1
|
Pujar A, Pathania A, Hopper C, Pandi A, Calderón CR, Függer M, Nowak T, Kushwaha M. Phage-mediated intercellular CRISPRi for biocomputation in bacterial consortia. Nucleic Acids Res 2024:gkae1256. [PMID: 39727169 DOI: 10.1093/nar/gkae1256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Coordinated actions of cells in microbial communities and multicellular organisms enable them to perform complex tasks otherwise difficult for single cells. This has inspired biological engineers to build cellular consortia for larger circuits with improved functionalities while implementing communication systems for coordination among cells. Here, we investigate the signalling dynamics of a phage-mediated synthetic DNA messaging system and couple it with CRISPR interference to build distributed circuits that perform logic gate operations in multicellular bacterial consortia. We find that growth phases of both sender and receiver cells, as well as resource competition between them, shape communication outcomes. Leveraging the easy programmability of DNA messages, we build eight orthogonal signals and demonstrate that intercellular CRISPRi (i-CRISPRi) regulates gene expression across cells. Finally, we multiplex the i-CRISPRi system to implement several multicellular logic gates that involve up to seven cells and take up to three inputs simultaneously, with single- and dual-rail encoding: NOT, YES, AND and AND-AND-NOT. The communication system developed here lays the groundwork for implementing complex biological circuits in engineered bacterial communities, using phage signals for communication.
Collapse
Affiliation(s)
- Abhinav Pujar
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Amit Pathania
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Corbin Hopper
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190 Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91405 Orsay, France
| | - Amir Pandi
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Cristian Ruiz Calderón
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Matthias Függer
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190 Gif-sur-Yvette, France
| | - Thomas Nowak
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190 Gif-sur-Yvette, France
- Institut Universitaire de France, Paris, France
| | - Manish Kushwaha
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| |
Collapse
|
2
|
Yeh TY, Feehley PJ, Feehley MC, Ooi VY, Wu PC, Hsieh F, Chiu SS, Su YC, Lewis MS, Contreras GP. The packaging signal of Xanthomonas integrative filamentous phages. Virology 2024; 600:110279. [PMID: 39492088 DOI: 10.1016/j.virol.2024.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/20/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Unlike Ff, the packaging signal (PS) and the mechanism of integrative filamentous phage assembly remains largely unknown. Here we revived two Inoviridae prophage sequences, ϕLf2 and ϕLf-UK, as infectious virions that lysogenize black rot pathogen Xanthomonas campestris pv. campestris. The genomes of ϕLf2 and ϕLf-UK consist of 6363 and 6062 nucleotides each, and share 85.8% and 98.7% identity with ϕLf, respectively. To explore integrative filamentous phage assembly, we first identified 20-26-nucleotide long PS sequences of 10 Xanthomonas phages. These PS consist of a DNA hairpin with the consensus GGX(A/-)CCG(C/T)G sequence in the stem and C/T nucleotides in the loop, both of which are conserved and essential for PS activity. In contrast to Ff, the 5' to 3' orientation of the PS sequence is not conserved or critical for viral competence. This is the first report to offer insights into the structure and function of the integrative phage PS, revealing the diversity of filamentous phage encapsidation.
Collapse
Affiliation(s)
- Ting-Yu Yeh
- Agricultural Biotechnology Laboratory, Auxergen Inc., Riti Rossi Colwell Center, 701 E Pratt Street, Baltimore, MD 21202, USA; Auxergen S.r.l., Tecnopolis Science and Tecnopolis Park of the University of Bari, Valenzano, BA, Italy.
| | - Patrick J Feehley
- Agricultural Biotechnology Laboratory, Auxergen Inc., Riti Rossi Colwell Center, 701 E Pratt Street, Baltimore, MD 21202, USA; Auxergen S.r.l., Tecnopolis Science and Tecnopolis Park of the University of Bari, Valenzano, BA, Italy
| | - Michael C Feehley
- Agricultural Biotechnology Laboratory, Auxergen Inc., Riti Rossi Colwell Center, 701 E Pratt Street, Baltimore, MD 21202, USA; Auxergen S.r.l., Tecnopolis Science and Tecnopolis Park of the University of Bari, Valenzano, BA, Italy
| | - Vivian Y Ooi
- Walt Whitman High School, Bethesda, MD 20817, USA
| | - Pei-Chen Wu
- Taipei Wego Private Senior High School, Taipei City 11254, Taiwan
| | - Frederick Hsieh
- Taipei Municipal Yu Cheng Senior High School, Taipei City 11560, Taiwan
| | - Serena S Chiu
- Neuroscience Program, School of Arts and Sciences, Brandeis University, Waltham, MA 02453, USA
| | - Yung-Ching Su
- National Tainan Girls' Senior High School, Tainan City 700011, Taiwan
| | - Maxwell S Lewis
- Agricultural Biotechnology Laboratory, Auxergen Inc., Riti Rossi Colwell Center, 701 E Pratt Street, Baltimore, MD 21202, USA; Department of Computer Science, San Francisco State University, San Francisco, CA 94132, USA
| | - Gregory P Contreras
- Agricultural Biotechnology Laboratory, Auxergen Inc., Riti Rossi Colwell Center, 701 E Pratt Street, Baltimore, MD 21202, USA; Auxergen S.r.l., Tecnopolis Science and Tecnopolis Park of the University of Bari, Valenzano, BA, Italy
| |
Collapse
|
3
|
Rakonjac J, Gold VAM, León-Quezada RI, Davenport CH. Structure, Biology, and Applications of Filamentous Bacteriophages. Cold Spring Harb Protoc 2024; 2024:pdb.over107754. [PMID: 37460152 DOI: 10.1101/pdb.over107754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The closely related Escherichia coli Ff filamentous phages (f1, fd, and M13) have taken a fantastic journey over the past 60 years, from the urban sewerage from which they were first isolated, to their use in high-end technologies in multiple fields. Their relatively small genome size, high titers, and the virions that tolerate fusion proteins make the Ffs an ideal system for phage display. Folding of the fusions in the oxidizing environment of the E. coli periplasm makes the Ff phages a platform that allows display of eukaryotic surface and secreted proteins, including antibodies. Resistance of the Ffs to a broad range of pH and detergents facilitates affinity screening in phage display, whereas the stability of the virions at ambient temperature makes them suitable for applications in material science and nanotechnology. Among filamentous phages, only the Ffs have been used in phage display technology, because of the most advanced state of knowledge about their biology and the various tools developed for E. coli as a cloning host for them. Filamentous phages have been thought to be a rather small group, infecting mostly Gram-negative bacteria. A recent discovery of more than 10 thousand diverse filamentous phages in bacteria and archaea, however, opens a fascinating prospect for novel applications. The main aim of this review is to give detailed biological and structural information to researchers embarking on phage display projects. The secondary aim is to discuss the yet-unresolved puzzles, as well as recent developments in filamentous phage biology, from a viewpoint of their impact on current and future applications.
Collapse
Affiliation(s)
- Jasna Rakonjac
- School of Natural Sciences, Massey University, Auckland 0632, New Zealand
- Nanophage Technologies Ltd., Palmerston North, Manawatu 4474, New Zealand
| | - Vicki A M Gold
- Living Systems Institute University of Exeter, Exeter, EX4 4QD, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
| | - Rayén I León-Quezada
- School of Natural Sciences, Massey University, Auckland 0632, New Zealand
- Nanophage Technologies Ltd., Palmerston North, Manawatu 4474, New Zealand
| | - Catherine H Davenport
- School of Natural Sciences, Massey University, Auckland 0632, New Zealand
- Nanophage Technologies Ltd., Palmerston North, Manawatu 4474, New Zealand
| |
Collapse
|
4
|
Schmid N, Brandt D, Walasek C, Rolland C, Wittmann J, Fischer D, Müsken M, Kalinowski J, Thormann K. An autonomous plasmid as an inovirus phage satellite. Appl Environ Microbiol 2024; 90:e0024624. [PMID: 38597658 PMCID: PMC11107163 DOI: 10.1128/aem.00246-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
Bacterial viruses (phages) are potent agents of lateral gene transfer and thus are important drivers of evolution. A group of mobile genetic elements, referred to as phage satellites, exploits phages to disseminate their own genetic material. Here, we isolated a novel member of the family Inoviridae, Shewanella phage Dolos, along with an autonomously replicating plasmid, pDolos. Dolos causes a chronic infection in its host Shewanella oneidensis by phage production with only minor effects on the host cell proliferation. When present, plasmid pDolos hijacks Dolos functions to be predominantly packaged into phage virions and released into the environment and, thus, acts as a phage satellite. pDolos can disseminate further genetic material encoding, e.g., resistances or fluorophores to host cells sensitive to Dolos infection. Given the rather simple requirements of a plasmid for takeover of an inovirus and the wide distribution of phages of this group, we speculate that similar phage-satellite systems are common among bacteria.IMPORTANCEPhage satellites are mobile genetic elements, which hijack phages to be transferred to other host cells. The vast majority of these phage satellites integrate within the host's chromosome, and they all carry remaining phage genes. Here, we identified a novel phage satellite, pDolos, which uses an inovirus for dissemination. pDolos (i) remains as an autonomously replicating plasmid within its host, (ii) does not carry recognizable phage genes, and (iii) is smaller than any other phage satellites identified so far. Thus, pDolos is the first member of a new class of phage satellites, which resemble natural versions of phagemids.
Collapse
Affiliation(s)
- Nicole Schmid
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - David Brandt
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Claudia Walasek
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Clara Rolland
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Dorian Fischer
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research GmbH, Braunschweig, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Kai Thormann
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|
5
|
Hampton JT, Liu WR. Diversification of Phage-Displayed Peptide Libraries with Noncanonical Amino Acid Mutagenesis and Chemical Modification. Chem Rev 2024; 124:6051-6077. [PMID: 38686960 PMCID: PMC11082904 DOI: 10.1021/acs.chemrev.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Sitting on the interface between biologics and small molecules, peptides represent an emerging class of therapeutics. Numerous techniques have been developed in the past 30 years to take advantage of biological methods to generate and screen peptide libraries for the identification of therapeutic compounds, with phage display being one of the most accessible techniques. Although traditional phage display can generate billions of peptides simultaneously, it is limited to expression of canonical amino acids. Recently, several groups have successfully undergone efforts to apply genetic code expansion to introduce noncanonical amino acids (ncAAs) with novel reactivities and chemistries into phage-displayed peptide libraries. In addition to biological methods, several different chemical approaches have also been used to install noncanonical motifs into phage libraries. This review focuses on these recent advances that have taken advantage of both biological and chemical means for diversification of phage libraries with ncAAs.
Collapse
Affiliation(s)
- J. Trae Hampton
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, College of Medicine, Texas A&M University, College
Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Jia Q, Xiang Y. Cryo-EM structure of a bacteriophage M13 mini variant. Nat Commun 2023; 14:5421. [PMID: 37669979 PMCID: PMC10480500 DOI: 10.1038/s41467-023-41151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Filamentous bacteriophages package their circular, single stranded DNA genome with the major coat protein pVIII and the minor coat proteins pIII, pVII, pVI, and pIX. Here, we report the cryo-EM structure of a ~500 Å long bacteriophage M13 mini variant. The distal ends of the mini phage are sealed by two cap-like complexes composed of the minor coat proteins. The top cap complex consists of pVII and pIX, both exhibiting a single helix structure. Arg33 of pVII and Glu29 of pIX, located on the inner surface of the cap, play a key role in recognizing the genome packaging signal. The bottom cap complex is formed by the hook-like structures of pIII and pVI, arranged in helix barrels. Most of the inner ssDNA genome adopts a double helix structure with a similar pitch to that of the A-form double-stranded DNA. These findings provide insights into the assembly of filamentous bacteriophages.
Collapse
Affiliation(s)
- Qi Jia
- Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, P.R. China
| | - Ye Xiang
- Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, P.R. China.
| |
Collapse
|
7
|
Wong S, Jimenez S, Slavcev RA. Construction and characterization of a novel miniaturized filamentous phagemid for targeted mammalian gene transfer. Microb Cell Fact 2023; 22:124. [PMID: 37430278 DOI: 10.1186/s12934-023-02135-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/24/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND As simplistic proteinaceous carriers of genetic material, phages offer great potential as targeted vectors for mammalian transgene delivery. The filamentous phage M13 is a single-stranded DNA phage with attractive characteristics for gene delivery, including a theoretically unlimited DNA carrying capacity, amenability to tropism modification via phage display, and a well-characterized genome that is easy to genetically modify. The bacterial backbone in gene transfer plasmids consists of elements only necessary for amplification in prokaryotes, and, as such, are superfluous in the mammalian cell. These problematic elements include antibiotic resistance genes, which can disseminate antibiotic resistance, and CpG motifs, which are inflammatory in animals and can lead to transgene silencing. RESULTS Here, we examined how M13-based phagemids could be improved for transgene delivery by removing the bacterial backbone. A transgene cassette was flanked by isolated initiation and termination elements from the phage origin of replication. Phage proteins provided in trans by a helper would replicate only the cassette, without any bacterial backbone. The rescue efficiency of "miniphagemids" from these split origins was equal to, if not greater than, isogenic "full phagemids" arising from intact origins. The type of cassette encoded by the miniphagemid as well as the choice of host strain constrained the efficiency of phagemid rescue. CONCLUSIONS The use of two separated domains of the f1 ori improves upon a single wildtype origin while still resulting in high titres of miniphagemid gene transfer vectors. Highly pure lysates of miniaturized phagemids could be rapidly obtained in a straightforward procedure without additional downstream processing.
Collapse
Affiliation(s)
- Shirley Wong
- School of Pharmacy, University of Waterloo, Waterloo, Canada.
| | - Salma Jimenez
- School of Pharmacy, University of Waterloo, Waterloo, Canada
| | | |
Collapse
|
8
|
Conners R, León-Quezada RI, McLaren M, Bennett NJ, Daum B, Rakonjac J, Gold VAM. Cryo-electron microscopy of the f1 filamentous phage reveals insights into viral infection and assembly. Nat Commun 2023; 14:2724. [PMID: 37169795 PMCID: PMC10175506 DOI: 10.1038/s41467-023-37915-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Phages are viruses that infect bacteria and dominate every ecosystem on our planet. As well as impacting microbial ecology, physiology and evolution, phages are exploited as tools in molecular biology and biotechnology. This is particularly true for the Ff (f1, fd or M13) phages, which represent a widely distributed group of filamentous viruses. Over nearly five decades, Ffs have seen an extraordinary range of applications, yet the complete structure of the phage capsid and consequently the mechanisms of infection and assembly remain largely mysterious. In this work, we use cryo-electron microscopy and a highly efficient system for production of short Ff-derived nanorods to determine a structure of a filamentous virus including the tips. We show that structure combined with mutagenesis can identify phage domains that are important in bacterial attack and for release of new progeny, allowing new models to be proposed for the phage lifecycle.
Collapse
Affiliation(s)
- Rebecca Conners
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Rayén Ignacia León-Quezada
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Nanophage Technologies, Palmerston North, New Zealand
| | - Mathew McLaren
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Nicholas J Bennett
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Jasna Rakonjac
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.
- Nanophage Technologies, Palmerston North, New Zealand.
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
9
|
Suzuki T, Kamiya H. Easily-controllable, helper phage-free single-stranded phagemid production system. Genes Environ 2022; 44:25. [DOI: 10.1186/s41021-022-00254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract
Background
Single-stranded (ss) DNAs are utilized in various molecular biological and biotechnological applications including the construction of double-stranded DNAs with a DNA lesion, and are commonly prepared by using chimeric phage-plasmids (phagemids) plus M13-derived helper phages. However, the yields of ss DNA with these methods are poorly reproducible, and multiple factors must be optimized.
Results
In this report, we describe a new arabinose-inducible ss phagemid production method without helper phage infection. The newly exploited DNA derived from VCSM13 expresses the pII protein, which initiates ss DNA synthesis, under the control of the araBAD promoter. In addition, the packaging signal is deleted in the DNA to reduce the contamination of the phage-derived ss DNA. The phagemid DNA of interest, carrying the M13 origin of replication and the packaging signal, was introduced into bacterial cells maintaining the modified VCSM13 DNA as a plasmid, and the ss phagemid DNA production was induced by arabinose. The DNA recovered from the phage particles had less contamination from VCSM13 DNA, as compared to the conventional method. Moreover, we extended the method to purify the ss DNAs by using an anion-exchange column, to avoid the use of hazardous chemicals.
Conclusion
Using this combination of methods, large quantities of phagemid ss DNAs of interest can be consistently obtained.
Collapse
|
10
|
Kozisek T, Hamann A, Samuelson L, Fudolig M, Pannier AK. Comparison of promoter, DNA vector, and cationic carrier for efficient transfection of hMSCs from multiple donors and tissue sources. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:81-93. [PMID: 34513295 PMCID: PMC8413668 DOI: 10.1016/j.omtn.2021.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/25/2021] [Indexed: 01/22/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are primary cells with high clinical relevance that could be enhanced through genetic modification. However, gene delivery, particularly through nonviral routes, is inefficient. To address the shortcomings of nonviral gene delivery to hMSCs, our lab has previously demonstrated that pharmacological "priming" of hMSCs with clinically approved drugs can increase transfection in hMSCs by modulating transfection-induced cytotoxicity. However, even with priming, hMSC transfection remains inefficient for clinical applications. This work takes a complementary approach to addressing the challenges of transfecting hMSCs by systematically investigating key transfection parameters for their effect on transgene expression. Specifically, we investigated two promoters (cytomegalovirus [CMV] and elongation factor 1 alpha), four DNA vectors (plasmid, plasmid with no F1 origin, minicircle, and mini-intronic plasmid), two cationic carriers (Lipofectamine 3000 and Turbofect), and four donors of hMSCs from two tissues (adipose and bone marrow) for efficient hMSC transfection. Following systematic comparison of each variable, we identified adipose-derived hMSCs transfected with mini-intronic plasmids containing the CMV promoter delivered using Lipofectamine 3000 as the parameters that produced the highest transfection levels. The data presented in this work can guide the development of other hMSC transfection systems with the goal of producing clinically relevant, genetically modified hMSCs.
Collapse
Affiliation(s)
- Tyler Kozisek
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrew Hamann
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Luke Samuelson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Miguel Fudolig
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Angela K. Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
11
|
Akremi I, Holtappels D, Brabra W, Jlidi M, Hadj Ibrahim A, Ben Ali M, Fortuna K, Ahmed M, Meerbeek BV, Rhouma A, Lavigne R, Ben Ali M, Wagemans J. First Report of Filamentous Phages Isolated from Tunisian Orchards to Control Erwinia amylovora. Microorganisms 2020; 8:microorganisms8111762. [PMID: 33182526 PMCID: PMC7697814 DOI: 10.3390/microorganisms8111762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/28/2023] Open
Abstract
Newly discovered Erwinia amylovora phages PEar1, PEar2, PEar4 and PEar6 were isolated from three different orchards in North Tunisia to study their potential as biocontrol agents. Illumina sequencing revealed that the PEar viruses carry a single-strand DNA genome between 6608 and 6801 nucleotides and belong to the Inoviridae, making them the first described filamentous phages of E. amylovora. Interestingly, phage-infected cells show a decreased swimming and swarming motility and a cocktail of the four phages can significantly reduce infection of E. amylovora in a pear bioassay, potentially making them suitable candidates for phage biocontrol.
Collapse
Affiliation(s)
- Ismahen Akremi
- Laboratory of Microbial Biotechnology, Enzymatics and Biomolecules (LBMEB), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (I.A.); (W.B.); (M.J.); (A.H.I.); (M.B.A.); (M.B.A.)
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21-Box 2462, 3001 Leuven, Belgium; (D.H.); (K.F.); (R.L.)
| | - Dominique Holtappels
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21-Box 2462, 3001 Leuven, Belgium; (D.H.); (K.F.); (R.L.)
| | - Wided Brabra
- Laboratory of Microbial Biotechnology, Enzymatics and Biomolecules (LBMEB), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (I.A.); (W.B.); (M.J.); (A.H.I.); (M.B.A.); (M.B.A.)
- Astrum Biotech, Business Incubator, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Mouna Jlidi
- Laboratory of Microbial Biotechnology, Enzymatics and Biomolecules (LBMEB), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (I.A.); (W.B.); (M.J.); (A.H.I.); (M.B.A.); (M.B.A.)
| | - Adel Hadj Ibrahim
- Laboratory of Microbial Biotechnology, Enzymatics and Biomolecules (LBMEB), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (I.A.); (W.B.); (M.J.); (A.H.I.); (M.B.A.); (M.B.A.)
| | - Manel Ben Ali
- Laboratory of Microbial Biotechnology, Enzymatics and Biomolecules (LBMEB), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (I.A.); (W.B.); (M.J.); (A.H.I.); (M.B.A.); (M.B.A.)
- Astrum Biotech, Business Incubator, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Kiandro Fortuna
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21-Box 2462, 3001 Leuven, Belgium; (D.H.); (K.F.); (R.L.)
| | - Mohammed Ahmed
- Biomaterials Research Group (BIOMAT), Department of Oral Sciences, KU Leuven, Kapucijnenvoer 7-Block A Box 7001, 3000 Leuven, Belgium; (M.A.); (B.V.M.)
- Department of Dental Biomaterials, Tanta University, Biomedical Campus, 32511 Tanta, Gharbia Governorate, Egypt
| | - Bart Van Meerbeek
- Biomaterials Research Group (BIOMAT), Department of Oral Sciences, KU Leuven, Kapucijnenvoer 7-Block A Box 7001, 3000 Leuven, Belgium; (M.A.); (B.V.M.)
| | - Ali Rhouma
- Laboratory of Integrated Olive Production, Olive Tree Institute, BP208 Marhajene City, Tunis 1082, Tunisia;
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21-Box 2462, 3001 Leuven, Belgium; (D.H.); (K.F.); (R.L.)
| | - Mamdouh Ben Ali
- Laboratory of Microbial Biotechnology, Enzymatics and Biomolecules (LBMEB), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia; (I.A.); (W.B.); (M.J.); (A.H.I.); (M.B.A.); (M.B.A.)
- Astrum Biotech, Business Incubator, Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21-Box 2462, 3001 Leuven, Belgium; (D.H.); (K.F.); (R.L.)
- Correspondence: ; Tel.: +32-1637-4622
| |
Collapse
|
12
|
Stern Z, Stylianou DC, Kostrikis LG. The development of inovirus-associated vector vaccines using phage-display technologies. Expert Rev Vaccines 2019; 18:913-920. [PMID: 31373843 PMCID: PMC7103683 DOI: 10.1080/14760584.2019.1651649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/31/2019] [Indexed: 01/25/2023]
Abstract
Introduction: Inovirus-associated vectors (IAVs) are derived from bacterial filamentous viruses (phages). As vaccine carriers, they have elicited both cellular and humoral responses against a variety of pathogens causing infectious diseases and other non-infectious diseases. By displaying specific antigen epitopes or proteins on their coat proteins, IAVs have merited much study, as their unique abilities are exploited for widespread vaccine development. Areas covered: The architectural traits of filamentous viruses and their derivatives, IAVs, facilitate the display of specific antigenic peptides which induce antibody production to prevent or curtail infection. Inoviruses provide a foundation for cost-efficient large-scale specific phage display. In this paper, the development of different applications of inovirus-based phage display vaccines across a broad range of pathogens and hosts is reviewed. The references cited in this review were selected from established databases based on the authors' knowledge of the study subject. Expert commentary: The importance of phage-display technology has been recently highlighted by the Nobel Prize in Chemistry 2018 awarded to George P. Smith and Sir Gregory P. Winter. Furthermore, the symbiotic nature of filamentous viruses infecting intestinal F+E. coli strains offers an attractive platform for the development of novel vaccines that stimulate mucosal immunity.
Collapse
Affiliation(s)
- Zachariah Stern
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Dora C. Stylianou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | |
Collapse
|
13
|
Hay ID, Lithgow T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep 2019; 20:e47427. [PMID: 30952693 PMCID: PMC6549030 DOI: 10.15252/embr.201847427] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriophage ("bacteria eaters") or phage is the collective term for viruses that infect bacteria. While most phages are pathogens that kill their bacterial hosts, the filamentous phages of the sub-class Inoviridae live in cooperative relationships with their bacterial hosts, akin to the principal behaviours found in the modern-day sharing economy: peer-to-peer support, to offset any burden. Filamentous phages impose very little burden on bacteria and offset this by providing service to help build better biofilms, or provision of toxins and other factors that increase virulence, or modified behaviours that provide novel motile activity to their bacterial hosts. Past, present and future biotechnology applications have been built on this phage-host cooperativity, including DNA sequencing technology, tools for genetic engineering and molecular analysis of gene expression and protein production, and phage-display technologies for screening protein-ligand and protein-protein interactions. With the explosion of genome and metagenome sequencing surveys around the world, we are coming to realize that our knowledge of filamentous phage diversity remains at a tip-of-the-iceberg stage, promising that new biology and biotechnology are soon to come.
Collapse
Affiliation(s)
- Iain D Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
14
|
Loh B, Kuhn A, Leptihn S. The fascinating biology behind phage display: filamentous phage assembly. Mol Microbiol 2019; 111:1132-1138. [PMID: 30556628 DOI: 10.1111/mmi.14187] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the recently awarded Nobel Prize to the inventor of Phage Display, George Smith, the technique has once more gained attention. However, one should not forget about the biology behind the method. Almost always ignored is how the structure of this bacterial virus is assembled. In contrast to lytic phages, filamentous phages are constantly being extruded through the bacterial membranes without lysis. Such filamentous phages are found in all aquatic environments, such as rivers and lakes, in the deep sea, in arctic ice, in hot springs and, associated with their hosts, in plants and animals including humans. While most filamentous phages infect Gram-negative hosts, inoviruses of Gram-positive hosts have also been described. Despite being among the minority within the phage family with an estimate of less than 5%, filamentous phages are real parasites as they exist at the expense of the host, but do not kill it. In contrast to lytic bacteriophages, filamentous phages are assembled in the host's membrane and extruded across the cellular envelope while the bacterium continues to grow. In this review, we focus on this complex and yet poorly understood process of assembly and secretion of filamentous phages.
Collapse
Affiliation(s)
- Belinda Loh
- Zhejiang University School of Medicine, Zhejiang University-Edinburgh University (ZJU-UoE) Institute, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, Zhejiang, 314400, P.R. China
| | - Andreas Kuhn
- Institute of Microbiology, University of Hohenheim, Garbenstrasse 30, Stuttgart, 70599, Germany
| | - Sebastian Leptihn
- Zhejiang University School of Medicine, Zhejiang University-Edinburgh University (ZJU-UoE) Institute, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, Zhejiang, 314400, P.R. China
| |
Collapse
|
15
|
Increasing the bactofection capacity of a mammalian expression vector by removal of the f1 ori. Cancer Gene Ther 2018; 26:183-194. [PMID: 30100607 PMCID: PMC6760541 DOI: 10.1038/s41417-018-0039-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/18/2018] [Accepted: 07/07/2018] [Indexed: 01/18/2023]
Abstract
Bacterial-mediated cancer therapy has shown great promise in in vivo tumour models with increased survival rates post-bacterial treatment. Improving efficiency of bacterial-mediated tumour regression has focused on controlling and exacerbating bacterial cytotoxicity towards tumours. One mechanism that has been used to carry this out is the process of bactofection where post-invasion, bacteria deliver plasmid-borne mammalian genes into target cells for expression. Here we utilised the cancer-targeting Salmonella Typhimurium strain, SL7207, to carry out bactofection into triple negative breast cancer MDA-MB-231 cells. However, we noted that post-transformation with the commonly used mammalian expression vector pEGFP, S. Typhimurium became filamentous, attenuated and unable to invade target cells efficiently. Filamentation did not occur in Escherichia coli-transformed with the same plasmid. Further investigation identified the region inducing S. Typhimurium filamentation as being the f1 origin of replication (f1 ori), an artefact of historic use of mammalian plasmids for single stranded DNA production. Other f1 ori-containing plasmids also induced the attenuated phenotype, while removal of the f1 ori from pEGFP restored S. Typhimurium virulence and increased the bactofection capacity. This work has implications for interpretation of prior bactofection studies employing f1 ori-containing plasmids in S. Typhimurium, while also indicating that future use of S. Typhimurium in targeting tumours should avoid the use of these plasmids.
Collapse
|
16
|
Ledsgaard L, Kilstrup M, Karatt-Vellatt A, McCafferty J, Laustsen AH. Basics of Antibody Phage Display Technology. Toxins (Basel) 2018; 10:E236. [PMID: 29890762 PMCID: PMC6024766 DOI: 10.3390/toxins10060236] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 01/12/2023] Open
Abstract
Antibody discovery has become increasingly important in almost all areas of modern medicine. Different antibody discovery approaches exist, but one that has gained increasing interest in the field of toxinology and antivenom research is phage display technology. In this review, the lifecycle of the M13 phage and the basics of phage display technology are presented together with important factors influencing the success rates of phage display experiments. Moreover, the pros and cons of different antigen display methods and the use of naïve versus immunized phage display antibody libraries is discussed, and selected examples from the field of antivenom research are highlighted. This review thus provides in-depth knowledge on the principles and use of phage display technology with a special focus on discovery of antibodies that target animal toxins.
Collapse
Affiliation(s)
- Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| | - Mogens Kilstrup
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| | | | | | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| |
Collapse
|
17
|
Rami A, Behdani M, Yardehnavi N, Habibi-Anbouhi M, Kazemi-Lomedasht F. An overview on application of phage display technique in immunological studies. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
18
|
Secor PR, Sass G, Nazik H, Stevens DA. Effect of acute predation with bacteriophage on intermicrobial aggression by Pseudomonas aeruginosa. PLoS One 2017. [PMID: 28622385 PMCID: PMC5473581 DOI: 10.1371/journal.pone.0179659] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In persons with structural lung disease, particularly those with cystic fibrosis (CF), chronic airway infections cause progressive loss of lung function. CF airways can be colonized by a variety of microorganisms; the most frequently encountered bacterial and fungal pathogens are Pseudomonas aeruginosa and Aspergillus fumigatus, respectively. Co-infection with P. aeruginosa and A. fumigatus often results in a more rapid loss of lung function, indicating that interactions between these pathogens affect infection pathogenesis. There has been renewed interest in the use of viruses (bacteriophage, mycoviruses) as alternatives to antibiotics to treat these infections. In previous work, we found that filamentous Pf bacteriophage produced by P. aeruginosa directly inhibited the metabolic activity of A. fumigatus by binding to and sequestering iron. In the current study, we further examined how filamentous Pf bacteriophage affected interactions between P. aeruginosa and A. fumigatus. Here, we report that the antifungal properties of supernatants collected from P. aeruginosa cultures infected with Pf bacteriophage were substantially less inhibitory towards A. fumigatus biofilms. In particular, we found that acute infection of P. aeruginosa by Pf bacteriophage inhibited the production of the virulence factor pyoverdine. Our results raise the possibility that the reduced production of antimicrobials by P. aeruginosa infected by Pf bacteriophage may promote conditions in CF airways that allow co-infection with A. fumigatus to occur, exacerbating disease severity. Our results also highlight the importance of considering how the use of bacteriophage as therapeutic agents could affect the behavior and composition of polymicrobial communities colonizing sites of chronic infection.
Collapse
Affiliation(s)
- Patrick R. Secor
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA, United States of America
| | - Hasan Nazik
- California Institute for Medical Research, San Jose, CA, United States of America
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States of America
- Department of Medical Microbiology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA, United States of America
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
19
|
The Transmembrane Morphogenesis Protein gp1 of Filamentous Phages Contains Walker A and Walker B Motifs Essential for Phage Assembly. Viruses 2017; 9:v9040073. [PMID: 28397779 PMCID: PMC5408679 DOI: 10.3390/v9040073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 01/26/2023] Open
Abstract
In contrast to lytic phages, filamentous phages are assembled in the inner membrane and secreted across the bacterial envelope without killing the host. For assembly and extrusion of the phage across the host cell wall, filamentous phages code for membrane-embedded morphogenesis proteins. In the outer membrane of Escherichia coli, the protein gp4 forms a pore-like structure, while gp1 and gp11 form a complex in the inner membrane of the host. By comparing sequences with other filamentous phages, we identified putative Walker A and B motifs in gp1 with a conserved lysine in the Walker A motif (K14), and a glutamic and aspartic acid in the Walker B motif (D88, E89). In this work we demonstrate that both, Walker A and Walker B, are essential for phage production. The crucial role of these key residues suggests that gp1 might be a molecular motor driving phage assembly. We further identified essential residues for the function of the assembly complex. Mutations in three out of six cysteine residues abolish phage production. Similarly, two out of six conserved glycine residues are crucial for gp1 function. We hypothesise that the residues represent molecular hinges allowing domain movement for nucleotide binding and phage assembly.
Collapse
|
20
|
Rakonjac J, Russel M, Khanum S, Brooke SJ, Rajič M. Filamentous Phage: Structure and Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:1-20. [PMID: 29549632 DOI: 10.1007/978-3-319-72077-7_1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ff filamentous phage (fd, M13 and f1) of Escherichia coli have been the workhorse of phage display technology for the past 30 years. Dominance of Ff over other bacteriophage in display technology stems from the titres that are about 100-fold higher than any other known phage, efficacious transformation ensuring large library size and superior stability of the virion at high temperatures, detergents and pH extremes, allowing broad range of biopanning conditions in screening phage display libraries. Due to the excellent understanding of infection and assembly requirements, Ff phage have also been at the core of phage-assisted continual protein evolution strategies (PACE). This chapter will give an overview of the Ff filamentous phage structure and biology, emphasizing those properties of the Ff phage life cycle and virion that are pertinent to phage display applications.
Collapse
Affiliation(s)
- Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | | | - Sofia Khanum
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Sam J Brooke
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Marina Rajič
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Krom RJ, Bhargava P, Lobritz MA, Collins JJ. Engineered Phagemids for Nonlytic, Targeted Antibacterial Therapies. NANO LETTERS 2015; 15:4808-4813. [PMID: 26044909 DOI: 10.1021/acs.nanolett.5b01943] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The increasing incidence of antibiotic-resistant bacterial infections is creating a global public health threat. Because conventional antibiotic drug discovery has failed to keep pace with the rise of resistance, a growing need exists to develop novel antibacterial methodologies. Replication-competent bacteriophages have been utilized in a limited fashion to treat bacterial infections. However, this approach can result in the release of harmful endotoxins, leading to untoward side effects. Here, we engineer bacterial phagemids to express antimicrobial peptides (AMPs) and protein toxins that disrupt intracellular processes, leading to rapid, nonlytic bacterial death. We show that this approach is highly modular, enabling one to readily alter the number and type of AMPs and toxins encoded by the phagemids. Furthermore, we demonstrate the effectiveness of engineered phagemids in an in vivo murine peritonitis infection model. This work shows that targeted, engineered phagemid therapy can serve as a viable, nonantibiotic means to treat bacterial infections, while avoiding the health issues inherent to lytic and replicative bacteriophage use.
Collapse
Affiliation(s)
- Russell J Krom
- †Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- ‡Harvard-MIT Program in Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
- ∥Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- ⊥Department of Molecular and Translational Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Prerna Bhargava
- †Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- §Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- ∥Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Michael A Lobritz
- †Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- §Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- ∥Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- #Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - James J Collins
- †Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- ‡Harvard-MIT Program in Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
- §Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- ∥Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
22
|
Quemin ERJ, Quax TEF. Archaeal viruses at the cell envelope: entry and egress. Front Microbiol 2015; 6:552. [PMID: 26097469 PMCID: PMC4456609 DOI: 10.3389/fmicb.2015.00552] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/19/2015] [Indexed: 11/13/2022] Open
Abstract
The cell envelope represents the main line of host defense that viruses encounter on their way from one cell to another. The cytoplasmic membrane in general is a physical barrier that needs to be crossed both upon viral entry and exit. Therefore, viruses from the three domains of life employ a wide range of strategies for perforation of the cell membrane, each adapted to the cell surface environment of their host. Here, we review recent insights on entry and egress mechanisms of viruses infecting archaea. Due to the unique nature of the archaeal cell envelope, these particular viruses exhibit novel and unexpected mechanisms to traverse the cellular membrane.
Collapse
Affiliation(s)
| | - Tessa E F Quax
- Molecular Biology of Archaea, Institute for Biology II - Microbiology, University of Freiburg , Freiburg, Germany
| |
Collapse
|
23
|
Sattar S, Bennett NJ, Wen WX, Guthrie JM, Blackwell LF, Conway JF, Rakonjac J. Ff-nano, short functionalized nanorods derived from Ff (f1, fd, or M13) filamentous bacteriophage. Front Microbiol 2015; 6:316. [PMID: 25941520 PMCID: PMC4403547 DOI: 10.3389/fmicb.2015.00316] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/30/2015] [Indexed: 11/22/2022] Open
Abstract
F-specific filamentous phage of Escherichia coli (Ff: f1, M13, or fd) are long thin filaments (860 nm × 6 nm). They have been a major workhorse in display technologies and bionanotechnology; however, some applications are limited by the high length-to-diameter ratio of Ff. Furthermore, use of functionalized Ff outside of laboratory containment is in part hampered by the fact that they are genetically modified viruses. We have now developed a system for production and purification of very short functionalized Ff-phage-derived nanorods, named Ff-nano, that are only 50 nm in length. In contrast to standard Ff-derived vectors that replicate in E. coli and contain antibiotic-resistance genes, Ff-nano are protein-DNA complexes that cannot replicate on their own and do not contain any coding sequences. These nanorods show an increased resistance to heating at 70∘C in 1% SDS in comparison to the full-length Ff phage of the same coat composition. We demonstrate that functionalized Ff-nano particles are suitable for application as detection particles in sensitive and quantitative “dipstick” lateral flow diagnostic assay for human plasma fibronectin.
Collapse
Affiliation(s)
- Sadia Sattar
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| | - Nicholas J Bennett
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| | - Wesley X Wen
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| | - Jenness M Guthrie
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand ; Science Haven Limited, Palmerston North New Zealand
| | - Len F Blackwell
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand ; Science Haven Limited, Palmerston North New Zealand
| | - James F Conway
- University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| |
Collapse
|
24
|
Mai-Prochnow A, Hui JGK, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. FEMS Microbiol Rev 2015; 39:465-87. [PMID: 25670735 DOI: 10.1093/femsre/fuu007] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 12/17/2014] [Indexed: 01/01/2023] Open
Abstract
This review synthesizes recent and past observations on filamentous phages and describes how these phages contribute to host phentoypes. For example, the CTXφ phage of Vibrio cholerae encodes the cholera toxin genes, responsible for causing the epidemic disease, cholera. The CTXφ phage can transduce non-toxigenic strains, converting them into toxigenic strains, contributing to the emergence of new pathogenic strains. Other effects of filamentous phage include horizontal gene transfer, biofilm development, motility, metal resistance and the formation of host morphotypic variants, important for the biofilm stress resistance. These phages infect a wide range of Gram-negative bacteria, including deep-sea, pressure-adapted bacteria. Many filamentous phages integrate into the host genome as prophage. In some cases, filamentous phages encode their own integrase genes to facilitate this process, while others rely on host-encoded genes. These differences are mediated by different sets of 'core' and 'accessory' genes, with the latter group accounting for some of the mechanisms that alter the host behaviours in unique ways. It is increasingly clear that despite their relatively small genomes, these phages exert signficant influence on their hosts and ultimately alter the fitness and other behaviours of their hosts.
Collapse
Affiliation(s)
- Anne Mai-Prochnow
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia
| | - Janice Gee Kay Hui
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia
| | - Staffan Kjelleberg
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Diane McDougald
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Scott A Rice
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| |
Collapse
|
25
|
Hassapis KA, Stylianou DC, Kostrikis LG. Architectural insight into inovirus-associated vectors (IAVs) and development of IAV-based vaccines inducing humoral and cellular responses: implications in HIV-1 vaccines. Viruses 2014; 6:5047-76. [PMID: 25525909 PMCID: PMC4276942 DOI: 10.3390/v6125047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022] Open
Abstract
Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.
Collapse
Affiliation(s)
- Kyriakos A Hassapis
- Department of Biological Sciences, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus.
| | - Dora C Stylianou
- Department of Biological Sciences, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus.
| | - Leondios G Kostrikis
- Department of Biological Sciences, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus.
| |
Collapse
|
26
|
Site-specific recombination systems in filamentous phages. Mol Genet Genomics 2012; 287:525-30. [DOI: 10.1007/s00438-012-0700-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/21/2012] [Indexed: 12/18/2022]
|
27
|
Smelyanski L, Gershoni JM. Site directed biotinylation of filamentous phage structural proteins. Virol J 2011; 8:495. [PMID: 22044460 PMCID: PMC3256129 DOI: 10.1186/1743-422x-8-495] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 11/01/2011] [Indexed: 11/17/2022] Open
Abstract
Filamentous bacteriophages have been used in numerous applications for the display of antibodies and random peptide libraries. Here we describe the introduction of a 13 amino acid sequence LASIFEAQKIEWR (designated BT, which is biotinylated in vivo by E. coli) into the N termini of four of the five structural proteins of the filamentous bacteriophage fd (Proteins 3, 7, 8 and 9). The in vivo and in vitro biotinylation of the various phages were compared. The production of multifunctional phages and their application as affinity reagents are demonstrated.
Collapse
Affiliation(s)
- Larisa Smelyanski
- Department of Cell Research and Immunology, George S, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | | |
Collapse
|
28
|
Folded DNA in action: hairpin formation and biological functions in prokaryotes. Microbiol Mol Biol Rev 2011; 74:570-88. [PMID: 21119018 DOI: 10.1128/mmbr.00026-10] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Structured forms of DNA with intrastrand pairing are generated in several cellular processes and are involved in biological functions. These structures may arise on single-stranded DNA (ssDNA) produced during replication, bacterial conjugation, natural transformation, or viral infections. Furthermore, negatively supercoiled DNA can extrude inverted repeats as hairpins in structures called cruciforms. Whether they are on ssDNA or as cruciforms, hairpins can modify the access of proteins to DNA, and in some cases, they can be directly recognized by proteins. Folded DNAs have been found to play an important role in replication, transcription regulation, and recognition of the origins of transfer in conjugative elements. More recently, they were shown to be used as recombination sites. Many of these functions are found on mobile genetic elements likely to be single stranded, including viruses, plasmids, transposons, and integrons, thus giving some clues as to the manner in which they might have evolved. We review here, with special focus on prokaryotes, the functions in which DNA secondary structures play a role and the cellular processes giving rise to them. Finally, we attempt to shed light on the selective pressures leading to the acquisition of functions for DNA secondary structures.
Collapse
|
29
|
Phage display as a powerful tool to engineer protease inhibitors. Biochimie 2010; 92:1689-704. [DOI: 10.1016/j.biochi.2010.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 05/05/2010] [Indexed: 11/18/2022]
|
30
|
Houbiers MC, Hemminga MA. Protein-lipid interactions of bacteriophage M13 gene 9 minor coat protein (Review). Mol Membr Biol 2009; 21:351-9. [PMID: 15764365 DOI: 10.1080/09687860400012918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gene 9 protein is one of the minor coat proteins of bacteriophage M13. The protein plays a role in the assembly process by associating with the host membrane by protein-lipid interactions. The availability of chemically synthesized protein has enabled the biophysical characterization of the membrane-bound state of the protein by using model membrane systems. This paper summarizes, discusses and further interprets this work in the light of the current state of the literature, leading to new possible models of the coat protein in a membrane. The biological implications of these findings related to the membrane-bound phage assembly are indicated.
Collapse
Affiliation(s)
- M Chantal Houbiers
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, NL-6703 HA Wageningen, The Netherlands
| | | |
Collapse
|
31
|
Weisser NE, Hall JC. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 2009; 27:502-20. [PMID: 19374944 DOI: 10.1016/j.biotechadv.2009.04.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/03/2009] [Accepted: 04/04/2009] [Indexed: 11/18/2022]
Abstract
Antibodies (Abs) are some of the most powerful tools in therapy and diagnostics and are currently one of the fastest growing classes of therapeutic molecules. Recombinant antibody (rAb) fragments are becoming popular therapeutic alternatives to full length monoclonal Abs since they are smaller, possess different properties that are advantageous in certain medical applications, can be produced more economically and are easily amendable to genetic manipulation. Single-chain variable fragment (scFv) Abs are one of the most popular rAb format as they have been engineered into larger, multivalent, bi-specific and conjugated forms for many clinical applications. This review will show the tremendous versatility and importance of scFv fragments as they provide the basic antigen binding unit for a multitude of engineered Abs for use as human therapeutics and diagnostics.
Collapse
Affiliation(s)
- Nina E Weisser
- Department of Environmental Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | | |
Collapse
|
32
|
Paschke M. Phage display systems and their applications. Appl Microbiol Biotechnol 2005; 70:2-11. [PMID: 16365766 DOI: 10.1007/s00253-005-0270-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 11/17/2005] [Accepted: 11/17/2005] [Indexed: 11/26/2022]
Abstract
Screening phage display libraries of proteins and peptides has, for almost two decades, proven to be a powerful technology for selecting polypeptides with desired biological and physicochemical properties from huge molecular libraries. The scope of phage display applications continues to expand. Recent applications and technical improvements driving further developments in the field of phage display are discussed.
Collapse
Affiliation(s)
- Matthias Paschke
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Monbijoustrasse 2A, 10117 Berlin, Germany.
| |
Collapse
|
33
|
Sachs JL, Bull JJ. Experimental evolution of conflict mediation between genomes. Proc Natl Acad Sci U S A 2005; 102:390-5. [PMID: 15630098 PMCID: PMC544279 DOI: 10.1073/pnas.0405738102] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 11/12/2004] [Indexed: 11/18/2022] Open
Abstract
Transitions to new levels of biological complexity often require cooperation among component individuals, but individual selection among those components may favor a selfishness that thwarts the evolution of cooperation. Biological systems with elements of cooperation and conflict are especially challenging to understand because the very direction of evolution is indeterminate and cannot be predicted without knowing which types of selfish mutations and interactions can arise. Here, we investigated the evolution of two bacteriophages (f1 and IKe) experimentally forced to obey a life cycle with elements of cooperation and conflict, whose outcome could have ranged from extinction of the population (due to selection of selfish elements) to extreme cooperation. Our results show the de novo evolution of a conflict mediation system that facilitates cooperation. Specifically, the two phages evolved to copackage their genomes into one protein coat, ensuring cotransmission with each other and virtually eliminating conflict. Thereafter, IKe evolved such extreme genome reduction that it lost the ability to make its own virions independent of f1. Our results parallel a variety of conflict mediation mechanisms existing in nature: evolution of reduced genomes in symbionts, cotransmission of partners, and obligate coexistence between cooperating species.
Collapse
Affiliation(s)
- Joel L Sachs
- Section of Integrative Biology, Patterson Laboratories, University of Texas, 1 University Station C0930, Austin, TX 78712-0253, USA.
| | | |
Collapse
|
34
|
Affiliation(s)
- V T Lee
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA.
| | | |
Collapse
|
35
|
Houbiers MC, Wolfs CJ, Spruijt RB, Bollen YJ, Hemminga MA, Goormaghtigh E. Conformation and orientation of the gene 9 minor coat protein of bacteriophage M13 in phospholipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1511:224-35. [PMID: 11286965 DOI: 10.1016/s0005-2736(00)00369-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The membrane-bound state of the gene 9 minor coat protein of bacteriophage M13 was studied in model membrane systems, which varied in lipid head group and lipid acyl chain composition. By using FTIR spectroscopy and subsequent band analysis a quantitative analysis of the secondary structure of the protein was obtained. The secondary structure of the gene 9 protein predominantly consists of alpha-helical (67%) and turn (33%) structures. The turn structure is likely to be located C-terminally where it has a function in recognizing the phage DNA during bacteriophage assembly. Attenuated total reflection FTIR spectroscopy was used to determine the orientation of gene 9 protein in the membrane, revealing that the alpha-helical domain is mainly transmembrane. The conformational and orientational measurements result in two models for the gene 9 protein in the membrane: a single transmembrane helix model and a two-helix model consisting of a 15 amino acid long transmembrane helix and a 10 amino acid long helix oriented parallel to the membrane plane. Potential structural consequences for both models are discussed.
Collapse
Affiliation(s)
- M C Houbiers
- Department of Biomolecular Sciences, Laboratory of Molecular Physics, Wageningen University and Research Center, Dreijenlaan 3 6703 HA Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
36
|
Houbiers MC, Spruijt RB, Demel RA, Hemminga MA, Wolfs CJ. Spontaneous insertion of gene 9 minor coat protein of bacteriophage M13 in model membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1511:309-16. [PMID: 11286974 DOI: 10.1016/s0005-2736(01)00288-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gene 9 minor coat protein from bacteriophage M13 is known to be located in the inner membrane after phage infection of Escherichia coli. The way of insertion of this small protein (32 amino acids) into membranes is still unknown. Here we show that the protein is able to insert in monolayers. The limiting surface pressure of 35 mN/m for 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphoglycerol lipid systems indicates that this spontaneous insertion can also occur in vivo. By carboxyfluorescein leakage experiments of vesicles it is demonstrated that protein monomers, or at least small aggregates, are more effective in releasing carboxyfluorescein than highly aggregated protein. The final orientation of the protein in the bilayer after insertion was addressed by proteinase K digestion, thereby making use of the unique C-terminal location of the antigenic binding site. After insertion the C-terminus is still available for the enzymatic digestion, while the N-terminus is not. This leads to the overall conclusion that the protein is able to insert spontaneously into membranes without the need of any machinery or transmembrane gradient, with the positively charged C-terminus remaining on the outside. The orientation after insertion of gene 9 protein is in agreement with the 'positive inside rule'.
Collapse
Affiliation(s)
- M C Houbiers
- Laboratory of Biophysics, Waginengen University, Dreijenlaan 3, 6703 HA Waginengen, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Feng JN, Model P, Russel M. A trans-envelope protein complex needed for filamentous phage assembly and export. Mol Microbiol 1999; 34:745-55. [PMID: 10564514 DOI: 10.1046/j.1365-2958.1999.01636.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Assembly and export of filamentous phage requires four non-capsid proteins: the outer membrane protein, pIV; the inner membrane proteins, pI and pXI; and a cytoplasmic host factor, thioredoxin. Chemical cross-linking of intact cells demonstrates a trans-membrane complex containing pI and pIV. Formation of the complex protects pI from proteolytic cleavage by an endogenous protease. This protection also requires pXI, which is identical to the C-terminal portion of pI. This indicates that pXI, which is required for phage assembly in its own right, is also part of the complex. This complex forms in the absence of any other phage proteins or the DNA substrate; hence, it represents the first preinitiation step of phage morphogenesis. On the basis of protease protection data, we propose that the preinitiation complex is converted to an initiation complex by binding phage DNA, thioredoxin and the initiating minor coat protein(s).
Collapse
Affiliation(s)
- J N Feng
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
38
|
Gao C, Mao S, Lo CH, Wirsching P, Lerner RA, Janda KD. Making artificial antibodies: a format for phage display of combinatorial heterodimeric arrays. Proc Natl Acad Sci U S A 1999; 96:6025-30. [PMID: 10339535 PMCID: PMC26829 DOI: 10.1073/pnas.96.11.6025] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/1999] [Indexed: 11/18/2022] Open
Abstract
The gene VII protein (pVII) and gene IX protein (pIX) are associated closely on the surface of filamentous bacteriophage that is opposite of the end harboring the widely exploited pIII protein. We developed a phagemid format wherein antibody heavy- and light-chain variable regions were fused to the amino termini of pVII and pIX, respectively. Significantly, the fusion proteins interacted to form a functional Fv-binding domain on the phage surface. Our approach will be applicable to the display of generic peptide and protein libraries that can form combinatorial heterodimeric arrays. Consequently, it represents a first step toward artificial antibodies and the selection of novel biological activities.
Collapse
Affiliation(s)
- C Gao
- Departments of Chemistry and Molecular Biology, The Scripps Research Institute and the Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
39
|
Houbiers MC, Spruijt RB, Wolfs CJ, Hemminga MA. Conformational and aggregational properties of the gene 9 minor coat protein of bacteriophage M13 in membrane-mimicking systems. Biochemistry 1999; 38:1128-35. [PMID: 9894010 DOI: 10.1021/bi981149e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The membrane-bound state of the gene 9 minor coat protein of bacteriophage M13 was studied in various membrane-mimicking systems, including organic solvents, detergent micelles, and phospholipid bilayers. For this purpose we determined the conformational and aggregational properties of the chemically synthesized protein by CD, FTIR, and HPSEC. The protein appears to be in a monomeric or small oligomeric alpha-helical state in TFE but adopts a mixture of alpha-helical and random structure after subsequent incorporation into SDS or DOPG. When solubilized by sodium cholate, however, the protein undergoes a transition in time into large aggregates, which contain mainly beta-sheet conformation. The rate of this beta-polymerization process was decreased at lower temperature and higher concentrations of sodium cholate. This aggregation was reversed only upon addition of high concentrations of the strong detergent SDS. By reconstitution of the cholate-solubilized protein into DOPG, it was found that the state of the protein, whether initially alpha-helical monomeric/oligomeric or beta-sheet aggregate, did not change. On the basis of our results, we propose that the principal conformational state of membrane-bound gene 9 protein in vivo is alpha-helical.
Collapse
Affiliation(s)
- M C Houbiers
- Department of Biomolecular Sciences, Laboratory of Molecular Physics, Wageningen University and Research Center, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Rudert F, Woltering C, Frisch C, Rottenberger C, Ilag LL. A phage-based system to select multiple protein-protein interactions simultaneously from combinatorial libraries. FEBS Lett 1998; 440:135-40. [PMID: 9862442 DOI: 10.1016/s0014-5793(98)01413-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Selectively infective phage (SIP) can be used to identify protein-protein interactions. SIP was modified to facilitate the simultaneous selection of interacting protein pairs from large combinatorial libraries. An interference-resistant phage was constructed which non-covalently, but stably links the genetic information of an interacting pair, encoded separately on phage and phagemid vectors, by co-packaging into heteropolyphages. In a model system, the interaction between a SIP-selected peptide and the intracellular domain of the p75 neurotrophin receptor was detected in the presence of a 10(4)-fold excess of a non-interacting control pair (jun leucine zipper and p75 intracellular domain) via SIP hetero-polyphage transductants. To minimize the redundancy of transductants and to minimize possible ligand exchange generated in a solution-based SIP screening, a filter-based in situ infectivity screening was developed. The combination of the above techniques may provide a powerful system for rapid screening of very large sequence spaces.
Collapse
Affiliation(s)
- F Rudert
- MorphoSys AG, Martinsried/Munich, Germany.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Filamentous phage protein III (pIII), located at one end of the phage, is required for infectivity and stability of the particle. Cells infected with phage from which gene III has been completely deleted produce particles that are not released into the medium but stay associated at the surface. These particles are much longer than normal phage. They can be released by subsequent expression of pIII. Viewed with the electron microscope, cells infected with gene III deletion phage are decorated with structures that resemble extremely long pili. Surprisingly, such cells are viable and can form colonies. The pIII deficiency can be complemented in trans, but there is a threshold concentration below which assembly does not occur. Above this threshold, pIII is used very efficiently and is incorporated into infectious but longer than unit length phage. As the concentration of pIII is increased, the number of infectious particles increases, and their average length decreases.pIII stabilizes pVI, a second phage protein found at the pIII end of the particle. In the absence of pIII, degradation of pVI is very rapid. pIII is thus not only required for infectivity and particle stability, but to terminate assembly and release the phage from its assembly site.
Collapse
Affiliation(s)
- J Rakonjac
- The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | | |
Collapse
|
42
|
Madison-Antenucci S, Steege DA. Translation limits synthesis of an assembly-initiating coat protein of filamentous phage IKe. J Bacteriol 1998; 180:464-72. [PMID: 9457845 PMCID: PMC106909 DOI: 10.1128/jb.180.3.464-472.1998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Translation is shown to be downregulated sharply between genes V and VII of IKe, a filamentous bacteriophage classed with the Ff group (phages f1, M13, and fd) but having only 55% DNA sequence identity to it. Genes V and VII encode the following proteins which are used in very different amounts: pV, used to coat the large number of viral DNA molecules prior to assembly, and pVII, used to serve as a cap with pIX in 3 to 5 copies on the end of the phage particle that emerges first from Escherichia coli. The genes are immediately adjacent to each other and are represented in the same amounts on the Ff and IKe mRNAs. Ff gene VII has an initiation site that lacks detectable intrinsic activity yet through coupling is translated at a level 10-fold lower than that of upstream gene V. The experiments reported reveal that by contrast, the IKe gene VII initiation site had detectable activity but was coupled only marginally to upstream translation. The IKe gene V and VII initiation sites both showed higher activities than the Ff sites, but the drop in translation at the IKe V-VII junction was unexpectedly severe, approximately 75-fold. As a result, gene VII is translated at similarly low levels in IKe- and Ff-infected hosts, suggesting that selection to limit its expression has occurred.
Collapse
Affiliation(s)
- S Madison-Antenucci
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
43
|
Rakonjac J, Jovanovic G, Model P. Filamentous phage infection-mediated gene expression: construction and propagation of the gIII deletion mutant helper phage R408d3. Gene X 1997; 198:99-103. [PMID: 9370269 DOI: 10.1016/s0378-1119(97)00298-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We describe the use of transcriptional fusions to the phage shock protein (psp) promoter. These fusions are expressed only when cells are infected by filamentous phage. In an application, the psp promoter was fused to the protein coding part of filamentous phage gene III (gIII). Protein III (pIII) is needed to complement mutant f1 phage containing a deletion of gIII, but its synthesis also renders cells resistant to infection. By inducing pIII production from psp-gIII only in the cells that are already infected with phage, it was possible to obtain plaques from phage in which gIII had been completely deleted. gIII was deleted from two helper phages: R408 and VCSM13, which were then propagated on cells containing the psp-gIII fusion. These two phages were tested for use in a phage display method that requires generation of noninfectious, phagemid-containing virion-like particles. Both helpers worked, but R408d3 was superior to VCSM13d3, because it generated about 1800-times fewer background infectious particles.
Collapse
Affiliation(s)
- J Rakonjac
- The Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
44
|
Abstract
Biogenesis of both filamentous phage and type-IV pili involves the assembly of many copies of a small, integral inner membrane protein (the phage major coat protein or pilin) into a helical, tubular array that passes through the outer membrane. The occurrence of related proteins required for assembly and export in both systems suggests that there may be similarities at the mechanistic level as well. This report summarizes the properties of filamentous phage and the proteins required for their assembly, with particular emphasis on features they may share with bacterial protein export and pilus biogenesis systems, and it presents evidence that supports the hypothesis that one of the phage proteins functions as an outer membrane export channel.
Collapse
Affiliation(s)
- M Russel
- The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
45
|
Feng JN, Russel M, Model P. A permeabilized cell system that assembles filamentous bacteriophage. Proc Natl Acad Sci U S A 1997; 94:4068-73. [PMID: 9108106 PMCID: PMC20569 DOI: 10.1073/pnas.94.8.4068] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A permeabilized cell system has been developed that is capable of assembling filamentous phage only upon addition of exogenous thioredoxin. The in vitro system exhibits the same component requirements seen in vivo: functional thioredoxin, an intact packaging signal in the substrate DNA, and the assembly protein, pIV. This crude in vitro system is insensitive to inhibitors of protein or DNA synthesis, demonstrating that particle assembly uses components that had accumulated before cell permeabilization. The temporal separation of the synthetic period, during which phage proteins and DNA accumulate, from the assembly period enabled us to examine the energy requirement for assembly. We show here that ATP hydrolysis is required for filamentous phage assembly and that the proton motive force is also important.
Collapse
Affiliation(s)
- J N Feng
- Laboratory of Genetics, The Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
46
|
Linderoth NA, Model P, Russel M. Essential role of a sodium dodecyl sulfate-resistant protein IV multimer in assembly-export of filamentous phage. J Bacteriol 1996; 178:1962-70. [PMID: 8606171 PMCID: PMC177892 DOI: 10.1128/jb.178.7.1962-1970.1996] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Filamentous phage f1 encodes protein IV (pIV), a protein essential for phage morphogenesis that localizes to the outer membrane of Escherichia coli, where it is found as a multimer of 10 to 12 subunits. Introduction of internal His or Strep affinity tags at different sites in pIV interfered with its function to a variable extent. A spontaneous second-site suppressor mutation in gene IV allowed several different insertion mutants to function. The identical mutation was also isolated as a suppressor of a multimerization-defective missense mutation. A high-molecular-mass pIV species is the predominant form of pIV present in cells. This species is stable in 4% sodium dodecyl sulfate at temperatures up to 65 degrees C and is largely preserved at 100 degrees C in Laemmli protein sample buffer containing 4% sodium dodecyl sulfate. The suppressor mutation makes the high-molecular-mass form of wild-type pIV extremely resistant to dissociation, and it stabilizes the high-molecular-mass form of several mutant pIV proteins to extents that correlate with their level of function. Mixed multimers of pIV(f1) and pIV(Ike) also remain associated during heating in sodium dodecyl sulfate-containing buffers. Thus, sodium dodecyl sulfate- and heat-resistant high-molecular-mass pIV is derived from pIV multimer and reflects the physiologically relevant form of the protein essential for assembly-export.
Collapse
Affiliation(s)
- N A Linderoth
- Laboratory of Genetics, The Rockefeller University, New York, New York 10021-6399, USA
| | | | | |
Collapse
|
47
|
Abstract
Filamentous phages are small, highly evolved parasites that can reproduce and disseminate without killing their host. During assembly, virion proteins are transferred from the host membrane to the single-stranded DNA phase genome and simultaneously secreted from the cell. Filamentous phage assembly shares certain features with bacterial processes responsible for the assembly of cell-surface structures and for extracellular protein secretion.
Collapse
Affiliation(s)
- M Russel
- Laboratory of Genetics, Rockefeller University, New York, NY 10021-6399, USA
| |
Collapse
|
48
|
Gailus V, Ramsperger U, Johner C, Kramer H, Rasched I. The role of the adsorption complex in the termination of filamentous phage assembly. Res Microbiol 1994; 145:699-709. [PMID: 7746960 DOI: 10.1016/0923-2508(94)90042-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The adsorption complex of filamentous phage fd consists of two minor coat proteins, g3p and g6p, and is considered to be not only a structural entity, but also a functional unit to terminate phage assembly. Cells were infected with phage M13am8H1, which cannot assemble because it lacks the major coat protein g8p, although producing all of the other minor coat proteins. The membranes of infected cells were solubilized and analysed by non-denaturing PAGE and gel filtration. The data suggest the presence of the adsorption complex in these membranes. Furthermore, the non-polar gene 3 amber-mutant phage R171 was shown to lack g6p in the phage coat as well. The termination of assembly of this phage is disturbed, resulting in synthesis of polyphages. Electron micrographs and transient electrical birefringence show that these polyphages are eight times longer as compared to unit length phage. From these results, we conclude that the formation of the g3p-g6p complex is essential for correct termination of filamentous phage assembly.
Collapse
Affiliation(s)
- V Gailus
- Fakultät für Biologie, Universität, Konstanz, Germany
| | | | | | | | | |
Collapse
|
49
|
Russel M. Mutants at conserved positions in gene IV, a gene required for assembly and secretion of filamentous phages. Mol Microbiol 1994; 14:357-69. [PMID: 7830579 DOI: 10.1111/j.1365-2958.1994.tb01296.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The filamentous phage protein pIV is required for assembly and secretion of the virus and possesses regions homologous to those found in a number of Gram-negative bacterial proteins that are essential components of a widely distributed extracellular protein-export system. These proteins form multimers that may constitute an outer membrane channel that allows phage/protein egress. Three sets of f1 gene IV mutants were isolated at positions that are absolutely (G355 and P375) or largely (F381) conserved amongst the 16 currently known family members. The G355 mutants were non-functional, interfered with assembly of pIV+ phage, and made Escherichia coli highly sensitive to deoxycholate. The P375 mutants were non-functional and defective in multimerization. Many of the F381 mutants retained substantial function, and even those in which charged residues had been introduced supported some phage assembly. Some inferences about the roles of these conserved amino acids are made from the mutant phenotypes.
Collapse
Affiliation(s)
- M Russel
- Rockefeller University, New York, New York 10021
| |
Collapse
|
50
|
Affiliation(s)
- M Russel
- Rockefeller University, New York, NY 10021
| |
Collapse
|