembly. Treatment with PNA(PR2) abolished virion production by up to 99% in chronically HIV-1-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates with the multidrug-resistant phenotype. This particular segment of the gag-pol transframe gene appears to offer a distinctive advantage over other regions in invading viral structural genes and restraining HIV-1 replication in infected cells and may potentially be exploited as a novel antiviral genetic target.
Collapse
Affiliation(s)
- S Sei
- HIV Clinical Interface Laboratory, SAIC-Frederick, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Tristem M. Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J Virol 2000; 74:3715-30. [PMID: 10729147 PMCID: PMC111881 DOI: 10.1128/jvi.74.8.3715-3730.2000] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human endogenous retroviruses (HERVs) were first identified almost 20 years ago, and since then numerous families have been described. It has, however, been difficult to obtain a good estimate of both the total number of independently derived families and their relationship to each other as well as to other members of the family Retroviridae. In this study, I used sequence data derived from over 150 novel HERVs, obtained from the Human Genome Mapping Project database, and a variety of recently identified nonhuman retroviruses to classify the HERVs into 22 independently acquired families. Of these, 17 families were loosely assigned to the class I HERVs, 3 to the class II HERVs and 2 to the class III HERVs. Many of these families have been identified previously, but six are described here for the first time and another four, for which only partial sequence information was previously available, were further characterized. Members of each of the 10 families are defective, and calculation of their integration dates suggested that most of them are likely to have been present within the human lineage since it diverged from the Old World monkeys more than 25 million years ago.
Collapse
Affiliation(s)
- M Tristem
- Department of Biology, Imperial College, Silwood Park, Ascot, Berkshire SL5 7PY, United Kingdom.
| |
Collapse
|
43
|
Alam SL, Atkins JF, Gesteland RF. Programmed ribosomal frameshifting: much ado about knotting! Proc Natl Acad Sci U S A 1999; 96:14177-9. [PMID: 10588670 PMCID: PMC33937 DOI: 10.1073/pnas.96.25.14177] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Stegalkina SS, Guerrero A, Walton KD, Liu X, Robinson GW, Hennighausen L. Transcription originating in the long terminal repeats of the endogenous mouse mammary tumor virus MTV-3 is activated in Stat5a-null mice and picks Up hitchhiking exons. J Virol 1999; 73:8669-76. [PMID: 10482620 PMCID: PMC112887 DOI: 10.1128/jvi.73.10.8669-8676.1999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enhancer within the long terminal repeats (LTRs) of acquired somatic mouse mammary tumor viruses (MMTV) can activate juxtaposed genes and induce mammary tumors. In contrast, germ line proviral MMTV genomes are integrated in the host genome and considered to be genetically confined transcription units. Here we demonstrate that transcription initiated in an MMTV provirus proceeds into flanking host sequences. We discovered multiple polyadenylated transcripts which are induced in Stat5a null mice. These range from 1.5 kb to more than 8 kb and are specifically expressed in mammary tissue from pregnant and lactating mice from the 129 but not C57BL/6 strain. The RNAs emanate from both LTRs of the endogenous MTV-3 provirus on chromosome 11 and proceed at least 10 kb into the juxtaposed genomic territory. Transcripts originating in the 5' LTR splice from the native splice site within the MMTV envelope gene into at least six exons, three of which contain functional internal splice sites. The combination of alternative splicing and the use of several polyadenylation sites ensure the generation of multiple transcripts. To date no significant open reading frame has been discovered. Furthermore, we demonstrate that transcription from the MMTV 5' LTR is highly active in the absence of Stat5a, a transcription factor that had been shown previously to be required for transcription from the MMTV LTR.
Collapse
Affiliation(s)
- S S Stegalkina
- Laboratory of Genetics and Physiology, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
45
|
Cousens C, Minguijon E, Dalziel RG, Ortin A, Garcia M, Park J, Gonzalez L, Sharp JM, de las Heras M. Complete sequence of enzootic nasal tumor virus, a retrovirus associated with transmissible intranasal tumors of sheep. J Virol 1999; 73:3986-93. [PMID: 10196294 PMCID: PMC104177 DOI: 10.1128/jvi.73.5.3986-3993.1999] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sequence of the complete genome of ovine enzootic nasal tumor virus, an exogenous retrovirus associated exclusively with contagious intranasal tumors of sheep, was determined. The genome is 7,434 nucleotides long and exhibits a genetic organization characteristic of type B and D oncoviruses. Enzootic nasal tumor virus is closely related to the Jaagsiekte sheep retrovirus and to sheep endogenous retroviruses.
Collapse
Affiliation(s)
- C Cousens
- Moredun Research Institute, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yin H, Medstrand P, Kristofferson A, Dietrich U, Aman P, Blomberg J. Characterization of human MMTV-like (HML) elements similar to a sequence that was highly expressed in a human breast cancer: further definition of the HML-6 group. Virology 1999; 256:22-35. [PMID: 10087223 DOI: 10.1006/viro.1998.9587] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we found a retroviral sequence, HML-6.2BC1, to be expressed at high levels in a multifocal ductal breast cancer from a 41-year-old woman who also developed ovarian carcinoma. The sequence of a human genomic clone (HML-6.28) selected by high-stringency hybridization with HML-6.2BC1 is reported here. It was 99% identical to HML-6.2BC1 and gave the same restriction fragments as total DNA. HML-6.28 is a 4.7-kb provirus with a 5'LTR, truncated in RT. Data from two similar genomic clones and sequences found in GenBank are also reported. Overlaps between them gave a rather complete picture of the HML-6.2BC1-like human endogenous retroviral elements. Work with somatic cell hybrids and FISH localized HML-6.28 to chromosome 6, band p21, close to the MHC region. The causal role of HML-6.28 in breast cancer remains unclear. Nevertheless, the ca. 20 Myr old HML-6 sequences enabled the definition of common and unique features of type A, B, and D (ABD) retroviruses. In Gag, HML-6 has no intervening sequences between matrix and capsid proteins, unlike extant exogenous ABD viruses, possibly an ancestral feature. Alignment of the dUTPase showed it to be present in all ABD viruses, but gave a phylogenetic tree different from trees made from other ABD genes, indicating a distinct phylogeny of dUTPase. A conserved 24-mer sequence in the amino terminus of some ABD envelope genes suggested a conserved function.
Collapse
Affiliation(s)
- H Yin
- Department of Medical Sciences, Uppsala University, Dag Hammarskjölds väg 17, Uppsala, 751 85, Sweden.
| | | | | | | | | | | |
Collapse
|
47
|
Buggiano V, Goldman A, Nepomnaschy I, Bekinschtein P, Berguer P, Lombardi G, Deroche A, Francisco MV, Piazzon I. Characterization of two infectious mouse mammary tumour viruses: superantigenicity and tumorigenicity. Scand J Immunol 1999; 49:269-77. [PMID: 10102644 DOI: 10.1046/j.1365-3083.1999.00502.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mouse mammary tumour virus (MMTV) is a type B retrovirus that causes mammary tumours in susceptible mice. MMTV encodes a superantigen (SAg) that has the property of stimulating T-cell populations expressing a particular variable region of the T-cell receptor (TCR) beta chain (Vbeta) and needs to be presented in the context of major histocompatibility complex (MHC) class II molecules. Previously, we described two exogenous MMTV, MMTV BALB14, which encodes a superantigen that induces the deletion of Vbeta14+ Tcells, and MMTV BALB2, which encodes a SAg that induces the deletion of Vbeta2+ Tcells. We now describe their biological activity: the deletions involve both CD4+ and CD8+ populations, are progressive and can be detected in blood, lymph nodes and spleen. Such deletions reflect, at least in part, those occurring during intrathymic development. Both BALB2 and BALB14 viral variants are capable of inducing a strong increase of Vbeta-specific T cells in BALB/c mice (I-A+, I-E+). However, when injected into the footpad, their initial stimulatory capacity differs in that the presence of MHC I-E molecules is essential only for the stimulation of Vbeta2+ T cells. Both viral variants are able to induce deletion even in the absence of the I-E molecule in which case, however, deletion appears later and is less pronounced. Both exogenous MMTVs induce, at the end of a year, 30-35% of pregnancy-dependent mammary adenocarcinomas.
Collapse
MESH Headings
- Adenocarcinoma/etiology
- Adenocarcinoma/immunology
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Female
- Genetic Variation
- Mammary Neoplasms, Experimental/etiology
- Mammary Neoplasms, Experimental/immunology
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/immunology
- Mammary Tumor Virus, Mouse/pathogenicity
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Pregnancy
- Pregnancy Complications, Neoplastic/etiology
- Pregnancy Complications, Neoplastic/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Retroviridae Infections/etiology
- Retroviridae Infections/immunology
- Superantigens/genetics
- T-Lymphocyte Subsets/immunology
- Tumor Virus Infections/etiology
- Tumor Virus Infections/immunology
Collapse
Affiliation(s)
- V Buggiano
- Division Medicina Experimental, Instituto de Investigaciones Hematologicas, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kim KH, Lommel SA. Sequence element required for efficient -1 ribosomal frameshifting in red clover necrotic mosaic dianthovirus. Virology 1998; 250:50-9. [PMID: 9770419 DOI: 10.1006/viro.1998.9358] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RNA-1 of the bipartite red clover necrotic mosaic dianthovirus (RCNMV) genome encodes the 88-kDa polymerase. The polymerase is translated from both 5' proximal and internal open reading frames by a -1 ribosomal frameshifting event. A shifty heptanucleotide conforming to the simultaneous slippage model is identified, and a downstream stem-loop structure and atypical pseudoknot are predicted. A beta-glucuronidase reporter assay identified a 118-nucleotide element containing both the shifty heptanucleotide and the predicted secondary structures that were required for efficient -1 ribosomal frameshift expression in vivo. A series of site-directed and compensatory mutations affecting the base-paired regions of the predicted secondary structure were introduced into a RCNMV RNA-1 cDNA clone from which infectious transcripts were derived. Mutations that destroyed the predicted pseudoknot had no effect on frameshifting efficiency in vitro or infectivity of the virus, whereas mutations destabilizing the stem-loop structure abolished both ribosomal frameshifting in vitro and biological activity. These results demonstrate the essential role of a predicted secondary structure that does not involve a pseudoknot in the expression of the RCNMV polymerase by ribosomal frameshifting.
Collapse
Affiliation(s)
- K H Kim
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695-7616, USA
| | | |
Collapse
|
49
|
Seifarth W, Baust C, Murr A, Skladny H, Krieg-Schneider F, Blusch J, Werner T, Hehlmann R, Leib-Mösch C. Proviral structure, chromosomal location, and expression of HERV-K-T47D, a novel human endogenous retrovirus derived from T47D particles. J Virol 1998; 72:8384-91. [PMID: 9733890 PMCID: PMC110222 DOI: 10.1128/jvi.72.10.8384-8391.1998] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously described that type B retrovirus-like particles released from the human mammary carcinoma cell line T47D are pseudotypes and package retroviral RNA of different origins (W. Seifarth, H. Skladny, F. Krieg-Schneider, A. Reichert, R. Hehlmann, and C. Leib-Mösch, J. Virol. 69:6408-6416, 1995). One preferentially packaged retroviral sequence, ERV-MLN, has now been used to isolate the corresponding full-length provirus from a human genomic library. The 9,315-bp proviral genome comprises a complete retroviral structure except for a 3' long terminal repeat (LTR) truncation. A lysine tRNA primer-binding site and phylogenetic analyses assign this human endogenous retroviral element, now called HERV-K-T47D, to the HML-4 subgroup of the HERV-K superfamily. The gag, prt, pol, and env genes exhibit 40 to 60% amino acid identity to HERV-K10. HERV-K-T47D is located on human chromosome 10, with five closely related elements on chromosomes 8, 9, 15, 16, and 19 and several hundred HERV-K-T47D-related solitary LTRs dispersed over the human genome. HERV-K-T47D-related sequences are detected in the genomes of higher primates and Old World monkeys but not in those of New World monkeys. High HERV-K-T47D transcription levels were observed in human placenta tissue, whereas transcription in T47D cells was strictly steroid dependent.
Collapse
Affiliation(s)
- W Seifarth
- Medical Clinic III, Faculty of Clinical Medicine Mannheim, University of Heidelberg, D-68305 Mannheim, GSF-National Research Center for Environment and Health, D-85764 Neuherberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Taruscio D, Mantovani A. Human endogenous retroviral sequences: possible roles in reproductive physiopathology. Biol Reprod 1998; 59:713-24. [PMID: 9746718 DOI: 10.1095/biolreprod59.4.713] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- D Taruscio
- Laboratories of Ultrastructure, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | | |
Collapse
|