1
|
Wang J, Fu HX, Zhang YY, Mo XD, Han TT, Kong J, Sun YQ, Lyu M, Han W, Chen H, Chen YY, Wang FR, Yan CH, Chen Y, Wang JZ, Wang Y, Xu LP, Huang XJ, Zhang XH. [The effect of glucose-6-phosphate dehydrogenase deficiency on allogeneic hematopoietic stem cell transplantation in patients with hematological disorders]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:121-127. [PMID: 38604787 PMCID: PMC11078675 DOI: 10.3760/cma.j.cn121090-20231009-00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 04/13/2024]
Abstract
Objectives: To determine the effect of glucose-6-phosphate-dehydrogenase (G6PD) deficiency on patients' complications and prognosis following allogeneic stem cell hematopoietic transplantation (allo-HSCT) . Methods: 7 patients with G6PD deficiency (study group) who underwent allo-HSCT at Peking University People's Hospital from March 2015 to January 2021 were selected as the study group, and thirty-five patients who underwent allo-HSCT during the same period but did not have G6PD deficiency were randomly selected as the control group in a 1∶5 ratio. Gender, age, underlying diseases, and donors were balanced between the two groups. Collect clinical data from two patient groups and perform a retrospective nested case-control study. Results: The study group consisted of six male patients and one female patient, with a median age of 37 (range, 2-45) years old. The underlying hematologic diseases included acute myeloid leukemia (n=3), acute lymphocytic leukemia (n=2), and severe aplastic anemia (n=2). All 7 G6PD deficiency patients achieved engraftment of neutrophils within 28 days of allo-HSCT, while the engraftment rate of neutrophils was 94.5% in the control group. The median days of platelet engraftment were 21 (6-64) d and 14 (7-70) d (P=0.113). The incidence rates of secondary poor graft function in the study group and control group were 42.9% (3/7) and 8.6% (3/35), respectively (P=0.036). The CMV infection rates were 71.4% (5/7) and 31.4% (11/35), respectively (P=0.049). The incidence rates of hemorrhagic cystitis were 57.1% (4/7) and 8.6% (3/35), respectively (P=0.005), while the bacterial infection rates were 100% (7/7) and 77.1% (27/35), respectively (P=0.070). The infection rates of EBV were 14.3% (1/7) and 14.3% (5/35), respectively (P=1.000), while the incidence of fungal infection was 14.3% (1/7) and 25.7% (9/35), respectively (P=0.497). The rates of post-transplant lymphoproliferative disease (PTLD) were 0% and 5.7%, respectively (P=0.387) . Conclusions: The findings of this study indicate that blood disease patients with G6PD deficiency can tolerate conventional allo-HSCT pretreatment regimens, and granulocytes and platelets can be implanted successfully. However, after transplantation, patients should exercise caution to avoid viral infection, complications of hemorrhagic cystitis, and secondary poor graft function.
Collapse
Affiliation(s)
- J Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - H X Fu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Y Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X D Mo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - T T Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - J Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Q Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - M Lyu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - W Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - H Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Y Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - F R Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - C H Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - J Z Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - L P Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X J Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X H Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
2
|
Au TY, Wiśniewski OW, Benjamin S, Kubicki T, Dytfeld D, Gil L. G6PD deficiency-does it alter the course of COVID-19 infections? Ann Hematol 2023:10.1007/s00277-023-05164-y. [PMID: 36905446 PMCID: PMC10006571 DOI: 10.1007/s00277-023-05164-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/18/2022] [Indexed: 03/12/2023]
Abstract
Despite the existence of well-founded data around the relationship between reactive oxygen species (ROS) and glucose-6-phosphate dehydrogenase (G6PD), current research around G6PD-deficient patients with viral infections, and limitations as a result of their condition, are inadequate. Here, we analyze existing data around immunological risks, complications, and consequences of this disease, particularly in relation to COVID-19 infections and treatment. The relationship between G6PD deficiency and elevated ROS leading to increased viral load suggests that these patients may confer heightened infectivity. Additionally, worsened prognoses and more severe complications of infection may be realized in class I G6PD-deficient individuals. Though more research is demanded on the topic, preliminary studies suggest that antioxidative therapy which reduces ROS levels in these patients could prove beneficial in the treatment of viral infections in G6PD-deficient individuals.
Collapse
Affiliation(s)
- Tsz Yuen Au
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland.
| | | | - Shamiram Benjamin
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Tadeusz Kubicki
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominik Dytfeld
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
3
|
Cockram TOJ, Dundee JM, Popescu AS, Brown GC. The Phagocytic Code Regulating Phagocytosis of Mammalian Cells. Front Immunol 2021; 12:629979. [PMID: 34177884 PMCID: PMC8220072 DOI: 10.3389/fimmu.2021.629979] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Mammalian phagocytes can phagocytose (i.e. eat) other mammalian cells in the body if they display certain signals, and this phagocytosis plays fundamental roles in development, cell turnover, tissue homeostasis and disease prevention. To phagocytose the correct cells, phagocytes must discriminate which cells to eat using a 'phagocytic code' - a set of over 50 known phagocytic signals determining whether a cell is eaten or not - comprising find-me signals, eat-me signals, don't-eat-me signals and opsonins. Most opsonins require binding to eat-me signals - for example, the opsonins galectin-3, calreticulin and C1q bind asialoglycan eat-me signals on target cells - to induce phagocytosis. Some proteins act as 'self-opsonins', while others are 'negative opsonins' or 'phagocyte suppressants', inhibiting phagocytosis. We review known phagocytic signals here, both established and novel, and how they integrate to regulate phagocytosis of several mammalian targets - including excess cells in development, senescent and aged cells, infected cells, cancer cells, dead or dying cells, cell debris and neuronal synapses. Understanding the phagocytic code, and how it goes wrong, may enable novel therapies for multiple pathologies with too much or too little phagocytosis, such as: infectious disease, cancer, neurodegeneration, psychiatric disease, cardiovascular disease, ageing and auto-immune disease.
Collapse
Affiliation(s)
| | | | | | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
I'm Infected, Eat Me! Innate Immunity Mediated by Live, Infected Cells Signaling To Be Phagocytosed. Infect Immun 2021; 89:IAI.00476-20. [PMID: 33558325 DOI: 10.1128/iai.00476-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Innate immunity against pathogens is known to be mediated by barriers to pathogen invasion, activation of complement, recruitment of immune cells, immune cell phagocytosis of pathogens, death of infected cells, and activation of the adaptive immunity via antigen presentation. Here, we propose and review evidence for a novel mode of innate immunity whereby live, infected host cells induce phagocytes to phagocytose the infected cell, thereby potentially reducing infection. We discuss evidence that host cells, infected by virus, bacteria, or other intracellular pathogens (i) release nucleotides and chemokines as find-me signals, (ii) expose on their surface phosphatidylserine and calreticulin as eat-me signals, (iii) release and bind opsonins to induce phagocytosis, and (iv) downregulate don't-eat-me signals CD47, major histocompatibility complex class I (MHC1), and sialic acid. As long as the pathogens of the host cell are destroyed within the phagocyte, then infection can be curtailed; if antigens from the pathogens are cross-presented by the phagocyte, then an adaptive response would also be induced. Phagocytosis of live infected cells may thereby mediate innate immunity.
Collapse
|
5
|
Li Y, Li H, Fan R, Wen B, Zhang J, Cao X, Wang C, Song Z, Li S, Li X, Lv X, Qu X, Huang R, Liu W. Coronavirus Infections in the Central Nervous System and Respiratory Tract Show Distinct Features in Hospitalized Children. Intervirology 2017; 59:163-169. [PMID: 28103598 PMCID: PMC7179523 DOI: 10.1159/000453066] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/03/2016] [Indexed: 12/22/2022] Open
Abstract
Background/Aims Coronavirus (CoV) infections induce respiratory tract illnesses and central nervous system (CNS) diseases. We aimed to explore the cytokine expression profiles in hospitalized children with CoV-CNS and CoV-respiratory tract infections. Methods A total of 183 and 236 hospitalized children with acute encephalitis-like syndrome and respiratory tract infection, respectively, were screened for anti-CoV IgM antibodies. The expression profiles of multiple cytokines were determined in CoV-positive patients. Results Anti-CoV IgM antibodies were detected in 22/183 (12.02%) and 26/236 (11.02%) patients with acute encephalitis-like syndrome and respiratory tract infection, respectively. Cytokine analysis revealed that the level of serum granulocyte colony-stimulating factor (G-CSF) was significantly higher in both CoV-CNS and CoV-respiratory tract infection compared with healthy controls. Additionally, the serum level of granulocyte macrophage colony-stimulating factor (GM-CSF) was significantly higher in CoV-CNS infection than in CoV-respiratory tract infection. In patients with CoV-CNS infection, the levels of IL-6, IL-8, MCP-1, and GM-CSF were significantly higher in their cerebrospinal fluid samples than in matched serum samples. Conclusion To the best of our knowledge, this is the first report showing a high incidence of CoV infection in hospitalized children, especially with CNS illness. The characteristic cytokine expression profiles in CoV infection indicate the importance of host immune response in disease progression.
Collapse
Affiliation(s)
- Yuanyuan Li
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Chenzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Controversies in defining cardiac antibody-mediated rejection: Need for updated criteria. J Heart Lung Transplant 2010; 29:389-94. [DOI: 10.1016/j.healun.2009.10.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 11/19/2022] Open
|
7
|
Tumpey TM, García-Sastre A, Taubenberger JK, Palese P, Swayne DE, Pantin-Jackwood MJ, Schultz-Cherry S, Solórzano A, Van Rooijen N, Katz JM, Basler CF. Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J Virol 2006; 79:14933-44. [PMID: 16282492 PMCID: PMC1287592 DOI: 10.1128/jvi.79.23.14933-14944.2005] [Citation(s) in RCA: 395] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Spanish influenza pandemic of 1918 to 1919 swept the globe and resulted in the deaths of at least 20 million people. The basis of the pulmonary damage and high lethality caused by the 1918 H1N1 influenza virus remains largely unknown. Recombinant influenza viruses bearing the 1918 influenza virus hemagglutinin (HA) and neuraminidase (NA) glycoproteins were rescued in the genetic background of the human A/Texas/36/91 (H1N1) (1918 HA/NA:Tx/91) virus. Pathogenesis experiments revealed that the 1918 HA/NA:Tx/91 virus was lethal for BALB/c mice without the prior adaptation that is usually required for human influenza A H1N1 viruses. The increased mortality of 1918 HA/NA:Tx/91-infected mice was accompanied by (i) increased (>200-fold) viral replication, (ii) greater influx of neutrophils into the lung, (iii) increased numbers of alveolar macrophages (AMs), and (iv) increased protein expression of cytokines and chemokines in lung tissues compared with the levels seen for control Tx/91 virus-infected mice. Because pathological changes in AMs and neutrophil migration correlated with lung inflammation, we assessed the role of these cells in the pathogenesis associated with 1918 HA/NA:Tx/91 virus infection. Neutrophil and/or AM depletion initiated 3 or 5 days after infection did not have a significant effect on the disease outcome following a lethal 1918 HA/NA:Tx/91 virus infection. By contrast, depletion of these cells before a sublethal infection with 1918 HA/NA:Tx/91 virus resulted in uncontrolled virus growth and mortality in mice. In addition, neutrophil and/or AM depletion was associated with decreased expression of cytokines and chemokines. These results indicate that a human influenza H1N1 virus possessing the 1918 HA and NA glycoproteins can induce severe lung inflammation consisting of AMs and neutrophils, which play a role in controlling the replication and spread of 1918 HA/NA:Tx/91 virus after intranasal infection of mice.
Collapse
Affiliation(s)
- Terrence M Tumpey
- Influenza Branch, Mail Stop G-16, DVRD, NCID, Centers for Disease Control and Prevention, 1600 Clifton Road, N.E., Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Carr DJJ, Al-khatib K, James CM, Silverman R. Interferon-beta suppresses herpes simplex virus type 1 replication in trigeminal ganglion cells through an RNase L-dependent pathway. J Neuroimmunol 2003; 141:40-6. [PMID: 12965252 PMCID: PMC4060623 DOI: 10.1016/s0165-5728(03)00216-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The induction of an antiviral state by type I interferons (IFN) was evaluated in primary trigeminal ganglion cell cultures using herpes simplex virus type 1 (HSV-1). Cells treated with mouse IFN-beta consistently showed the greatest resistance to HSV-1 infection in comparison to cells treated with IFN-alpha1, IFN-alpha4, IFN-alpha5, IFN-alpha6, or IFN-alpha9. The antiviral efficacy was dose-dependent and correlated with the induction of the IFN-inducible, antiviral genes, 2'-5' oligoadenylate synthetase (OAS) and double-stranded RNA-dependent protein kinase. In trigeminal ganglion cells deficient in the downstream effector molecule of the OAS pathway, RNase L, the antiviral state induced by IFN-beta was lost.
Collapse
Affiliation(s)
- Daniel J J Carr
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | |
Collapse
|
9
|
Härle P, Cull V, Guo L, Papin J, Lawson C, Carr DJJ. Transient transfection of mouse fibroblasts with type I interferon transgenes provides various degrees of protection against herpes simplex virus infection. Antiviral Res 2002; 56:39-49. [PMID: 12323398 DOI: 10.1016/s0166-3542(02)00093-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type I interferons (IFN) constitute one of the initial and most potent components of the innate immune response against viral infections. While there is only one IFN-beta gene, there are several IFN-alpha genes whose products act through the same receptor calling into question the role of these gene products against viral infection. The focus of the present study was to compare the anti-viral state of cells transiently transfected with different murine type I IFN transgenes including IFN-alpha1, -alpha4, -alpha5, -alpha6, -alpha9, and IFN-beta. Transfected cells produced biologically active IFN ranging from 6 to 46 units/ml. L929 and 3T12.3 cells transfected with the IFN-beta transgene consistently showed a 2-4 fold reduction in herpes simplex virus type 1 (HSV-1) and HSV-2 viral titers compared with cells transfected with the IFN-alpha transgenes which were much less consistent based on HSV species and cell type. Parallel with the reduction in viral titers, cells transfected with the IFN-beta transgene showed the complete absence or significant reduction in viral immediate early, early, and late gene expression. Collectively, the results suggest that the IFN-beta transgene is superior to IFN-alpha transgenes against HSV infection in vitro in part due to a reduction in viral gene expression. These results indicate events downstream of the type I IFN receptor distinguish between the subtypes of IFN-alpha species relative to the activation of genes ultimately responsible for the establishment of the anti-HSV state.
Collapse
Affiliation(s)
- Peter Härle
- Department of Ophthalmology, The Dean McGee Institute, The University of Oklahoma Health Sciences Center, DMEI #415, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Härle P, Cull V, Agbaga MP, Silverman R, Williams BRG, James C, Carr DJJ. Differential effect of murine alpha/beta interferon transgenes on antagonization of herpes simplex virus type 1 replication. J Virol 2002; 76:6558-67. [PMID: 12050368 PMCID: PMC136290 DOI: 10.1128/jvi.76.13.6558-6567.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Alpha/beta interferons (IFN-alpha/beta) are potent, endogenous antiviral cytokines that suppress the replication of RNA and DNA viruses, including herpes simplex virus type 1 (HSV-1). The present study compared the efficacies of IFN-alpha/beta transgenes, including IFN-alpha1, -alpha4, -alpha5, -alpha6, -alpha9, and -beta, against HSV-1 infection. L929 cells transfected with the IFN-alpha/beta transgenes produced similar levels of IFN, as measured by bioassay and enzyme-linked immunosorbent assay. In addition, transfected cells were less susceptible to HSV-1 infection than were cells transfected with a plasmid vector control. The murine IFN-beta plasmid construct exhibited the greatest reduction, while the murine IFN-alpha5 transgene showed a modest inhibitory effect in viral titers recovered from the supernatants of transfected, infected L929 cultures. Consistent with this observation, the IFN-beta transgene antagonized viral transcript levels, including infected cell protein 27, thymidine kinase, and glycoprotein B, to a greater extent than did the IFN-alpha transgenes at 6 to 10 h postinfection as determined by real-time PCR. Cells transfected with the IFN-alpha4, IFN-alpha9, or IFN-beta transgenes showed the greatest reduction in viral protein expression relative to the other transfected cells, which was associated with increased STAT1 expression. The absence of the IFN-responsive protein kinase R (PKR) gene completely abrogated the antiviral induction by all IFN-alpha/beta against HSV-1. In the absence of RNase L, viral yields were increased 10-fold, but the antiviral effect of IFN was either unaffected or enhanced. These results suggest that the predominant IFN-mediated, antiviral pathway during HSV-1 infection taken by IFN-alpha/beta in L929 cells utilizes PKR.
Collapse
Affiliation(s)
- Peter Härle
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, 608 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Noisakran S, Carr DJ. Topical application of the cornea post-infection with plasmid DNA encoding interferon-alpha1 but not recombinant interferon-alphaA reduces herpes simplex virus type 1-induced mortality in mice. J Neuroimmunol 2001; 121:49-58. [PMID: 11730939 DOI: 10.1016/s0165-5728(01)00442-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A study was undertaken to compare the efficacy of recombinant interferon (rIFN)-alphaA to plasmid DNA encoding IFN-alpha1 against ocular herpes simplex virus type 1 (HSV-1) infection. The topical application of rIFN-alphaA (100-300 units/eye) onto the cornea of mice subsequently infected 24 h later with HSV-1 antagonized viral-induced mortality. The enhancement in cumulative survival in the rIFN-alphaA-treated mice correlated with a reduction of viral titers recovered in the eye and trigeminal ganglion (TG) at 3 and 6 days post-infection. The protective effect was site-specific such that when rIFN-alphaA was administered orally or intranasally, no efficacy against HSV-1 was observed. However, the protective effect was time-dependent. Specifically, when the rIFN-alphaA (100-1000 units/eye) was administered at 24 h post-infection, no protective effect was observed against HSV-1 compared to the vehicle-treated group. In contrast, plasmid DNA (100 microg/eye) containing the IFN-alpha1 transgene showed significant protection when topically applied 24 h post-infection. Although the transgene was found to traffic distal from the site of application (eye), including the trigeminal ganglion and the spleen where CD11b(+) and CD11c(+) cells express the transgene, the migration of the transgene did not correlate with efficacy. Collectively, the results suggest that naked DNA encoding type I IFN applied post-infection provides a greater degree of protection against ocular HSV-1 infection in comparison with recombinant protein effectively antagonizing viral replication and spread.
Collapse
Affiliation(s)
- S Noisakran
- Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
13
|
Friedman HM, Wang L, Pangburn MK, Lambris JD, Lubinski J. Novel mechanism of antibody-independent complement neutralization of herpes simplex virus type 1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4528-36. [PMID: 11035093 DOI: 10.4049/jimmunol.165.8.4528] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The envelope surface glycoprotein C (gC) of HSV-1 interferes with the complement cascade by binding C3 and activation products C3b, iC3b, and C3c, and by blocking the interaction of C5 and properdin with C3b. Wild-type HSV-1 is resistant to Ab-independent complement neutralization; however, HSV-1 mutant virus lacking gC is highly susceptible to complement resulting in > or =100-fold reduction in virus titer. We evaluated the mechanisms by which complement inhibits HSV-1 gC null virus to better understand how gC protects against complement-mediated neutralization. C8-depleted serum prepared from an HSV-1 and -2 Ab-negative donor neutralized gC null virus comparable to complement-intact serum, indicating that C8 and terminal lytic activity are not required. In contrast, C5-depleted serum from the same donor failed to neutralize gC null virus, supporting a requirement for C5. EDTA-treated serum did not neutralize gC null virus, indicating that complement activation is required. Factor D-depleted and C6-depleted sera neutralized virus, suggesting that the alternative complement pathway and complement components beyond C5 are not required. Complement did not aggregate virus or block attachment to cells. However, complement inhibited infection before early viral gene expression, indicating that complement affects one or more of the following steps in virus replication: virus entry, uncoating, DNA transport to the nucleus, or immediate early gene expression. Therefore, in the absence of gC, HSV-1 is readily inhibited by complement by a C5-dependent mechanism that does not require viral lysis, aggregation, or blocking virus attachment.
Collapse
MESH Headings
- Adult
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/physiology
- Chlorocebus aethiops
- Complement C5/physiology
- Complement C8/physiology
- Complement Pathway, Alternative/immunology
- Disaccharides/immunology
- Gene Expression Regulation, Viral/immunology
- Genes, Immediate-Early/immunology
- HeLa Cells/immunology
- HeLa Cells/metabolism
- HeLa Cells/virology
- Herpes Simplex/genetics
- Herpes Simplex/immunology
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/physiology
- Herpesvirus 1, Human/ultrastructure
- Humans
- Neutralization Tests
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/immunology
- Vero Cells/immunology
- Vero Cells/metabolism
- Vero Cells/virology
- Viral Envelope Proteins/deficiency
- Viral Envelope Proteins/genetics
Collapse
Affiliation(s)
- H M Friedman
- Department of Medicine, Infectious Diseases Division and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
14
|
Baldwin WM, Qian Z, Ota H, Samaniego M, Wasowska B, Sanfilippo F, Hruban RH. Complement as a mediator of vascular inflammation and activation in allografts. J Heart Lung Transplant 2000; 19:723-30. [PMID: 10967264 DOI: 10.1016/s1053-2498(00)00137-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- W M Baldwin
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland 21205-2196, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Suzutani T, Nagamine M, Shibaki T, Ogasawara M, Yoshida I, Daikoku T, Nishiyama Y, Azuma M. The role of the UL41 gene of herpes simplex virus type 1 in evasion of non-specific host defence mechanisms during primary infection. J Gen Virol 2000; 81:1763-71. [PMID: 10859382 DOI: 10.1099/0022-1317-81-7-1763] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The UL41 gene product (vhs) of herpes simplex virus (HSV) is packaged in the virion, and mediates host protein synthesis shutoff at the early stage of the virus replication cycle. In order to clarify the role of vhs in virus replication and virulence, we isolated a completely UL41-deficient mutant (the VRDelta41 strain) and its revertant (the VRDelta41R strain). In the mouse encephalitis model, the replication of strain VRDelta41 was inhibited after 2 days post-infection, resulting in low virulence, by gamma-ray-sensitive cells such as lymphocytes and/or neutrophils. The result suggested that some cytokines, produced in VRDelta41-inoculated brains, activate and induce the migration of gamma-ray-sensitive cells to the infection site. Therefore, cytokines produced by HSV-1-infected human cells were screened, and potent inductions of interleukin (IL)-1beta, IL-8 and macrophage inflammatory protein-1alpha by VRDelta41 infection were observed. Moreover, the VRDelta41 strain showed 20- and 5-fold higher sensitivity to interferon-alpha and -beta compared to the wild-type strain, respectively. These results indicate that one important role of vhs in vivo is evasion from non-specific host defence mechanisms during primary infection through suppression of cytokine production in HSV-infected cells and reduction of the anti-HSV activity of interferon-alpha and -beta.
Collapse
Affiliation(s)
- T Suzutani
- Department of Microbiology, Asahikawa Medical College, Asahikawa 078-8510, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kurita M, Matsumoto M, Tsuji S, Kawakami M, Suzuki Y, Hayashi H, Toyoshima K, Seya T. Antibody-independent classical complement pathway activation and homologous C3 deposition in xeroderma pigmentosum cell lines. Clin Exp Immunol 1999; 116:547-53. [PMID: 10361249 PMCID: PMC1905298 DOI: 10.1046/j.1365-2249.1999.00923.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Of human malignantly transformed cell lines, xeroderma pigmentosum (XP) cell lines were found to be highly susceptible to homologous complement (C): cells were opsonized by C3 fragments on incubation with diluted normal human serum. C3 fragment deposition on XP cells was Ca2+-dependent and occurred on live cells but not UV-irradiated apoptotic cells. (Ca2+ is required for activation of the classical C pathway via C1q and the lactin pathway via mannose binding lectin (MBL), and the surface of apoptotic cells usually activates the alternative C pathway.) In this study we tested which of the pathways participates in XP cell C3 deposition. In seven cell lines that allowed C3 deposition (i), Clq was shown to be essential but MBL played no role in C activation, (ii) Cls but not MASP bound XP cells for activation, (iii) no antibodies recognizing XP cells were required for homologous C3 deposition, and (iv) the alternative pathway barely participated in C3 deposition. Furthermore, the levels of C-regulatory proteins for host cell protection against C, decay-accelerating factor (DAF, CD55) and membrane cofactor protein (MCP, CD46), were found to be relatively low in almost all XP cell lines compared with normal cells. These results indicate that XP cells activate the classical C pathway in an antibody-independent manner through the expression of a molecule which directly attracts C1q in a C-activating form, and that relatively low levels of DAF and MCP on XP cells facilitate effective C3 deposition. The possible relationship between the pathogenesis of XP and our findings is discussed.
Collapse
Affiliation(s)
- M Kurita
- Department of Immunology, Osaka Medical Centre for Cancer and Cardiovascular Diseases, Higashinari-ku, Osaka 537, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tumpey TM, Chen SH, Oakes JE, Lausch RN. Neutrophil-mediated suppression of virus replication after herpes simplex virus type 1 infection of the murine cornea. J Virol 1996; 70:898-904. [PMID: 8551629 PMCID: PMC189893 DOI: 10.1128/jvi.70.2.898-904.1996] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection of the murine cornea induces the rapid infiltration of neutrophils. We investigated whether these cells could influence virus replication. BALB/c mice treated with monoclonal antibody (MAb) RB6-8C5 experienced a profound depletion of neutrophils in the bloodstream, spleen, and cornea. In these animals, virus titers in the eye were significantly higher than those in the immunoglobulin G-treated controls at 3 days postinfection. By day 9, virus was no longer detectable in the controls, whereas titers of 10(3) to 10(6) PFU were still present in the neutrophil-depleted hosts. Furthermore, virus spread more readily to the skin and brains of MAb RB6-8C5-treated animals, rendering them significantly more susceptible to HSV-1-induced blepharitis and encephalitis. Only 25% of the treated animals survived, whereas all of the controls lived. Although MAb RB6-8C5 treatment did not alter the CD4+ T-cell, B-cell, natural killer cell, or macrophage populations, the CD8+ T-cell population was partially reduced. Therefore, the experiments were repeated in severe combined immunodeficiency mice, which lack CD8+ T cells. Again virus growth was found to be significantly elevated in the eyes, trigeminal ganglia, and brains of the MAb RB6-8C5-treated hosts. These results strongly indicate that in both immunocompetent and immunodeficient mice, neutrophils play a significant role in helping to control the replication and spread of HSV-1 after corneal infection.
Collapse
Affiliation(s)
- T M Tumpey
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile 36688, USA
| | | | | | | |
Collapse
|
18
|
Dick JW, Rosenthal KS. A block in glycoprotein processing correlates with small plaque morphology and virion targetting to cell-cell junctions for an oral and an anal strain of herpes simplex virus type-1. Arch Virol 1995; 140:2163-81. [PMID: 8572939 DOI: 10.1007/bf01323238] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The characteristics of two clinical isolates of HSV-1 obtained from an oral (424) and an anal (490) lesion were compared with the highly passaged KOS strain. In contrast to KOS, the clinical isolates produced small plaques, were more cell-associated and the predominant viral glycoprotein species for gC and gD in infected cell lysates was the precursor, high mannose glycoform. Total virus production in Vero cells was equivalent for the three virus strains in one-step growths. Pulse-chase studies of glycoprotein C processing showed a reduction in rate at 7.5 h post infection and a significant block in processing at 10.5 h post infection for 424 and 490 but not KOS. Similar results were obtained for gD. The significant reduction in glycoprotein processing for 424 and 490 suggests a block in transport of viral glycoproteins or virions to and through the Golgi apparatus. Extracellular virions and the cell surface, prior to cell lysis, contained the processed gC glycoform suggesting a competent cellular glycan processing system. Upon co-infection of 424 or 490 with KOS or a gC- KOS strain, gC was processed to levels equivalent to KOS indicating that 424 and 490 are not inhibitory but that an activity(s) encoded by KOS facilitates maturation of gC from 424 and 490. Unlike KOS infected Vero cells, virion-containing vacuoles were observed in the cytoplasm at 12 h p.i. and extracellular virions were concentrated at cell-cell junctions of 424 or 490 infected cells but not in the perinuclear region. These results suggest that intracellular transport of viral glycoproteins and virions in 424 and 490 infected cells is different from KOS infected cells. The reduced level of viral glycoprotein maturation, virus release, cell surface presence and presence of virions at cell-cell junctions are consistent with small plaque production in tissue culture cells.
Collapse
Affiliation(s)
- J W Dick
- Northeastern Ohio Universities College of Medicine, Rootstown, USA
| | | |
Collapse
|
19
|
Huemer HP, Larcher C, van Drunen Littel-van den Hurk S, Babiuk LA. Species selective interaction of Alphaherpesvirinae with the "unspecific" immune system of the host. Arch Virol 1993; 130:353-64. [PMID: 8390825 DOI: 10.1007/bf01309666] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During evolution Herpesviridae have developed glycoproteins, which interact with essential components of the immune system. Besides immunoglobulin-binding proteins (= Fc-receptors), expressed by several members of the herpesfamily, the interaction with the complement system plays a role in the pathogenicity of herpes simplex virus. Here we report that the ability to interact with the third complement component (C3), the central mediator of complement activation, was also found among several animal alphaherpesviruses. This interaction appeared to be species-selective as the viral proteins preferentially bound to the C3 originated from the respective host. That could provide a possible explanation for the evolution of a variety of herpesviruses as the species tropism observed among Herpesviridae may be influenced by specific adaptation of protective virus-proteins to the immune system of the different hosts. The data have critical implications for the studies of virus host interactions in heterologous systems and support a role for the C3-binding proteins in pathogenesis. Since the C3-binding proteins are conserved among different herpesviruses they could serve as suitable subunit-vaccine candidates.
Collapse
Affiliation(s)
- H P Huemer
- Institute for Hygiene, University of Innsbruck, Austria
| | | | | | | |
Collapse
|
20
|
Huemer HP, Wang Y, Garred P, Koistinen V, Oppermann S. Herpes simplex virus glycoprotein C: molecular mimicry of complement regulatory proteins by a viral protein. Immunology 1993; 79:639-47. [PMID: 8406590 PMCID: PMC1421934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Herpes simplex virus (HSV) encodes a protein, glycoprotein C (gC), which binds to the third complement component, the central mediator of complement activation. In this study the structural and functional relationships of gC from HSV type 1 (HSV-1) and known human complement regulatory proteins factor H, properdin, factor B, complement receptor 1 (CR1) and 2 (CR2) were investigated. The interaction of gC with C3b was studied using purified complement components, synthetic peptides, antisera against different C3 fragments and anti-C3 monoclonal antibodies (mAb) with known inhibitory effects on C3-ligand interactions. All the mAb that inhibited gC/C3b interactions, in a differential manner, also prevented binding of C3 fragments to factors H, B, CR1 or CR2. No blocking was observed with synthetic peptides representing different C3 regions or with factor B and C3d, whereas C3b, C3c and factor H were inhibitory, as well as purified gC. There was no binding of gC to cobra venom factor (CVF), a C3c-like fragment derived from cobra gland. Purified gC bound to iC3, iC3b and C3c, but failed to bind to C3d. Glycoprotein C bound only weakly to iC3 derived from bovine and porcine plasma, thus indicating a preference of the viral protein for the appropriate host. Binding of gC was also observed to proteolytic C3 fragments, especially to the beta-chain, thus suggesting the importance of the C3 region as a binding site. Purified gC from HSV-1, but not HSV-2, inhibited the binding of factor H and properdin but not of CR1 to C3b. The binding of iC3b to CR2, a molecule involved in B-cell activation and binding of the Epstein-Barr virus, was also inhibited by the HSV-1 protein. As factor H and properdin, the binding of which was inhibited by gC, are important regulators of the alternative complement pathway, these data further support a role of gC in the evasion of HSV from a major first-line host defence mechanism, i.e. the complement system. In addition, the inhibition of the C3/CR2 interaction may suggest a possible immunoregulatory role of HSV glycoprotein C.
Collapse
Affiliation(s)
- H P Huemer
- Institute for Hygiene, University of Innsbruck, Austria
| | | | | | | | | |
Collapse
|
21
|
Fluit AC, van Strijp JA, Miltenburg LA, van Kessel CP, Snippe H, Verhoef J. The use of a hybridization assay for the study of host defences against herpes simplex virus. J Virol Methods 1989; 26:269-78. [PMID: 2559922 DOI: 10.1016/0166-0934(89)90109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A rapid and simple hybridization assay was developed as an alternative for virus titration for the investigation of host resistance against HSV-1 infections in vitro. The probe which was constructed for this assay was shown to be HSV-1-specific. When a monolayer of fibroblasts was infected for 24 h before hybridization, 15 PFU were detected reliably. A plateau in hybridization levels was found when the multiplicity of infection reached 1. In order to demonstrate the applicability of the probe for the study of host defences against HSV in vitro, fibroblasts were infected with HSV in the presence of different numbers of adherent cells and different concentrations of serum containing high titres of anti-HSV antibodies and complement. After 20 h of incubation, samples were lysed, spotted on Zetaprobe filter paper and hybridized with a 32P-labelled RNA probe. Spots were counted for radioactivity. The radioactivity was taken as a measure of the success of infection. Results showed that at high (10%) concentrations of serum containing high titres of anti-HSV antibodies and complement neutralization plays an important role. At low (1%) concentrations of serum containing high titres of anti-HSV antibodies and complement the phagocytic role of adherent cells becomes the dominant factor in preventing infection of the fibroblasts. However, when the number of infectious particles is increased, the protection provided by adherent cells is overwhelmed.
Collapse
Affiliation(s)
- A C Fluit
- Eijkman Winkler Laboratory for Medical Microbiology University Hospital Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Van Strijp JA, Van Kessel KP, van der Tol ME, Fluit AC, Snippe H, Verhoef J. Phagocytosis of herpes simplex virus by human granulocytes and monocytes. Arch Virol 1989; 104:287-98. [PMID: 2539796 DOI: 10.1007/bf01315550] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polymorphonuclear leukocytes (PMN) can mediate cytotoxic reactions against virus infected targets cells. We observed very efficient binding of PMN to HSV-infected fibroblasts when loaded with HSV-specific antibodies. Using electron microscopy, infected fibroblasts were found to be totally surrounded by PMN and the phagocytosis of virions and fragments of infected cells was demonstrated. To quantify and study this phenomenon, and to compare PMN with monocytes, we developed radiometric and fluorometric phagocytosis assays. Leukocytes were mixed with [3H]glucosamine- or FITC-labeled virus and incubated at 37 degrees C. PMN associated radioactivity or fluorescence per cell as measured by flow cytometry was determined. PMN phagocytosis was dependent on the presence of specific anti-HSV antibodies and could be enhanced by addition of complement. Monocytes were also able to phagocytize virions; however, the rate of uptake was less than that for PMN. Under optimal conditions the total amount of herpes simplex particles that could be associated with one PMN or monocyte was about 10,000. PMN and monocytes are capable of phagocytosis of HSV. This may be an important factor in preventing the spread of infection in vivo.
Collapse
Affiliation(s)
- J A Van Strijp
- Laboratory for Microbiology, University of Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Van Strijp JA, Van Kessel KP, van der Tol ME, Verhoef J. Complement-mediated phagocytosis of herpes simplex virus by granulocytes. Binding or ingestion. J Clin Invest 1989; 84:107-12. [PMID: 2544621 PMCID: PMC303959 DOI: 10.1172/jci114129] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The role of complement receptors in phagocytosis of herpes simplex virus (HSV) by PMN was examined. Complement components were deposited on the surface of the virus particle in the presence or absence of specific anti-HSV antibodies. Flow cytometry was used to analyze the phagocytosis of fluorescence-labeled viruses and demonstrated that although a virion is able to associate with PMN in the presence of complement alone, the granulocyte is not triggered to mount a metabolic burst. Efficient stimulation of PMN occurs when complexes are formed consisting of virus, specific antibodies, and complement. To address the question whether the viruses were inside or outside the cell, a combined enhancement/quenching method was developed using ammonium chloride as a lysosomotropic agent and trypan blue as a quenching dye. The data indicate that Fc receptor-mediated phagocytosis by PMN results in the ingestion of all cell-associated herpes virions. Interactions of virions through PMN-complement receptors CR1 and CR3 results solely in binding to the PMN but not in internalization. Interactions via both complement and Fc receptors cause synergistic stimulation of the PMN and result in very efficient association of viruses, greater than 80% of which were inside the cell.
Collapse
Affiliation(s)
- J A Van Strijp
- Laboratory for Microbiology, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|