1
|
Santos MF, Rappa G, Karbanová J, Diana P, Cirrincione G, Carbone D, Manna D, Aalam F, Wang D, Vanier C, Corbeil D, Lorico A. HIV-1-induced nuclear invaginations mediated by VAP-A, ORP3, and Rab7 complex explain infection of activated T cells. Nat Commun 2023; 14:4588. [PMID: 37563144 PMCID: PMC10415338 DOI: 10.1038/s41467-023-40227-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
The mechanism of human immunodeficiency virus 1 (HIV-1) nuclear entry, required for productive infection, is not fully understood. Here, we report that in HeLa cells and activated CD4+ T cells infected with HIV-1 pseudotyped with VSV-G and native Env protein, respectively, Rab7+ late endosomes containing endocytosed HIV-1 promote the formation of nuclear envelope invaginations (NEIs) by a molecular mechanism involving the VOR complex, composed of the outer nuclear membrane protein VAP-A, hyperphosphorylated ORP3 and Rab7. Silencing VAP-A or ORP3 and drug-mediated impairment of Rab7 binding to ORP3-VAP-A inhibited the nuclear transfer of the HIV-1 components and productive infection. In HIV-1-resistant quiescent CD4+ T cells, ORP3 was not hyperphosphorylated and neither VOR complex nor NEIs were formed. This new cellular pathway and its molecular players are potential therapeutic targets, perhaps shared by other viruses that require nuclear entry to complete their life cycle.
Collapse
Affiliation(s)
- Mark F Santos
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - Germana Rappa
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Patrizia Diana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Girolamo Cirrincione
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Daniela Carbone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - David Manna
- Touro College of Osteopathic Medicine, Middletown, New York, NY, USA
| | - Feryal Aalam
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - David Wang
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - Cheryl Vanier
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
- Imgen Research, LLC, 5495 South Rainbow #201, Las Vegas, NV, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| | - Aurelio Lorico
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| |
Collapse
|
2
|
Gao Z, Fu R, Li X, Wang J, He Y. Safety Assessment of Microbicide 2P23 on the Rectal and Vaginal Microbiota and Its Antiviral Activity on HIV Infection. Front Immunol 2021; 12:702172. [PMID: 34447373 PMCID: PMC8382973 DOI: 10.3389/fimmu.2021.702172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/21/2021] [Indexed: 02/01/2023] Open
Abstract
Containment of the AIDS pandemic requires reducing HIV transmission. HIV infection is initiated by the fusion of the membrane between the virus and the cell membrane of the host. 2P23 is an effective HIV membrane fusion inhibitor that may be a good entry inhibitor microbicide candidate. This study evaluated the potential of using gel-formulated 2P23 as a topical microbicide to prevent sexual transmission of HIV in the rectum and vagina. Our data revealed that 2P23 formulated in gel is effective against HIV. There was no change in antiviral activity at 25°C for 4 months or 60°C for 1 week. In addition, we demonstrated that the 2P23 gel was stable and fully functional at pH 4.0-8.0 and under different concentrations of H2O2. Finally, the 2P23 gel exhibited no cytotoxicity or antimicrobial activity and did not induce inflammatory changes in the rectal or vaginal mucosal epithelium in New Zealand rabbits after 20 mg/day daily rectovaginal application for 14 consecutive days. Despite repeated tissue sampling and 2P23 gel treatment, the inflammatory cytokines and microbiota of the rectum and vagina remained stable. These results add to general knowledge on the in vivo evaluation of anti-HIV microbicide application concerning inflammatory cytokines and microbiota changes in the rectum and vagina. These findings suggest that the 2P23 gel is an excellent candidate for further development as a safe and effective pre-exposure prophylactic microbicide for the prevention of HIV transmission.
Collapse
Affiliation(s)
- Zhengqin Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Rui Fu
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaobo Li
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Ji Wang
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Abstract
The integrated proviral genome is the major barrier to a cure for HIV-1 infection. Genome editing technologies, such as CRISPR/Cas9, may disable or remove the HIV-1 provirus by introducing DNA double strand breaks at sequence specific sites in the viral genome. Host DNA repair by the error-prone non-homologous end joining pathway generates mutagenic insertions or deletions at the break. CRISPR/Cas9 editing has been shown to reduce replication competent viral genomes in cell culture, but only a minority of possible genome editing targets have been assayed. Currently there is no map of double strand break genetic fitness for HIV-1 to inform the choice of editing targets. However, CRISPR/Cas9 genome editing makes it possible to target double strand breaks along the length of the provirus to generate a double strand break genetic fitness map. We identified all possible HIV-1 targets with different bacterial species of CRISPR/Cas9. This library of guide RNAs was evaluated for GC content and potential off-target sites in the human genome. Complexity of the library was reduced by eliminating duplicate guide RNA targets in the HIV-1 long terminal repeats and targets in the env gene. Although the HIV-1 genome is AT-rich, the S. pyogenes CRISPR/Cas9 with the proto-spacer adjacent motif NGG offers the most HIV-1 guide RNAs. This library of HIV-1 guide RNAs may be used to generate a double strand break genetic fragility map to be further applied to any genome editing technology designed for the HIV-1 provirus. Keywords: HIV-1; genome editing; CRISPR; genetic fitness; guide RNAs.
Collapse
|
4
|
Yang E, Gardner MR, Zhou AS, Farzan M, Arvin AM, Oliver SL. HIV-1 inhibitory properties of eCD4-Igmim2 determined using an Env-mediated membrane fusion assay. PLoS One 2018; 13:e0206365. [PMID: 30359435 PMCID: PMC6201953 DOI: 10.1371/journal.pone.0206365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/11/2018] [Indexed: 11/19/2022] Open
Abstract
Human Immunodeficiency Virus-1 (HIV-1) entry is dependent on the envelope glycoprotein (Env) that is present on the virion and facilitates fusion between the envelope and the cellular membrane. The protein consists of two subunits, gp120 and gp41, with the former required for binding the CD4 receptor and either the CXCR4 or CCR5 coreceptor, and the latter for mediating fusion. The requirement of fusion for infection has made Env an attractive target for HIV therapy development and led to the FDA approval of enfuvirtide, a fusion inhibitor. Continued development of entry inhibitors is warranted because enfuvirtide resistant HIV-1 strains have emerged. In this study, a novel HIV-1 fusion assay was validated using neutralizing antibodies and then used to investigate the mechanism of action of eCD4-Igmim2, an HIV-1 inhibitor proposed to cooperatively bind the CD4 binding site and the sulfotyrosine-binding pocket of gp120. Greater reduction in fusion levels was observed with eCD4-Igmim2 in the fusion assay than all of the gp120 antibodies evaluated. Lab adapted isolates, HIV-1HXB2 and HIV-1YU2, were sensitive to eCD4-Igmim2 in the fusion assay, while primary isolates, HIV-1BG505 and HIV-1ZM651 were resistant. These results correlated with greater IC50 values for primary isolates compared to the lab adapted isolates observed in a virus neutralization assay. Analysis of gp120 models identified differences in the V1 and V2 domains that are associated with eCD4-Igmim2 sensitivity. This study highlights the use of a fusion assay to identify key areas for improving the potency of eCD4-Igmim2.
Collapse
Affiliation(s)
- Edward Yang
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Matthew R. Gardner
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Amber S. Zhou
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Michael Farzan
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Ann M. Arvin
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stefan L. Oliver
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
5
|
CCD Camera Detection of HIV Infection. Methods Mol Biol 2018. [PMID: 28281268 DOI: 10.1007/978-1-4939-6848-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Rapid and precise quantification of the infectivity of HIV is important for molecular virologic studies, as well as for measuring the activities of antiviral drugs and neutralizing antibodies. An indicator cell line, a CCD camera, and image-analysis software are used to quantify HIV infectivity. The cells of the P4R5 line, which express the receptors for HIV infection as well as β-galactosidase under the control of the HIV-1 long terminal repeat, are infected with HIV and then incubated 2 days later with X-gal to stain the infected cells blue. Digital images of monolayers of the infected cells are captured using a high resolution CCD video camera and a macro video zoom lens. A software program is developed to process the images and to count the blue-stained foci of infection. The described method allows for the rapid quantification of the infected cells over a wide range of viral inocula with reproducibility, accuracy and at relatively low cost.
Collapse
|
6
|
Momota K, Furukawa H, Kimura S, Hotoda H, Oka S, Shimada K. Antiviral and Biological Properties of Dimethoxytrityl-Linked Guanine-Rich Oligodeoxynucleotides that Inhibit Replication by Primary Clinical Human Immunodeficiency virus Type 1 Isolates. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/095632029700800603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- K Momota
- Biological Research Laboratories, Sankyo, 2-58 Hiromachi 1-chome Shinagawa-ku, Tokyo 140, Japan
| | - H Furukawa
- Biological Research Laboratories, Sankyo, 2-58 Hiromachi 1-chome Shinagawa-ku, Tokyo 140, Japan
| | - S Kimura
- The Department of Infection Control and Prevention, Faculty of Medicine, Tokyo University, 3-1 Hongo 7-chome Bunkyo-ku, Tokyo 113, Japan
| | - H Hotoda
- Exploratory Chemistry Research Laboratories, Sankyo, 2-58 Hiromachi 1-chome Shinagawa-ku, Tokyo 140, Japan
| | - S Oka
- The Department of Infectious Diseases, Institute of Medical Science, 4-6 Shirokanedai 1-chome Minato-ku, Tokyo 108, Japan
| | - K Shimada
- The Department of Infectious Diseases, Institute of Medical Science, 4-6 Shirokanedai 1-chome Minato-ku, Tokyo 108, Japan
| |
Collapse
|
7
|
Chetty NK, Chonco L, Ijumba NM, Chetty L, Govender T, Parboosing R, Davidson IE. Analysis of Current Pulses in HeLa-Cell Permeabilization Due to High Voltage DC Corona Discharge. IEEE Trans Nanobioscience 2016; 15:526-532. [PMID: 27824575 DOI: 10.1109/tnb.2016.2585624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Corona discharges are commonly utilized for numerous practical applications, including bio-technological ones. The corona induced transfer of normally impermeant molecules into the interior of biological cells has recently been successfully demonstrated. The exact nature of the interaction of the corona discharge with a cell membrane is still unknown, however, previous studies have suggested that it is either the electric fields produced by ions or the chemical interaction of the reactive species that result in the disruption of the cell membrane. This disruption of the cell membrane allows molecules to permeate into the cell. Corona discharge current constitutes a series of pulses, and it is during these pulses that the ions and reactive species are produced. It stands to reason, therefore, that the nature of these corona pulses would have an influence on the level of cell permeabilization and cell destruction. In this investigation, an analysis of the width, rise-time, characteristic frequencies, magnitude, and repetition rate of the nanosecond pulses was carried out in order to establish the relationship between these factors and the levels of cell membrane permeabilization and cell destruction. Results obtained are presented and discussed.
Collapse
|
8
|
Bacheler LT, Paul M, Otto MJ, Jadhav PK, Stone BA, Miller JA. An Assay for HIV RNA in Infected Cell Lysates, and its use for the Rapid Evaluation of Antiviral Efficacy. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029400500208] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A rapid, high-capacity assay for evaluating the potency of anti-HIV compounds was devised. This assay measures cell associated viral RNA levels 3 days after infection of susceptible T-cell lines grown in individual microtitre plate wells. Viral RNA was quantified by a sandwich hybridization assay, the first step of which was performed directly in crude infected cell lysates prepared in guanidinium isothio-cyanate. Levels of cell-associated viral RNA were shown to correlate with the yield of infectious virus and this correlation formed the basis of the test. Antiviral potencies of a large series of compounds tested in this RNA hybridization assay correlated closely with potency values determined by a sensitive but slower and more labour-intensive yield-reduction assay. Both laboratory strains and selected clinical isolates of HIV can be detected in this RNA hybridization assay.
Collapse
Affiliation(s)
- L. T. Bacheler
- Viral Diseases Research, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| | - M. Paul
- Viral Diseases Research, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| | - M. J. Otto
- Viral Diseases Research, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| | - P. K. Jadhav
- Viral Diseases Research, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| | - B. A. Stone
- Nucleic Acid Technology, Research and Development Division, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| | - J. A. Miller
- Nucleic Acid Technology, Research and Development Division, The Du Pont Merck Pharmaceutical Co., Experimental Station, Wilmington, DE 19880–0400, USA
| |
Collapse
|
9
|
Schott H, Häussler MP, Gowland P, Horber DH, Schwendener RA. Synthesis, and Some Properties of, Amphiphilic Dinucleoside Phosphate Derivatives of 3′-azido-2′,3′-dideoxythymidine (AZT). ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029400500606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
N4-hexadecyl-5′-0-(4-monomethoxytrityl)-2′-deoxycytidine-3′-hydrogenphosphate was reacted with 3′-azido-2′,3′-dideoxythymidine (AZT) according to the hydrogenphosphate method to yield N4-hexadecyl-2′-deoxycytidylyl-(3′-5)-3′-azido-2′,3′-dideoxythymidine. N4-palmitoyl-5′-O-(4-monomethoxytrityl)-2′-deoxycytidine-3′-(2-chlorophenyl)-phosphate was condensed to AZT using the triester method to give N4-palmitoyl-2′-deoxycytidylyl-(3′-5′)-3,-azido-2′,3′-dideoxythymidine. Both dinucleosidephosphates have amphiphilic properties and represent a new class of AZT derivatives in which the polar AZT-5′-monophosphate is masked with lipophilic deoxycytidine residues of variable stability. The AZT derivatives are water soluble, by forming micelles, and as a result of their amphiphilic nature, they can be incorporated into the lipid membranes of liposomes. In contrast to the micellar drug preparations, the liposomal formulations were shown to exert no lytic activity on human erythrocytes. Both AZT derivatives have anti HIV-1 activity in vitro.
Collapse
Affiliation(s)
- H. Schott
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| | - M. P. Häussler
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| | - P. Gowland
- Division of Infectious Diseases, Department of Internal Medicine, University Hospital, CH-8091 Zürich, Switzerland
| | - D. H. Horber
- Division of Oncology, Department of Internal Medicine, University Hospital, CH-8091 Zürich, Switzerland
| | - R. A. Schwendener
- Division of Oncology, Department of Internal Medicine, University Hospital, CH-8091 Zürich, Switzerland
| |
Collapse
|
10
|
Schott H, Häussler MP, Gowland P, Bender A, von Briesen H, Schwendener RA. Synthesis and in vitro Antiviral Properties of Amphiphilic Dinucleoside Phosphate Derivatives of 2′,3-dideoxycytidine (ddC). ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029500600506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
N4-hexadecyl-5′-0-(4-monomethoxytrityl)-2′-deoxycytidine-3′-hydrogenphosphonate and 5′-0-(4-monomethoxytrityl)-2′-deoxythymidine-3′-0-hydrogenphosphonate were condensed with 2′,3′-dideoxycytidine (ddC) according to the hydrogenphosphonate method to yield N4-hexadecyl-2′-deoxycytidylyl-(3′-5′)-2′,3′-dideoxycytidine (N4-hexadecyldC-ddC) and 2′-deoxythymidylyl-(3′-5′)-N4-palmitoyl-2′,3′-dideoxycytidine (dT-N4-palmddC). N4-palmitoyl-2′,3′-dideoxycytidine (N4-palmddC) was synthesized by reacting palmitic anhydride with ddC. Both dinucleoside phosphates have amphiphilic properties and represent a new class of ddC derivatives in which in the case of the dinucleosides, the ddC-5′-monophosphate is masked with lipophilic residues of variable stability. The ddC derivatives can be solubilized in water by micelle formation and, because they have lipophilic residues, they can be incorporated into the lipid membranes of liposomes. The ddC derivatives were shown to have antiviral activities comparable to those of AZT and ddC when tested in vitro against HIV-1-infected HeLa and H9 cells as well as infected human monocytes/macrophages.
Collapse
Affiliation(s)
- H. Schott
- Institute of Organic Chemistry, University of Tübingen, D-72076 Tübingen, Germany
| | - M. P. Häussler
- Institute of Organic Chemistry, University of Tübingen, D-72076 Tübingen, Germany
| | - P. Gowland
- Department of Internal Medicine, Division of Infectious Diseases, University Hospital, CH-8091 Zürich, Switzerland
| | - A. Bender
- Chemotherapeutic Research Institute, Georg-Speyer Haus, D-60552 Frankfurt, Germany
- Institute for Pharmaceutical Technology, J. W.-Goethe University, D-60439 Frankfurt, Germany
| | - H. von Briesen
- Chemotherapeutic Research Institute, Georg-Speyer Haus, D-60552 Frankfurt, Germany
| | - R. A. Schwendener
- Department of Internal Medicine, Division of Oncology, University Hospital, CH-8091 Zurich, Switzerland
| |
Collapse
|
11
|
Ekström JO, Hultmark D. A Novel Strategy for Live Detection of Viral Infection in Drosophila melanogaster. Sci Rep 2016; 6:26250. [PMID: 27189868 PMCID: PMC4870574 DOI: 10.1038/srep26250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/29/2016] [Indexed: 02/07/2023] Open
Abstract
We have created a transgenic reporter for virus infection, and used it to study Nora virus infection in Drosophila melanogaster. The transgenic construct, Munin, expresses the yeast transcription factor Gal4, tethered to a transmembrane anchor via a linker that can be cleaved by a viral protease. In infected cells, liberated Gal4 will then transcribe any gene that is linked to a promoter with a UAS motif, the target for Gal4 transcription. For instance, infected cells will glow red in the offspring of a cross between the Munin stock and flies with a UAS-RFP(nls) transgene (expressing a red fluorescent protein). In such flies we show that after natural infection, via the faecal-oral route, 5-15% of the midgut cells are infected, but there is little if any infection elsewhere. By contrast, we can detect infection in many other tissues after injection of virus into the body cavity. The same principle could be applied for other viruses and it could also be used to express or suppress any gene of interest in infected cells.
Collapse
Affiliation(s)
- Jens-Ola Ekström
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
- BioMediTech, FI-33014 University of Tampere, Finland
| | - Dan Hultmark
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
- BioMediTech, FI-33014 University of Tampere, Finland
| |
Collapse
|
12
|
Neuroinflammation-Induced Interactions between Protease-Activated Receptor 1 and Proprotein Convertases in HIV-Associated Neurocognitive Disorder. Mol Cell Biol 2015; 35:3684-700. [PMID: 26283733 DOI: 10.1128/mcb.00764-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/11/2015] [Indexed: 01/31/2023] Open
Abstract
The proprotein convertases (PCs) furin, PC5, PACE4, and PC7 cleave secretory proteins after basic residues, including the HIV envelope glycoprotein (gp160) and Vpr. We evaluated the abundance of PC mRNAs in postmortem brains of individuals exhibiting HIV-associated neurocognitive disorder (HAND), likely driven by neuroinflammation and neurotoxic HIV proteins (e.g., envelope and Vpr). Concomitant with increased inflammation-related gene expression (interleukin-1β [IL-1β]), the mRNA levels of the above PCs are significantly increased, together with those of the proteinase-activated receptor 1 (PAR1), an inflammation-associated receptor that is cleaved by thrombin at ProArg41↓ (where the down arrow indicates the cleavage location), and potentially by PCs at Arg41XXXXArg46↓. The latter motif in PAR1, but not its R46A mutant, drives its interactions with PCs. Indeed, PAR1 upregulation leads to the inhibition of membrane-bound furin, PC5B, and PC7 and inhibits gp160 processing and HIV infectivity. Additionally, a proximity ligation assay revealed that furin and PC7 interact with PAR1. Reciprocally, increased furin expression reduces the plasma membrane abundance of PAR1 by trapping it in the trans-Golgi network. Furthermore, soluble PC5A/PACE4 can target/disarm cell surface PAR1 through cleavage at Arg46↓. PACE4/PC5A decreased calcium mobilization induced by thrombin stimulation. Our data reveal a new PC-PAR1-interaction pathway, which offsets the effects of HIV-induced neuroinflammation, viral infection, and potentially the development of HAND.
Collapse
|
13
|
Xing L, Zhao X, Guo F, Kleiman L. The role of A-kinase anchoring protein 95-like protein in annealing of tRNALys3 to HIV-1 RNA. Retrovirology 2014; 11:58. [PMID: 25034436 PMCID: PMC4223510 DOI: 10.1186/1742-4690-11-58] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/07/2014] [Indexed: 12/04/2022] Open
Abstract
Background RNA helicase A (RHA), a DExH box protein, promotes annealing of tRNALys3, a primer for reverse transcription, to HIV-1 RNA and assembles into virus particles. A-kinase anchoring protein 95-like protein (HAP95) is a binding partner of RHA. The role of HAP95 in the annealing of tRNALys3 was examined in this study. Results HAP95 associates with the reverse transcriptase region of Pol protein of HIV-1. Decreasing endogenous HAP95 in HIV-1-producing 293T cells by siRNA reduces the amount of tRNALys3 annealed on viral RNA. This defect was further deteriorated by knockdown of RHA in the same cells, suggesting a cooperative effect between these two proteins. Biochemical assay in vitro using purified GST-tagged HAP95 shows that HAP95 may inhibit the activity of RHA. Conclusion The results support a hypothesis that HAP95 may transiently block RHA’s activity to protect the annealed tRNALys3 on viral RNA in the cells from removing by RHA during the packaging of RHA into virus particles, thus facilitating the annealing of tRNALys3 to HIV-1 RNA.
Collapse
Affiliation(s)
- Li Xing
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, QC, Canada.
| | | | | | | |
Collapse
|
14
|
Gu L, Krendelchtchikova V, Krendelchtchikov A, Oster RA, Fujihashi K, Matthews QL. A recombinant adenovirus-based vector elicits a specific humoral immune response against the V3 loop of HIV-1 gp120 in mice through the "Antigen Capsid-Incorporation" strategy. Virol J 2014; 11:112. [PMID: 24935650 PMCID: PMC4065546 DOI: 10.1186/1743-422x-11-112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 06/09/2014] [Indexed: 11/22/2022] Open
Abstract
Background Due to potential advantages, human adenoviral vectors have been evaluated pre-clinically as recombinant vaccine vectors against several cancers and infectious diseases, including human immunodeficiency virus (HIV) infection. The V3 loop of HIV-1 glycoprotein 120 (gp120) contains important neutralizing epitopes and plays key roles in HIV entry and infectivity. Methods In order to investigate the humoral immune response development against portions of the V3 loop, we sought to generate four versions of adenovirus (Ad)-based V3 vectors by incorporating four different antigen inserts into the hypervariable region 1 (HVR1) of human adenovirus type 5 (hAd5) hexon. The strategy whereby antigens are incorporated within the adenovirus capsid is known as the “Antigen Capsid-Incorporation” strategy. Results Of the four recombinant vectors, Ad-HVR1-lgs-His6-V3 and Ad-HVR1-long-V3 had the capability to present heterologous antigens on capsid surface, while maintaining low viral particle to infectious particle (VP/IP) ratios. The VP/IP ratios indicated both high viability and stability of these two vectors, as well as the possibility that V3 epitopes on these two vectors could be presented to immune system. Furthermore, both Ad-HVR1-lgs-His6-V3 and Ad-HVR1-long-V3 could, to some extent escape the neutralization by anti-adenovirus polyclonal antibody (PAb), but rather not the immunity by anti-gp120 (902) monoclonal antibody (MAb). The neutralization assay together with the whole virus enzyme-linked immunosorbent assay (ELISA) suggested that these two vectors could present V3 epitopes similar to the natural V3 presence in native HIV virions. However, subsequent mice immunizations clearly showed that only Ad-HVR1-lgs-His6-V3 elicited strong humoral immune response against V3. Isotype ELISAs identified IgG2a and IgG2b as the dominant IgG isotypes, while IgG1 comprised the minority. Conclusions Our findings demonstrated that human adenovirus (hAd) vectors which present HIV antigen via the “Antigen Capsid-Incorporation” strategy could successfully elicit antigen-specific humoral immune responses, which could potentially open an avenue for the development of Ad-based HIV V3 vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiana L Matthews
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA.
| |
Collapse
|
15
|
Phenotypic Susceptibility Assays for Human Immunodeficiency Virus Type 1. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
González SA, Falcón JI, Affranchino JL. Replacement of the V3 domain in the surface subunit of the feline immunodeficiency virus envelope glycoprotein with the equivalent region of a T cell-tropic human immunodeficiency virus type 1 results in a chimeric surface protein that efficiently binds to CXCR4. AIDS Res Hum Retroviruses 2014; 30:250-9. [PMID: 24148007 DOI: 10.1089/aid.2013.0213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Feline immunodeficiency virus (FIV) and the T cell-tropic strains of human immunodeficiency virus type 1 (HIV-1) share the use of the chemokine receptor CXCR4 for cell entry. To study this process further we developed a cell surface binding assay based on the expression of a soluble version of the FIV SU C-terminally tagged with the influenza virus hemagglutinin epitope (HA). The specificity of the assay was demonstrated by the following evidence: (1) the SU-HA protein bound to HeLa cells that express CXCR4 but not to MDCK cells that lack this chemokine receptor; and (2) binding of the SU-HA to HeLa cells was blocked by incubation with the CXCR4 antagonist AMD3100 as well as with the anti-CXCR4 monoclonal antibody (MAb) 12G5. Deletion of the V3 region from the FIV SU glycoprotein abolished its ability to bind CXCR4-expressing cells. Remarkably, substitution of the V3 domain of the FIV SU by the equivalent region of the HIV-1 NL4-3 isolate resulted in efficient cell surface binding of the chimeric SU protein to CXCR4. Moreover, transfection of MDCK cells with a plasmid encoding human CXCR4 allowed the association of the chimeric SU-HA glycoprotein to the transfected cells. Interestingly, while cell binding of the chimeric FIV-HIV SU was inhibited by an anti-HIV-1 V3 MAb, its association with CXCR4 was found to be resistant to AMD3100. Of note, the chimeric FIV-HIV Env glycoprotein was capable of promoting CXCR4-dependent cell-to-cell fusion.
Collapse
Affiliation(s)
- Silvia A. González
- Laboratorio de Virología, CONICET-Universidad de Belgrano (UB), Buenos Aires, Argentina
| | - Juan I. Falcón
- Laboratorio de Virología, CONICET-Universidad de Belgrano (UB), Buenos Aires, Argentina
| | - José L. Affranchino
- Laboratorio de Virología, CONICET-Universidad de Belgrano (UB), Buenos Aires, Argentina
| |
Collapse
|
17
|
Evans LH, Boi S, Malik F, Wehrly K, Peterson KE, Chesebro B. Analysis of two monoclonal antibodies reactive with envelope proteins of murine retroviruses: one pan specific antibody and one specific for Moloney leukemia virus. J Virol Methods 2014; 200:47-53. [PMID: 24556162 DOI: 10.1016/j.jviromet.2014.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/25/2014] [Accepted: 02/04/2014] [Indexed: 01/08/2023]
Abstract
Many monoclonal antibodies (MAbs) reactive with various proteins of murine leukemia viruses (MuLVs) have been developed. In this report two additional MAbs with differing and unusual specificities are described. MAb 573 is reactive with the envelope protein of all MuLVs tested including viruses in the ecotropic, xenotropic, polytropic and amphotropic classes. Notably, MAb 573 is one of only two reported MAbs that react with the envelope protein of amphotropic MuLVs. This MAb appears to recognize a conformational epitope within the envelope protein, as it reacts strongly with live virus and live infected cells, but does not react with formalin-fixed or alcohol-fixed infected cells or denatured viral envelope protein in immunoblots. In contrast, Mab 538 reacts only with an epitope unique to the envelope protein of the Moloney (Mo-) strain of MuLV, a prototypic ecotropic MuLV that is the basis for many retroviral tools used in molecular biology. MAb 538 can react with live cells and viruses, or detergent denatured or fixed envelope protein. The derivation of these antibodies as well as their characterization with regard to their isotype, range of reactivity with different MuLVs and utility in different immunological procedures are described in this study.
Collapse
Affiliation(s)
- Leonard H Evans
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, United States.
| | - Stefano Boi
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, United States; Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (CA), Italy
| | - Frank Malik
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, United States
| | - Kathy Wehrly
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, United States
| | - Karin E Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, United States
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, United States
| |
Collapse
|
18
|
Reversible and efficient activation of HIV-1 cell entry by a tyrosine-sulfated peptide dissects endocytic entry and inhibitor mechanisms. J Virol 2014; 88:4304-18. [PMID: 24478426 DOI: 10.1128/jvi.03447-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED HIV-1 membranes contain gp120-gp41 trimers. Binding of gp120 to CD4 and a coreceptor (CCR5 or CXCR4) reduces the constraint on metastable gp41, enabling a series of conformational changes that cause membrane fusion. An analytic difficulty occurs because these steps occur slowly and asynchronously within cohorts of adsorbed virions. We previously isolated HIV-1JRCSF variants that efficiently use CCR5 mutants severely damaged in the tyrosine-sulfated amino terminus or extracellular loop 2. Surprisingly, both independent adaptations included gp120 mutations S298N, F313L, and N403S, supporting other evidence that they function by weakening gp120's grip on gp41 rather than by altering gp120 binding to specific CCR5 sites. Although several natural HIV-1 isolates reportedly use CCR5(Δ18) (CCR5 with a deletion of 18 N-terminal amino acids, including the tyrosine-sulfated region) when the soluble tyrosine-sulfated peptide is present, we show that HIV-1JRCSF with the adaptive mutations [HIV-1JRCSF(Ad)] functions approximately 100 times more efficiently and that coreceptor activation is reversible, enabling synchronous efficient entry control under physiological conditions. This system revealed that three-stranded gp41 folding intermediates susceptible to the inhibitor enfuvirtide form slowly and asynchronously on cell surface virions but resolve rapidly, with virions generally forming only one target. Adsorbed virions asynchronously and transiently become competent for entry at 37°C but are inactivated if the CCR5 peptide is absent during their window of opportunity. This competency is conferred by endocytosis, which results in inactivation if the peptide is absent. For both wild-type and adapted HIV-1 isolates, early gp41 refolding steps obligatorily occur on cell surfaces, whereas the final step(s) is endosomal. This system powerfully dissects HIV-1 entry and inhibitor mechanisms. IMPORTANCE We present a powerful means to reversibly and efficiently activate or terminate HIV-1 entry by adding or removing a tyrosine-sulfated CCR5 peptide from the culture medium. This system uses stable cell clones and a variant of HIV-1JRCSF with three adaptive mutations. It enabled us to show that CCR5 coreceptor activation is rapidly reversible and to dissect aspects of entry that had previously been relatively intractable. Our analyses elucidate enfuvirtide (T-20) function and suggest that HIV-1 virions form only one nonredundant membrane fusion complex on cell surfaces. Additionally, we obtained novel and conclusive evidence that HIV-1 entry occurs in an assembly line manner, with some steps obligatorily occurring on cell surfaces and with final membrane fusion occurring in endosomes. Our results were confirmed for wild-type HIV-1. Thus, our paper provides major methodological and mechanistic insights about HIV-1 infection.
Collapse
|
19
|
Wu H, Mitra M, McCauley MJ, Thomas JA, Rouzina I, Musier-Forsyth K, Williams MC, Gorelick RJ. Aromatic residue mutations reveal direct correlation between HIV-1 nucleocapsid protein's nucleic acid chaperone activity and retroviral replication. Virus Res 2013; 171:263-77. [PMID: 22814429 PMCID: PMC3745225 DOI: 10.1016/j.virusres.2012.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/02/2012] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein plays an essential role in several stages of HIV-1 replication. One important function of HIV-1 NC is to act as a nucleic acid chaperone, in which the protein facilitates nucleic acid rearrangements important for reverse transcription and recombination. NC contains only 55 amino acids, with 15 basic residues and two zinc fingers, each having a single aromatic residue (Phe16 and Trp37). Despite its simple structure, HIV-1 NC appears to have optimal chaperone activity, including the ability to strongly aggregate nucleic acids, destabilize nucleic acid secondary structure, and facilitate rapid nucleic acid annealing. Here we combine single molecule DNA stretching experiments with ensemble solution studies of protein-nucleic acid binding affinity, oligonucleotide annealing, and nucleic acid aggregation to measure the characteristics of wild-type (WT) and aromatic residue mutants of HIV-1 NC that are important for nucleic acid chaperone activity. These in vitro results are compared to in vivo HIV-1 replication for viruses containing the same mutations. This work allows us to directly relate HIV-1 NC structure with its function as a nucleic acid chaperone in vitro and in vivo. We show that replacement of either aromatic residue with another aromatic residue results in a protein that strongly resembles WT NC. In contrast, single amino acid substitutions of either Phe16Ala or Trp37Ala significantly slow down NC's DNA interaction kinetics, while retaining some helix-destabilization capability. A double Phe16Ala/Trp37Ala substitution further reduces the latter activity. Surprisingly, the ensemble nucleic acid binding, annealing, and aggregation properties are not significantly altered for any mutant except the double aromatic substitution with Ala. Thus, elimination of a single aromatic residue from either zinc finger strongly reduces NC's chaperone activity as determined by single molecule DNA stretching experiments without significantly altering its ensemble-averaged biochemical properties. Importantly, the substitution of aromatic residues with Ala progressively decreases NC's nucleic acid chaperone activity while also progressively inhibiting viral replication. Taken together, these data support the critical role of HIV-1 NC's aromatic residues, and establish a direct and statistically significant correlation between nucleic acid chaperone activity and viral replication.
Collapse
Affiliation(s)
- Hao Wu
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Mithun Mitra
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Columbus, OH 43210, USA
| | - Micah J. McCauley
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - James A. Thomas
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ioulia Rouzina
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA
| | - Karin Musier-Forsyth
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Columbus, OH 43210, USA
| | - Mark C. Williams
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
20
|
Wahome N, Pfeiffer T, Ambiel I, Yang Y, Keppler OT, Bosch V, Burkhard P. Conformation-specific Display of 4E10 and 2F5 Epitopes on Self-assembling Protein Nanoparticles as a Potential HIV Vaccine. Chem Biol Drug Des 2012; 80:349-57. [DOI: 10.1111/j.1747-0285.2012.01423.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Almodovar S, Knight R, Allshouse AA, Roemer S, Lozupone C, McDonald D, Widmann J, Voelkel NF, Shelton RJ, Suarez EB, Hammer KW, Goujard C, Petrosillo N, Simonneau G, Hsue PY, Humbert M, Flores SC. Human Immunodeficiency Virus nef signature sequences are associated with pulmonary hypertension. AIDS Res Hum Retroviruses 2012; 28:607-18. [PMID: 22066947 DOI: 10.1089/aid.2011.0021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Severe pulmonary hypertension (PH) associated with vascular remodeling is a long-term complication of HIV infection (HIV-PH) affecting 1/200 infected individuals vs. 1/200,000 frequency in the uninfected population. Factors accounting for increased PH susceptibility in HIV-infected individuals are unknown. Rhesus macaques infected with chimeric SHIVnef virions but not with SIV display PH-like pulmonary vascular remodeling suggesting that HIV-Nef is associated with PH; these monkeys showed changes in nef sequences that correlated with pathogenesis after passage in vivo. We further examined whether HIV-nef alleles in HIV-PH subjects have signature sequences associated with the disease phenotype. We evaluated specimens from participants with and without HIV-PH from European Registries and validated results with samples collected as part of the Lung-HIV Studies in San Francisco. We found that 10 polymorphisms in nef were overrepresented in blood cells or lung tissue specimens from European HIV-PH individuals but significantly less frequent in HIV-infected individuals without PH. These polymorphisms mapped to known functional domains in Nef. In the validation cohort, 7/10 polymorphisms in the HIV-nef gene were confirmed; these polymorphisms arose independently from viral load, CD4(+) T cell counts, length of infection, and antiretroviral therapy status. Two out of 10 polymorphisms were previously reported in macaques with PH-like pulmonary vascular remodeling. Cloned recombinant Nef proteins from clinical samples down-regulated CD4, suggesting that these primary isolates are functional. This study offers new insights into the association between Nef polymorphisms in functional domains and the HIV-PH phenotype. The utility of these polymorphisms as predictors of PH should be examined in a larger population.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Rob Knight
- Departments of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Amanda A. Allshouse
- Departments of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Sarah Roemer
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Catherine Lozupone
- Departments of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Daniel McDonald
- Departments of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Jeremy Widmann
- Departments of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Norbert F. Voelkel
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, Virginia
| | - Robert J. Shelton
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Edu B. Suarez
- Biology Department, University of Puerto Rico in Ponce, and Department of Physiology, Pharmacology and Toxicology, Ponce School of Medicine, Ponce, Puerto Rico
| | - Kenneth W. Hammer
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Cecile Goujard
- INSERM U802, Université Paris 11 and Service de Médecine Interne, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Nicola Petrosillo
- Second Infectious Diseases Division, National Institute for Infectious Diseases “L. Spallanzani,” Rome, Italy
| | - Gerald Simonneau
- Université Paris-Sud 11, Service de Pneumologie, Centre National de Référence de I'Hypertension Artérielle Pulmonaire, Hộpital Antoine-Béclère, Clamart, France
| | - Priscilla Y. Hsue
- Division of Cardiology, University of California, San Francisco, California
| | - Marc Humbert
- Université Paris-Sud 11, Service de Pneumologie, Centre National de Référence de I'Hypertension Artérielle Pulmonaire, Hộpital Antoine-Béclère, Clamart, France
| | - Sonia C. Flores
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
22
|
Parrish NF, Wilen CB, Banks LB, Iyer SS, Pfaff JM, Salazar-Gonzalez JF, Salazar MG, Decker JM, Parrish EH, Berg A, Hopper J, Hora B, Kumar A, Mahlokozera T, Yuan S, Coleman C, Vermeulen M, Ding H, Ochsenbauer C, Tilton JC, Permar SR, Kappes JC, Betts MR, Busch MP, Gao F, Montefiori D, Haynes BF, Shaw GM, Hahn BH, Doms RW. Transmitted/founder and chronic subtype C HIV-1 use CD4 and CCR5 receptors with equal efficiency and are not inhibited by blocking the integrin α4β7. PLoS Pathog 2012; 8:e1002686. [PMID: 22693444 PMCID: PMC3364951 DOI: 10.1371/journal.ppat.1002686] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/23/2012] [Indexed: 12/25/2022] Open
Abstract
Sexual transmission of human immunodeficiency virus type 1 (HIV-1) most often results from productive infection by a single transmitted/founder (T/F) virus, indicating a stringent mucosal bottleneck. Understanding the viral traits that overcome this bottleneck could have important implications for HIV-1 vaccine design and other prevention strategies. Most T/F viruses use CCR5 to infect target cells and some encode envelope glycoproteins (Envs) that contain fewer potential N-linked glycosylation sites and shorter V1/V2 variable loops than Envs from chronic viruses. Moreover, it has been reported that the gp120 subunits of certain transmitted Envs bind to the gut-homing integrin α4β7, possibly enhancing virus entry and cell-to-cell spread. Here we sought to determine whether subtype C T/F viruses, which are responsible for the majority of new HIV-1 infections worldwide, share biological properties that increase their transmission fitness, including preferential α4β7 engagement. Using single genome amplification, we generated panels of both T/F (n = 20) and chronic (n = 20) Env constructs as well as full-length T/F (n = 6) and chronic (n = 4) infectious molecular clones (IMCs). We found that T/F and chronic control Envs were indistinguishable in the efficiency with which they used CD4 and CCR5. Both groups of Envs also exhibited the same CD4+ T cell subset tropism and showed similar sensitivity to neutralization by CD4 binding site (CD4bs) antibodies. Finally, saturating concentrations of anti-α4β7 antibodies failed to inhibit infection and replication of T/F as well as chronic control viruses, although the growth of the tissue culture-adapted strain SF162 was modestly impaired. These results indicate that the population bottleneck associated with mucosal HIV-1 acquisition is not due to the selection of T/F viruses that use α4β7, CD4 or CCR5 more efficiently. Most new HIV-1 infections worldwide are caused by the sexual transmission of subtype C viruses, which are prevalent in Asia and southern Africa. While chronically infected individuals harbor a genetically diverse set of viruses, most new infections are established by single variants, termed transmitted/founder (T/F) viruses. This raises the question whether certain viral variants have particular properties allowing them to more efficiently overcome the transmission bottleneck. Preferential binding of the viral envelope (Env) to the integrin α4β7 has been hypothesized as one important feature of transmitted viruses. Here, we compared Envs from subtype C viruses that were transmitted to those that were prevalent in chronic infections for efficiency in utilizing α4β7, CD4 and CCR5 for cell entry and replication. We found that transmitted and chronic Envs engaged CD4 and CCR5 with equal efficiency, and that blocking the interaction between Env and α4β7 failed to inhibit replication of T/F as well as control viruses. While the search for determinants of transmission fitness remains an important goal, preferential CD4, CCR5 or α4β7 interactions do not appear to represent distinguishing features of T/F viruses.
Collapse
Affiliation(s)
- Nicholas F. Parrish
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Craig B. Wilen
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lauren B. Banks
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shilpa S. Iyer
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jennifer M. Pfaff
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jesus F. Salazar-Gonzalez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Maria G. Salazar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Julie M. Decker
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Erica H. Parrish
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anna Berg
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Jennifer Hopper
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Amit Kumar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Tatenda Mahlokozera
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sally Yuan
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Charl Coleman
- Donation Testing Department, South African National Blood Service, Roodepoort, Gauteng, South Africa
| | - Marion Vermeulen
- Donation Testing Department, South African National Blood Service, Roodepoort, Gauteng, South Africa
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - John C. Tilton
- Department of General Medical Sciences, Center for Proteomics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael P. Busch
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Feng Gao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - George M. Shaw
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Beatrice H. Hahn
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (BHH); (RWD)
| | - Robert W. Doms
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (BHH); (RWD)
| |
Collapse
|
23
|
Fine specificity and cross-reactions of monoclonal antibodies to group B streptococcal capsular polysaccharide type III. Vaccine 2012; 30:4849-58. [PMID: 22634296 DOI: 10.1016/j.vaccine.2012.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 01/01/2023]
Abstract
Group B streptococcus (GBS) is a major cause of neonatal sepsis and meningitis. Despite aggressive campaigns using antenatal prophylactic antibiotic therapy, infections continue. Developing an effective maternal vaccine is a public health priority. Antibody (Ab) to the capsular polysaccharide (CPS) is considered the dominant "protective" immune mediator. Here we study the fine specificity and potential host reactivity of a panel of well-characterized murine monoclonal Abs against the type III CPS by examining the binding of the Abs to intact and neuraminidase-digested GBS, purified CPS, synthetic carbohydrate structures, and cells. The results showed marked differences in the fine specificity among these mAbs to a single carbohydrate structure. Cross-reactions with synthetic GD3 and GT3 carbohydrates, representing structures found on surfaces of neural and developing cells, were demonstrated using carbohydrate array technology. The anti-CPS(III) mAbs did not react with cells expressing GD3 and GT3, nor did mAbs specific for the host carbohydrates cross-react with GBS, raising questions about the physiological relevance of this cross-reaction. But in the process of these investigations, we serendipitously demonstrated cross-reactions of some anti-CPS(III) mAbs with antigens, likely carbohydrates, found on human leukocytes. These studies suggest caution in the development of a maternal vaccine to prevent infection by this important human pathogen.
Collapse
|
24
|
Vincent N, Malvoisin E. Ability of antibodies specific to the HIV-1 envelope glycoprotein to block the fusion inhibitor T20 in a cell-cell fusion assay. Immunobiology 2012; 217:943-50. [PMID: 22387075 DOI: 10.1016/j.imbio.2012.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
Abstract
The anti-HIV peptide T20 is able to inhibit the syncytia formation between CHO-WT and HeLa CD4(+)cells. We found that several sera of HIV-infected patients have the capacity to block the inhibition of fusion by T20. Suggesting that these sera may contain antibody which can block T20 access and prevent membrane fusion, we studied the ability of a panel of antibodies directed to different regions of HIV-1 envelope glycoprotein to block the inhibition of fusion by T20. We found that the C1 and V3 loop regions of gp120 and the heptad repeat 1, the immunodominant C-C region and the Kennedy epitope of gp41 located in the intracytoplasmic tail were the target for antibodies capable to block the inhibition of syncytia formation by T20. We suggest that these antibodies have the capacity to counteract the anti-fusion effect of T20 by preventing its binding to the interaction sites. Further studies are needed to determine if some of them recognize new T20 interaction sites.
Collapse
Affiliation(s)
- Nadine Vincent
- Groupe Immunité des Muqueuses et Agents Pathogènes, University of Saint-Etienne, 15 rue Ambroise Paré, 42023 Saint-Etienne, France
| | | |
Collapse
|
25
|
Jiang J, Ablan S, Derebail S, Hercík K, Soheilian F, Thomas JA, Tang S, Hewlett I, Nagashima K, Gorelick RJ, Freed EO, Levin JG. The interdomain linker region of HIV-1 capsid protein is a critical determinant of proper core assembly and stability. Virology 2011; 421:253-65. [PMID: 22036671 PMCID: PMC3573886 DOI: 10.1016/j.virol.2011.09.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/17/2011] [Accepted: 09/14/2011] [Indexed: 11/20/2022]
Abstract
The HIV-1 capsid protein consists of two independently folded domains connected by a flexible peptide linker (residues 146-150), the function of which remains to be defined. To investigate the role of this region in virus replication, we made alanine or leucine substitutions in each linker residue and two flanking residues. Three classes of mutants were identified: (i) S146A and T148A behave like wild type (WT); (ii) Y145A, I150A, and L151A are noninfectious, assemble unstable cores with aberrant morphology, and synthesize almost no viral DNA; and (iii) P147L and S149A display a poorly infectious, attenuated phenotype. Infectivity of P147L and S149A is rescued specifically by pseudotyping with vesicular stomatitis virus envelope glycoprotein. Moreover, despite having unstable cores, these mutants assemble WT-like structures and synthesize viral DNA, although less efficiently than WT. Collectively, these findings demonstrate that the linker region is essential for proper assembly and stability of cores and efficient replication.
Collapse
Affiliation(s)
- Jiyang Jiang
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health, National Institutes of Health, Building 6B, Room 216, 6 Center Drive, Bethesda, MD 20892-2780, USA
| | - Sherimay Ablan
- Virus-Cell Interaction Section, Drug Resistance Program, National Cancer Institute Frederick, Frederick, MD 21702-1201, USA
| | - Suchitra Derebail
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health, National Institutes of Health, Building 6B, Room 216, 6 Center Drive, Bethesda, MD 20892-2780, USA
| | - Kamil Hercík
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health, National Institutes of Health, Building 6B, Room 216, 6 Center Drive, Bethesda, MD 20892-2780, USA
| | - Ferri Soheilian
- Image Analysis Laboratory, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - James A. Thomas
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Shixing Tang
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | - Indira Hewlett
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | - Kunio Nagashima
- Image Analysis Laboratory, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Eric O. Freed
- Virus-Cell Interaction Section, Drug Resistance Program, National Cancer Institute Frederick, Frederick, MD 21702-1201, USA
| | - Judith G. Levin
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health, National Institutes of Health, Building 6B, Room 216, 6 Center Drive, Bethesda, MD 20892-2780, USA
| |
Collapse
|
26
|
Ammersbach M, Bienzle D. Methods for assessing feline immunodeficiency virus infection, infectivity and purification. Vet Immunol Immunopathol 2011; 143:202-14. [DOI: 10.1016/j.vetimm.2011.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Thomas JA, Shatzer TL, Gorelick RJ. Blocking premature reverse transcription fails to rescue the HIV-1 nucleocapsid-mutant replication defect. Retrovirology 2011; 8:46. [PMID: 21682883 PMCID: PMC3141651 DOI: 10.1186/1742-4690-8-46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/17/2011] [Indexed: 02/06/2023] Open
Abstract
Background The nucleocapsid (NC) protein of HIV-1 is critical for viral replication. Mutational analyses have demonstrated its involvement in viral assembly, genome packaging, budding, maturation, reverse transcription, and integration. We previously reported that two conservative NC mutations, His23Cys and His44Cys, cause premature reverse transcription such that mutant virions contain approximately 1,000-fold more DNA than wild-type virus, and are replication defective. In addition, both mutants show a specific defect in integration after infection. Results In the present study we investigated whether blocking premature reverse transcription would relieve the infectivity defects, which we successfully performed by transfecting proviral plasmids into cells cultured in the presence of high levels of reverse transcriptase inhibitors. After subsequent removal of the inhibitors, the resulting viruses showed no significant difference in single-round infective titer compared to viruses where premature reverse transcription did occur; there was no rescue of the infectivity defects in the NC mutants upon reverse transcriptase inhibitor treatment. Surprisingly, time-course endogenous reverse transcription assays demonstrated that the kinetics for both the NC mutants were essentially identical to wild-type when premature reverse transcription was blocked. In contrast, after infection of CD4+ HeLa cells, it was observed that while the prevention of premature reverse transcription in the NC mutants resulted in lower quantities of initial reverse transcripts, the kinetics of reverse transcription were not restored to that of untreated wild-type HIV-1. Conclusions Premature reverse transcription is not the cause of the replication defect but is an independent side-effect of the NC mutations.
Collapse
Affiliation(s)
- James A Thomas
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc,, NCI at Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
28
|
Bhakta SJ, Shang L, Prince JL, Claiborne DT, Hunter E. Mutagenesis of tyrosine and di-leucine motifs in the HIV-1 envelope cytoplasmic domain results in a loss of Env-mediated fusion and infectivity. Retrovirology 2011; 8:37. [PMID: 21569545 PMCID: PMC3117779 DOI: 10.1186/1742-4690-8-37] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/14/2011] [Indexed: 12/30/2022] Open
Abstract
Background The gp41 component of the Human Immunodeficiency Virus (HIV) envelope glycoprotein (Env) contains a long cytoplasmic domain (CD) with multiple highly conserved tyrosine (Y) and dileucine (LL) motifs. Studies suggest that the motifs distal to major endocytosis motif (Y712HRL), located at residues 712-715 of Env, may contribute to Env functionality in the viral life cycle. In order to examine the biological contribution of these motifs in the biosynthesis, transport, and function of Env, we constructed two panels of mutants in which the conserved Y- and LL-motifs were sequentially substituted by alternative residues, either in the presence or absence of Y712. Additional mutants targeting individual motifs were then constructed. Results All mutant Envs, when expressed in the absence of other viral proteins, maintained at least WT levels of Env surface staining by multiple antibodies. The Y712 mutation (Y712C) contributed to at least a 4-fold increase in surface expression for all mutants containing this change. Sequential mutagenesis of the Y- and LL-motifs resulted in a generally progressive decrease in Env fusogenicity. However, additive mutation of dileucine and tyrosine motifs beyond the tyrosine at residue 768 resulted in the most dramatic effects on Env incorporation into virions, viral infectivity, and virus fusion with target cells. Conclusions From the studies reported here, we show that mutations of the Y- and LL-motifs, which effectively eliminate the amphipathic nature of the lytic peptide 2 (LLP2) domain or disrupt YW and LL motifs in a region spanning residues 795-803 (YWWNLLQYW), just C-terminal of LLP2, can dramatically interfere with biological functions of HIV-1 Env and abrogate virus replication. Because these mutant proteins are expressed at the cell surface, we conclude that tyrosine and di-leucine residues within the cytoplasmic domain of gp41 play critical roles in HIV-1 replication that are distinct from that of targeting the plasma membrane.
Collapse
Affiliation(s)
- Sushma J Bhakta
- Emory Vaccine Center at the Yerkes National Primate Research Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30329, USA
| | | | | | | | | |
Collapse
|
29
|
Miyauchi K, Curran AR, Long Y, Kondo N, Iwamoto A, Engelman DM, Matsuda Z. The membrane-spanning domain of gp41 plays a critical role in intracellular trafficking of the HIV envelope protein. Retrovirology 2010; 7:95. [PMID: 21073746 PMCID: PMC2994783 DOI: 10.1186/1742-4690-7-95] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 11/13/2010] [Indexed: 12/14/2022] Open
Abstract
Background The sequences of membrane-spanning domains (MSDs) on the gp41 subunit are highly conserved among many isolates of HIV-1. The GXXXG motif, a potential helix-helix interaction motif, and an arginine residue (rare in hydrophobic MSDs) are especially well conserved. These two conserved elements are expected to locate on the opposite sides of the MSD, if the MSD takes a α-helical secondary structure. A scanning alanine-insertion mutagenesis was performed to elucidate the structure-function relationship of gp41 MSD. Results A circular dichroism analysis of a synthetic gp41 MSD peptide determined that the secondary structure of the gp41 MSD was α-helical. We then performed a scanning alanine-insertion mutagenesis of the entire gp41 MSD, progressively shifting the relative positions of MSD segments around the helix axis. Altering the position of Gly694, the last residue of the GXXXG motif, relative to Arg696 (the number indicates the position of the amino acid residues in HXB2 Env) around the axis resulted in defective fusion. These mutants showed impaired processing of the gp160 precursor into gp120 and gp41. Furthermore, these Env mutants manifested inefficient intracellular transport in the endoplasmic reticulum and Golgi regions. Indeed, a transplantation of the gp41 MSD portion into the transmembrane domain of another membrane protein, Tac, altered its intracellular distribution. Our data suggest that the intact MSD α-helix is critical in the intracellular trafficking of HIV-1 Env. Conclusions The relative position between the highly conserved GXXXG motif and an arginine residue around the gp41 MSD α-helix is critical for intracellular trafficking of HIV-1 Env. The gp41 MSD region not only modulates membrane fusion but also controls biosynthesis of HIV-1 Env.
Collapse
Affiliation(s)
- Kosuke Miyauchi
- China-Japan Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101 PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
Residues in the membrane-spanning domain core modulate conformation and fusogenicity of the HIV-1 envelope glycoprotein. Virology 2010; 404:158-67. [PMID: 20605619 DOI: 10.1016/j.virol.2010.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 10/23/2009] [Accepted: 03/07/2010] [Indexed: 11/21/2022]
Abstract
The membrane-spanning domain (MSD) of human immunodeficiency virus type I (HIV-1) envelope glycoprotein (Env) is critical for its biological activity. Initial studies have defined an almost invariant "core" structure in the MSD and demonstrated that it is crucial for anchoring Env in the membrane and virus entry. We show here that amino acid substitutions in the MSD "core" do not influence specific virus-cell attachment, nor CD4 receptor and CXCR4 coreceptor recognition by Env. However, substitutions within the MSD "core" delayed the kinetics and reduced the efficiency of cell-cell fusion mediated by Env. Although we observed no evidence that membrane fusion mediated by the MSD core mutants was arrested at a hemifusion stage, impaired Env fusogenicity was correlated with minor conformational changes in the V2, C1, and C5 regions in gp120 and the immunodominant loop in gp41. These changes could delay initiation of the conformational changes required in the fusion process.
Collapse
|
31
|
Dubé M, Bhusan Roy B, Guiot-Guillain P, Binette J, Mercier J, Chiasson A, Cohen ÉA. Antagonism of tetherin restriction of HIV-1 release by Vpu involves binding and sequestration of the restriction factor in a perinuclear compartment. PLoS Pathog 2010; 6:e1000856. [PMID: 20386718 PMCID: PMC2851737 DOI: 10.1371/journal.ppat.1000856] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 03/15/2010] [Indexed: 12/19/2022] Open
Abstract
The Vpu accessory protein promotes HIV-1 release by counteracting Tetherin/BST-2, an interferon-regulated restriction factor, which retains virions at the cell-surface. Recent reports proposed β-TrCP-dependent proteasomal and/or endo-lysosomal degradation of Tetherin as potential mechanisms by which Vpu could down-regulate Tetherin cell-surface expression and antagonize this restriction. In all of these studies, Tetherin degradation did not, however, entirely account for Vpu anti-Tetherin activity. Here, we show that Vpu can promote HIV-1 release without detectably affecting Tetherin steady-state levels or turnover, suggesting that Tetherin degradation may not be necessary and/or sufficient for Vpu anti-Tetherin activity. Even though Vpu did not enhance Tetherin internalization from the plasma membrane (PM), it did significantly slow-down the overall transport of the protein towards the cell-surface. Accordingly, Vpu expression caused a specific removal of cell-surface Tetherin and a re-localization of the residual pool of Tetherin in a perinuclear compartment that co-stained with the TGN marker TGN46 and Vpu itself. This re-localization of Tetherin was also observed with a Vpu mutant unable to recruit β-TrCP, suggesting that this activity is taking place independently from β-TrCP-mediated trafficking and/or degradation processes. We also show that Vpu co-immunoprecipitates with Tetherin and that this interaction involves the transmembrane domains of the two proteins. Importantly, this association was found to be critical for reducing cell-surface Tetherin expression, re-localizing the restriction factor in the TGN and promoting HIV-1 release. Overall, our results suggest that association of Vpu to Tetherin affects the outward trafficking and/or recycling of the restriction factor from the TGN and as a result promotes its sequestration away from the PM where productive HIV-1 assembly takes place. This mechanism of antagonism that results in TGN trapping is likely to be augmented by β-TrCP-dependent degradation, underlining the need for complementary and perhaps synergistic strategies to effectively counteract the powerful restrictive effects of human Tetherin. Restriction factors are cellular proteins that interfere with the multiplication and transmission of viruses and are therefore important components of natural immunity. Tetherin (also known as BST-2) is a recently identified restriction factor that traps viruses at the cell-surface, preventing their release and thus infection of other cells. Viruses have, however, developed means to counteract this restriction factor. Viral protein U (Vpu) is an accessory protein encoded by HIV-1, the causative agent of AIDS. Vpu antagonizes Tetherin and consequently promotes the release of HIV-1 particles. A series of recent reports proposed that Vpu would induce the degradation of this restriction factor in order to overcome its anti-viral activity. Here, we report that Vpu is able to enhance HIV-1 release in absence of Tetherin degradation. Instead, we found that Vpu interacts with Tetherin and interferes with the transport of the restriction factor towards the cell-surface. This would lead to re-localization of Tetherin in an intracellular organelle called the trans-Golgi network, resulting in insufficient levels of Tetherin at the cell-surface to trap progeny viruses. This mechanism of antagonism that results in TGN trapping could be augmented by the induction of degradation to effectively counteract the powerful restrictive effects of human Tetherin. Further characterization of this mechanism will improve our understanding of host antiviral defenses as well as provide new targets for the development of novel anti-HIV drugs.
Collapse
Affiliation(s)
- Mathieu Dubé
- Laboratory of Human Retrovirology, Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | - Bibhuti Bhusan Roy
- Laboratory of Human Retrovirology, Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | - Pierre Guiot-Guillain
- Laboratory of Human Retrovirology, Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | - Julie Binette
- Laboratory of Human Retrovirology, Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | - Johanne Mercier
- Laboratory of Human Retrovirology, Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | - Antoine Chiasson
- Laboratory of Human Retrovirology, Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | - Éric A. Cohen
- Laboratory of Human Retrovirology, Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Department of Microbiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW In this review we present current advances in our understanding of HIV-1 neutralization assays that employ primary cell types, as compared with those that utilize cell lines and the newer, more standardized pseudovirus assays. A commentary on the challenges of standardizing in-vitro neutralization assays using primary cells is included. RECENT FINDINGS The data from reporter cell line neutralization assays may agree with results observed in primary cells; however, exceptions have recently been reported. Multiple variables exist in primary cell assays using peripheral blood mononuclear cells from HIV-seronegative donors; in-vitro neutralization titers can vary significantly based on the donor cells used for assay targets and for virus propagation. Thus, more research is required to achieve validated primary cell neutralization assays. SUMMARY HIV-vaccine-induced antibody performance in the current neutralization assays may function as a 'gatekeeper' for HIV-1 subunit vaccine advancement. Development of standardized platforms for reproducible measurement of in-vitro neutralization is therefore a high priority. Given the considerable variation in results obtained from some widely applied HIV neutralization platforms, parallel evaluation of new antibodies using different host cells for assay targets, as well as virus propagation, is recommended until immune correlates of protection are identified.
Collapse
|
33
|
Mazurov D, Ilinskaya A, Heidecker G, Lloyd P, Derse D. Quantitative comparison of HTLV-1 and HIV-1 cell-to-cell infection with new replication dependent vectors. PLoS Pathog 2010; 6:e1000788. [PMID: 20195464 PMCID: PMC2829072 DOI: 10.1371/journal.ppat.1000788] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 01/22/2010] [Indexed: 02/03/2023] Open
Abstract
We have developed an efficient method to quantify cell-to-cell infection with single-cycle, replication dependent reporter vectors. This system was used to examine the mechanisms of infection with HTLV-1 and HIV-1 vectors in lymphocyte cell lines. Effector cells transfected with reporter vector, packaging vector, and Env expression plasmid produced virus-like particles that transduced reporter gene activity into cocultured target cells with zero background. Reporter gene expression was detected exclusively in target cells and required an Env-expression plasmid and a viral packaging vector, which provided essential structural and enzymatic proteins for virus replication. Cell-cell fusion did not contribute to infection, as reporter protein was rarely detected in syncytia. Coculture of transfected Jurkat T cells and target Raji/CD4 B cells enhanced HIV-1 infection two fold and HTLV-1 infection ten thousand fold in comparison with cell-free infection of Raji/CD4 cells. Agents that interfere with actin and tubulin polymerization strongly inhibited HTLV-1 and modestly decreased HIV-1 cell-to-cell infection, an indication that cytoskeletal remodeling was more important for HTLV-1 transmission. Time course studies showed that HTLV-1 transmission occurred very rapidly after cell mixing, whereas slower kinetics of HIV-1 coculture infection implies a different mechanism of infectious transmission. HTLV-1 Tax was demonstrated to play an important role in altering cell-cell interactions that enhance virus infection and replication. Interestingly, superantigen-induced synapses between Jurkat cells and Raji/CD4 cells did not enhance infection for either HTLV-1 or HIV-1. In general, the dependence on cell-to-cell infection was determined by the virus, the effector and target cell types, and by the nature of the cell-cell interaction. Cell-free virus particles released from infected cells can be transmitted to target cells by diffusion or may be conveyed directly to target cells via specific intercellular contacts; the latter is referred to as cell-to-cell infection. Microscopic imaging has shown how viral proteins and virus particles move within and between cells, accumulating at sites of cell-cell contact. While we suspect that these images represent virus infection, it has been difficult to accurately quantify virus replication and provirus formation in most cell-to-cell infection experiments. Retroviral vectors that encode reporter proteins have been invaluable tools for analyzing retrovirus replication and restriction, but they have had limited utility in cell-to-cell infection studies due to high background noise resulting from reporter expression in the producer cells. We report the construction and characterization of retroviral vectors that express reporter protein exclusively in target cells and only after completing a full replication cycle. We have validated this approach and have begun to analyze cell and virus determinants for cell-to-cell infection with vectors for two human retroviruses that infect T cells. We show that the mechanism of transmission and ensuing virus replication depend on the particular virus, the effector and target cell types, and on the specific type of cell-cell interaction.
Collapse
Affiliation(s)
- Dmitriy Mazurov
- HIV Drug Resistance Program, National Cancer Institute and SAIC-Frederick, NCI-Frederick, Frederick, Maryland, United States of America.
| | | | | | | | | |
Collapse
|
34
|
Rapid dissociation of HIV-1 from cultured cells severely limits infectivity assays, causes the inactivation ascribed to entry inhibitors, and masks the inherently high level of infectivity of virions. J Virol 2009; 84:3106-10. [PMID: 20042508 DOI: 10.1128/jvi.01958-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By using immunofluorescence microscopy to observe and analyze freshly made HIV-1 virions adsorbed onto cells, we found that they are inherently highly infectious, rather than predominantly defective as previously suggested. Surprisingly, polycations enhance titers 20- to 30-fold by stabilizing adsorption and preventing a previously undescribed process of rapid dissociation, strongly implying that infectivity assays for many viruses are limited not only by inefficient virus diffusion onto cells but also by a postattachment race between entry and dissociation. This kinetic competition underlies inhibitory effects of CCR5 antagonists and explains why adaptive HIV-1 mutations overcome many cell entry limitations by accelerating entry.
Collapse
|
35
|
Polzer S, Müller H, Schreiber M. Effects of mutations on HIV-1 infectivity and neutralization involving the conserved NNNT amino acid sequence in the gp120 V3 loop. FEBS Lett 2009; 583:1201-6. [DOI: 10.1016/j.febslet.2009.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 02/25/2009] [Accepted: 03/09/2009] [Indexed: 01/04/2023]
|
36
|
Bosch V, Pfeiffer T, Devitt G, Allespach I, Ebensen T, Emerson V, Guzman CA, Keppler OT. HIV pseudovirion vaccine exposing Env "fusion intermediates"-response to immunisation in human CD4/CCR5-transgenic rats. Vaccine 2009; 27:2202-12. [PMID: 19428834 DOI: 10.1016/j.vaccine.2009.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 12/11/2022]
Abstract
Immune responses to a pseudovirion-based HIV vaccine enriched in Env conformations, which have been induced to an authentic intermediate fusion stage by interaction with the cellular HIV receptor complex, have been analysed in human CD4/CCR5-transgenic rats. High titre Env-binding antibodies were elicited. However, these immune sera failed to neutralise HIV-1, but rather led to an enhancement of infection in vitro. This enhancing activity appeared to be directed towards contaminating cellular proteins in the vaccine and was able to mask neutralisation of potent, mixed-in neutralising antibodies. The induced Env-specific antibodies, purified on the basis of binding to monomeric Env, retained high-binding activity, but failed to be neutralising. Thus, it remains unclear whether vaccines based on induced HIV Env fusion intermediates can elicit broadly neutralising responses.
Collapse
Affiliation(s)
- Valerie Bosch
- Forschungsschwerpunkt Infektion und Krebs, F020, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
CCD camera detection of HIV infection. Methods Mol Biol 2009. [PMID: 19151943 DOI: 10.1007/978-1-60327-567-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Rapid and precise quantification of the infectivity of HIV is important for molecular virologic studies, as well as for measuring the activities of antiviral drugs and neutralizing antibodies. An indicator cell line, a CCD camera, and image-analysis software were used to quantify HIV infectivity. The cells of the P4R5 line, which express the receptors for HIV infection as well as beta-galactosidase under the control of the HIV-1 long terminal repeat, were infected with HIV and then stained 2 days later with X-gal to turn the infected cells blue. Digital images of monolayers of the infected cells were captured using a high resolution CCD video camera and a macro video zoom lens. A software program was developed to process the images and to count the blue-stained foci of infection. The described method allows for the rapid quantification of the infected cells over a wide range of viral inocula with reproducibility, accuracy and at relatively low cost.
Collapse
|
38
|
Annotated References: Anti-infectives. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.3.8.883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Juncadella IJ, Garg R, Bates TC, Olivera ER, Anguita J. The Ixodes scapularis salivary protein, salp15, prevents the association of HIV-1 gp120 and CD4. Biochem Biophys Res Commun 2007; 367:41-6. [PMID: 18162176 DOI: 10.1016/j.bbrc.2007.12.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
Ixodes scapularis salivary protein, Salp15, inhibits CD4(+) T cell activation by binding to the most-extracellular domains of the CD4 molecule, potentially overlapping with the gp120-binding region. We now show that Salp15 inhibits the interaction of gp120 and CD4. Furthermore, Salp15 prevents syncytia formation between HL2/3 (a stable HeLa cell line expressing the envelope protein) and CD4-expressing cells. Salp15 prevented gp120-CD4 interaction at least partially through its direct interaction with the envelope glycoprotein. A phage display library screen provided the interacting residues in the C1 domain of gp120. These results provide a potential basis to define exposed gp120 epitopes for the generation of neutralizing vaccines.
Collapse
Affiliation(s)
- Ignacio J Juncadella
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 103 Paige Laboratory, 161 Holdsworth Way, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
40
|
Platt EJ, Durnin JP, Shinde U, Kabat D. An allosteric rheostat in HIV-1 gp120 reduces CCR5 stoichiometry required for membrane fusion and overcomes diverse entry limitations. J Mol Biol 2007; 374:64-79. [PMID: 17920626 DOI: 10.1016/j.jmb.2007.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 08/09/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
Abstract
Binding of the human immunodeficiency virus (HIV-1) envelope glycoprotein gp120 to the CCR5 co-receptor reduces constraints on the metastable transmembrane subunit gp41, thereby enabling gp41 refolding, fusion of viral and cellular membranes, and infection. We previously isolated adapted HIV-1(JRCSF) variants that more efficiently use mutant CCR5s, including CCR5(Delta18) lacking the important tyrosine sulfate-containing amino terminus. Effects of mutant CCR5 concentrations on HIV-1 infectivities were highly cooperative, implying that several may be required. However, because wild-type CCR5 efficiently mediates infections at trace concentrations that were difficult to measure accurately, analyses of its cooperativity were not feasible. New HIV-1(JRCSF) variants efficiently use CCR5(HHMH), a chimera containing murine extracellular loop 2. The adapted virus induces large syncytia in cells containing either wild-type or mutant CCR5s and has multiple gp120 mutations that occurred independently in CCR5(Delta18)-adapted virus. Accordingly, these variants interchangeably use CCR5(HHMH) or CCR5(Delta18). Additional analyses strongly support a novel energetic model for allosteric proteins, implying that the adaptive mutations reduce quaternary constraints holding gp41, thus lowering the activation energy barrier for membrane fusion without affecting bonds to specific CCR5 sites. In accordance with this mechanism, highly adapted HIV-1s require only one associated CCR5(HHMH), whereas poorly adapted viruses require several. However, because they are allosteric ensembles, complexes with additional co-receptors fuse more rapidly and efficiently than minimal ones. Similarly, wild-type HIV-1(JRCSF) is highly adapted to wild-type CCR5 and minimally requires one. The adaptive mutations cause resistances to diverse entry inhibitors and cluster appropriately in the gp120 trimer interface overlying gp41. We conclude that membrane fusion complexes are allosteric machines with an ensemble of compositions, and that HIV-1 adapts to entry limitations by gp120 mutations that reduce its allosteric hold on gp41. These results provide an important foundation for understanding the mechanisms that control membrane fusion and HIV-1's facile adaptability.
Collapse
Affiliation(s)
- Emily J Platt
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
41
|
Melikyan GB, Platt EJ, Kabat D. The role of the N-terminal segment of CCR5 in HIV-1 Env-mediated membrane fusion and the mechanism of virus adaptation to CCR5 lacking this segment. Retrovirology 2007; 4:55. [PMID: 17686153 PMCID: PMC1995219 DOI: 10.1186/1742-4690-4-55] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 08/08/2007] [Indexed: 02/05/2023] Open
Abstract
Background HIV-1 envelope glycoprotein (Env) induces membrane fusion as a result of sequential binding to CD4 and chemokine receptors (CCR5 or CXCR4). The critical determinants of CCR5 coreceptor function are the N-terminal domain (Nt) and the second extracellular loop. However, mutations in gp120 adapt HIV-1 to grow on cells expressing the N-terminally truncated CCR5(Δ18) (Platt et al., J. Virol. 2005, 79: 4357–68). Results We have functionally characterized the adapted Env (designated Env(NYP)) using a quantitative cell-cell fusion assay. The rate of fusion with target cells expressing wild-type CCR5 and the resistance to fusion inhibitors was virtually identical for wild-type Env and Env(NYP), implying that the coreceptor affinity had not increased as a result of adaptation. In contrast, Env(NYP)-induced fusion with cells expressing CCR5(Δ18) occurred at a slower rate and was extremely sensitive to the CCR5 binding inhibitor, Sch-C. Resistance to Sch-C drastically increased after pre-incubation of Env(NYP)- and CCR5(Δ18)-expressing cells at a temperature that was not permissive to fusion. This indicates that ternary Env(NYP)-CD4-CCR5(Δ18) complexes accumulate at sub-threshold temperature and that low-affinity interactions with the truncated coreceptor are sufficient for triggering conformational changes in the gp41 of Env(NYP) but not in wild-type Env. We also demonstrated that the ability of CCR5(Δ18) to support fusion and infection mediated by wild-type Env can be partially reconstituted in the presence of a synthetic sulfated peptide corresponding to the CCR5 Nt. Pre-incubation of wild-type Env- and CCR5(Δ18)-expressing cells with the sulfated peptide at sub-threshold temperature markedly increased the efficiency of fusion. Conclusion We propose that, upon binding the Nt region of CCR5, wild-type Env acquires the ability to productively engage the extracellular loop(s) of CCR5 – an event that triggers gp41 refolding and membrane merger. The adaptive mutations in Env(NYP) enable it to more readily release its hold on gp41, even when it interacts weakly with a severely damaged coreceptor in the absence of the sulfopeptide.
Collapse
Affiliation(s)
- Gregory B Melikyan
- Institute of Human Virology, University of Maryland School of Medicine.725 W. Lombard St., Baltimore, MD 21201, USA
| | - Emily J Platt
- Department of Biochemistry and Molecular Biology, Oregon Health and Science, University, Portland, OR 97239, USA
| | - David Kabat
- Department of Biochemistry and Molecular Biology, Oregon Health and Science, University, Portland, OR 97239, USA
| |
Collapse
|
42
|
Ho J, Moir S, Kulik L, Malaspina A, Donoghue ET, Miller NJ, Wang W, Chun TW, Fauci AS, Holers VM. Role for CD21 in the establishment of an extracellular HIV reservoir in lymphoid tissues. THE JOURNAL OF IMMUNOLOGY 2007; 178:6968-74. [PMID: 17513746 DOI: 10.4049/jimmunol.178.11.6968] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Follicular dendritic cells (FDC) represent a major extracellular reservoir for HIV. A better understanding of the mechanisms of virion attachment to FDC may offer new avenues for reducing viral burdens in infected individuals. We used a murine model to investigate the establishment of extracellular HIV reservoirs in lymph nodes (LN). Consistent with findings in human tissues, CD21 was required for trapping of HIV to LN cells, as evidenced by significantly reduced virion binding when mice were pretreated with a C3 ligand-blocking anti-CD21 mAb and absence of virion trapping in CD21 knockout mice. Also consistent with findings in human tissues, the majority of HIV virions were associated with the FDC-enriched fraction of LN cell preparations. Somewhat surprisingly, HIV-specific Abs were not essential for HIV binding to LN cells, indicating that seeding of the FDC reservoir may begin shortly after infection and before the development of HIV-specific Abs. Finally, the virion-displacing potential for anti-CD21 mAbs was investigated. Treatment of mice with anti-CD21 mAbs several days after injection of HIV significantly reduced HIV bound to LN cells. Our findings demonstrate a critical role for CD21 in HIV trapping by LN cells and suggest a new therapeutic avenue for reducing HIV reservoirs.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/metabolism
- Binding Sites, Antibody
- Dendritic Cells, Follicular/immunology
- Dendritic Cells, Follicular/metabolism
- Dendritic Cells, Follicular/virology
- Extracellular Space/immunology
- Extracellular Space/metabolism
- Extracellular Space/virology
- HIV/immunology
- HIV/metabolism
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV Infections/virology
- Humans
- K562 Cells
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Lymphoid Tissue/virology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Complement 3d/immunology
- Receptors, Complement 3d/metabolism
- Receptors, Complement 3d/physiology
- Receptors, HIV/antagonists & inhibitors
- Receptors, HIV/metabolism
- Virion/immunology
- Virion/metabolism
Collapse
Affiliation(s)
- Jason Ho
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bhattacharya J, Repik A, Clapham PR. Gag regulates association of human immunodeficiency virus type 1 envelope with detergent-resistant membranes. J Virol 2007; 80:5292-300. [PMID: 16699009 PMCID: PMC1472128 DOI: 10.1128/jvi.01469-05] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Assembly of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein on budding virus particles is important for efficient infection of target cells. In infected cells, lipid rafts have been proposed to form platforms for virus assembly and budding. Gag precursors partly associate with detergent-resistant membranes (DRMs) that are believed to represent lipid rafts. The cytoplasmic domain of the envelope gp41 usually carries palmitate groups that were also reported to confer DRM association. Gag precursors confer budding and carry envelope glycoproteins onto virions via specific Gag-envelope interactions. Thus, specific mutations in both the matrix domain of the Gag precursor and gp41 cytoplasmic domain abrogate envelope incorporation onto virions. Here, we show that HIV-1 envelope association with DRMs is directly influenced by its interaction with Gag. Thus, in the absence of Gag, envelope fails to associate with DRMs. A mutation in the p17 matrix (L30E) domain in Gag (Gag L30E) that abrogates envelope incorporation onto virions also eliminated envelope association with DRMs in 293T cells and in the T-cell line, MOLT 4. These observations are consistent with a requirement for an Env-Gag interaction for raft association and subsequent assembly onto virions. In addition to this observation, we found that mutations in the gp41 cytoplasmic domain that abrogated envelope incorporation onto virions and impaired infectivity of cell-free virus also eliminated envelope association with DRMs. On the basis of these observations, we propose that Gag-envelope interaction is essential for efficient envelope association with DRMs, which in turn is essential for envelope budding and assembly onto virus particles.
Collapse
Affiliation(s)
- Jayanta Bhattacharya
- Program in Molecular Medicine, Center for AIDS Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
44
|
Shiu C, Barbier E, Di Cello F, Choi HJ, Stins M. HIV-1 gp120 as well as alcohol affect blood-brain barrier permeability and stress fiber formation: involvement of reactive oxygen species. Alcohol Clin Exp Res 2007; 31:130-7. [PMID: 17207111 DOI: 10.1111/j.1530-0277.2006.00271.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND HIV-1 infection commonly leads to serious HIV-1-associated neurological disorders, such as HIV-1-associated encephalopathy and dementia. In addition, alcohol is commonly used and/or abused among AIDS patients, but it is unclear whether alcohol affects the disease progression and if it affects it, how this occurs. We hypothesized that alcohol could affect the blood-brain barrier (BBB) integrity and thus could affect the onset and/or progression of HIV-associated neurological disorders. METHODS Human brain microvascular endothelial cells (HBMEC) in a BBB model system were pretreated with alcohol (17 and 68 mM) and subsequently coexposed with HIV-1 gp120. Expression of chemokine receptors CCR3, CCR5, and CXCR4 was assessed by enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Changes in the permeability of the HBMEC monolayer were assessed using paracellular markers [(3)H]inulin or propidium iodide. Actin rearrangements in HBMEC were visualized by fluorescence microscopy and viability assessed using Live/Dead stain. RESULTS Both gp120 and alcohol increased the permeability of the BBB model by up to 141%, without affecting HBMEC viability. Cotreatment with alcohol and gp120 did not result in a significant synergistic effect. Gp120 permeability involved chemokine receptor CCR5. Alcohol did not affect chemokine receptor expression on brain endothelial cells. Both gp120 and alcohol reorganized the cytoskeleton and induced stress fiber formation. Inhibition of reactive oxygen species (ROS) formation through NADPH blocked the effects of both gp120 and alcohol on permeability and stress fiber formation. CONCLUSION These results indicate that both HIV-1 gp120 and alcohol induce stress fibers, causing increased permeability of the human BBB endothelium. Alcohol (68 mM)-mediated permeability increase was linked to ROS formation. The alcohol-mediated physiological changes in the HBMEC monolayers may increase diffusion of plasma components and viral penetration across the BBB. This suggests that alcohol, especially at levels attained in heavy drinkers, can potentially contribute in a negative fashion to HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
- Carlum Shiu
- Department of Pediatrics, Division Infectious Diseases, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
45
|
Duong YT, Meadows DC, Srivastava IK, Gervay-Hague J, North TW. Direct inactivation of human immunodeficiency virus type 1 by a novel small-molecule entry inhibitor, DCM205. Antimicrob Agents Chemother 2007; 51:1780-6. [PMID: 17307982 PMCID: PMC1855571 DOI: 10.1128/aac.01001-06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With more than 40 million people living with human immunodeficiency virus (HIV), there is an urgent need to develop drugs that can be used in the form of a topical microbicide to prevent infection through sexual transmission. DCM205 is a recently discovered small-molecule inhibitor of HIV type 1 (HIV-1) that is able to directly inactivate HIV-1 in the absence of a cellular target. DCM205 is active against CXCR4-, CCR5-, and dual-tropic laboratory-adapted and primary strains of HIV-1. DCM205 binds to the HIV-1 envelope glycoprotein, and competition studies map the DCM205 binding at or near the V3 loop of gp120. Binding to this site interferes with the soluble CD4 interaction. With its ability to disable the virus particle, DCM205 represents a promising new class of HIV entry inhibitor that can be used as a strategy in the prevention of HIV-1/AIDS.
Collapse
Affiliation(s)
- Yen T Duong
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
46
|
Leland DS, Ginocchio CC. Role of cell culture for virus detection in the age of technology. Clin Microbiol Rev 2007; 20:49-78. [PMID: 17223623 PMCID: PMC1797634 DOI: 10.1128/cmr.00002-06] [Citation(s) in RCA: 303] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Viral disease diagnosis has traditionally relied on the isolation of viral pathogens in cell cultures. Although this approach is often slow and requires considerable technical expertise, it has been regarded for decades as the "gold standard" for the laboratory diagnosis of viral disease. With the development of nonculture methods for the rapid detection of viral antigens and/or nucleic acids, the usefulness of viral culture has been questioned. This review describes advances in cell culture-based viral diagnostic products and techniques, including the use of newer cell culture formats, cryopreserved cell cultures, centrifugation-enhanced inoculation, precytopathogenic effect detection, cocultivated cell cultures, and transgenic cell lines. All of these contribute to more efficient and less technically demanding viral detection in cell culture. Although most laboratories combine various culture and nonculture approaches to optimize viral disease diagnosis, virus isolation in cell culture remains a useful approach, especially when a viable isolate is needed, if viable and nonviable virus must be differentiated, when infection is not characteristic of any single virus (i.e., when testing for only one virus is not sufficient), and when available culture-based methods can provide a result in a more timely fashion than molecular methods.
Collapse
Affiliation(s)
- Diane S Leland
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | |
Collapse
|
47
|
Thomas JA, Shulenin S, Coren LV, Bosche WJ, Gagliardi TD, Gorelick RJ, Oroszlan S. Characterization of human immunodeficiency virus type 1 (HIV-1) containing mutations in the nucleocapsid protein at a putative HIV-1 protease cleavage site. Virology 2006; 354:261-70. [PMID: 16904152 DOI: 10.1016/j.virol.2006.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 03/24/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
The HIV-1 nucleocapsid protein (NC) has been hypothesized to be cleaved by the viral protease (PR) during early infection. Characterization of viruses, with amino-acid substitutions that modulate PR cleavage of NC in vitro, was performed in cell culture. Two of the NC mutants, NCN17F and NCN17G, had decreased infectivity and exhibited severe H9 replication defects. Examination of viral DNA after infections revealed defects in reverse transcription and integration, although integration defects were cell-type dependent. However, while the defects in reverse transcription and integration correlate with lowered infectivity in a single-round of infection, they did not approach the magnitude of the replication defect measured in H9 cells over multiple rounds. Importantly, we fail to see evidence that H9 cells are re-infected with the NCN17G and NCN17F viruses 24 h after the initial infection, which suggests that the principal defect caused by these NC mutations occurs during late events of viral replication.
Collapse
Affiliation(s)
- James A Thomas
- AIDS Vaccine Program, SAIC-Frederick, Inc NCI-Frederick, Bldg 535, Room 410, PO Box B, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Day JR, Martínez LE, Sásik R, Hitchin DL, Dueck ME, Richman DD, Guatelli JC. A computer-based, image-analysis method to quantify HIV-1 infection in a single-cycle infectious center assay. J Virol Methods 2006; 137:125-33. [PMID: 16876264 DOI: 10.1016/j.jviromet.2006.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/07/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
Rapid and precise quantitation of the infectivity of HIV is important for molecular virologic studies as well as for measuring the activities of antiviral drugs and neutralizing antibodies. In the present study, an indicator cell line and image-analysis software were used to quantify HIV infectivity. Cells of the P4R5 line, which express the receptors for HIV infection as well as beta-galactosidase under the control of the HIV-1 long terminal repeat, were infected either with CXCR4- or CCR5-using viruses, including primary isolates, then stained 2 days later with X-gal to turn infected cells blue. Digital images of monolayers of the infected cells were captured using a high resolution CCD video camera and a macro video zoom lens. A software program was developed to process the images and to count the blue-stained foci of infection. The assay was applied to assess the infectivity of site-directed viral mutants, and to measure the activity of antiviral drugs and neutralizing antibody. The results indicate that the described method allows for the rapid quantitation of infected cells over a wide range of viral inocula with reproducibility, accuracy and relatively low cost.
Collapse
Affiliation(s)
- John R Day
- Department of Pathology, University of California San Diego, La Jolla, CA 92093-0679, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Meadows DC, Mathews TB, North TW, Hadd MJ, Kuo CL, Neamati N, Gervay-Hague J. Synthesis and biological evaluation of geminal disulfones as HIV-1 integrase inhibitors. J Med Chem 2005; 48:4526-34. [PMID: 15999991 DOI: 10.1021/jm049171v] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Integration of HIV-1 viral DNA into the host genome is carried out by HIV-integrase (IN) and is a critical step in viral replication. Although several classes of compounds have been reported to inhibit IN in enzymatic assays, inhibition is not always correlated with antiviral activity. Moreover, potent antiviral IN inhibitors such as the chicoric acids do not act upon the intended enzymatic target but behave as entry inhibitors instead. The charged nature of the chicoric acids contributes to poor cellular uptake, and these compounds are further plagued by rapid ester hydrolysis in vivo. To address these critical deficiencies, we designed neutral, nonhydrolyzable analogues of the chicoric acids. Herein, we report the synthesis, enzyme inhibition studies, and cellular antiviral data for a series of geminal disulfones. Of the 10 compounds evaluated, 8 showed moderate to high inhibition of IN in purified enzyme assays. The purified enzyme data correlated with antiviral assays for all but two compounds, suggesting alternative modes of inhibition. Time-of-addition studies were performed on these analogues, and the results indicate that they inhibit an early stage in the replication process, perhaps entry. In contrast, the most potent member of the correlative group shows behavior consistent with IN being the cellular target.
Collapse
|
50
|
Wei BL, Denton PW, O'Neill E, Luo T, Foster JL, Garcia JV. Inhibition of lysosome and proteasome function enhances human immunodeficiency virus type 1 infection. J Virol 2005; 79:5705-12. [PMID: 15827185 PMCID: PMC1082736 DOI: 10.1128/jvi.79.9.5705-5712.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We previously reported that inhibition of endosomal/lysosomal function can dramatically enhance human immunodeficiency virus type 1 (HIV-1) infectivity, suggesting that under these conditions productive HIV-1 infection can occur via the endocytic pathway. Here we further examined this effect with bafilomycin A1 (BFLA-1) and show that this enhancement of infectivity extends to all HIV-1 isolates tested regardless of coreceptor usage. However, isolate-specific differences were observed in the magnitude of the effect. This was particularly evident in the case of the weakly infectious HIV-1(SF2), for which we observed the greatest enhancement. Using reciprocal chimeric viruses, we were able to determine that both the disproportionate increase in the infectivity of HIV-1(SF2) in response to BFLA-1 and its weak infectivity in the absence of BFLA-1 mapped to its envelope gene. Further, we found HIV-1(SF2) to have lower fusion activity and to be 12-fold more sensitive to the fusion inhibitor T-20 than HIV-1(NL4-3). Proteasomal inhibitors also enhance HIV-1 infectivity, and we report that the combination of a lysosomal and a proteasomal inhibitor greatly enhanced infectivity of all isolates tested. Again, HIV-1(SF2) was unique in exhibiting a synergistic 400-fold increase in infectivity. We also determined that inhibition of proteasomal function increased the infectivity of HIV-1 pseudotyped with vesicular stomatitis virus G protein. The evidence presented here highlights the important role of the lysosomes/proteasomes in the destruction of infectious HIV-1(SF2) and could have implications for the development of novel antiviral agents that might take advantage of these innate defenses.
Collapse
Affiliation(s)
- Bangdong L Wei
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center at Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|