1
|
Qiu J, Ashkenazi A, Liu S, Shai Y. Structural and functional properties of the membranotropic HIV-1 glycoprotein gp41 loop region are modulated by its intrinsic hydrophobic core. J Biol Chem 2013; 288:29143-50. [PMID: 23960077 DOI: 10.1074/jbc.m113.496646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The gp41 disulfide loop region switches from a soluble state to a membrane-bound state during the human immunodeficiency virus type 1 (HIV-1) envelope-mediated membrane fusion process. The loop possesses a hydrophobic core at the center of the region with an unusual basic residue (Lys-601). Furthermore, two loop core mutations, K601A and L602A, are found to inhibit HIV-1 infectivity while keeping wild type-like levels of the envelope, implying that they exert an inhibitory effect on gp41 during the membrane fusion event. Here, we investigated the mode of action of these mutations on the loop region. We show that the K601A mutation, but not the L602A mutation, abolished the binding of a loop-specific monoclonal antibody to a loop domain peptide. Additionally, the K601A, but not the L602A, impaired disulfide bond formation in the peptides. This was correlated with changes in the circular dichroism spectrum imposed by the K601A mutation. In the membrane, however, the L602A, but not the K601A, reduced the lipid mixing ability of the loop peptides, which was correlated with decreased α-helical content of the L602A mutant. The results suggest that the Lys-601 residue provides a moderate hydrophobicity level within the gp41 loop core that contributes to the proper structure and function of the loop inside and outside the membrane. Because basic residues are found between the loop Cys residues of several lentiviral fusion proteins, the findings may contribute to understanding the fusion mechanism of other viruses as well.
Collapse
Affiliation(s)
- Jiayin Qiu
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel and
| | | | | | | |
Collapse
|
2
|
Ashkenazi A, Merklinger E, Shai Y. Intramolecular interactions within the human immunodeficiency virus-1 gp41 loop region and their involvement in lipid merging. Biochemistry 2012; 51:6981-9. [PMID: 22894130 DOI: 10.1021/bi300868f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human immunodeficiency virus utilizes its gp41 fusion protein to mediate virus-cell membrane fusion. The conserved disulfide loop region in the gp41 hairpin conformation reverses the protein chain, such that the N-terminal heptad repeat and the C-terminal heptad repeat regions interact to form the six-helix bundle. Hence, it is conceivable that the sequential folded N- and C-terminal parts of the loop region also interact. We show that the N- and C-terminal parts of the loop preferably form disulfide-bonded heterodimers with slow oxidation kinetics. Furthermore, when the two parts were linked to a single polypeptide to form the full-length loop, only an intramolecular disulfide-bonded loop was formed. Fluorescence studies revealed that an interaction takes place between the N- and C-terminal parts of the loop in solution, which was sustained in membranes. Functionally, only a combination of the N- and C-loop parts induced lipid mixing of model liposomes, the level of which increased 8-fold when they were connected to a single polypeptide chain. In both cases, the activity was independent of the oxidation state of the cysteines. Overall, the data (i) provide evidence of a specific interaction between the N- and C-terminal parts of the loop, which can further stabilize gp41 hairpin conformation, and (ii) suggest that the interaction between the N- and C-terminal parts of the loop is sufficient to induce lipid merging without forming a disulfide bond.
Collapse
Affiliation(s)
- Avraham Ashkenazi
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | |
Collapse
|
3
|
Ashkenazi A, Viard M, Wexler-Cohen Y, Blumenthal R, Shai Y. Viral envelope protein folding and membrane hemifusion are enhanced by the conserved loop region of HIV-1 gp41. FASEB J 2011; 25:2156-66. [PMID: 21429941 PMCID: PMC3114521 DOI: 10.1096/fj.10-175752] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 03/10/2011] [Indexed: 11/11/2022]
Abstract
Fusion of human immunodeficiency virus (HIV-1) with target cells is mediated by the gp41 transmembrane envelope protein. The loop region within gp41 contains 2 crucial cysteines that play an unknown role in HIV-cell fusion. On the basis of cell-cell fusion assay, using human T-cell lines [Jurkat E6-1 and Jurkat HXBc2(4)], and virus-cell fusion assay, using fully infectious HIV-1 HXBc2 virus and TZM-bl human cell line, we provide evidence that the oxidation state of the disulfide bond within a loop domain peptide determines its activity. The oxidized (closed) form inhibits fusion, while the reduced (opened) form enhances hemifusion. These opposite activities reach 60% difference in viral fusion. Both forms of the loop domain interact with gp41: the opened form enhances gp41 folding into a bundle, whereas the closed form inhibits this folding. Therefore, the transformation of the cysteines from a reduced to an oxidized state enables the loop to convert from opened to closed conformations, which assists gp41 to fold and induces hemifusion. The significant conservation of the loop region within many envelope proteins suggests a general mechanism, which is exploited by viruses to enhance entry into their host cells.
Collapse
Affiliation(s)
- Avraham Ashkenazi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Mathias Viard
- Nanobiology Program, Center of Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Basic Research Program, SAIC-Frederick, Inc., National Cancer Institute–Frederick, Frederick, Maryland, USA
| | - Yael Wexler-Cohen
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Robert Blumenthal
- Nanobiology Program, Center of Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Yechiel Shai
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Anti-gp41 antibodies cloned from HIV-infected patients with broadly neutralizing serologic activity. J Virol 2010; 84:5032-42. [PMID: 20219932 DOI: 10.1128/jvi.00154-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most HIV-infected individuals develop antibodies to the gp120 and gp41 components of the viral spike; however, only a fraction of these individuals mount a broadly neutralizing serum response against HIV. We have cloned anti-HIV antibodies from the memory B-cell compartment of six individuals with variable viral loads and high titers of broadly neutralizing antibodies. Here, we report on the features of the anti-gp41 response in these patients. Competition experiments with previously characterized antibodies targeting defined epitopes on the gp41 ectodomain showed antibodies directed against the "immunodominant region" (cluster I), the carboxy-terminal heptad repeat (cluster II), and the membrane-proximal external region (cluster IV). On the other hand, antibodies directed against the amino-terminal part of the molecule, including the fusion peptide, polar region, and the N-terminal heptad repeat, were not detected. When all patients' data were combined, unique B-cell clones targeting cluster I, II, and IV accounted for 32%, 49%, and 53% of all anti-gp41-reactive B cells, respectively; therefore, no single region was truly immunodominant. Finally, although we found no new neutralizing epitopes or HIV-1-neutralizing activity by any of the gp41 antibodies at concentrations of up to 50 microg/ml, high concentrations of 7 out of 15 anti-cluster I antibodies neutralized tier 2 viruses.
Collapse
|
5
|
van Anken E, Sanders RW, Liscaljet IM, Land A, Bontjer I, Tillemans S, Nabatov AA, Paxton WA, Berkhout B, Braakman I. Only five of 10 strictly conserved disulfide bonds are essential for folding and eight for function of the HIV-1 envelope glycoprotein. Mol Biol Cell 2008; 19:4298-309. [PMID: 18653472 DOI: 10.1091/mbc.e07-12-1282] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein folding in the endoplasmic reticulum goes hand in hand with disulfide bond formation, and disulfide bonds are considered key structural elements for a protein's folding and function. We used the HIV-1 Envelope glycoprotein to examine in detail the importance of its 10 completely conserved disulfide bonds. We systematically mutated the cysteines in its ectodomain, assayed the mutants for oxidative folding, transport, and incorporation into the virus, and tested fitness of mutant viruses. We found that the protein was remarkably tolerant toward manipulation of its disulfide-bonded structure. Five of 10 disulfide bonds were dispensable for folding. Two of these were even expendable for viral replication in cell culture, indicating that the relevance of these disulfide bonds becomes manifest only during natural infection. Our findings refine old paradigms on the importance of disulfide bonds for proteins.
Collapse
Affiliation(s)
- Eelco van Anken
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kim S, Pang HB, Kay MS. Peptide mimic of the HIV envelope gp120-gp41 interface. J Mol Biol 2007; 376:786-97. [PMID: 18178220 DOI: 10.1016/j.jmb.2007.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 09/29/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
Abstract
The human immunodeficiency virus envelope glycoprotein (Env) is composed of surface (gp120) and transmembrane (gp41) subunits, which are noncovalently associated on the viral surface. Human immunodeficiency virus Env mediates viral entry after undergoing a complex series of conformational changes induced by interaction with cellular CD4 and a chemokine coreceptor. These changes propagate from gp120 to gp41 via the gp120-gp41 interface, ultimately exposing gp41 and allowing it to form the trimer-of-hairpins structure that provides the driving force for membrane fusion. Key unresolved questions about the gp120-gp41 interface include the specific regions of gp41 and gp120 involved, the mechanism by which receptor and coreceptor-binding-induced conformational changes in gp120 are communicated to gp41, how trimer-of-hairpins formation is prevented in the prefusogenic gp120-gp41 complex, and, ultimately, the structure of the prefusion gp120-gp41 complex. Here, we develop a biochemical model system that mimics a key portion of the gp120-gp41 interface in the prefusogenic state. We find that a gp41 fragment containing the disulfide bond loop and C-peptide region binds primarily to the gp120 C5 region and that this interaction is incompatible with trimer-of-hairpins formation. Based on these data, we propose that in prefusogenic Env, gp120 sequesters the gp41 C-peptide region away from the N-trimer region, preventing trimer-of-hairpins formation until coreceptor binding disrupts this interface. This model system is a valuable tool for studying the gp120-gp41 complex, conformational changes induced by CD4 and coreceptor binding, and the mechanism of membrane fusion.
Collapse
Affiliation(s)
- Sunghwan Kim
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, USA
| | | | | |
Collapse
|
7
|
Holguín A, De Arellano ER, Soriano V. Amino acid conservation in the gp41 transmembrane protein and natural polymorphisms associated with enfuvirtide resistance across HIV-1 variants. AIDS Res Hum Retroviruses 2007; 23:1067-74. [PMID: 17919099 DOI: 10.1089/aid.2006.0256] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Information about gp41 variability across distinct HIV-1 subtypes is scarce, and yet such knowledge would be desirable for designing new drugs targeting this viral protein. Conserved gp41 residues in viruses derived from 79 individuals infected with distinct HIV-1 subtypes (29 A, 25 B, 8 C, 3 D, 4 F, 4 G, 2 H, 1 J, 1 U, and 2 CRF06_cpx) and naive for entry inhibitors were examined. Conservation of gp41 was also examined in 908, 56, and 3 HIV-1 group M, O, and N sequences, respectively, available at the Los Alamos HIV Sequence Database. Among the 345 residues in the full gp41 protein, 36% showed up to 90% conservation in all 987 group M sequences, as did 40% of 56 group O sequences and 49% of 3 group N sequences. The HR1 region (residues 29-82) showed a higher proportion of highly conserved residues than did the HR2 region (residues 116-161) in all groups (65 vs. 34% in group M, 57 vs. 46% in group O, and 80 vs. 52% in group N). Some secondary resistance mutations to enfuvirtide were found as natural polymorphisms (A30V and Q56K/R in group M, Q56R and S138A in group O, and S138A in group N). In fact, A30V was a signature change in clade G and CRF06_cpx, whereas Q56K/R was a signature change for clades A and J, as well as for CRF04_cpx, CRF09_cpx, CRF11_cpx, and CRF13_cpx. The relative conservation of amino acids in gp41 across HIV-1 variants indirectly highlights the critical role of this protein for HIV infectivity and makes it feasible to design new entry inhibitors with activity against diverse HIV-1 variants.
Collapse
Affiliation(s)
- Africa Holguín
- Service of Infectious Diseases, Hospital Carlos III, Madrid, Spain
| | | | - Vincent Soriano
- Service of Infectious Diseases, Hospital Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Sen J, Jacobs A, Jiang H, Rong L, Caffrey M. The disulfide loop of gp41 is critical to the furin recognition site of HIV gp160. Protein Sci 2007; 16:1236-41. [PMID: 17525470 PMCID: PMC2206660 DOI: 10.1110/ps.072771407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The importance of the HIV gp41 conserved disulfide loop to envelope function has been examined by mutational and functional analyses. Based on a luciferase-reporter entry assay, mutants gp41-CC/AA (C598A/C604A) and gp41-Delta (deletion of residues 596-606) result in a nonfunctional envelope protein. Western blot analysis shows both mutants to be properly expressed but not processed to form gp120 and gp41, which explains their nonfunctionality. The presence of mutant gp160 on the cell surface, as well as their ability to bind to sCD4, suggests that the mutations have disrupted processing at the furin recognition site encoded within the gp120 conserved domain 5, without resulting in an overall misfolding of the protein. With respect to the furin recognition site, the mutations are sequentially distant, which implies that the gp41 disulfide loop is interacting with gp120 C5 in gp160. In addition, we have modeled the gp120-gp41 interaction in unprocessed precursor gp160 using structural data available for gp120 and gp41 domains in isolation, supplemented by mutagenesis data. We suggest that the mutations have altered the interaction between gp120 C5 and the gp41 disulfide loop, resulting in decreased accessibility of the furin recognition site and implying that the interaction between the gp120 C5 and gp41 loop is a conformational requirement for gp160 processing. The sensitivity of this interaction could be exploited in future antivirals designed to disrupt HIV pathogenesis by disrupting gp160 processing.
Collapse
Affiliation(s)
- Jayita Sen
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
9
|
Cano A, Viveros M, Acero G, Govezensky T, Munguia ME, Gonzalez E, Soto L, Gevorkian G, Manoutcharian K. Antigenic properties of phage displayed peptides comprising disulfide-bonded loop of the immunodominant region of HIV-1 gp41. Immunol Lett 2004; 95:207-12. [PMID: 15388262 DOI: 10.1016/j.imlet.2004.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 07/23/2004] [Accepted: 07/23/2004] [Indexed: 11/30/2022]
Abstract
The HIV-1 envelope glycoprotein gp41 contains Cys(X)5Cys motif, which has been shown to elicit a strong antibody response in almost all HIV-1 infected individuals. This disulfide-bonded loop region is conserved in most retroviruses suggesting the existence of an essential function in virus life cycle. In this study, we displayed the peptides comprising 12 amino acids of the immunodominant loop of gp41 on the surface of M13 phage as N-terminal fusions to the minor coat protein pIII and major coat protein pVIII of the phage and demonstrated that cysteine loop containing peptide expressed on phage recognized 62 out of 63 (98.4%) HIV-1 positive samples but not control negative sera while phage bearing linear peptides detected 4-30% of HIV-1-positive sera. The main advantage of phage-based ELISA or other antibody detection-based diagnostic tests of HIV-infection to be used for massive screening in developing countries is the reproducible, simple, rapid and low-cost production of recombinant antigens.
Collapse
Affiliation(s)
- Alberto Cano
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, México, DF CP04510, México
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lay CS, Wilson KA, Kobe B, Kemp BE, Drummer HE, Poumbourios P. Expression and biochemical analysis of the entire HIV-2 gp41 ectodomain: determinants of stability map to N- and C-terminal sequences outside the 6-helix bundle core. FEBS Lett 2004; 567:183-8. [PMID: 15178320 DOI: 10.1016/j.febslet.2004.04.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 04/16/2004] [Accepted: 04/23/2004] [Indexed: 01/18/2023]
Abstract
The folding of HIV gp41 into a 6-helix bundle drives virus-cell membrane fusion. To examine the structural relationship between the 6-helix bundle core domain and other regions of gp41, we expressed in Escherichia coli, the entire ectodomain of HIV-2(ST) gp41 as a soluble, trimeric maltose-binding protein (MBP)/gp41 chimera. Limiting proteolysis indicated that the Cys-591-Cys-597 disulfide-bonded region is outside a core domain comprising two peptides, Thr-529-Trp-589 and Val-604-Ser-666. A biochemical examination of MBP/gp41 chimeras encompassing these core peptides indicated that the N-terminal polar segment, 521-528, and C-terminal membrane-proximal segment, 658-666, cooperate in stabilizing the ectodomain. A functional interaction between sequences outside the gp41 core may contribute energy to membrane fusion.
Collapse
Affiliation(s)
- Chan-Sien Lay
- St. Vincent's Institute of Medical Research, and Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
11
|
York J, Nunberg JH. Role of hydrophobic residues in the central ectodomain of gp41 in maintaining the association between human immunodeficiency virus type 1 envelope glycoprotein subunits gp120 and gp41. J Virol 2004; 78:4921-6. [PMID: 15078976 PMCID: PMC387687 DOI: 10.1128/jvi.78.9.4921-4926.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction between the gp120 and gp41 subunits of the human immunodeficiency virus envelope glycoprotein serves to stabilize the virion form of the complex and to transmit receptor-induced conformational changes in gp120 to trigger the membrane fusion activity of gp41. In this study, we used site-directed mutagenesis to identify amino acid residues in the central ectodomain of gp41 that contribute to the stability of the gp120-gp41 association. We identified alanine mutations at six positions, including four tryptophan residues, which result in mutant envelope glycoprotein complexes that fail to retain gp120 on the cell surface. These envelope glycoproteins readily shed their gp120 and are unable to mediate cell-cell fusion. These findings suggest an important role for the conserved bulky hydrophobic residues in stabilizing the gp120-gp41 complex.
Collapse
Affiliation(s)
- Joanne York
- Montana Biotechnology Center, The University of Montana, Missoula, Montana 59812, USA
| | | |
Collapse
|
12
|
Santiago ML, Bibollet-Ruche F, Bailes E, Kamenya S, Muller MN, Lukasik M, Pusey AE, Collins DA, Wrangham RW, Goodall J, Shaw GM, Sharp PM, Hahn BH. Amplification of a complete simian immunodeficiency virus genome from fecal RNA of a wild chimpanzee. J Virol 2003; 77:2233-42. [PMID: 12525658 PMCID: PMC140993 DOI: 10.1128/jvi.77.3.2233-2242.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current knowledge of the genetic diversity of simian immunodeficiency virus (SIVcpz) infection of wild chimpanzees (Pan troglodytes) is incomplete since few isolates, mostly from captive apes from Cameroon and Gabon, have been characterized; yet this information is critical for understanding the origins of human immunodeficiency virus type 1 (HIV-1) and the circumstances leading to the HIV-1 pandemic. Here, we report the first full-length SIVcpz sequence (TAN1) from a wild chimpanzee (Pan troglodytes schweinfurthii) from Gombe National Park (Tanzania), which was obtained noninvasively by amplification of virion RNA from fecal samples collected under field conditions. Using reverse transcription-PCR and a combination of generic and strain-specific primers, we amplified 13 subgenomic fragments which together spanned the entire TAN1 genome (9,326 bp). Distance and phylogenetic tree analyses identified TAN1 unambiguously as a member of the HIV-1/SIVcpz group of viruses but also revealed an extraordinary degree of divergence from all previously characterized SIVcpz and HIV-1 strains. In Gag, Pol, and Env proteins, TAN1 differed from west-central African SIVcpz and HIV-1 strains on average by 36, 30, and 51% of amino acid sequences, respectively, approaching distance values typically found for SIVs from different primate species. The closest relative was SIVcpzANT, also from a P. t. schweinfurthii ape, which differed by 30, 25, and 44%, respectively, in these same protein sequences but clustered with TAN1 in all major coding regions in a statistically highly significant manner. These data indicate that east African chimpanzees, like those from west-central Africa, are naturally infected by SIVcpz but that their viruses comprise a second, divergent SIVcpz lineage which appears to have evolved in relative isolation for an extended period of time. Our data also demonstrate that noninvasive molecular epidemiological studies of SIVcpz in wild chimpanzees are feasible and that such an approach may prove essential for unraveling the evolutionary history of SIVcpz/HIV-1 as well as that of other pathogens naturally infecting wild primate populations.
Collapse
Affiliation(s)
- Mario L Santiago
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Binley JM, Sanders RW, Master A, Cayanan CS, Wiley CL, Schiffner L, Travis B, Kuhmann S, Burton DR, Hu SL, Olson WC, Moore JP. Enhancing the proteolytic maturation of human immunodeficiency virus type 1 envelope glycoproteins. J Virol 2002; 76:2606-16. [PMID: 11861826 PMCID: PMC135977 DOI: 10.1128/jvi.76.6.2606-2616.2002] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2001] [Accepted: 12/06/2001] [Indexed: 12/31/2022] Open
Abstract
In virus-infected cells, the envelope glycoprotein (Env) precursor, gp160, of human immunodeficiency virus type 1 is cleaved by cellular proteases into a fusion-competent gp120-gp41 heterodimer in which the two subunits are noncovalently associated. However, cleavage can be inefficient when recombinant Env is expressed at high levels, either as a full-length gp160 or as a soluble gp140 truncated immediately N-terminal to the transmembrane domain. We have explored several methods for obtaining fully cleaved Env for use as a vaccine antigen. We tested whether purified Env could be enzymatically digested with purified protease in vitro. Plasmin efficiently cleaved the Env precursor but also cut at a second site in gp120, most probably the V3 loop. In contrast, a soluble form of furin was specific for the gp120-gp41 cleavage site but cleaved inefficiently. Coexpression of Env with the full-length or soluble form of furin enhanced Env cleavage but also reduced Env expression. When the Env cleavage site (REKR) was mutated in order to see if its use by cellular proteases could be enhanced, several mutants were found to be processed more efficiently than the wild-type protein. The optimal cleavage site sequences were RRRRRR, RRRRKR, and RRRKKR. These mutations did not significantly alter the capacity of the Env protein to mediate fusion, so they have not radically perturbed Env structure. Furthermore, unlike that of wild-type Env, expression of the cleavage site mutants was not significantly reduced by furin coexpression. Coexpression of Env cleavage site mutants and furin is therefore a useful method for obtaining high-level expression of processed Env.
Collapse
Affiliation(s)
- James M Binley
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ndung'u T, Renjifo B, Essex M. Construction and analysis of an infectious human Immunodeficiency virus type 1 subtype C molecular clone. J Virol 2001; 75:4964-72. [PMID: 11333875 PMCID: PMC114899 DOI: 10.1128/jvi.75.11.4964-4972.2001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) subtype C is now the predominant subtype in the global epidemic. This subtype is encountered in southern Africa and parts of Asia, where the epidemic is rapidly spreading. One possible explanation for these epidemiological observations is that this subtype has genetic characteristics that may contribute to its spread and/or pathogenic potential. In this report, we describe the construction of MJ4, an infectious chimeric molecular clone of HIV-1 subtype C that replicates in donor peripheral blood mononuclear cells and macrophages. We also tested this clone for its ability to use the chemokine receptors CCR1, CCR2b, CCR3, CXCR4, and CCR5 and found that the clone utilizes only CCR5 as the coreceptor for cell entry. The MJ4 clone will be useful in further biological and virological characterization of HIV-1 subtype C and will be an important tool in the continuing efforts to understand what may constitute protective immunity in HIV-1. The clone may also be used in experimental design of vaccine candidates that may be directed against HIV-1 subtype C.
Collapse
Affiliation(s)
- T Ndung'u
- Harvard AIDS Institute and Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
15
|
Ndung'u T, Renjifo B, Novitsky VA, McLane MF, Gaolekwe S, Essex M. Molecular cloning and biological characterization of full-length HIV-1 subtype C from Botswana. Virology 2000; 278:390-9. [PMID: 11118362 DOI: 10.1006/viro.2000.0583] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) subtype C is now responsible for more than half of all HIV-1 infections in the global epidemic and for the high levels of HIV-1 prevalence in southern Africa. To facilitate studies of the biological nature and the underlying molecular determinants of this virus, we constructed eight full-length proviral clones from two asymptomatic and three AIDS patients infected with HIV-1 subtype C from Botswana. Analysis of viral lysates showed that Gag, Pol, and Env structural proteins were present in the virions. In four clones, the analysis suggested inefficient envelope glycoprotein processing. Nucleotide sequence analysis of the eight clones did not reveal frameshifts, deletions, premature truncations, or translational stop codons in any structural, regulatory, or accessory genes. None of the subtype C clones were replication competent in donor peripheral blood mononuclear cells (PBMCs), macrophages, Jurkat(tat) cells, or U87. CD4.CCR5 cells. However, infection by two clones could be rescued by complementation with a functional subtype C envelope clone, resulting in a productive infection of PBMCs, macrophages, and U87. CD4.CCR5 cells.
Collapse
Affiliation(s)
- T Ndung'u
- Harvard AIDS Institute, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
16
|
Sanders RW, Schiffner L, Master A, Kajumo F, Guo Y, Dragic T, Moore JP, Binley JM. Variable-loop-deleted variants of the human immunodeficiency virus type 1 envelope glycoprotein can be stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits. J Virol 2000; 74:5091-100. [PMID: 10799583 PMCID: PMC110861 DOI: 10.1128/jvi.74.11.5091-5100.2000] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/1999] [Accepted: 02/17/2000] [Indexed: 11/20/2022] Open
Abstract
We have described an oligomeric gp140 envelope glycoprotein from human immunodeficiency virus type 1 that is stabilized by an intermolecular disulfide bond between gp120 and the gp41 ectodomain, termed SOS gp140 (J. M. Binley, R. W. Sanders, B. Clas, N. Schuelke, A. Master, Y. Guo, F. Kajumo, D. J. Anselma, P. J. Maddon, W. C. Olson, and J. P. Moore, J. Virol. 74:627-643, 2000). In this protein, the protease cleavage site between gp120 and gp41 is fully utilized. Here we report the characterization of gp140 variants that have deletions in the first, second, and/or third variable loop (V1, V2, and V3 loops). The SOS disulfide bond formed efficiently in gp140s containing a single loop deletion or a combination deletion of the V1 and V2 loops. However, deletion of all three variable loops prevented formation of the SOS disulfide bond. Some variable-loop-deleted gp140s were not fully processed to their gp120 and gp41 constituents even when the furin protease was cotransfected. The exposure of the gp120-gp41 cleavage site is probably affected in these proteins, even though the disabling change is in a region of gp120 distal from the cleavage site. Antigenic characterization of the variable-loop-deleted SOS gp140 proteins revealed that deletion of the variable loops uncovers cryptic, conserved neutralization epitopes near the coreceptor-binding site on gp120. These modified, disulfide-stabilized glycoproteins might be useful as immunogens.
Collapse
Affiliation(s)
- R W Sanders
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Johnston ER, Radke K. The SU and TM envelope protein subunits of bovine leukemia virus are linked by disulfide bonds, both in cells and in virions. J Virol 2000; 74:2930-5. [PMID: 10684314 PMCID: PMC111788 DOI: 10.1128/jvi.74.6.2930-2935.2000] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After the polyprotein precursor of retroviral envelope proteins is proteolytically cleaved, the surface (SU) and transmembrane (TM) subunits remain associated with each other by noncovalent interactions or by disulfide bonds. Disulfide linkages confer a relatively stable association between the SU and TM envelope protein subunits of Rous sarcoma virus and murine leukemia virus. In contrast, the noncovalent association between SU and TM of human immunodeficiency virus leads to significant shedding of SU from the surface of infected cells. The SU and TM proteins of bovine leukemia virus (BLV) initially were reported to be disulfide linked but later were concluded not to be, since TM is often lost during purification of SU protein. Here, we show that SU and TM of BLV do, indeed, associate through disulfide bonds, whether the envelope proteins are overexpressed in transfected cells, are produced in virus-infected cells, or are present in newly produced virions.
Collapse
Affiliation(s)
- E R Johnston
- Department of Animal Science and Graduate Group in Biochemistry and Molecular Biology, University of California, Davis, California 95616-8521, USA
| | | |
Collapse
|
18
|
Merat R, Raoul H, Leste-Lasserre T, Sonigo P, Pancino G. Variable constraints on the principal immunodominant domain of the transmembrane glycoprotein of human immunodeficiency virus type 1. J Virol 1999; 73:5698-706. [PMID: 10364320 PMCID: PMC112629 DOI: 10.1128/jvi.73.7.5698-5706.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lentiviruses have in their transmembrane glycoprotein (TM) a highly immunogenic structure referred to as the principal immunodominant domain (PID). The PID forms a loop of 5 to 7 amino acids between two conserved cysteines. Previous studies showed that envelope (Env) glycoprotein functions of feline immunodeficiency virus (FIV) could be retained after extensive mutation of the PID loop sequence, in spite of its high conservation. In order to compare Env function in different lentiviruses, either random mutations were introduced in the PID loop sequence of human immunodeficiency virus type 1 (HIV-1) or the entire HIV-1 PID loop was replaced by the corresponding PID loop of FIV or simian immunodeficiency virus (SIV). In the macrophage-tropic HIV-1 ADA Env, mutations impaired the processing of the gp160 Env precursor, thereby abolishing viral infectivity. However, 6 of the 108 random Env mutants that were screened retained the capacity to induce cell membrane fusion. The SIV and FIV sequences and five random mutations were then introduced in the context of T-cell-line-adapted HIV-1 LAI which, although phenotypically distant from HIV-1 ADA, has an identical PID loop sequence. In contrast to the situation for HIV-1 ADA mutants, the cleavage of the Env precursor was unaffected in most HIV-1 LAI mutants. Such mutations, however, resulted in increased shedding of the gp120 surface glycoprotein (SU) from the gp41 TM. The HIV-1 LAI Env mutants showed high fusogenic efficiency. Three Env mutants retained the capacity to mediate virus entry in target cells, although less efficiently than the wild-type Env, and allowed the reconstitution of infectious molecular clones. These results indicated that in HIV-1, like FIV, the conserved PID sequence can be changed without impairing Env function. However, functional constraints on the PID of HIV-1 vary depending on the structural context of Env, presumably in relation to the role of the PID in the interaction of the SU and TM subunits and the stability of the Env complex.
Collapse
Affiliation(s)
- R Merat
- Génétique des Virus (ICGM-CNRS UPR0415), Institut Cochin de Génétique Moléculaire, 75014 Paris, France
| | | | | | | | | |
Collapse
|
19
|
Mas A, Quiñones-Mateu ME, Domingo E, Soriano V. Phylogeny of HIV type 1 group O isolates based on env gene sequences. AIDS Res Hum Retroviruses 1999; 15:769-73. [PMID: 10357472 DOI: 10.1089/088922299310854] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- A Mas
- Centro de Biología Molecular Severo Ochoa, UAM, Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Rovinski B, Dekaban GA, Cao SX, Yao FL, Persson R, Matthews TJ, Klein MH. Engineering of noninfectious HIV-1-like particles containing mutant gp41 glycoproteins as vaccine candidates that allow vaccinees to be distinguished from HIV-1 infectees. Virology 1999; 257:438-48. [PMID: 10329554 DOI: 10.1006/viro.1999.9667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many AIDS vaccine candidates under development may elicit immune responses similar to those observed in and used to screen human immunodeficiency virus type 1 (HIV-1)-infected individuals. Therefore, it is important to develop vaccine candidates that incorporate antigenic markers and allow vaccinees to be distinguished from HIV-1 infectees. To this end, we introduced a series of mutations into and in the vicinity of the major immunodominant region (MIR) of gp41 (residues 598-609), a domain recognized by almost all HIV-1 infectees, and evaluated whether HIV-1-like particles incorporating such mutant glycoproteins could be expressed in mammalian cells. Results indicated that although up to three consecutive amino acids could be replaced within MIR without significantly affecting particle formation or gp160 processing, deletions within MIR impaired envelope processing. Replacement of HIV-1 MIR by part or most of the corresponding domain from other lentiviruses markedly decreased or abolished gp160 processing. Synthetic peptides corresponding to a mutated MIR incorporating three amino acid replacements were not recognized by a panel of sera from HIV-1 infectees, suggesting that HIV-1-like particles with this type of mutation represent potential candidate vaccines that could allow vaccinees to be distinguished from HIV-1 infectees.
Collapse
Affiliation(s)
- B Rovinski
- Department of Molecular Genetics, Pasteur-Mérieux-Connaught Research Center, North York, Ontario, M2R 3T4, Canada.
| | | | | | | | | | | | | |
Collapse
|
21
|
Kobe B, Center RJ, Kemp BE, Poumbourios P. Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins. Proc Natl Acad Sci U S A 1999; 96:4319-24. [PMID: 10200260 PMCID: PMC16330 DOI: 10.1073/pnas.96.8.4319] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Retroviral entry into cells depends on envelope glycoproteins, whereby receptor binding to the surface-exposed subunit triggers membrane fusion by the transmembrane protein (TM) subunit. We determined the crystal structure at 2.5-A resolution of the ectodomain of gp21, the TM from human T cell leukemia virus type 1. The gp21 fragment was crystallized as a maltose-binding protein chimera, and the maltose-binding protein domain was used to solve the initial phases by the method of molecular replacement. The structure of gp21 comprises an N-terminal trimeric coiled coil, an adjacent disulfide-bonded loop that stabilizes a chain reversal, and a C-terminal sequence structurally distinct from HIV type 1/simian immunodeficiency virus gp41 that packs against the coil in an extended antiparallel fashion. Comparison of the gp21 structure with the structures of other retroviral TMs contrasts the conserved nature of the coiled coil-forming region and adjacent disulfide-bonded loop with the variable nature of the C-terminal ectodomain segment. The structure points to these features having evolved to enable the dual roles of retroviral TMs: conserved fusion function and an ability to anchor diverse surface-exposed subunit structures to the virion envelope and infected cell surface. The structure of gp21 implies that the N-terminal fusion peptide is in close proximity to the C-terminal transmembrane domain and likely represents a postfusion conformation.
Collapse
MESH Headings
- Amino Acid Sequence
- Carrier Proteins/chemistry
- Carrier Proteins/isolation & purification
- Computer Graphics
- Crystallization
- Crystallography, X-Ray/methods
- Evolution, Molecular
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Gene Products, env/isolation & purification
- Human T-lymphotropic virus 1/chemistry
- Human T-lymphotropic virus 1/genetics
- Humans
- Macromolecular Substances
- Maltose-Binding Proteins
- Models, Molecular
- Molecular Sequence Data
- Protein Structure, Secondary
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/isolation & purification
- Retroviridae Proteins, Oncogenic/chemistry
- Retroviridae Proteins, Oncogenic/genetics
- Retroviridae Proteins, Oncogenic/isolation & purification
- Sequence Alignment
- Sequence Homology, Amino Acid
- env Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- B Kobe
- St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | | | | | | |
Collapse
|
22
|
Burkala EJ, Narayani I, Hartaningsih N, Kertayadnya G, Berryman DI, Wilcox GE. Recombinant Jembrana disease virus proteins as antigens for the detection of antibody to bovine lentiviruses. J Virol Methods 1998; 74:39-46. [PMID: 9763127 DOI: 10.1016/s0166-0934(98)00066-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Jembrana disease virus (JDV) is a recently identified bovine lentivirus causing an acute severe disease syndrome in banteng cattle (Bos javanicus) and a milder disease syndrome in Bos taurus cattle in Indonesia. The virus is closely related genetically to the previously identified bovine lentivirus, bovine immunodeficiency virus (BIV). Recombinant clones were produced which contained the capsid (CA) and transmembrane (TM) subunits of the respective gag and env open reading frames of JDV. The proteins were expressed as fusions to the glutathione-s-transferase (GST) enzyme in Escherichia coli and purification was achieved using affinity chromatography via immobilized reduced glutathione. The soluble recombinant CA and TM antigens of JDV were reacted in western immunoblots with both serum antibodies from JDV-infected Bos javanicus cattle and Bos taurus cattle immunized with BIV. The recombinant CA protein of JDV reacted equally well with both the JDV and BIV antisera. The recombinant TM protein of JDV also reacted with antibody from the JDV infected cattle and with the BIV antisera. The results indicated conservation of immunogenic epitopes of the CA and TM proteins of the two viruses. The production of the recombinant proteins should enable the development of rapid and sensitive serological tests for JDV and BIV, and tools for further study of the immune response to JDV and the differential epidemiology of JDV infections in cattle.
Collapse
Affiliation(s)
- E J Burkala
- Division of Veterinary and Biomedical Studies, Murdoch University, WA, Australia.
| | | | | | | | | | | |
Collapse
|
23
|
Center RJ, Kobe B, Wilson KA, Teh T, Howlett GJ, Kemp BE, Poumbourios P. Crystallization of a trimeric human T cell leukemia virus type 1 gp21 ectodomain fragment as a chimera with maltose-binding protein. Protein Sci 1998; 7:1612-9. [PMID: 9684894 PMCID: PMC2144054 DOI: 10.1002/pro.5560070715] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present a novel protein crystallization strategy, applied to the crystallization of human T cell leukemia virus type 1 (HTLV-1) transmembrane protein gp21 lacking the fusion peptide and the transmembrane domain, as a chimera with the Escherichia coli maltose binding protein (MBP). Crystals could not be obtained with a MBP/gp21 fusion protein in which fusion partners were separated by a flexible linker, but were obtained after connecting the MBP C-terminal alpha-helix to the predicted N-terminal alpha-helical sequence of gp21 via three alanine residues. The gp21 sequences conferred a trimeric structure to the soluble fusion proteins as assessed by sedimentation equilibrium and X-ray diffraction, consistent with the trimeric structures of other retroviral transmembrane proteins. The envelope protein precursor, gp62, is likewise trimeric when expressed in mammalian cells. Our results suggest that MBP may have a general application for the crystallization of proteins containing N-terminal alpha-helical sequences.
Collapse
Affiliation(s)
- R J Center
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | | | | | | | | | | | | |
Collapse
|
24
|
Rosenberg AR, Delamarre L, Pique C, Pham D, Dokhélar MC. The ectodomain of the human T-cell leukemia virus type 1 TM glycoprotein is involved in postfusion events. J Virol 1997; 71:7180-6. [PMID: 9311790 PMCID: PMC192057 DOI: 10.1128/jvi.71.10.7180-7186.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To examine the contribution of the transmembrane envelope glycoprotein (TM) to the infectivity of the human T-cell leukemia virus type 1 (HTLV-1), single amino acid substitutions were introduced throughout its ectodomain. The mutated envelopes were tested for intracellular maturation and for functions, including ability to elicit syncytium formation and ability to mediate cell-to-cell transmission of the virus. Three major phenotypes, defining three functionally distinct regions, were identified. (i) Mutations causing defects in intracellular maturation of the envelope precursor are mostly distributed in the central portion of the TM ectodomain, containing the immunosuppressive peptide. This region, which includes vicinal cysteines thought to form an intramolecular disulfide bridge, is probably essential for correct folding of the protein. (ii) Mutations resulting in reduced syncytium-forming ability despite correct intracellular maturation are clustered in the amino-terminal part of the TM ectodomain, within the leucine zipper-like motif. Similar motifs with a propensity to form coiled-coil structures have been implicated in the fusion process driven by other viral envelope proteins, and HTLV-1 may thus conform to this general rule for viral fusion. (iii) Mutants with increased syncytium-forming ability define a region immediately amino-terminal to the membrane-spanning domain. Surprisingly, these mutants exhibited severe defects in infectivity, despite competence for fusion. Existence of this phenotype indicates that capacity for cell-to-cell fusion is not sufficient to ensure viral entry, even in cell-to-cell transmission. The ectodomain of the TM glycoprotein thus may be involved in postfusion events required for full infectivity of HTLV-1, which perhaps represents a unique feature of this poorly infectious retrovirus.
Collapse
Affiliation(s)
- A R Rosenberg
- URA 1156 CNRS, Institut Gustave Roussy, Villejuif, France.
| | | | | | | | | |
Collapse
|
25
|
Pancino G, Sonigo P. Retention of viral infectivity after extensive mutation of the highly conserved immunodominant domain of the feline immunodeficiency virus envelope. J Virol 1997; 71:4339-46. [PMID: 9151822 PMCID: PMC191650 DOI: 10.1128/jvi.71.6.4339-4346.1997] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In lentiviruses, including human immunodeficiency virus and feline immunodeficiency virus (FIV), the principal immunodominant domain (PID) of the transmembrane glycoprotein elicits a strong humoral response in infected hosts. The PID is marked by the presence of two cysteines that delimit a sequence, composed of five to seven amino acids in different lentiviruses, which is highly conserved among isolates of the same lentiviral species. While the conservation of the sequence suggests the presence of functional constraints, the conservation of the immunodominance among divergent lentiviruses raises the hypothesis of a selective advantage for the infecting virus conferred by the host humoral response against this domain. We and others have previously shown that an appropriate structure of the PID is required for the production of a functional envelope. In the present work, we analyzed virological functions and immune reactivity of the envelope after random mutagenesis of the PID of FIV. We obtained nine mutant envelopes which were correctly processed and retained fusogenic ability. Mutation of the two C-terminal residues of the PID sequence between the cysteines in a molecular clone of FIV abolished infectivity. In contrast, three molecular clones containing extensive mutations in the four N-terminal amino acids were infectious. However, the mutations affected PID reactivity with sera from infected cats. Our results suggest that functional constraints, although existent, are not sufficient to account for PID sequence conservation. Such conservation may also result from positive selection by anti-PID antibodies which enhance infection.
Collapse
Affiliation(s)
- G Pancino
- Génétique des Virus et Immunopharmacologie Moléculaire (ICGM-CNRS UPR0415), Institut Cochin de Génétique Moléculaire, Paris, France.
| | | |
Collapse
|
26
|
Kania SA, Kennedy MA, Potgieter LN. Serologic reactivity using conserved envelope epitopes in feline lentivirus-infected felids. J Vet Diagn Invest 1997; 9:125-9. [PMID: 9211229 DOI: 10.1177/104063879700900203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An enzyme-linked immunosorbent assay (ELISA) based on synthetic peptides identical to lentivirus envelope protein amino acid sequences was used to study serologic reactivity of lentivirus-infected domestic cats and nondomestic felids. One feline immunodeficiency virus (FIV) peptide, P237, was consistently recognized by antibodies from FIV-infected cats, but 2 other FIV peptide antigens were not. The molecular basis for this serologic reactivity was examined. Lentivirus-infected nondomestic Felis species reacted intensely with a puma lentivirus (PLV) peptide corresponding to the conserved FIV peptide. However, lentivirus-infected Panthera species, from which a different lentivirus has been isolated, did not react with the PLV. FIV-infected domestic felids also did not have significant reactivity with the PLV peptide. The peptide ELISA is comparable in sensitivity and specificity to western blot analysis and a commercial enzyme immunoassay. Unlike the other assays, however, the peptide ELISA is inexpensive, requires a small amount of serum, enables the study of specific isotype reactivity, and discriminates between antibodies to FIV and those to PLV. Antibody tests based upon the FIV and the PLV peptides should be useful for detecting the possible introduction of FIV into exotic felids or of lentiviruses from nondomestic felids into the domestic cat population.
Collapse
Affiliation(s)
- S A Kania
- Department of Comparative Medicine, College of Veterinary Medicine, University of Tennessee, Knoxville 37901-1071, USA
| | | | | |
Collapse
|
27
|
Aleanzi M, Perotti N, Montaner A, Lottersberger J, Tonarelli G, Marcipar A. Epitope contiguous chains and antibody recognition in HIV-1 synthetic peptide antigens. J Mol Recognit 1996; 9:631-8. [PMID: 9174949 DOI: 10.1002/(sici)1099-1352(199634/12)9:5/6<631::aid-jmr312>3.0.co;2-n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Five peptides derived from human immuno deficiency virus (HIV-1) gp41 transmembrane protein have been synthesized: M9 (610-618), M12 (598-609), M15 (600-614), M21 (584-604) and M23 (587-609). These sequences partially overlap in the region vicinal to the immunodominant epitope CSGKLIC, between two cysteine residues 603-609 and three of them (M12, M15 and M23) include this complete heptapeptide. M23, the longer peptide, includes an hydrophilic chain in addition to the heptapeptide loop. The purpose of this work was to determine the influence of contiguous chains to the heptapeptide loop on antibody recognition in fluid and solid phases, and dissociation constants (KD) of each sequence with human anti-HIV-1 antibodies. Two peptides, M13 and M23, overlapped on this loop, were found to be more reactive. Antigen-antibody dissociation constants were determined for both peptides by competition enzyme-linked immunosorbent assay, using each peptide alternatively as the solid phase-immobilized antigen. In addition to the influence of solid-phase antigen on calculated dissociation constants (a phenomenon described by Seligman, 1994), the inhibitory effect of M15 in liquid phase on antibody binding to solid phase M23 was higher than exerted by M23 in solution over antibody binding to M15 on solid phase. On the basis of peptide sequence and predicted antigenicity, this behavior appeared to be contradictory. It is assured that the possible origin of this phenomenon is due to unfavorable conformation of the longer peptide. Even though synthetic peptides mimic mainly sequential epitopes, conformational preferences in fluid or solid phase play an important role in epitope functionality. In particular, addition of residues to known immunodominant sequences may not always amplify antibody recognition if conformation provokes steric hindrance in the native epitope.
Collapse
Affiliation(s)
- M Aleanzi
- Instituto de Tecnología Biológica (INTEBIO), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | | | | | | | | |
Collapse
|
28
|
Connor RI, Sheridan KE, Lai C, Zhang L, Ho DD. Characterization of the functional properties of env genes from long-term survivors of human immunodeficiency virus type 1 infection. J Virol 1996; 70:5306-11. [PMID: 8764041 PMCID: PMC190488 DOI: 10.1128/jvi.70.8.5306-5311.1996] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A small number of persons infected with human immunodeficiency virus type 1 (HIV-1) remain clinically and immunologically healthy for more than a decade after infection. Recent reports suggest that these individuals may be infected with an attenuated strain of HIV-1; however, a common genetic basis for viral attenuation has not been found in all cases. In the present study, we examined the functional properties of the HIV-1 env genes from six long-term survivors. env clones were generated by PCR amplification of proviral env sequences, followed by cloning of the amplified regions into expression vectors. Eight to ten clones from each subject were screened by transient transfection for expression of the envelope precursor glycoprotein, gp160. Those clones expressing gp160 were then cotransfected with an HIV-1 luciferase reporter vector, pNL4-3Env(-)LUC(+) and evaluated for their ability to mediate infection of phytohemagglutinin-activated peripheral blood mononuclear cells in single-cycle infectivity assays. Clones expressing gp160 were identified for all six long-term survivors, indicating the presence of proviral env genes with intact open reading frames. For two subjects, D and DH, the encoded envelope glycoproteins yielded high levels of luciferase activity when pseudotyped onto HIV-1 virions and tested in single-cycle infectivity assays. In contrast, envelope glycoproteins cloned from four other long-term survivors were poorly processed and failed to mediate infection. Sequencing of the gp120/41 cleavage site and conserved gp41 cysteine residues of these clones did not reveal any obvious mutations to explain the functional defects. The functional activity of env clones from long-term survivors D and DH was comparable to that seen with several primary HIV-1 env genes cloned from individuals with disease progression and AIDS. These results suggest that the long-term survival of subjects D and DH is not associated with overt functional defects in env; however, functional abnormalities in env may contribute to maintaining a long-term asymptomatic state in the other four cases we studied.
Collapse
Affiliation(s)
- R I Connor
- Aaron Diamond AIDS Research Center, New York 10016, USA
| | | | | | | | | |
Collapse
|
29
|
Otteken A, Earl PL, Moss B. Folding, assembly, and intracellular trafficking of the human immunodeficiency virus type 1 envelope glycoprotein analyzed with monoclonal antibodies recognizing maturational intermediates. J Virol 1996; 70:3407-15. [PMID: 8648672 PMCID: PMC190213 DOI: 10.1128/jvi.70.6.3407-3415.1996] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Monoclonal antibodies (MAbs) that bind linear or conformational epitopes on monomeric or oligomeric human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins were screened for their recognition of maturational intermediates. On the basis of reactivities with gp160 at different times after pulse-labeling, the MAbs were sorted into groups that exhibited binding which was immediate and constant, immediate but transient, delayed, late, or very late. This grouping was consistent with the selectivity of the MAbs for structural features of gp160. Thus, a MAb to the V3 loop reacted with envelope proteins at all times, in accord with the relative conformational independence and accessibility of the epitope. Several MAbs that preferentially react with monomeric gp160 exhibited diminished binding after the pulse. A 10-min tag occurred before gp160 reacted with conformational MAbs that inhibited CD4 binding. The availability of epitopes for other conformational MAbs, including some that react equally with monomeric and oligomeric gp160 and some that react better with oligomeric forms, was half-maximal in 30 min and closely followed the kinetics of gp160 oligomerization. Remarkably, there was a 1- to 2-h delay before gp160 reacted with stringent oligomer-specific MAbs. After 4 h, approximately 20% of the gp160 was recognized by these MAbs. Epitopes recognized by monomerspecific or CD4-blocking MAbs but not by oligomer-dependent MAbs were present on gp160 molecules associated with the molecular chaperone BiP/GRP78. MAbs with a preference for monomers reacted with recombinant or HIV-1 envelope proteins in the endoplasmic reticulum, whereas the oligomer-specific MAbs recognized them in the Golgi complex. Additional information regarding gp160 maturation and intracellular trafficking was obtained by using brefeldin A, dithiothreitol, and a low temperature.
Collapse
Affiliation(s)
- A Otteken
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0455, USA
| | | | | |
Collapse
|
30
|
Affiliation(s)
- D Einfeld
- Genvec Inc., Rockville, MD 20852, USA
| |
Collapse
|
31
|
Arroyo J, Boceta M, González ME, Michel M, Carrasco L. Membrane permeabilization by different regions of the human immunodeficiency virus type 1 transmembrane glycoprotein gp41. J Virol 1995; 69:4095-102. [PMID: 7769667 PMCID: PMC189144 DOI: 10.1128/jvi.69.7.4095-4102.1995] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The transmembrane glycoprotein (gp41) of human immunodeficiency virus type 1 (HIV-1) has been implicated in the cytopathology observed during HIV infection. The first amino acids located at the amino terminus are involved in membrane fusion and syncytium formation, while sequences located at the carboxy terminus have been predicted to interact with membranes and modify membrane permeability. The HIV-1 gp41 gene has been cloned and expressed in Escherichia coli cells by using pET vectors to analyze changes in membrane permeability produced by this protein. This system is well suited for expressing toxic genes in an inducible manner and for analyzing the function of proteins that modify membrane permeability. gp41 enhances the permeability of the bacterial membrane to hygromycin B despite the low level of expression of this protein. To localize the regions of gp41 responsible for these effects, a number of fragments spanning different portions of gp41 were inducibly expressed in E. coli. Two regions of gp41 were shown to increase membrane permeability: one located at the carboxy terminus, where two highly amphipathic helices have been predicted, and another one corresponding to the membrane-spanning domain. Expression of the central region of gp41 comprising this domain was highly lytic for E. coli cells and increased membrane permeability to a number of compounds. These findings are discussed in the light of HIV-induced cytopathology and gp41 structure.
Collapse
Affiliation(s)
- J Arroyo
- Centro Nacional de Biotecnología, Universidad Autónoma, Madrid, Spain
| | | | | | | | | |
Collapse
|
32
|
Pancino G, Camoin L, Sonigo P. Structural analysis of the principal immunodominant domain of the feline immunodeficiency virus transmembrane glycoprotein. J Virol 1995; 69:2110-8. [PMID: 7884857 PMCID: PMC188877 DOI: 10.1128/jvi.69.4.2110-2118.1995] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the transmembrane envelope glycoprotein (TM) of lentiviruses, including human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV), two cysteine residues, conserved in most retroviruses, are thought to form a loop containing five to seven amino acids. These elements make up a B-cell epitope recognized by nearly 100% of sera from infected patients or animals, designated the principal immunodominant domain (PID). The PID amino acid sequences are highly conserved between isolates of the same lentivirus but are unrelated, except for the two cysteines, when divergent lentiviruses are compared. The aim of this study was to analyze the relationship between amino acid sequence in the PID and envelope function. We introduced two kinds of mutations in the PID of FIV: mutations which impeded the formation of a loop and mutations which substituted the sequence of FIV with the corresponding sequences from other lentiviruses, HIV-1, visna virus, and equine infectious anemia virus. We analyzed antibody recognition, processing, and fusogenic properties of the modified envelopes, using two methods of Env expression: a cell-free expression system and transfection of a feline fibroblast cell line with gag-pol-deleted FIV proviruses. Most mutations in the PID of FIV severely affected envelope processing and abolished syncytium formation. Only the chimeric envelope containing the HIV-1 PID sequence was correctly processed and maintained the capacity to induce syncytium formation, although less efficiently than the wild-type envelope. We computed three-dimensional structural models of the PID, which were consistent with mutagenesis data and confirmed the similarity of FIV and HIV-1 PID structures, despite their divergence in amino acid sequence. Considering these results, we discussed the respective importance of selection exerted by functional requirements or host antibodies to explain the observed variations of the PIDs in lentiviruses.
Collapse
Affiliation(s)
- G Pancino
- Génétique des Virus et Immunopharmacologie Moléculaire (ICGM-CNRS UPR0415), Institut Cochin de Génétique Moléculaire, Paris, France
| | | | | |
Collapse
|
33
|
Burns CC, Poss ML, Thomas E, Overbaugh J. Mutations within a putative cysteine loop of the transmembrane protein of an attenuated immunodeficiency-inducing feline leukemia virus variant inhibit envelope protein processing. J Virol 1995; 69:2126-32. [PMID: 7884859 PMCID: PMC188879 DOI: 10.1128/jvi.69.4.2126-2132.1995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A replication-defective feline leukemia virus molecular clone, 61B, has been shown to cause immunodeficiency in cats and cytopathicity in T cells after a long latency period when coinfected with a minimally pathogenic helper virus (J. Overbaugh, E. A. Hoover, J. I. Mullins, D. P. W. Burns, L. Rudensey, S. L. Quackenbush, V. Stallard, and P. R. Donahue, Virology 188:558-569, 1992). The long-latency phenotype of 61B has been mapped to four mutations in the extracellular domain of the envelope transmembrane protein, and we report here that these mutations cause a defect in envelope protein processing. Immunoprecipitation analyses demonstrated that the 61B gp85 envelope precursor was produced but that further processing to generate the surface protein (SU/gp70) and the transmembrane protein (TM/p15E) did not occur. The 61B precursor was not expressed on the cell surface and appeared to be retained in the endoplasmic reticulum or Golgi apparatus. Two of the four 61B-specific amino acid changes are located within a putative cysteine loop in a region of TM that is conserved among retroviruses. Introduction of these two amino acid changes into a replication-competent highly cytopathic virus resulted in the production of noninfectious virus that exhibited an envelope-protein-processing defect. This analysis suggests that mutations in a conserved region within a putative cysteine loop affect retroviral envelope protein maturation and viral infectivity.
Collapse
Affiliation(s)
- C C Burns
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
34
|
Bour S, Geleziunas R, Wainberg MA. The human immunodeficiency virus type 1 (HIV-1) CD4 receptor and its central role in promotion of HIV-1 infection. Microbiol Rev 1995; 59:63-93. [PMID: 7708013 PMCID: PMC239355 DOI: 10.1128/mr.59.1.63-93.1995] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Interactions between the viral envelope glycoprotein gp120 and the cell surface receptor CD4 are responsible for the entry of human immunodeficiency virus type 1 (HIV-1) into host cells in the vast majority of cases. HIV-1 replication is commonly followed by the disappearance or receptor downmodulation of cell surface CD4. This potentially renders cells nonsusceptible to subsequent infection by HIV-1, as well as by other viruses that use CD4 as a portal of entry. Disappearance of CD4 from the cell surface is mediated by several different viral proteins that act at various stages through the course of the viral life cycle, and it occurs in T-cell lines, peripheral blood CD4+ lymphocytes, and monocytes of both primary and cell line origin. At the cell surface, gp120 itself and in the form of antigen-antibody complexes can trigger cellular pathways leading to CD4 internalization. Intracellularly, the mechanisms leading to CD4 downmodulation by HIV-1 are multiple and complex; these include degradation of CD4 by Vpu, formation of intracellular complexes between CD4 and the envelope precursor gp160, and internalization by the Nef protein. Each of the above doubtless contributes to the ultimate depletion of cell surface CD4, although the relative contribution of each mechanism and the manner in which they interact remain to be definitively established.
Collapse
Affiliation(s)
- S Bour
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
35
|
Tanchou V, Sgro-Serpente P, Durand H, Aubertin AM, Dormont D, Venet A, Benarous R. B-cell continuous epitopes of the SIVmac-251 envelope protein in experimentally infected macaques. RESEARCH IN VIROLOGY 1995; 146:19-32. [PMID: 7754233 DOI: 10.1016/0923-2516(96)80586-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The humoral immune response of 34 macaques experimentally infected with SIVmac-251 was studied using a combination of an epitope library and synthetic peptides. The course of the immune response was checked for up to 9 months postinfection with a panel of clones expressing SIV fragments. A systematic study was performed with synthetic peptides covering the whole transmembrane (TM) and external (SU) envelope proteins. Seven major immunodominant epitopes were characterized. Four are localized in the SU protein: one in the V1 region (111-130), one in the Cys loop of the V3 region (311-330) and two in the C-terminal end (501-520 and 511-530). Three are localized in the TM protein: one in the extracellular domain (601-619), one in the anchor domain (731-750) and one in the intracytoplasmic domain (861-881). Among these epitopes, only one, 601-619, was found to be reactive with all sera and can be defined as the principal immunodominant epitope.
Collapse
Affiliation(s)
- V Tanchou
- INSERM-U332, Institut Cochin de Génétique Moléculaire, Université Paris, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Wild C, Dubay JW, Greenwell T, Baird T, Oas TG, McDanal C, Hunter E, Matthews T. Propensity for a leucine zipper-like domain of human immunodeficiency virus type 1 gp41 to form oligomers correlates with a role in virus-induced fusion rather than assembly of the glycoprotein complex. Proc Natl Acad Sci U S A 1994; 91:12676-80. [PMID: 7809100 PMCID: PMC45502 DOI: 10.1073/pnas.91.26.12676] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
For a number of viruses, oligomerization is a critical component of envelope processing and surface expression. Previously, we reported that a synthetic peptide (DP-107) corresponding to the putative leucine zipper region (aa 553-590) of the transmembrane protein (gp41) of human immunodeficiency virus type 1 (HIV-1) exhibited alpha-helical secondary structure and self-associated as a coiled coil. In view of the tendency of this type of structure to mediate protein association, we speculated that this region of gp41 might play a role in HIV-1 envelope oligomerization. However, later it was shown that mutations which should disrupt the structural elements of this region of gp41 did not affect envelope processing, transport, or surface expression (assembly oligomerization). In this report we compare the effects of amino acid substitutions within this coiled-coil region on structure and function of both viral envelope proteins and the corresponding synthetic peptides. Our results establish a correlation between the destabilizing effects of amino acid substitutions on coiled-coil structure in the peptide model and phenotype of virus entry. These biological and physical biochemical studies do not support a role for the coiled-coil structure in mediating the assembly oligomerization of HIV-1 envelope but do imply that this region of gp41 plays a key role in the sequence of events associated with viral entry. We propose a functional role for the coiled-coil domain of HIV-1 gp41.
Collapse
Affiliation(s)
- C Wild
- Department of Surgery, Duke University, Durham, NC 27710
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bour S, Geleziunas R, Wainberg MA. The role of CD4 and its downmodulation in establishment and maintenance of HIV-1 infection. Immunol Rev 1994; 140:147-71. [PMID: 7821926 DOI: 10.1111/j.1600-065x.1994.tb00869.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S Bour
- Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
38
|
Vanden Haesevelde M, Decourt JL, De Leys RJ, Vanderborght B, van der Groen G, van Heuverswijn H, Saman E. Genomic cloning and complete sequence analysis of a highly divergent African human immunodeficiency virus isolate. J Virol 1994; 68:1586-96. [PMID: 8107220 PMCID: PMC236616 DOI: 10.1128/jvi.68.3.1586-1596.1994] [Citation(s) in RCA: 195] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Analysis of the complete sequence of a human immunodeficiency virus (HIV) isolate (Ant70) obtained from a Cameroonian patient indicates that this virus is the most divergent strain within the HIV-1 family hitherto described. Comparison of the Pol protein, usually highly conserved within the HIV-1 family, shows only about 73% similarity with the HIVmm isolate, whereas for the more variable proteins such as envelope, similarities of 50% or lower are found. The principal neutralizing determinant (V3 loop) and the immunodominant region within gp41 also contain some unusual substitutions, which may have implications for protein function as well as for serological assays based on these regions. Phylogenetic analyses show that this isolate occupies a unique position relative to the human HIV-1 isolates and the recently described SIVcpz virus, indicating that this Cameroonian isolate may provide us with new insights into the origins of the HIV-1 family.
Collapse
|
39
|
Ma XY, Sova P, Chao W, Volsky DJ. Cysteine residues in the Vif protein of human immunodeficiency virus type 1 are essential for viral infectivity. J Virol 1994; 68:1714-20. [PMID: 8107232 PMCID: PMC236631 DOI: 10.1128/jvi.68.3.1714-1720.1994] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The infectivity factor of human immunodeficiency virus type 1 (HIV-1), Vif, contains two cysteine residues which are highly conserved among animal lentiviruses. We introduced substitutions of leucine for cysteine residues in the vif gene of a full-length HIV-1 clone to analyze their roles in viral infection. Mutant viruses containing substitutions in either Cys-114, Cys-133, or both displayed a vif-negative infection phenotype similar to that of an isogeneic vif deletion mutant, namely, a cell-dependent complete to partial loss of infectivity. The vif defect could be complemented by cotransfection of mutant viral DNA with a Vif expression vector, and there was no evidence that recombination contributed to the repair of the vif deficiency. The viral protein profile, as determined by immunoblotting, in cells infected with cysteine substitution mutants and that in wild-type virus were similar, including the presence of the 23-kDa Vif polypeptide. In addition, immunoblotting with an antiserum directed against the carboxyl terminus of gp41 revealed that gp41 was intact in cells infected with either wild-type or vif mutant HIV-1, excluding that Vif cleaves the C terminus of gp41. Our results indicate that the cysteines in HIV-1 Vif are critical for Vif function in viral infectivity.
Collapse
Affiliation(s)
- X Y Ma
- Molecular Virology Laboratory, St. Luke's/Roosevelt Hospital Center, New York, New York 10019
| | | | | | | |
Collapse
|
40
|
Pancino G, Ellerbrok H, Sitbon M, Sonigo P. Conserved framework of envelope glycoproteins among lentiviruses. Curr Top Microbiol Immunol 1994; 188:77-105. [PMID: 7924431 DOI: 10.1007/978-3-642-78536-8_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- G Pancino
- Génétique des virus (CNRS UPR0415), Institut Cochin de Génétique Moléculaire, Paris, France
| | | | | | | |
Collapse
|
41
|
Abstract
This chapter discusses human immunodeficiency virus type 1 (HIV-1) associated with CD4 downmodulation. It also discusses the structure and function of CD4 and p56lck and factors involved in hiv-1-associated cd4 downmodulation. There are, at present, at least three HIV-1 gene products known to be involved in cell surface CD4 downmodulation. These are Nef, Vpu, and gp160. Whereas Nef is expressed during the early phase of HIV-1 gene expression, both Vpu and gp160, which appear to act coordinately, are expressed during the late phase. This functional convergence of HIV-1 proteins on cell surface CD4 downmodulation, whether specific or nonspecific in activity, suggests that this event is of critical importance in the life cycle of HIV-1. Further elucidation of the mechanisms that underlie CD4 cell surface downmodulation may lead to the development of novel strategies aimed at preventing such events, and potentially to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- R Geleziunas
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
42
|
Thomas E, Overbaugh J. Delayed cytopathicity of a feline leukemia virus variant is due to four mutations in the transmembrane protein gene. J Virol 1993; 67:5724-32. [PMID: 8396654 PMCID: PMC237989 DOI: 10.1128/jvi.67.10.5724-5732.1993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Two molecularly cloned, replication-defective variants of feline leukemia virus, called 61B and 61C, have both been shown to cause fatal immunodeficiency in cats when coinfected with a replication-competent, minimally pathogenic helper virus, but 61B exhibits a longer latency period between infection and disease (J. Overbaugh, E. A. Hoover, J. I. Mullins, D. P. W. Burns, L. Rudensey, S. L. Quackenbush, V. Stallard, and P. R. Donahue, Virology 188:558-569, 1992). Infection of the 3201 feline T-cell line with 61B plus helper virus also results in longer time from infection to cytopathic effect compared with 61C plus helper virus, providing an in vitro system with which to study the mechanism for this difference. We report that the primary determinant of cytopathicity of 61B maps to gp70, the extracellular envelope glycoprotein. The long latency of 61B, on the other hand, maps to the extracellular portion of the envelope transmembrane protein, in which there are only four predicted amino acid differences between 61B and 61C. These differences render 61B replication defective, and two of the predicted amino acid changes lie in a region that is highly conserved among many retroviruses. The eventual onset of 61B cytopathicity in cell culture was associated with the outgrowth of an apparent recombinant virus that encodes the pathogenic gp70 of 61B and replaces the transmembrane protein of 61B with that of the helper virus. Thus, during in vitro infection, a cytopathic virus evolved from a replication-defective virus and a nonpathogenic virus, suggesting that recombination between multiple variants in natural infection may influence progression of feline leukemia virus-associated immunodeficiency disease.
Collapse
Affiliation(s)
- E Thomas
- Department of Microbiology, University of Washington, Seattle 98195
| | | |
Collapse
|
43
|
Lopalco L, De Santis C, Meneveri R, Longhi R, Ginelli E, Grassi F, Siccardi AG, Beretta A. Human immunodeficiency virus type 1 gp120 C5 region mimics the HLA class I alpha 1 peptide-binding domain. Eur J Immunol 1993; 23:2016-21. [PMID: 8344367 DOI: 10.1002/eji.1830230844] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Molecular mimicry of major histocompatibility (MHC) antigens by viral glycoproteins has been suggested as one of the possible mechanisms of induction of an autoimmune response by human immunodeficiency viruses. A monoclonal antibody (M38) was previously shown to bind to both human immunodeficiency virus type 1 (HIV-1) gp120 and beta-2 microglobulin-free HLA class I heavy chains encoded by an HLA C allele. Using HLA C recombinant proteins and synthetic peptides, the M38 class I binding site was mapped to a stretch of 44 amino acids of the alpha 1 domain. The amino acid residues recognized are clustered in two non-contiguous regions at positions 66-69 (KYKR) and 79-82 (RKLR) shared by almost all HLA C alleles. On HIV-1 gp120, M38 binds to two non-contiguous sequences (KYK and KAKR) at positions 490-492 and 505-508 located at the edges of a large hydrophobic region that is apparently involved in binding the transmembrane glycoprotein gp41. The C-terminal gp120 M38-reactive region (KAKR) lies within the immunodominant sequence APTKAKRRVVQREKR, against which the majority of HIV-infected individuals produce antibodies. The results indicate that a functionally important region of HIV-1 gp120 shares similar amino acid sequence motifs with the antigen recognition site of most HLA class I C alleles. The molecular mimicry may be the basis for autoimmune responses in HIV infection.
Collapse
Affiliation(s)
- L Lopalco
- DIBIT, Dipartimento di Ricerca Biologica e Tecnologica, Ospedale San Raffaele, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Earl PL, Moss B. Mutational analysis of the assembly domain of the HIV-1 envelope glycoprotein. AIDS Res Hum Retroviruses 1993; 9:589-94. [PMID: 8369163 DOI: 10.1089/aid.1993.9.589] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The amino-terminal 129 amino acids of gp41 of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein constitute the assembly domain required for efficient oligomer formation and stability. Point mutations in highly conserved structural features including cysteine residues, potential N-linked glycosylation sites, and a leucine zipper motif have been made in a soluble secreted form of Env (Envsec). No single point mutation had adverse effects on Env protein oligomerization. However, truncation of the C terminus of gp41 from 129 amino acids to 68 amino acids drastically reduced oligomerization efficiency, indicating that amino acids 68-129 are essential for assembly.
Collapse
Affiliation(s)
- P L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
45
|
Pancino G, Chappey C, Saurin W, Sonigo P. B epitopes and selection pressures in feline immunodeficiency virus envelope glycoproteins. J Virol 1993; 67:664-72. [PMID: 7678301 PMCID: PMC237417 DOI: 10.1128/jvi.67.2.664-672.1993] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In order to map linear B epitopes in feline immunodeficiency virus (FIV) envelope glycoproteins (Env), a random library of FIV Env polypeptides fused to beta-galactosidase and expressed in Escherichia coli was screened by using sera from experimentally FIV-infected cats. We mapped five antibody-binding domains in the surface envelope glycoprotein (SU1 to SU5) and four in the transmembrane envelope glycoprotein (TM1 to TM4). Immunological analysis with 48 serum samples from naturally or experimentally infected cats of diverse origins revealed a broad group reactivity for epitopes SU2, TM2, and TM3, whereas SU3 appeared as strictly type specific. To study selection pressures acting on the identified immunogenic domains, we analyzed structural constraints and distribution of synonymous and nonsynonymous mutations (amino acids unchanged or changed). Two linear B epitopes (SU3 and TM4) appeared to be submitted to positive selection for change, a pattern of evolution predicting their possible involvement in antiviral protection. These experiments provide a pertinent choice of oligopeptides for further analysis of the protective response against FIV envelope glycoproteins, as a model to understand the role of antibody escape in lentiviral persistence and to design feline AIDS vaccines.
Collapse
Affiliation(s)
- G Pancino
- Génétique des virus (ICGM-CNRS UPR415), Institut Cochin de Génétique Moléculaire, Paris, France
| | | | | | | |
Collapse
|
46
|
Chiou SH, Freed EO, Panganiban AT, Kenealy WR. Studies on the role of the V3 loop in human immunodeficiency virus type 1 envelope glycoprotein function. AIDS Res Hum Retroviruses 1992; 8:1611-8. [PMID: 1457207 DOI: 10.1089/aid.1992.8.1611] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mutations within the principal neutralizing determinant (the V3 loop) of the HIV-1 surface envelope glycoprotein gp120 block or greatly reduce the ability of the HIV-1 envelope glycoprotein to induce cell fusion in CD4+ HeLa T4 cells while keeping its CD4 binding ability. However, when either cysteine or both cysteines forming the V3 disulfide bridge were mutated, the resultant glycoprotein could not mediate cell fusion, undergo proteolytic processing, or bind CD4. To investigate the role that the V3 loop plays in gp160 processing and CD4 binding, we deleted the entire V3 loop region of the HIV-1 env gene. The resultant glycoprotein could not mediate cell fusion in the HeLa T4 cell line and no proteolytic processing of gp160 or CD4 binding could be detected. To test whether any domain of the V3 loop is involved in attaining the proper envelope glycoprotein conformation required for proteolytic processing and CD4 binding, we introduced a series of deletions into the coding region of the V3 loop. Most of the residues within the V3 loop could be removed while retaining gp160 processing and CD4 binding. Our results indicate that the cysteines that form the V3 loop or the disulfide bond itself are important for proper envelope glycoprotein folding and processing. Because many of the mutants constructed in this study do not contain the type-specific neutralizing determinant of HIV-1, they may be potential reagents to bind group-specific neutralizing antibodies or to elicit a group-specific neutralizing response against HIV-1.
Collapse
Affiliation(s)
- S H Chiou
- Department of Biochemistry, Cancer Research University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
47
|
Lee WR, Yu XF, Syu WJ, Essex M, Lee TH. Mutational analysis of conserved N-linked glycosylation sites of human immunodeficiency virus type 1 gp41. J Virol 1992; 66:1799-803. [PMID: 1738209 PMCID: PMC240944 DOI: 10.1128/jvi.66.3.1799-1803.1992] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Amino acid substitutions were introduced into four conserved N-linked glycosylation sites of the human immunodeficiency virus type 1 envelope transmembrane glycoprotein, gp41, to alter the canonical N-linked glycosylation sequences. One altered site produced a severe impairment of viral infectivity, which raises the possibility that N-linked sugars at this site may have an important role in the human immunodeficiency virus type 1 life cycle.
Collapse
Affiliation(s)
- W R Lee
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|