1
|
Ngo VN, Winski DP, Aho B, Kamath PL, King BL, Waters H, Zimmerberg J, Sodt A, Hess ST. Conserved sequence features in intracellular domains of viral spike proteins. Virology 2024; 599:110198. [PMID: 39116647 PMCID: PMC11383743 DOI: 10.1016/j.virol.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Viral spike proteins mutate frequently, but conserved features within these proteins often have functional importance and can inform development of anti-viral therapies which circumvent the effects of viral sequence mutations. Through analysis of large numbers of viral spike protein sequences from several viral families, we found highly (>99%) conserved patterns within their intracellular domains. The patterns generally consist of one or more basic amino acids (arginine or lysine) adjacent to a cysteine, many of which are known to undergo acylation. These patterns were not enriched in cellular proteins in general. Molecular dynamics simulations show direct electrostatic and hydrophobic interactions between these conserved residues in hemagglutinin (HA) from influenza A and B and the phosphoinositide PIP2. Super-resolution microscopy shows nanoscale colocalization of PIP2 and several of the same viral proteins. We propose the hypothesis that these conserved viral spike protein features can interact with phosphoinositides such as PIP2.
Collapse
Affiliation(s)
- Vinh-Nhan Ngo
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA
| | - David P Winski
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA
| | - Brandon Aho
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA
| | - Pauline L Kamath
- School of Food and Agriculture, 342 Hitchner Hall, University of Maine, And Maine Center for Genetics in the Environment, Orono, ME, USA.
| | - Benjamin L King
- Department of Molecular and Biomedical Sciences, 5735 Hitchner Hall, University of Maine, Orono, ME, USA.
| | - Hang Waters
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Sodt
- Unit on Membrane Chemical Physics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Samuel T Hess
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA.
| |
Collapse
|
2
|
Buonvino S, Melino S. New Consensus pattern in Spike CoV-2: potential implications in coagulation process and cell-cell fusion. Cell Death Discov 2020; 6:134. [PMID: 33262894 PMCID: PMC7691694 DOI: 10.1038/s41420-020-00372-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/28/2022] Open
Abstract
Coagulopathy and syncytial formation are relevant effects of the SARS-CoV-2 infection, but the underlying molecular mechanisms triggering these processes are not fully elucidated. Here, we identified a potential consensus pattern in the Spike S glycoprotein present within the cytoplasmic domain; this consensus pattern was detected in only 79 out of 561,000 proteins (UniProt bank). Interestingly, the pattern was present in both human and bat the coronaviruses S proteins, in many proteins involved in coagulation process, cell-cell interaction, protein aggregation and regulation of cell fate, such as von Willebrand factor, coagulation factor X, fibronectin and Notch, characterized by the presence of the cysteine-rich EGF-like domain. This finding may suggest functional similarities between the matched proteins and the CoV-2 S protein, implying a new possible involvement of the S protein in the molecular mechanism that leads to the coagulopathy and cell fusion in COVID-19 disease.
Collapse
Affiliation(s)
- Silvia Buonvino
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
3
|
Wang M, Ludwig K, Böttcher C, Veit M. The role of stearate attachment to the hemagglutinin-esterase-fusion glycoprotein HEF of influenza C virus. Cell Microbiol 2016; 18:692-704. [PMID: 26518983 DOI: 10.1111/cmi.12541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022]
Abstract
The only spike of influenza C virus, the hemagglutinin-esterase-fusion glycoprotein (HEF) combines receptor binding, receptor hydrolysis and membrane fusion activities. Like other hemagglutinating glycoproteins of influenza viruses HEF is S-acylated, but only with stearic acid at a single cysteine located at the cytosol-facing end of the transmembrane region. Previous studies established the essential role of S-acylation of hemagglutinin for replication of influenza A and B virus by affecting budding and/or membrane fusion, but the function of acylation of HEF was hitherto not investigated. Using reverse genetics we rescued a virus containing non-stearoylated HEF, which was stable during serial passage and showed no competitive fitness defect, but the growth rate of the mutant virus was reduced by one log. Deacylation of HEF does neither affect the kinetics of its plasma membrane transport nor the protein composition of virus particles. Cryo-electron microscopy showed that the shape of viral particles and the hexagonal array of spikes typical for influenza C virus were not influenced by this mutation indicating that virus budding was not disturbed. However, the extent and kinetics of haemolysis were reduced in mutant virus at 37°C, but not at 33°C, the optimal temperature for virus growth, suggesting that non-acylated HEF has a defect in membrane fusion under suboptimal conditions.
Collapse
Affiliation(s)
- Mingyang Wang
- Institute of Virology, Department of Veterinary Medicine, Free University Berlin, Berlin, Germany
| | - Kai Ludwig
- Research Center of Electron Microscopy, Department of Chemistry, Free University Berlin, Berlin, Germany
| | - Christoph Böttcher
- Research Center of Electron Microscopy, Department of Chemistry, Free University Berlin, Berlin, Germany
| | - Michael Veit
- Institute of Virology, Department of Veterinary Medicine, Free University Berlin, Berlin, Germany
| |
Collapse
|
4
|
Wang M, Veit M. Hemagglutinin-esterase-fusion (HEF) protein of influenza C virus. Protein Cell 2016; 7:28-45. [PMID: 26215728 PMCID: PMC4707155 DOI: 10.1007/s13238-015-0193-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/06/2015] [Indexed: 01/19/2023] Open
Abstract
Influenza C virus, a member of the Orthomyxoviridae family, causes flu-like disease but typically only with mild symptoms. Humans are the main reservoir of the virus, but it also infects pigs and dogs. Very recently, influenza C-like viruses were isolated from pigs and cattle that differ from classical influenza C virus and might constitute a new influenza virus genus. Influenza C virus is unique since it contains only one spike protein, the hemagglutinin-esterase-fusion glycoprotein HEF that possesses receptor binding, receptor destroying and membrane fusion activities, thus combining the functions of Hemagglutinin (HA) and Neuraminidase (NA) of influenza A and B viruses. Here we briefly review the epidemiology and pathology of the virus and the morphology of virus particles and their genome. The main focus is on the structure of the HEF protein as well as on its co- and post-translational modification, such as N-glycosylation, disulfide bond formation, S-acylation and proteolytic cleavage into HEF1 and HEF2 subunits. Finally, we describe the functions of HEF: receptor binding, esterase activity and membrane fusion.
Collapse
Affiliation(s)
- Mingyang Wang
- Institute of Virology, Veterinary Medicine, Free University Berlin, Berlin, Germany
| | - Michael Veit
- Institute of Virology, Veterinary Medicine, Free University Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Abstract
The article summarises the results of more than 30 years of research on palmitoylation (S‐acylation) of viral proteins, the post‐translational attachment of fatty acids to cysteine residues of integral and peripheral membrane proteins. Analysing viral proteins is not only important to characterise the cellular pathogens but also instrumental to decipher the palmitoylation machinery of cells. This comprehensive review describes methods to identify S‐acylated proteins and covers the fundamental biochemistry of palmitoylation: the location of palmitoylation sites in viral proteins, the fatty acid species found in S‐acylated proteins, the intracellular site of palmitoylation and the enzymology of the reaction. Finally, the functional consequences of palmitoylation are discussed regarding binding of proteins to membranes or membrane rafts, entry of enveloped viruses into target cells by spike‐mediated membrane fusion as well as assembly and release of virus particles from infected cells. The topics are described mainly for palmitoylated proteins of influenza virus, but proteins of other important pathogens, such as the causative agents of AIDS and severe acute respiratory syndrome, and of model viruses are discussed.
Collapse
Affiliation(s)
- Michael Veit
- Department of Immunology and Molecular Biology, Free University, Berlin, Germany.
| |
Collapse
|
6
|
Association of influenza virus proteins with membrane rafts. Adv Virol 2011; 2011:370606. [PMID: 22312341 PMCID: PMC3265303 DOI: 10.1155/2011/370606] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/02/2011] [Indexed: 12/12/2022] Open
Abstract
Assembly and budding of influenza virus proceeds in the viral budozone, a domain in the plasma membrane with characteristics of cholesterol/sphingolipid-rich membrane rafts. The viral transmembrane glycoproteins hemagglutinin (HA) and neuraminidase (NA) are intrinsically targeted to these domains, while M2 is seemingly targeted to the edge of the budozone. Virus assembly is orchestrated by the matrix protein M1, binding to all viral components and the membrane. Budding progresses by protein- and lipid-mediated membrane bending and particle scission probably mediated by M2. Here, we summarize the experimental evidence for this model with emphasis on the raft-targeting features of HA, NA, and M2 and review the functional importance of raft domains for viral protein transport, assembly and budding, environmental stability, and membrane fusion.
Collapse
|
7
|
Kordyukova LV, Serebryakova MV, Baratova LA, Veit M. S acylation of the hemagglutinin of influenza viruses: mass spectrometry reveals site-specific attachment of stearic acid to a transmembrane cysteine. J Virol 2008; 82:9288-92. [PMID: 18596092 PMCID: PMC2546910 DOI: 10.1128/jvi.00704-08] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 06/27/2008] [Indexed: 11/20/2022] Open
Abstract
S acylation of cysteines located in the transmembrane and/or cytoplasmic region of influenza virus hemagglutinins (HA) contributes to the membrane fusion and assembly of virions. Our results from using mass spectrometry (MS) show that influenza B virus HA possessing two cytoplasmic cysteines contains palmitate, whereas HA-esterase-fusion glycoprotein of influenza C virus having one transmembrane cysteine is stearoylated. HAs of influenza A virus having one transmembrane and two cytoplasmic cysteines contain both palmitate and stearate. MS analysis of recombinant viruses with deletions of individual cysteines, as well as tandem-MS sequencing, revealed the surprising result that stearate is exclusively attached to the cysteine positioned in the transmembrane region of HA.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia
| | | | | | | |
Collapse
|
8
|
Mach M, Osinski K, Kropff B, Schloetzer-Schrehardt U, Krzyzaniak M, Britt W. The carboxy-terminal domain of glycoprotein N of human cytomegalovirus is required for virion morphogenesis. J Virol 2007; 81:5212-24. [PMID: 17229708 PMCID: PMC1900226 DOI: 10.1128/jvi.01463-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoproteins M and N (gM and gN, respectively) are among the few proteins that are conserved across the herpesvirus family. The function of the complex is largely unknown. Whereas deletion from most alphaherpesviruses has marginal effects on the replication of the respective viruses, both proteins are essential for replication of human cytomegalovirus (HCMV). We have constructed a series of mutants in gN to study the function of this protein. gN of HCMV is a type I glycoprotein containing a short carboxy-terminal domain of 14 amino acids, including two cysteine residues directly adjacent to the predicted transmembrane anchor at positions 125 and 126. Deletion of the entire carboxy-terminal domain as well as substitution with the corresponding region from alpha herpesviruses or mutations of both cysteine residues resulted in a replication-incompetent virus. Recombinant viruses containing point mutations of either cysteine residue could be generated. These viruses were profoundly defective for replication. Complex formation of the mutant gNs with gM and transport of the complex to the viral assembly compartment appeared unaltered compared to the wild type. However, in infected cells, large numbers of capsids accumulated in the cytoplasm that failed to acquire an envelope. Transiently expressed gN was shown to be modified by palmitic acid at both cysteine residues. In summary, our data suggest that the carboxy-terminal domain of gN plays a critical role in secondary envelopment of HCMV and that palmitoylation of gN appears to be essential for function in secondary envelopment of HCMV and virus replication.
Collapse
Affiliation(s)
- Michael Mach
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Petit CM, Chouljenko VN, Iyer A, Colgrove R, Farzan M, Knipe DM, Kousoulas KG. Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion. Virology 2006; 360:264-74. [PMID: 17134730 PMCID: PMC7103323 DOI: 10.1016/j.virol.2006.10.034] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/14/2006] [Accepted: 10/18/2006] [Indexed: 11/21/2022]
Abstract
The SARS–coronavirus (SARS–CoV) is the etiological agent of the severe acute respiratory syndrome (SARS). The SARS–CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. The cytoplasmic portion of the S glycoprotein contains four cysteine-rich amino acid clusters. Individual cysteine clusters were altered via cysteine-to-alanine amino acid replacement and the modified S glycoproteins were tested for their transport to cell-surfaces and ability to cause cell fusion in transient transfection assays. Mutagenesis of the cysteine cluster I, located immediately proximal to the predicted transmembrane, domain did not appreciably reduce cell-surface expression, although S-mediated cell fusion was reduced by more than 50% in comparison to the wild-type S. Similarly, mutagenesis of the cysteine cluster II located adjacent to cluster I reduced S-mediated cell fusion by more than 60% compared to the wild-type S, while cell-surface expression was reduced by less than 20%. Mutagenesis of cysteine clusters III and IV did not appreciably affect S cell-surface expression or S-mediated cell fusion. The wild-type S was palmitoylated as evidenced by the efficient incorporation of 3H-palmitic acid in wild-type S molecules. S glycoprotein palmitoylation was significantly reduced for mutant glycoproteins having cluster I and II cysteine changes, but was largely unaffected for cysteine cluster III and IV mutants. These results show that the S cytoplasmic domain is palmitoylated and that palmitoylation of the membrane proximal cysteine clusters I and II may be important for S-mediated cell fusion.
Collapse
Affiliation(s)
- Chad M Petit
- Division of Biotechnology and Molecular Medicine (BIOMMED), USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Kinlough CL, McMahan RJ, Poland PA, Bruns JB, Harkleroad KL, Stremple RJ, Kashlan OB, Weixel KM, Weisz OA, Hughey RP. Recycling of MUC1 is dependent on its palmitoylation. J Biol Chem 2006; 281:12112-22. [PMID: 16507569 DOI: 10.1074/jbc.m512996200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MUC1 is a mucin-like transmembrane protein expressed on the apical surface of epithelia, where it protects the cell surface. The cytoplasmic domain has numerous sites for phosphorylation and docking of proteins involved in signal transduction. In a previous study, we showed that the cytoplasmic YXXphi motif Y20HPM and the tyrosine-phosphorylated Y60TNP motif are required for MUC1 clathrin-mediated endocytosis through binding AP-2 and Grb2, respectively (Kinlough, C. L., Poland, P. A., Bruns, J. B., Harkleroad, K. L., and Hughey, R. P. (2004) J. Biol. Chem. 279, 53071-53077). Palmitoylation of transmembrane proteins can affect their membrane trafficking, and the MUC1 sequence CQC3RRK at the boundary of the transmembrane and cytoplasmic domains mimics reported site(s) of S-palmitoylation. [3H]Palmitate labeling of Chinese hamster ovary cells expressing MUC1 with mutations in CQC3RRK revealed that MUC1 is dually palmitoylated at the CQC motif independent of RRK. Lack of palmitoylation did not affect the cold detergent solubility profile of a chimera (Tac ectodomain and MUC1 transmembrane and cytoplasmic domains), the rate of chimera delivery to the cell surface, or its half-life. Calculation of rate constants for membrane trafficking of wild-type and mutant Tac-MUC1 indicated that the lack of palmitoylation blocked recycling, but not endocytosis, and caused the chimera to accumulate in a EGFP-Rab11-positive endosomal compartment. Mutations CQC/AQA and Y20N inhibited Tac-MUC1 co-immunoprecipitation with AP-1, although mutant Y20N had reduced rates of both endocytosis and recycling, but a normal subcellular distribution. The double mutant chimera AQA+Y20N had reduced endocytosis and recycling rates and accumulated in EGFP-Rab11-positive endosomes, indicating that palmitoylation is the dominant feature modulating MUC1 recycling from endosomes back to the plasma membrane.
Collapse
Affiliation(s)
- Carol L Kinlough
- Laboratory of Epithelial Cell Biology, Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Serebryakova MV, Kordyukova LV, Baratova LA, Markushin SG. Mass spectrometric sequencing and acylation character analysis of C-terminal anchoring segment from Influenza A hemagglutinin. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2006; 12:51-62. [PMID: 16531651 DOI: 10.1255/ejms.792] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Influenza A virus hemagglutinin (HA) is a major envelope glycoprotein mediating viral and cell membrane fusion. HA is anchored in the viral envelope by a light HA(2) chain containing one transmembrane domain and a cytoplasmic tail. Three cysteine residues in the C-terminal region, one in the transmembrane domain and two in the cytoplasmic tail, are highly conserved and potentially palmitoylated in all HA subtypes. The HA(2) C- terminal anchoring segments were extracted to organic phase from the bromelain-digested viruses (subviral particles) of three strains: A/X-31 (H3 subtype), A/Puerto Rico/8/34 (H1 subtype) and A/FPV/Weybridge/34 (H7 subtype). Their primary structures were assessed by matrix-assisted laser desorption/ionization time-of-flight time-of- flight mass spectrometry (MALDI-ToF-ToF MS). Trypsin-type protease-cleaved peptides prevailed over bromelain- cleaved ones in the peptide mixtures. All of them included transmembrane domains. Several distinctive features of the C-terminal HA(2) peptides acylation character were discovered by MALDI-ToF MS: 1) the peptides isolated from the viruses, which were digested by bromelain in the absence of beta-mercaptoethanol, were predominantly triply acylated; 2) the peptides were acylated not only by palmitic, but also by stearic acid residues; 3) the palmitate/stearate ratio was different for the three strains studied; 4) the A/FPV/Weybridge/34 strain has a priority to stearate binding. This fatty acid residue was discovered at the first of three conservative cysteine residues located in the transmembrane domain. It was found that presence of thiol reagent during preparation of subviral particles led to the appearence of the C-terminal HA(2) peptides acylated to different degrees. Triply, doubly, mono- and even unacylated peptides were detected. It was demonstrated that the thioester bond in the isolated acylpeptides was extremely sensitive to thiol reagents.
Collapse
Affiliation(s)
- Marina V Serebryakova
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow
| | | | | | | |
Collapse
|
12
|
Chen BJ, Takeda M, Lamb RA. Influenza virus hemagglutinin (H3 subtype) requires palmitoylation of its cytoplasmic tail for assembly: M1 proteins of two subtypes differ in their ability to support assembly. J Virol 2005; 79:13673-84. [PMID: 16227287 PMCID: PMC1262586 DOI: 10.1128/jvi.79.21.13673-13684.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus hemagglutinin (HA) transmembrane domain boundary region and the cytoplasmic tail contain three cysteines (residues 555, 562, and 565 for the H3 HA subtype) that are highly conserved among the 16 HA subtypes and which are each modified by the covalent addition of palmitic acid. Previous analysis of the role of these conserved cysteine residues led to differing data, suggesting either no role for HA palmitoylation or an important role for HA palmitoylation. To reexamine the role of these residues in the influenza virus life cycle, a series of cysteine-to-serine mutations were introduced into the HA gene of influenza virus A/Udorn/72 (Ud) (H3N2) by using a highly efficient reverse genetics system. Mutant viruses containing HA-C562S and HA-C565S mutations had reduced growth and failed to form plaques in MDCK cells but formed wild-type-like plaques in an MDCK cell line expressing wild-type HA. In cell-cell fusion assays, nonpalmitoylated H3 HA, in both cDNA-transfected and virus-infected cells, was fully competent for HA-mediated membrane fusion. When the HA cytoplasmic tail cysteine mutants were examined for lipid raft association, using as the criterion Triton X-100 insolubility, loss of raft association did not show a direct correlation with a reduction in virus replication. However, mutant virus assembly was reduced in parallel with reduced virus replication. Additionally, a reassortant of strain A/WSN/33 (WSN), containing the Ud HA gene with mutations C555S, C562S, and C565S, produced virus that could form plaques on regular MDCK cells and had only moderately decreased replication, suggesting differences in the interactions between Ud and WSN HA and internal viral proteins. Analysis of M1 mutants containing substitutions in the six residues that differ between the Ud and WSN M1 proteins indicated that a constellation of residues are responsible for the difference between the M1 proteins in their ability to support virus assembly with nonpalmitoylated H3 HA.
Collapse
Affiliation(s)
- Benjamin J Chen
- Department of Biochemistry, Northwestern University, 2205 Tech Dr., Evanston, IL 60208-3500, USA
| | | | | |
Collapse
|
13
|
Wagner R, Herwig A, Azzouz N, Klenk HD. Acylation-mediated membrane anchoring of avian influenza virus hemagglutinin is essential for fusion pore formation and virus infectivity. J Virol 2005; 79:6449-58. [PMID: 15858028 PMCID: PMC1091681 DOI: 10.1128/jvi.79.10.6449-6458.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Attachment of palmitic acid to cysteine residues is a common modification of viral glycoproteins. The influenza virus hemagglutinin (HA) has three conserved cysteine residues at its C terminus serving as acylation sites. To analyze the structural and functional roles of acylation, we have generated by reverse genetics a series of mutants (Ac1, Ac2, and Ac3) of fowl plague virus (FPV) containing HA in which the acylation sites at positions 551, 559, and 562, respectively, have been abolished. When virus growth in CV1 and MDCK cells was analyzed, similar amounts of virus particles were observed with the mutants and the wild type. Protein patterns and lipid compositions, characterized by high cholesterol and glycolipid contents, were also indistinguishable. However, compared to wild-type virus, Ac2 and Ac3 virions were 10 and almost 1,000 times less infectious, respectively. Fluorescence transfer experiments revealed that loss of acyl chains impeded formation of fusion pores, whereas hemifusion was not affected. When the affinity to detergent-insoluble glycolipid (DIG) domains was analyzed by Triton X-100 treatment of infected cells and virions, solubilization of Ac2 and Ac3 HAs was markedly facilitated. These observations show that acylation of the cytoplasmic tail, while not necessary for targeting to DIG domains, promotes the firm anchoring and retention of FPV HA in these domains. They also indicate that tight DIG association of FPV HA is essential for formation of fusion pores and thus probably for infectivity.
Collapse
Affiliation(s)
- Ralf Wagner
- Institut für Virologie, Philipps-Universität Marburg, Postfach 2360, 35011 Marburg, Germany
| | | | | | | |
Collapse
|
14
|
Bosch BJ, de Haan CA, Smits SL, Rottier PJ. Spike protein assembly into the coronavirion: exploring the limits of its sequence requirements. Virology 2005; 334:306-18. [PMID: 15780881 PMCID: PMC7111810 DOI: 10.1016/j.virol.2005.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 10/17/2004] [Accepted: 02/01/2005] [Indexed: 02/04/2023]
Abstract
The coronavirus spike (S) protein, required for receptor binding and membrane fusion, is incorporated into the assembling virion by interactions with the viral membrane (M) protein. Earlier we showed that the ectodomain of the S protein is not involved in this process. Here we further defined the requirements of the S protein for virion incorporation. We show that the cytoplasmic domain, not the transmembrane domain, determines the association with the M protein and suffices to effect the incorporation into viral particles of chimeric spikes as well as of foreign viral glycoproteins. The essential sequence was mapped to the membrane-proximal region of the cytoplasmic domain, which is also known to be of critical importance for the fusion function of the S protein. Consistently, only short C-terminal truncations of the S protein were tolerated when introduced into the virus by targeted recombination. The important role of the about 38-residues cytoplasmic domain in the assembly of and membrane fusion by this approximately 1300 amino acids long protein is discussed.
Collapse
|
15
|
Ujike M, Nakajima K, Nobusawa E. Influence of acylation sites of influenza B virus hemagglutinin on fusion pore formation and dilation. J Virol 2004; 78:11536-43. [PMID: 15479794 PMCID: PMC523265 DOI: 10.1128/jvi.78.21.11536-11543.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The cytoplasmic tail (CT) of hemagglutinin (HA) of influenza B virus (BHA) contains at positions 578 and 581 two highly conserved cysteine residues (Cys578 and Cys581) that are modified with palmitic acid (PA) through a thioester linkage. To investigate the role of PA in the fusion activity of BHA, site-specific mutagenesis was performed with influenza B virus B/Kanagawa/73 HA cDNA. All of the HA mutants were expressed on Cos cells by an expression vector. The membrane fusion ability of the HA mutants at a low pH was quantitatively examined with lipid (octadecyl rhodamine B chloride) and aqueous (calcein) dye transfer assays and with the syncytium formation assay. Two deacylation mutants lacking a CT or carrying serine residues substituting for Cys578 and Cys581 promoted full fusion. However, one of the single-acylation-site mutants, C6, in which Cys581 is replaced with serine, promoted hemifusion but not pore formation. In contrast, four other single-acylation-site mutants that have a sole cysteine residue in the CT at position 575, 577, 579, or 581 promoted full fusion. The impaired pore-forming ability of C6 was improved by amino acid substitution between residues 578 and 582 or by deletion of the carboxy-terminal leucine at position 582. Syncytium-forming ability, however, was not adequately restored by these mutations. These facts indicated that the acylation was not significant in membrane fusion by BHA but that pore formation and pore dilation were appreciably affected by the particular amino acid sequence of the CT and the existence of a single acylation site in CT residue 578.
Collapse
Affiliation(s)
- Makoto Ujike
- Department of Microbiology and Infection, Graduate School of Medical Science, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya City 467-8601, Japan
| | | | | |
Collapse
|
16
|
Saslowsky DE, Lawrence JC, Henderson RM, Edwardson JM. Syntaxin is efficiently excluded from sphingomyelin-enriched domains in supported lipid bilayers containing cholesterol. J Membr Biol 2004; 194:153-64. [PMID: 14502428 DOI: 10.1007/s00232-003-2035-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Indexed: 10/27/2022]
Abstract
Formation of a trans-complex between the three SNARE proteins syntaxin, synaptobrevin and SNAP-25 drives membrane fusion. The structure of the core SNARE complex has been studied extensively. Here we have used atomic force microscopy to study the behavior of recombinant syntaxin 1A both in detergent extracts and in a lipid environment. Full-length syntaxin in detergent extracts had a marked tendency to aggregate, which was countered by addition of munc-18. In contrast, syntaxin lacking its transmembrane region was predominantly monomeric. Syntaxin could be integrated into liposomes, which formed lipid bilayers when deposited on a mica support. Supported bilayers were decorated with lipid vesicles in the presence, but not the absence, of full-length syntaxin, indicating that formation of syntaxin complexes in trans could mediate vesicle docking. Syntaxin complexes remained at the sites of docking following detergent solubilization of the lipids. Raised lipid domains could be seen in bilayers containing sphingomyelin, and these domains were devoid of syntaxin and docked vesicles in the presence, but not the absence, of cholesterol. Our results demonstrate that syntaxin is excluded from sphingomyelin-enriched domains in a cholesterol-dependent manner.
Collapse
Affiliation(s)
- D E Saslowsky
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | |
Collapse
|
17
|
Shmulevitz M, Salsman J, Duncan R. Palmitoylation, membrane-proximal basic residues, and transmembrane glycine residues in the reovirus p10 protein are essential for syncytium formation. J Virol 2003; 77:9769-79. [PMID: 12941885 PMCID: PMC224572 DOI: 10.1128/jvi.77.18.9769-9779.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian reovirus and Nelson Bay reovirus are two unusual nonenveloped viruses that induce extensive cell-cell fusion via expression of a small nonstructural protein, termed p10. We investigated the importance of the transmembrane domain, a conserved membrane-proximal dicysteine motif, and an endodomain basic region in the membrane fusion activity of p10. We now show that the p10 dicysteine motif is palmitoylated and that loss of palmitoylation correlates with a loss of fusion activity. Mutational and functional analyses also revealed that a triglycine motif within the transmembrane domain and the membrane-proximal basic region were essential for p10-mediated membrane fusion. Mutations in any of these three motifs did not influence events upstream of syncytium formation, such as p10 membrane association, protein topology, or surface expression, suggesting that these motifs are more intimately associated with the membrane fusion reaction. These results suggest that the rudimentary p10 fusion protein has evolved a mechanism of inducing membrane merger that is highly dependent on the specific interaction of several different motifs with donor membranes. In addition, cross-linking, coimmunoprecipitation, and complementation assays provided no evidence for p10 homo- or heteromultimer formation, suggesting that p10 may be the first example of a membrane fusion protein that does not form stable, higher-order multimers.
Collapse
Affiliation(s)
- Maya Shmulevitz
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|
18
|
Sakai T, Ohuchi R, Ohuchi M. Fatty acids on the A/USSR/77 influenza virus hemagglutinin facilitate the transition from hemifusion to fusion pore formation. J Virol 2002; 76:4603-11. [PMID: 11932425 PMCID: PMC155084 DOI: 10.1128/jvi.76.9.4603-4611.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza virus hemagglutinin (HA) has three highly conserved acylation sites close to the carboxyl terminus of the HA2 subunit, one in the transmembrane domain and two in the cytoplasmic domain. Each site is modified by palmitic acid through a thioester linkage to cysteine. To elucidate the biological significance of HA acylation, the acylation sites of HA of influenza virus strain A/USSR/77 (H1N1) were changed by site-directed mutagenesis, and the membrane fusion activity of mutant HAs lacking the acylation site(s) was examined quantitatively using transfer assays of lipid (R18) and aqueous (calcein) dyes. Lipid mixing, so-called hemifusion, activity was not affected by deacylation, whereas transfer of aqueous dye, so-called fusion pore formation, was dramatically restricted. When the fusion reaction was induced by a lower pH than the optimal one, calcein transfer with the mutant HAs was improved, but simultaneously a considerable calcein leakage into the medium was observed. From these results, we conclude that the palmitic acids on the H1 subtype HA facilitate the transition from hemifusion to fusion pore formation.
Collapse
Affiliation(s)
- Tatsuya Sakai
- Department of Microbiology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | | | | |
Collapse
|
19
|
Mora R, Rodriguez-Boulan E, Palese P, García-Sastre A. Apical budding of a recombinant influenza A virus expressing a hemagglutinin protein with a basolateral localization signal. J Virol 2002; 76:3544-53. [PMID: 11884578 PMCID: PMC136015 DOI: 10.1128/jvi.76.7.3544-3553.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2001] [Accepted: 12/26/2001] [Indexed: 12/15/2022] Open
Abstract
Influenza virions bud preferentially from the apical plasma membrane of infected epithelial cells, by enveloping viral nucleocapsids located in the cytosol with its viral integral membrane proteins, i.e., hemagglutinin (HA), neuraminidase (NA), and M2 proteins, located at the plasma membrane. Because individually expressed HA, NA, and M2 proteins are targeted to the apical surface of the cell, guided by apical sorting signals in their transmembrane or cytoplasmic domains, it has been proposed that the polarized budding of influenza virions depends on the interaction of nucleocapsids and matrix proteins with the cytoplasmic domains of HA, NA, and/or M2 proteins. Since HA is the major protein component of the viral envelope, its polarized surface delivery may be a major force that drives polarized viral budding. We investigated this hypothesis by infecting MDCK cells with a transfectant influenza virus carrying a mutant form of HA (C560Y) with a basolateral sorting signal in its cytoplasmic domain. C560Y HA was expressed nonpolarly on the surface of infected MDCK cells. Interestingly, viral budding remained apical in C560Y virus-infected cells, and so did the location of NP and M1 proteins at late times of infection. These results are consistent with a model in which apical viral budding is a shared function of various viral components rather than a role of the major viral envelope glycoprotein HA.
Collapse
Affiliation(s)
- Rosalia Mora
- Dyson Vision Research Institute, Departments of Ophthalmology and Cell Biology, Joan and Sanford Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
20
|
Ochsenbauer-Jambor C, Miller DC, Roberts CR, Rhee SS, Hunter E. Palmitoylation of the Rous sarcoma virus transmembrane glycoprotein is required for protein stability and virus infectivity. J Virol 2001; 75:11544-54. [PMID: 11689636 PMCID: PMC114741 DOI: 10.1128/jvi.75.23.11544-11554.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Rous sarcoma virus (RSV) transmembrane (TM) glycoprotein is modified by the addition of palmitic acid. To identify whether conserved cysteines within the hydrophobic anchor region are the site(s) of palmitoylation, and to determine the role of acylation in glycoprotein function, cysteines at residues 164 and 167 of the TM protein were mutated to glycine (C164G, C167G, and C164G/C167G). In CV-1 cells, palmitate was added to env gene products containing single mutations but was absent in the double-mutant Env. Although mutant Pr95 Env precursors were synthesized with wild-type kinetics, the phenotypes of the mutants differed markedly. Env-C164G had properties similar to those of the wild type, while Env-C167G was degraded faster, and Env containing the double mutant C164G/C167G was very rapidly degraded. Degradation occurred after transient plasma membrane expression. The decrease in steady-state surface expression and increased rate of internalization into endosomes and lysosomes paralleled the decrease in palmitoylation observed for the mutants. The phenotypes of mutant viruses were assessed in avian cells in the context of the pATV8R proviral genome. Virus containing the C164G mutation replicated with wild-type kinetics but exhibited reduced peak reverse transcriptase levels. In contrast, viruses containing either the C167G or the C164G/C167G mutation were poorly infectious or noninfectious, respectively. These phenotypes correlated with different degrees of glycoprotein incorporation into virions. Infectious revertants of the double mutant demonstrated the importance of cysteine-167 for efficient plasma membrane expression and Env incorporation. The observation that both cysteines within the membrane-spanning domain are accessible for acylation has implications for the topology of this region, and a model is proposed.
Collapse
Affiliation(s)
- C Ochsenbauer-Jambor
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
21
|
Veit M, Schmidt MF. Enzymatic depalmitoylation of viral glycoproteins with acyl-protein thioesterase 1 in vitro. Virology 2001; 288:89-95. [PMID: 11543661 DOI: 10.1006/viro.2001.1063] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many glycoproteins of enveloped viruses as well as cellular proteins are covalently modified with fatty acids. Palmitoylation is often reversible, but the enzymology of this hydrophobic protein modification is not understood. Recently a cytosolic enzyme designated acyl-protein thioesterase 1 (APT1) was purified, which depalmitoylates several cellular proteins. Since hitherto no transmembrane proteins have been tested as substrates for APT1 we have investigated whether palmitoylated viral membrane glycoproteins can be deacylated by use of this enzyme. Recombinant APT1 was purified from Escherichia coli, and depalmitoylation of [3H]palmitate-labeled glycoproteins present in virus particles was measured by SDS-PAGE, fluorography, and scanning densitometry. We find that APT1 causes rapid and almost complete cleavage of fatty acids from the G-protein of vesicular stomatitis virus, hemagglutinin proteins of influenza A and C virus, and E2 of Semliki Forest virus (SFV). In contrast, E1 of SFV is largely resistant against APT1 activity. This substrate specificity of APT1 was also observed using microsomes prepared from SFV-infected cells. Our data emphasize the potential of APT1 as a tool for functional analysis of protein-bound fatty acids.
Collapse
Affiliation(s)
- M Veit
- Department of Immunology and Molecular Biology, Faculty of Veterinary Medicine, Free University Berlin, Berlin, Germany
| | | |
Collapse
|
22
|
Smit JM, Bittman R, Wilschut J. Deacylation of the transmembrane domains of Sindbis virus envelope glycoproteins E1 and E2 does not affect low-pH-induced viral membrane fusion activity. FEBS Lett 2001; 498:57-61. [PMID: 11389898 DOI: 10.1016/s0014-5793(01)02495-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The envelope glycoproteins E1 and E2 of Sindbis virus are palmitoylated at cysteine residues within their transmembrane domains (E1 at position 430, and E2 at positions 388 and 390). Here, we investigated the in vitro membrane fusion activity of Sindbis virus variants (derived from the Toto 1101 infectious clone), in which the E1 C430 and/or E2 C388/390 residues had been substituted for alanines. Both the E1 and E2 mutant viruses, as well as a triple mutant virus, fused with liposomes in a strictly low-pH-dependent manner, the fusion characteristics being indistinguishable from those of the parent Toto 1101 virus. These results demonstrate that acylation of the transmembrane domain of Sindbis virus E1 and E2 is not required for expression of viral membrane fusion activity.
Collapse
Affiliation(s)
- J M Smit
- Department of Medical Microbiology, University of Groningen, The Netherlands
| | | | | |
Collapse
|
23
|
Eisele F, Kuhlmann J, Waldmann H. Synthesis and Membrane-Binding Properties of a Characteristic Lipopeptide from the Membrane-Anchoring Domain of Influenza Virus A Hemagglutinin. Angew Chem Int Ed Engl 2001; 40:369-373. [PMID: 29712417 DOI: 10.1002/1521-3773(20010119)40:2<369::aid-anie369>3.0.co;2-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2000] [Indexed: 11/06/2022]
Abstract
On the trail of the influenza virus! Fluorescent-labeled lipopeptides, such as the characteristic S-palmitoylated partial structure from influenza virus hemagglutinin A, can be synthesized efficiently by employing a new enzymatic protecting-group technique in the key steps. Their binding to model membranes was determined in a kinetic assay, so leading to a first approximation of the membrane-anchoring ability of the corresponding lipopeptide motif in the parent protein.
Collapse
Affiliation(s)
- Frank Eisele
- Universität Karlsruhe Institut für Organische Chemie Richard-Willstätter-Allee 2, 76128 Karlsruhe (Germany)
| | - Jürgen Kuhlmann
- Max-Planck-Institut für molekulare Physiologie Abteilung Strukturelle Biologie Otto-Hahn-Strasse 11, 44227 Dortmund (Germany)
| | - Herbert Waldmann
- Max-Planck-Institut für molekulare Physiologie Abteilung Chemische Biologie and Universität Dortmund Institut für Organische Chemie Otto-Hahn-Strasse 11, 44227 Dortmund (Germany) Fax: (+49) 231-133-2499
| |
Collapse
|
24
|
Eisele F, Kuhlmann J, Waldmann H. Synthese und Membranbindungseigenschaften eines Lipopeptids der membranassoziierten Domäne des Influenza-A-Virus-Hämagglutinins. Angew Chem Int Ed Engl 2001. [DOI: 10.1002/1521-3757(20010119)113:2<382::aid-ange382>3.0.co;2-f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Chang KW, Sheng Y, Gombold JL. Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein. Virology 2000; 269:212-24. [PMID: 10725213 PMCID: PMC7131280 DOI: 10.1006/viro.2000.0219] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spike glycoprotein of mouse hepatitis virus strain A59 mediates the early events leading to infection of cells, including fusion of the viral and cellular membranes. The spike is a type I membrane glycoprotein that possesses a conserved transmembrane anchor and an unusual cysteine-rich (cys) domain that bridges the putative junction of the anchor and the cytoplasmic tail. In this study, we examined the role of these carboxyl-terminal domains in spike-mediated membrane fusion. We show that the cytoplasmic tail is not required for fusion but has the capacity to enhance membrane fusion activity. Chimeric spike protein mutants containing substitutions of the entire transmembrane anchor and cys domain with the herpes simplex virus type 1 glycoprotein D (gD-1) anchor demonstrated that fusion activity requires the presence of the A59 membrane-spanning domain and the portion of the cys domain that lies upstream of the cytoplasmic tail. The cys domain is a required element since its deletion from the wild-type spike protein abrogates fusion activity. However, addition of the cys domain to fusion-defective chimeric proteins was unable to restore fusion activity. Thus, the cys domain is necessary but is not sufficient to complement the gD-1 anchor and allow for membrane fusion. Site-specific mutations of conserved cysteine residues in the cys domain markedly reduce membrane fusion, which further supports the conclusion that this region is crucial for spike function. The results indicate that the carboxyl-terminus of the spike transmembrane anchor contains at least two distinct domains, both of which are necessary for full membrane fusion.
Collapse
Affiliation(s)
- K W Chang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
26
|
Neumann G, Kawaoka Y. Genetic engineering of influenza and other negative-strand RNA viruses containing segmented genomes. Adv Virus Res 2000; 53:265-300. [PMID: 10582103 DOI: 10.1016/s0065-3527(08)60352-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- G Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison 53706, USA
| | | |
Collapse
|
27
|
Faergeman NJ, Ballegaard T, Knudsen J, Black PN, DiRusso C. Possible roles of long-chain fatty Acyl-CoA esters in the fusion of biomembranes. Subcell Biochem 2000; 34:175-231. [PMID: 10808334 DOI: 10.1007/0-306-46824-7_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- N J Faergeman
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York 12208, USA
| | | | | | | | | |
Collapse
|
28
|
Cheong KH, Zacchetti D, Schneeberger EE, Simons K. VIP17/MAL, a lipid raft-associated protein, is involved in apical transport in MDCK cells. Proc Natl Acad Sci U S A 1999; 96:6241-8. [PMID: 10339572 PMCID: PMC26866 DOI: 10.1073/pnas.96.11.6241] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Apical proteins are sorted and delivered from the trans-Golgi network to the plasma membrane by a mechanism involving sphingolipid-cholesterol rafts. In this paper, we report the effects of changing the levels of VIP17/MAL, a tetraspan membrane protein localized to post-Golgi transport containers and the apical cell surface in MDCK cells. Overexpression of VIP17/MAL disturbed the morphology of the MDCK cell layers by increasing apical delivery and seemingly expanding the apical cell surface domains. On the other hand, expression of antisense RNA directed against VIP17/MAL caused accumulation in the Golgi and/or impaired apical transport of different apical protein markers, i.e., influenza virus hemagglutinin, the secretory protein clusterin (gp80), the transmembrane protein gp114, and a glycosylphosphatidylinositol-anchored protein. However, antisense RNA expression did not affect the distribution of E-cadherin to the basolateral surface. Because VIP17/MAL associates with sphingolipid-cholesterol rafts, these data provide functional evidence that this protein is involved in apical transport and might be a component of the machinery clustering lipid rafts with apical cargo to form apical transport carriers.
Collapse
Affiliation(s)
- K H Cheong
- European Molecular Biology Laboratory, Cell Biology and Biophysics Programme, D69012 Heidelberg and Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | |
Collapse
|
29
|
Jacob R, Preuss U, Panzer P, Alfalah M, Quack S, Roth MG, Naim H, Naim HY. Hierarchy of sorting signals in chimeras of intestinal lactase-phlorizin hydrolase and the influenza virus hemagglutinin. J Biol Chem 1999; 274:8061-7. [PMID: 10075706 DOI: 10.1074/jbc.274.12.8061] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lactase-phlorizin hydrolase (LPH) is an apical protein in intestinal cells. The location of sorting signals in LPH was investigated by preparing a series of mutants that lacked the LPH cytoplasmic domain or had the cytoplasmic domain of LPH replaced by sequences that comprised basolateral targeting signals and overlapping internalization signals of various potency. These signals are mutants of the cytoplasmic domain of the influenza hemagglutinin (HA), which have been shown to be dominant in targeting HA to the basolateral membrane. The LPH-HA chimeras were expressed in Madin-Darby canine kidney (MDCK) and colon carcinoma (Caco-2) cells, and their transport to the cell surface was analyzed. All of the LPH mutants were targeted correctly to the apical membrane. Furthermore, the LPH-HA chimeras were internalized, indicating that the HA tails were available to interact with the cytoplasmic components of clathrin-coated pits. The introduction of a strong basolateral sorting signal into LPH was not sufficient to override the strong apical signals of the LPH external domain or transmembrane domains. These results show that basolateral sorting signals are not always dominant over apical sorting signals in proteins that contain each and suggest that sorting of basolateral from apical proteins occurs within a common compartment where competition for sorting signals can occur.
Collapse
Affiliation(s)
- R Jacob
- Department of Physiological Chemistry, School of Veterinary Medicine Hannover, D-30559 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Melkonian KA, Ostermeyer AG, Chen JZ, Roth MG, Brown DA. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J Biol Chem 1999; 274:3910-7. [PMID: 9920947 DOI: 10.1074/jbc.274.6.3910] [Citation(s) in RCA: 501] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingolipid and cholesterol-rich Triton X-100-insoluble membrane fragments (detergent-resistant membranes, DRMs) containing lipids in a state similar to the liquid-ordered phase can be isolated from mammalian cells, and probably exist as discrete domains or rafts in intact membranes. We postulated that proteins with a high affinity for such an ordered lipid environment might be targeted to rafts. Saturated acyl chains should prefer an extended conformation that would fit well in rafts. In contrast, prenyl groups, which are as hydrophobic as acyl chains but have a branched and bulky structure, should be excluded from rafts. Here, we showed that at least half of the proteins in Madin-Darby canine kidney cell DRMs (other than cytoskeletal contaminants) could be labeled with [3H]palmitate. Association of influenza hemagglutinin with DRMs required all three of its palmitoylated Cys residues. Prenylated proteins, detected by [3H]mevalonate labeling or by blotting for Rap1, Rab5, Gbeta, or Ras, were excluded from DRMs. Rab5 and H-Ras each contain more than one lipid group, showing that hydrophobicity alone does not target multiply lipid-modified proteins to DRMs. Partitioning of covalently linked saturated acyl chains into liquid-ordered phase domains is likely to be an important mechanism for targeting proteins to DRMs.
Collapse
Affiliation(s)
- K A Melkonian
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York 11794-5215, USA
| | | | | | | | | |
Collapse
|
31
|
Scheiffele P, Rietveld A, Wilk T, Simons K. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J Biol Chem 1999; 274:2038-44. [PMID: 9890962 DOI: 10.1074/jbc.274.4.2038] [Citation(s) in RCA: 349] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the budding of enveloped viruses from the plasma membrane, the lipids are not randomly incorporated into the envelope, but virions seem to have a lipid composition different from the host membrane. Here, we have analyzed lipid assemblies in three different viruses: fowl plague virus (FPV) from the influenza virus family, vesicular stomatitis virus (VSV), and Semliki Forest virus (SFV). Analysis of detergent extractability of proteins, cholesterol, phosphoglycerolipids, and sphingomyelin in virions showed that FPV contains high amounts of detergent-insoluble complexes, whereas such complexes are largely absent from VSV or SFV. Cholesterol depletion from the viral envelope by methyl-beta-cyclodextrin results in increased solubility of sphingomyelin and of the glycoproteins in the FPV envelope. This biochemical behavior suggests that so-called raft-lipid domains are selectively incorporated into the influenza virus envelope. The "fluidity" of the FPV envelope, as measured by the fluorescence polarization of diphenylhexatriene, was significantly lower than compared with VSV or SFV. Furthermore, influenza virus hemagglutinin incorporated into the envelope of recombinant VSV was largely detergent-soluble, indicating the depletion of raft-lipid assemblies from this membrane. The results provide a model for lipid selectivity during virus budding and support the view of lipid rafts as cholesterol-dependent, ordered domains in biological membranes.
Collapse
Affiliation(s)
- P Scheiffele
- Cell Biology Programme, European Molecular Biology Laboratory, Postfach 10 2209, D-69012 Heidelberg, Germany
| | | | | | | |
Collapse
|
32
|
Caballero M, Carabaña J, Ortego J, Fernández-Muñoz R, Celma ML. Measles virus fusion protein is palmitoylated on transmembrane-intracytoplasmic cysteine residues which participate in cell fusion. J Virol 1998; 72:8198-204. [PMID: 9733862 PMCID: PMC110167 DOI: 10.1128/jvi.72.10.8198-8204.1998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
[3H]palmitic acid was metabolically incorporated into the viral fusion protein (F) of Edmonston or freshly isolated measles virus (MV) during infection of human lymphoid or Vero cells. The uncleaved precursor F0 and the F1 subunit from infected cells and extracellular virus were both labeled, indicating that palmitoylation can take place prior to F0 cleavage and that palmitoylated F protein was incorporated into virus particles. [3H]palmitic acid was released from F protein upon hydroxylamine or dithiothreitol treatment, indicating a thioester linkage. In cells transfected with the cloned MV F gene, in which the cysteines located in the intracytoplasmic and transmembrane domains (Cys 506, 518, 519, 520, and 524) were replaced by serine, a major reduction of [3H]palmitic acid incorporation was observed for F mutated at Cys 506 and, to a lesser extent, at Cys 518 and Cys 524. We also observed incorporation of [3H]palmitic acid in the F1 subunit of canine distemper virus F protein. Cell fusion induced by cotransfection of cells with MV F and H (hemagglutinin) genes was significantly reduced after replacement of Cys 506 or Cys 519 with serine in the MV F gene. Transfection with the F gene with a mutation for Cys 518 abolished cell fusion, although less mutant protein was detected on the cell surface. These results suggest that the F protein transmembrane domain cysteines 506 and 518 participate in structures involved in cell fusion, possibly mediated by palmitoylation.
Collapse
Affiliation(s)
- M Caballero
- Molecular Virology Laboratory, Hospital "Ramón y Cajal" Instituto Nacional de la Salud, Madrid 28034, Spain
| | | | | | | | | |
Collapse
|
33
|
Ponimaskin E, Schmidt MF. Domain-structure of cytoplasmic border region is main determinant for palmitoylation of influenza virus hemagglutinin (H7). Virology 1998; 249:325-35. [PMID: 9791024 DOI: 10.1006/viro.1998.9303] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown previously that the length of cytoplasmic tails influences the selection of lipid substrates for palmitoylation of influenza viral hemagglutinin esterase fusion (HEF) and hemagglutinin (HA) glycoproteins [Veit et al. (1996) Biochem. J. 318, 163-172; Reverey et al. (1996) J. Biol. Chem. 271, 23607-23610]. Using a series of new chimeric mutant proteins derived from acylated influenza virus HA (subtype H7) and from nonacylated Sendai virus fusion protein (F, strain Z), we report here that palmitoylation levels depend on the type of transmembrane or cytoplasmic domain, or both, present in the expression products and that cysteine residues placed close to the cytoplasmic membrane border are not sufficient for acylation. By inserting stretches of the HA transmembrane domain into a nonacylated mutant of Sendai F (FCys), we induce palmitoylation after expression in CV.1 cells, and the level of fatty acid transfer increases with the length of the HA-derived insert. A five-amino-acid shift of the HA transmembrane domain severely augments fatty acid transfer. Our data suggest that the influenza virus HA contains complex conformational signals for palmitoylation that are mainly located within the transmembrane domain but also involve the C-tail region, whereas the extracellular (luminal) domain has only marginal influence on palmitoylation.
Collapse
Affiliation(s)
- E Ponimaskin
- Institut für Immunologie und Molekularbiologie, Fachbereich Veterinärmedizin der Freien Universität Berlin, Luisenstrasse 56, Berlin, D-10117, Germany
| | | |
Collapse
|
34
|
Fischer C, Schroth-Diez B, Herrmann A, Garten W, Klenk HD. Acylation of the influenza hemagglutinin modulates fusion activity. Virology 1998; 248:284-94. [PMID: 9721237 DOI: 10.1006/viro.1998.9286] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The influenza virus hemagglutinin (HA) contains three highly conserved cysteine residues at positions 551, 559, and 562 close to the carboxyl-terminus of the HA2 subunit which serve as palmitylation sites. Wild-type HA of influenza virus A/FPV/Rostock/34 (H7N1) and HA permutated by exchange of the acylated cysteine to serine residues were expressed in CV-1 cells by a SV40 vector system. Since density of immunostained HA on the cell surface measured by flow cytometric analysis did not differ between wild-type and acylation mutants, it was possible to compare acylation mutants and wild-type HA for their capacity to induce membrane fusion at low pH. The following observations were made: (1) lateral diffusion of a lipid-like fluorophore (R-18) from the erythrocyte membrane to the plasma membrane of cells expressing HA on the surface occurred equally well with mutants and wild type. (2) Diffusion of a low-molecular-weight fluorescent water-soluble probe (calcein) from erythrocytes into the cytoplasm of HA-expressing cells was not altered either. (3) However, depending on the position and the number of the deleted acylation sites, the mutants showed a reduced ability to induce syncytia. The data indicate that deacylation of the cytoplasmic tail has no measurable effect on the capacity of HA to induce membrane fusion and pore formation but that it suppresses syncytia formation.
Collapse
Affiliation(s)
- C Fischer
- Institut für Virologie, Philipps-Universität Marburg, Marburg, 35011, Germany
| | | | | | | | | |
Collapse
|
35
|
Ohuchi M, Fischer C, Ohuchi R, Herwig A, Klenk HD. Elongation of the cytoplasmic tail interferes with the fusion activity of influenza virus hemagglutinin. J Virol 1998; 72:3554-9. [PMID: 9557635 PMCID: PMC109575 DOI: 10.1128/jvi.72.5.3554-3559.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hemagglutinin (HA) of fowl plague virus was lengthened and shortened by site-specific mutagenesis at the cytoplasmic tail, and the effects of these modifications on HA functions were analyzed after expression from a simian virus 40 vector. Elongation of the tail by the addition of one to six histidine (His) residues did not interfere with intracellular transport, glycosylation, proteolytic cleavage, acylation, cell surface expression, and hemadsorption. However, the ability to induce syncytia at a low pH decreased dramatically depending on the number of His residues added. Partial fusion (hemifusion), assayed by fluorescence transfer from octadecylrhodamine-labeled erythrocyte membranes, was also reduced, but even with the mutant carrying six His residues, significant transfer was observed. However, when the formation of fusion pores was examined with hydrophilic fluorescent calcein, transfer from erythrocytes to HA-expressing cells was not observed with the mutant carrying six histidine residues. The addition of different amino acids to the cytoplasmic tail of HA caused an inhibitory effect similar to that caused by the addition of His. On the other hand, a mutant lacking the cytoplasmic tail was still able to fuse at a reduced level. These results demonstrate that elongation of the cytoplasmic tail interferes with the formation and enlargement of fusion pores. Thus, the length of the cytoplasmic tail plays a critical role in the fusion process.
Collapse
Affiliation(s)
- M Ohuchi
- Institut für Virologie, Philipps-Universität Marburg, Germany
| | | | | | | | | |
Collapse
|
36
|
Spielhofer P, Bächi T, Fehr T, Christiansen G, Cattaneo R, Kaelin K, Billeter MA, Naim HY. Chimeric measles viruses with a foreign envelope. J Virol 1998; 72:2150-9. [PMID: 9499071 PMCID: PMC109510 DOI: 10.1128/jvi.72.3.2150-2159.1998] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/1997] [Accepted: 11/14/1997] [Indexed: 02/06/2023] Open
Abstract
Measles virus (MV) and vesicular stomatitis virus (VSV) are both members of the Mononegavirales but are only distantly related. We generated two genetically stable chimeric viruses. In MGV, the reading frames of the MV envelope glycoproteins H and F were substituted by a single reading frame encoding the VSV G glycoprotein; MG/FV is similar but encodes a G/F hybrid in which the VSV G cytoplasmic tail was replaced by that of MV F. In contrast to MG/FV, MGV virions do not contain the MV matrix (M) protein. This demonstrates that virus assembly is possible in the absence of M; conversely, the cytoplasmic domain of F allows incorporation of M and enhances assembly. The formation of chimeric viruses was substantially delayed and the titers obtained were reduced about 50-fold in comparison to standard MV. In the novel chimeras, transcription and replication are mediated by the MV ribonucleoproteins but the envelope glycoproteins dictate the host range. Mice immunized with the chimeric viruses were protected against lethal doses of wild-type VSV. These findings suggest that it is feasible to construct MV variants bearing a variety of different envelopes for use as vaccines or for gene therapeutic purposes.
Collapse
Affiliation(s)
- P Spielhofer
- Institute of Molecular Biology Division I, University of Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lin S, Naim HY, Roth MG. Tyrosine-dependent basolateral sorting signals are distinct from tyrosine-dependent internalization signals. J Biol Chem 1997; 272:26300-5. [PMID: 9334200 DOI: 10.1074/jbc.272.42.26300] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Converting cysteine 543 to tyrosine in the influenza virus hemagglutinin (HA) introduces both a basolateral sorting signal and an internalization signal into the HA cytoplasmic domain. Another HA mutant, HA+8, contains eight additional amino acids at the end of the cytoplasmic domain that include a powerful internalization signal. HA+8 was also sorted efficiently to the basolateral surface of Madin-Darby canine kidney cells. The simplest explanation for the observation that multiple sorting phenotypes depend upon the same small amino acid sequence is that certain tyrosine-based internalization signals might also function as basolateral sorting signals. To test this hypothesis, second-site mutations were introduced into HA C543Y or HA+8 to determine if the internalization and basolateral sorting functions can be separated. For HA C543Y, the same sequence positions were important for both basolateral sorting and internalization, but the two functions responded differently to individual amino acid replacements, indicating that they were distinct. For HA+8, the basolateral sorting signal required the same tyrosine as the internalization signal, but did not share any other characteristics. Thus, even when basolateral sorting signals that depend on tyrosine overlap or are co-linear with internalizations signals, the two sorting processes are sensitive to different characteristics of the sequence.
Collapse
Affiliation(s)
- S Lin
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9038, USA
| | | | | |
Collapse
|
38
|
Scheiffele P, Roth MG, Simons K. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J 1997; 16:5501-8. [PMID: 9312009 PMCID: PMC1170182 DOI: 10.1093/emboj/16.18.5501] [Citation(s) in RCA: 532] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sphingolipid-cholesterol rafts are microdomains in biological membranes with liquid-ordered phase properties which are implicated in membrane traffic and signalling events. We have used influenza virus haemagglutinin (HA) as a model protein to analyse the interaction of transmembrane proteins with these microdomains. Here we demonstrate that raft association is an intrinsic property encoded in the protein. Mutant HA molecules with foreign transmembrane domain (TMD) sequences lose their ability to associate with the lipid microdomains, and mutations in the HA TMD reveal a requirement for hydrophobic residues in contact with the exoplasmic leaflet of the membrane. We also provide experimental evidence that cholesterol is critically required for association of proteins with lipid rafts. Our data suggest that the binding to specific membrane domains can be encoded in transmembrane proteins and that this information will be used for polarized sorting and signal transduction processes.
Collapse
Affiliation(s)
- P Scheiffele
- Cell Biology Programme, European Molecular Biology Laboratory, Postfach 102209, 69112 Heidelberg, Germany
| | | | | |
Collapse
|
39
|
Melikyan GB, Jin H, Lamb RA, Cohen FS. The role of the cytoplasmic tail region of influenza virus hemagglutinin in formation and growth of fusion pores. Virology 1997; 235:118-28. [PMID: 9300043 DOI: 10.1006/viro.1997.8686] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of the cytoplasmic tail of influenza hemagglutinin (HA) (H3 subtype) on fusion kinetics and pore growth was examined An SV40 recombinant virus was used to express wild-type (WT) HA and HA mutants containing changes in the HA cytoplasmic tail. HA and its mutants were expressed in CV-1 cells and the ability of these cells to fuse to either red blood cells (RBCs) or planar bilayer membranes was determined quantitatively. The percentage of cells expressing HA and the levels of expression were the same for WT HA or HA lacking its cytoplasmic tail (CT-), and for a mutant, MAY, in which the three HA C-terminal cysteine residues were replaced to block the addition of palmitate. When RBCs were colabeled with large and small aqueous dyes and fused to CV-1 cells expressing WT HA, transfer of the large dye was significantly slower and extent of transfer was lower than that of the small dye, indicating that pores did not expand quickly to large diameters. An absence of the HA cytoplasmic tail did not alter the time course of spread for either dye. When CV-1 cells expressing WT HA were fused to planar membranes, small pores tended to open and close repetitively ("flicker") before a pore would continue to either grow irreversibly to large conductances or grow to intermediate sizes and then contract. For HA mutants CT- and MAY, flickering was less likely to occur, but these pores did evolve in a manner identical to WT HA postflicker pores. We conclude that palmitate covalently linked to cysteine residues of the HA cytoplasmic tail is required for pore flickering, but that the tail does not play an important role in subsequent pore enlargement.
Collapse
Affiliation(s)
- G B Melikyan
- Department of Molecular Biophysics and Physiology, Rush Medical College, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
40
|
Andersson AM, Melin L, Bean A, Pettersson RF. A retention signal necessary and sufficient for Golgi localization maps to the cytoplasmic tail of a Bunyaviridae (Uukuniemi virus) membrane glycoprotein. J Virol 1997; 71:4717-27. [PMID: 9151865 PMCID: PMC191693 DOI: 10.1128/jvi.71.6.4717-4727.1997] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Members of the Bunyaviridae family mature by a budding process in the Golgi complex. The site of maturation is thought to be largely determined by the accumulation of the two spike glycoproteins, G1 and G2, in this organelle. Here we show that the signal for localizing the Uukuniemi virus (a phlebovirus) spike protein complex to the Golgi complex resides in the cytoplasmic tail of G1. We constructed chimeric proteins in which the ectodomain, transmembrane domain (TMD), and cytoplasmic tail (CT) of Uukuniemi virus G1 were exchanged with the corresponding domains of either vesicular stomatitis virus G protein (VSV G), chicken lysozyme, or CD4, all proteins readily transported to the plasma membrane. The chimeras were expressed in HeLa or BHK-21 cells by using either the T7 RNA polymerase-driven vaccinia virus system or the Semliki Forest virus system. The fate of the chimeric proteins was monitored by indirect immunofluorescence, and their localizations were compared by double labeling with markers specific for the Golgi complex. The results showed that the ectodomain and TMD (including the 10 flanking residues on either side of the membrane) of G1 played no apparent role in targeting chimeric proteins to the Golgi complex. Instead, all chimeras containing the CT of G1 were efficiently targeted to the Golgi complex and colocalized with mannosidase II, a Golgi-specific enzyme. Conversely, replacing the CT of G1 with that from VSV G resulted in the efficient transport of the chimeric protein to the cell surface. Progressive deletions of the G1 tail suggested that the Golgi retention signal maps to a region encompassing approximately residues 10 to 50, counting from the proposed border between the TMD and the tail. Both G1 and G2 were found to be acylated, as shown by incorporation of [3H]palmitate into the viral proteins. By mutational analyses of CD4-G1 chimeras, the sites for palmitylation were mapped to two closely spaced cysteine residues in the G1 tail. Changing either or both of these cysteines to alanine had no effect on the targeting of the chimeric protein to the Golgi complex.
Collapse
Affiliation(s)
- A M Andersson
- Ludwig Institute for Cancer Research, Stockholm Branch, Sweden
| | | | | | | |
Collapse
|
41
|
Nur-E-Kamal MS, Reverey H, Ponimaskin E, Schroth-Diez B, Herrmann A, Schmidt MF. Targeted delivery of human neurofibromin and c-Raf-1 mutants to the cytoplasmic membrane by use of the influenza virus hemagglutinin. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1338:233-43. [PMID: 9128141 DOI: 10.1016/s0167-4838(96)00206-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutants of human neurofibromin and c-Raf-1 genes were fused to the 3' end of the hemagglutinin (HA) gene of influenza A virus by oligonucleotide-directed polymerase chain reaction (PCR). The two resulting chimeric genes, HA (1-534)/NF1 (1441-1518) and HA (1-534)/Raf-1 (51-132) which we designated HN and HR, respectively, were cloned in a vaccinia virus expression vector (pTMI) under the control of a T7 RNA polymerase promoter. The clones were expressed in a monkey cell line (CV-1) and the resulting chimeric proteins analysed. We found that expression levels of the chimeric proteins were similar to that of wild-type HA protein. Comparative endoglycosidase treatment revealed that the expressed chimeric proteins HN and HR were processed as wild-type HA, and FACS-analysis showed that both chimeric expression products localised in the cell membrane as the wild-type control. HN and HR expressing cells showed similar fusogenic activity as CV-1 cells transfected with wild-type HA indicating the correct topology of the fusion inducing portion (HA) of these chimera in the membrane. These findings show that the influenza virus hemagglutinin (HA) is a suitable vehicle to target foreign proteins with therapeutical potential into the cell membrane. In this respect HN and HR could potentially be used to block the abnormal signals generated by particular proteins in the cell membrane that lead to cell transformation.
Collapse
Affiliation(s)
- M S Nur-E-Kamal
- Institut für Immunologie und Molekularbiologie, Fachbereich Veterinämedizin der Freien Universität Berlin, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Jin H, Subbarao K, Bagai S, Leser GP, Murphy BR, Lamb RA. Palmitylation of the influenza virus hemagglutinin (H3) is not essential for virus assembly or infectivity. J Virol 1996; 70:1406-14. [PMID: 8627657 PMCID: PMC189960 DOI: 10.1128/jvi.70.3.1406-1414.1996] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The C terminus of the influenza virus hemagglutinin (HA) contains three cysteine residues that are highly conserved among HA subtypes, two in the cytoplasmic tail and one in the transmembrane domain. All of these C-terminal cysteine residues are modified by the covalent addition of palmitic acid through a thio-ether linkage. To investigate the role of HA palmitylation in virus assembly, we used reverse genetics technique to introduce substitutions and deletions that affected the three conserved cysteine residues into the H3 subtype HA. The rescued viruses contained the HA of subtype H3 (A/Udorn/72) in a subtype H1 helper virus (A/WSN/33) background. Rescued viruses which do not contain a site for palmitylation (by residue substitution or substitution combined with deletion of the cytoplasmic tail) were obtained. Rescued virions had a normal polypeptide composition. Analysis of the kinetics of HA low-pH-induced fusion of the mutants showed no major change from that of virus with wild-type (wt) HA. The PFU/HA ratio of the rescued viruses grown in eggs ranged from that of virus with wt HA to 16-fold lower levels, whereas the PFU/HA ratio of the rescued viruses grown in MDCK cells varied only 2-fold from that of virus with wt HA. However, except for one rescued mutant virus (CAC), the mutant viruses were attenuated in mice, as indicated by a > or = 400-fold increase in the 50% lethal dose. Interestingly, except for one mutant virus (CAC), all of the rescued mutant viruses were restricted for replication in the upper respiratory tract but much less restricted in the lungs. Thus, the HA cytoplasmic tail may play a very important role in the generation of virus that can replicate in multiple cell types.
Collapse
Affiliation(s)
- H Jin
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | | | | | |
Collapse
|
43
|
Yang C, Spies CP, Compans RW. The human and simian immunodeficiency virus envelope glycoprotein transmembrane subunits are palmitoylated. Proc Natl Acad Sci U S A 1995; 92:9871-5. [PMID: 7568235 PMCID: PMC40904 DOI: 10.1073/pnas.92.21.9871] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The envelope proteins of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) were found to be modified by fatty acylation of the transmembrane protein subunit gp41. The precursor gp160 was also palmitoylated prior to its cleavage into the gp120 and gp41 subunits. The palmitic acid label was sensitive to treatment with hydroxylamine or 2-mercaptoethanol, indicating that the linkage is through a thioester bond. Treatment with cycloheximide did not prevent the incorporation of [3H]palmitic acid into the HIV envelope protein, indicating that palmitoylation is a posttranslation modification. In contrast to other glycoproteins, which are palmitoylated at cysteine residues within or close to the membrane-spanning hydrophobic domain, the palmitoylation of the HIV-1 envelope proteins occurs on two cysteine residues, Cys-764 and Cys-837, which are 59 and 132 amino acids, respectively, from the proposed membrane-spanning domain of gp41. Sequence comparison revealed that one of these residues (Cys-764) is conserved in the cytoplasmic domains of almost all HIV-1 isolates and is located very close to an amphipathic region which has been postulated to bind to the plasma membrane.
Collapse
Affiliation(s)
- C Yang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
44
|
McGinnes LW, Morrison TG. Modulation of the activities of HN protein of Newcastle disease virus by nonconserved cysteine residues. Virus Res 1994; 34:305-16. [PMID: 7856316 DOI: 10.1016/0168-1702(94)90130-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Comparisons of the sequences of the hemagglutinin-neuraminidase (HN) protein from thirteen different strains of Newcastle disease virus (NDV) show that while 12 cysteine residues are conserved in all strains, two cysteine residues are variably present (Sakaguchi et al. (1989) Virology 169, 260-272). One of these residues, at amino acid 6, is in the cytoplasmic domain. The other cysteine is at amino acid 123 in the ectodomain and is responsible for disulfide-linked HN dimers detected in some NDV strains (McGinnes and Morrison (1994) Virology 200, 470-483). To explore the role of these nonconserved residues in the structure and function of the protein, cysteine residues at amino acid 6 and 123 in the HN protein of the AV strain of NDV were mutated individually and in combination by site specific mutagenesis to serine and tryptophan, respectively. Proteins with mutations in either residue (C6S or C123W) or in both residues (C6S,123W) were transported to the cell surface. However, all three mutants had reduced attachment, neuraminidase, and fusion promotion activities. All three mutant proteins also showed an alteration in an antigenic site specific for oligomers of HN protein while all other antigenic sites were present at wild type levels. These results suggest that the nonconserved cysteine residues in the HN sequence may modulate the biological activities of the protein by affecting the oligomeric structure of the protein.
Collapse
Affiliation(s)
- L W McGinnes
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655
| | | |
Collapse
|
45
|
Zurcher T, Luo G, Palese P. Mutations at palmitylation sites of the influenza virus hemagglutinin affect virus formation. J Virol 1994; 68:5748-54. [PMID: 8057456 PMCID: PMC236978 DOI: 10.1128/jvi.68.9.5748-5754.1994] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The carboxy terminus of the hemagglutinin (HA) of influenza A viruses contains three cysteine residues which are highly conserved among HA subtypes. It has previously been shown for the H2, H3, and H7 subtypes of HA that these cysteine residues are modified by the covalent attachment of palmitic acid. In order to study the role of the acylated cysteines in the formation of infectious influenza viruses, we introduced mutations into the HA of influenza A/WSN/33 virus (H1 subtype) by reverse-genetics techniques. We found that the cysteine at position 563 of the cytoplasmic tail is required for infectious-particle formation. The cysteine at position 560 can be changed to alanine or tyrosine to yield virus strains that are attenuated in cell cultures. The change from cysteine at position 553 to serine or alanine does not significantly alter the phenotype of the virus. The requirement for a cysteine at position 563 suggests a functional role for palmitylation of the cytoplasmic tail. This interpretation is further supported by experiments in which two or more of the cysteine residues were mutated, eliminating potential palmitylation sites. None of these double or triple mutations resulted in infectious virus. Selection of revertants of the attenuated cysteine-to-tyrosine mutant (mutation at position 560) always resulted in reversion to cysteine rather than to other amino acids. Although our data indicate a biological role for the conserved cysteine residues in the cytoplasmic tail of the HA of influenza viruses, we cannot exclude the possibility that structural constraints in the cytoplasmic tail of the HA--rather than altered palmitylation--are the determining factors for infectious-particle formation.
Collapse
Affiliation(s)
- T Zurcher
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029
| | | | | |
Collapse
|
46
|
Abstract
This chapter focuses on the contributions that studies with viruses have made to current concepts in cell biology. Among the important advantages that viruses provide in such studies is their structural and genetic simplicity. The chapter describes the methods for growth, assay, and purification of viruses and infection of cells by several viruses that have been widely utilized for studies of cellular processes. Most investigations of virus replication at the cellular level are carried out using animal cells in culture. For the events in individual cells to occur with a high level of synchrony, single cycle growth conditions are used. Cells are infected using a high multiplicity of infectious virus particles in a low volume of medium to enhance the efficiency of virus adsorption to cell surfaces. After the adsorption period, the residual inoculum is removed and replaced with an appropriate culture medium. During further incubation, each individual cell in the culture is at a similar temporal stage in the viral replication process. Therefore, experimental procedures carried out on the entire culture reflect the replicative events occurring within an individual cell. The length of a single cycle of virus growth can range from a few hours to several days, depending on the virus type.
Collapse
Affiliation(s)
- R W Compans
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|
47
|
Schärer CG, Naim HY, Koblet H. Palmitoylation of Semliki Forest virus glycoproteins in insect cells (C6/36) occurs in an early compartment and is coupled to the cleavage of the precursor p62. Arch Virol 1993; 132:237-54. [PMID: 8379849 DOI: 10.1007/bf01309536] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The acylation of the envelope proteins of Semliki Forest virus by palmitic acid in infected mosquito (C6/36) cells was investigated. It is shown that in these cells palmitic acid was incorporated post-translationally via hydroxylamine-labile linkages onto cysteines in the inner domains of the viral envelope proteins. The kinetics of incorporation, however, differed considerably as compared to higher eukaryotic cells. (i) The precursor of the envelope proteins E2 and E3, p62, was weakly and incompletely palmitoylated irrespective of the duration of labeling. (ii) Under all conditions tested complete acylation of E2 was delayed as compared to E1. (iii) Heavy protein complexes were formed consisting of unacylated p62 and partially unacylated E1. From this data, we conclude that during the maturation of SFV glycoproteins in mosquito cells differently acylated intermediates of p62/E2 exist. Furthermore, acylation of p62/E2 and cleavage of p62 are coupled events, occurring in an early compartment and allowing the release of the envelope oligomers for transport.
Collapse
Affiliation(s)
- C G Schärer
- Institute of Medical Microbiology, University of Berne, Switzerland
| | | | | |
Collapse
|
48
|
Abstract
The ability of mutant or chimeric A/Japan hemagglutinins (HAs) to compete for space in the envelope of A/WSN influenza viruses was investigated with monkey kidney fibroblasts that were infected with recombinant simian virus 40 vectors expressing the Japan proteins and superinfected with A/WSN influenza virus. Wild-type Japan HA assembled into virions as well as WSN HA did. Japan HA lacking its cytoplasmic sequences, HAtail-, was incorporated into influenza virions at half the efficiency of wild-type Japan HA. Chimeric HAs containing the 11 cytoplasmic amino acids of the herpes simplex virus type 1gC glycoprotein or the 29 cytoplasmic amino acids of the vesicular stomatitis virus G protein were incorporated into virions at less than 1% the efficiency of HAtail-. Thus, the cytoplasmic domain of HA was not required for the selection process; however, foreign cytoplasmic sequences, even short ones, were excluded. A chimeric HA having the gC transmembrane domain and the HA cytoplasmic domain (HgCH) was incorporated at 4% the efficiency of HAtail-. When expressed from simian virus 40 recombinants in this system, vesicular stomatitis virus G protein with or without (Gtail-) its cytoplasmic domain was essentially excluded from influenza virions. Taken together, these data indicate that the HA transmembrane domain is required for incorporation of HA into influenza virions. The slightly more efficient incorporation of HgCH than G or Gtail- could indicate that the region important for assembling HA into virions extends into part of the cytoplasmic domain.
Collapse
Affiliation(s)
- H Y Naim
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235-9038
| | | |
Collapse
|