1
|
Dangi T, Chung YR, Palacio N, Penaloza-MacMaster P. Interrogating Adaptive Immunity Using LCMV. ACTA ACUST UNITED AC 2021; 130:e99. [PMID: 32940427 DOI: 10.1002/cpim.99] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this invited article, we explain technical aspects of the lymphocytic choriomeningitis virus (LCMV) system, providing an update of a prior contribution by Matthias von Herrath and J. Lindsay Whitton. We provide an explanation of the LCMV infection models, highlighting the importance of selecting an appropriate route and viral strain. We also describe how to quantify virus-specific immune responses, followed by an explanation of useful transgenic systems. Specifically, our article will focus on the following protocols. © 2020 Wiley Periodicals LLC. Basic Protocol 1: LCMV infection routes in mice Support Protocol 1: Preparation of LCMV stocks ASSAYS TO MEASURE LCMV TITERS Support Protocol 2: Plaque assay Support Protocol 3: Immunofluorescence focus assay (IFA) to measure LCMV titer MEASUREMENT OF T CELL AND B CELL RESPONSES TO LCMV INFECTION Basic Protocol 2: Triple tetramer staining for detection of LCMV-specific CD8 T cells Basic Protocol 3: Intracellular cytokine staining (ICS) for detection of LCMV-specific T cells Basic Protocol 4: Enumeration of direct ex vivo LCMV-specific antibody-secreting cells (ASC) Basic Protocol 5: Limiting dilution assay (LDA) for detection of LCMV-specific memory B cells Basic Protocol 6: ELISA for quantification of LCMV-specific IgG antibody Support Protocol 4: Preparation of splenic lymphocytes Support Protocol 5: Making BHK21-LCMV lysate Basic Protocol 7: Challenge models TRANSGENIC MODELS Basic Protocol 8: Transfer of P14 cells to interrogate the role of IFN-I on CD8 T cell responses Basic Protocol 9: Comparing the expansion of naïve versus memory CD4 T cells following chronic viral challenge.
Collapse
Affiliation(s)
- Tanushree Dangi
- Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Young Rock Chung
- Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Nicole Palacio
- Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | |
Collapse
|
2
|
Raynor J, Lin A, Hummel SA, Lampe K, Jordan M, Hoebe K, Hildeman DA. The Variable Genomic NK Cell Receptor Locus Is a Key Determinant of CD4+ T Cell Responses During Viral Infection. Front Immunol 2020; 11:197. [PMID: 32153566 PMCID: PMC7044186 DOI: 10.3389/fimmu.2020.00197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence points to a key role for NK cells in controlling adaptive immune responses. In studies examining the role of CD1d on CD4+ T cell responses, we found that a line of CD1d-deficient mice on the C57BL/6J background had a homozygous 129 locus on chromosome 6 containing the entire NK cell gene cluster. Mice possessing this locus (C57BL/6.NKC129) displayed a >10-fold reduction in antigen-specific CD4+ T cell responses after intracranial infection with lymphocytic choriomeningitis virus (LCMV). Neither parental strain displayed defects in viral-specific CD4+ T cell responses. Interestingly, following infection, increased numbers of NK cells accumulated in the lymph nodes of C57BL/6.NKC129 mice and displayed enhanced in vivo functionality. Moreover, depletion of NK cells with anti-asialo-GM-1 antibody in C57BL/6.NKC129 mice resulted in a >20-fold increase in viral-specific CD4+ T cell responses. Mechanistically, we found that dendritic cell antigen presentation and early type I IFN production were significantly decreased in C57BL/6.NKC129 mice, but were restored in perforin-deficient C57BL/6.NKC129 mice or following NK depletion. Together, these data reveal that the variable genomic regions containing the activating/inhibitory NK cell receptors are key determinants of antigen-specific CD4+ T cell responses, controlling type I IFN production and the antigen-presenting capacity of dendritic cells.
Collapse
Affiliation(s)
- Jana Raynor
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Adora Lin
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sarah A Hummel
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kristin Lampe
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michael Jordan
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kasper Hoebe
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David A Hildeman
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
3
|
Suprunenko T, Hofer MJ. Complexities of Type I Interferon Biology: Lessons from LCMV. Viruses 2019; 11:v11020172. [PMID: 30791575 PMCID: PMC6409748 DOI: 10.3390/v11020172] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
Over the past decades, infection of mice with lymphocytic choriomeningitis virus (LCMV) has provided an invaluable insight into our understanding of immune responses to viruses. In particular, this model has clarified the central roles that type I interferons play in initiating and regulating host responses. The use of different strains of LCMV and routes of infection has allowed us to understand how type I interferons are critical in controlling virus replication and fostering effective antiviral immunity, but also how they promote virus persistence and functional exhaustion of the immune response. Accordingly, these discoveries have formed the foundation for the development of novel treatments for acute and chronic viral infections and even extend into the management of malignant tumors. Here we review the fundamental insights into type I interferon biology gained using LCMV as a model and how the diversity of LCMV strains, dose, and route of administration have been used to dissect the molecular mechanisms underpinning acute versus persistent infection. We also identify gaps in the knowledge regarding LCMV regulation of antiviral immunity. Due to its unique properties, LCMV will continue to remain a vital part of the immunologists' toolbox.
Collapse
Affiliation(s)
- Tamara Suprunenko
- School of Life and Environmental Sciences, the Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, and the Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Markus J Hofer
- School of Life and Environmental Sciences, the Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, and the Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
4
|
Cervenak J, Kurrle R, Kacskovics I. Accelerating antibody discovery using transgenic animals overexpressing the neonatal Fc receptor as a result of augmented humoral immunity. Immunol Rev 2015; 268:269-87. [DOI: 10.1111/imr.12364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Imre Kacskovics
- ImmunoGenes Ltd; Budakeszi Hungary
- Department of Immunology; Eötvös Loránd University; Budapest Hungary
| |
Collapse
|
5
|
Short noncoding DNA fragments improve the immune potency of electroporation-mediated HBV DNA vaccination. Gene Ther 2014; 21:703-8. [DOI: 10.1038/gt.2014.44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/11/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
|
6
|
Jessen B, Kögl T, Sepulveda FE, de Saint Basile G, Aichele P, Ehl S. Graded defects in cytotoxicity determine severity of hemophagocytic lymphohistiocytosis in humans and mice. Front Immunol 2013; 4:448. [PMID: 24379813 PMCID: PMC3864253 DOI: 10.3389/fimmu.2013.00448] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/26/2013] [Indexed: 12/24/2022] Open
Abstract
Primary hemophagocytic lymphohistiocytosis (HLH) is a life-threatening disease of hyperinflammation resulting from immune dysregulation due to inherited defects in the cytolytic machinery of natural killer and T cells. In humans, mutations in seven genes encoding proteins involved in cytolytic effector functions have so far been identified that predispose to HLH. However, although most affected patients develop HLH eventually, disease onset and severity are highly variable. Due to the genetic heterogeneity and variable time and nature of disease triggers, the immunological basis of these variations in HLH progression is incompletely understood. Several murine models of primary HLH have been established allowing to study HLH pathogenesis under more defined conditions. Here we directly compare the clinical HLH phenotype in six HLH-prone mouse strains with defects in the granule-dependent cytotoxic pathway. A severity gradient of HLH manifestations could be identified that is defined by the genetically determined residual lytic activity of cytotoxic T lymphocytes (CTL) and their ability to control lymphocytic choriomeningitis virus, which was used as a trigger for disease induction. Importantly, analysis of cohorts of HLH patients with severe bi-allelic mutations in the corresponding genes yielded a similar severity gradient in human HLH as reflected by the age at disease onset. Our findings define HLH as a threshold disease determined by subtle differences in the residual lytic activity of CTL.
Collapse
Affiliation(s)
- Birthe Jessen
- Centre of Chronic Immunodeficiency, University Medical Center Freiburg, University of Freiburg , Freiburg , Germany
| | - Tamara Kögl
- Department for Medical Microbiology and Hygiene, Institute of Immunology, University Medical Center Freiburg, University of Freiburg , Freiburg , Germany
| | - Fernando E Sepulveda
- U768, INSERM , Paris , France ; Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité , Paris , France
| | - Genevieve de Saint Basile
- U768, INSERM , Paris , France ; Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité , Paris , France ; Centre d'Etudes des Déficits Immunitaires, Assistance Publique-Hôpitaux de Paris, Hôpital Necker , Paris , France
| | - Peter Aichele
- Department for Medical Microbiology and Hygiene, Institute of Immunology, University Medical Center Freiburg, University of Freiburg , Freiburg , Germany
| | - Stephan Ehl
- Centre of Chronic Immunodeficiency, University Medical Center Freiburg, University of Freiburg , Freiburg , Germany
| |
Collapse
|
7
|
Mice deficient in STAT1 but not STAT2 or IRF9 develop a lethal CD4+ T-cell-mediated disease following infection with lymphocytic choriomeningitis virus. J Virol 2012; 86:6932-46. [PMID: 22496215 DOI: 10.1128/jvi.07147-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interferon (IFN) signaling is crucial for antiviral immunity. While type I IFN signaling is mediated by STAT1, STAT2, and IRF9, type II IFN signaling requires only STAT1. Here, we studied the roles of these signaling factors in the host response to systemic infection with lymphocytic choriomeningitis virus (LCMV). In wild-type (WT) mice and mice lacking either STAT2 or IRF9, LCMV infection was nonlethal, and the virus either was cleared (WT) or established persistence (STAT2 knockout [KO] and IRF9 KO). However, in the case of STAT1 KO mice, LCMV infection was lethal and accompanied by severe multiorgan immune pathology, elevated expression of various cytokine genes in tissues, and cytokines in the serum. This lethal phenotype was unaltered by the coabsence of the gamma interferon (IFN-γ) receptor and hence was not dependent on IFN-γ. Equally, the disease was not due to a combined defect in type I and type II IFN signaling, as IRF9 KO mice lacking the IFN-γ receptor survived infection with LCMV. Clearance of LCMV is mediated normally by CD8(+) T cells. However, the depletion of these cells in LCMV-infected STAT1 KO mice was delayed, but did not prevent, lethality. In contrast, depletion of CD4(+) T cells prevented lethality in LCMV-infected STAT1 KO mice and was associated with a reduction in tissue immune pathology. These studies highlight a fundamental difference in the role of STAT1 versus STAT2 and IRF9. While all three factors are required to limit viral replication and spread, only STAT1 has the unique function of preventing the emergence of a lethal antiviral CD4(+) T-cell response.
Collapse
|
8
|
Kacskovics I, Cervenak J, Erdei A, Goldsby RA, Butler JE. Recent advances using FcRn overexpression in transgenic animals to overcome impediments of standard antibody technologies to improve the generation of specific antibodies. MAbs 2011; 3:431-9. [PMID: 22048692 DOI: 10.4161/mabs.3.5.17023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This review illustrates the salutary effects of neonatal Fc receptor (FcRn) overexpression in significantly improving humoral immune responses in the generation of antibodies for immunotherapy and diagnostics. These include: (1) improved IgG protection; (2) augmented antigen-specific humoral immune response with larger numbers of antigen specific B cells, thus offering a wider spectrum of clones; (3) generation of antibodies against weakly immunogenic antigens; (4) significant improvements in the number and substantial developments in the diversity of hybridomas. FcRn transgenesis thus confers a number of practical benefits, including faster antibody production, higher antibody yields and improved generation of hybridomas for monoclonal antibody production. Notably, these efficiencies in polyclonal antibody production were also demonstrated in FcRn transgenic rabbits. Overall, FcRn transgenic animals yield more antibodies and provide a route to the generation of antibodies against antigens of low immunogenicity that are difficult to obtain using currently available methods.
Collapse
|
9
|
Cervenak J, Bender B, Schneider Z, Magna M, Carstea BV, Liliom K, Erdei A, Bosze Z, Kacskovics I. Neonatal FcR overexpression boosts humoral immune response in transgenic mice. THE JOURNAL OF IMMUNOLOGY 2010; 186:959-68. [PMID: 21148035 DOI: 10.4049/jimmunol.1000353] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The neonatal FcR (FcRn) regulates IgG and albumin homeostasis, mediates maternal IgG transport, takes active part in phagocytosis, and delivers Ag for presentation. We have previously shown that overexpression of FcRn in transgenic (Tg) mice extends the half-life of mouse IgG by reducing its clearance. In this paper, we demonstrate that immunization of these mice with OVA and trinitrophenyl-conjugated human IgG results in a 3- to 10-fold increase of Ag-specific IgM and IgG in serum. The IgM increase was unexpected because FcRn does not bind IgM. Our results showed that the affinity of the Ag-specific IgG was at least as good in Tg mice as in the wild-type (wt) controls, implying appropriate affinity maturation in both groups. Influenza vaccination produced a 2-fold increase in the amount of virus-specific Ab in Tg animals, which proved twice as efficient in a hemagglutination inhibition assay as was the case in wt controls. After immunization, Tg mice displayed significantly larger spleens containing a higher number of Ag-specific B cells and plasma cells, as well as many more granulocytes and dendritic cells, analyzed by ELISPOT and flow cytometric studies. The neutrophils from these Tg mice expressed the Tg FcRn and phagocytosed IgG immune complexes more efficiently than did those from wt mice. These results show that FcRn overexpression not only extends the IgG half-life but also enhances the expansion of Ag-specific B cells and plasma cells. Although both effects increase the level of Ag-specific IgG, the increase in immune response and IgG production seems to be more prominent compared with the reduced IgG clearance.
Collapse
Affiliation(s)
- Judit Cervenak
- Department of Immunology, Institute of Biology, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lin AA, Wojciechowski SE, Hildeman DA. Androgens suppress antigen-specific T cell responses and IFN-γ production during intracranial LCMV infection. J Neuroimmunol 2010; 226:8-19. [PMID: 20619904 DOI: 10.1016/j.jneuroim.2010.05.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/06/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Intracranial (i.c.) lymphocytic choriomeningitis virus (LCMV) infection of mice results in T cell-driven anorexia and weight loss, which is diminished in males compared to females. We investigated sex-specific effects on antigen-presenting cells (APCs) and T cells after i.c. LCMV infection. Numbers of LCMV-specific T cells, APC activation, and levels of inflammatory cytokines and chemokines in CSF were decreased in males compared to females. Orchidectomy enhanced these immune parameters in males, while dihydrotestosterone treatment of orchidectomized males and intact females decreased some of these parameters. These data suggest that qualitative and quantitative effects of androgens on APCs and T cells may contribute to the well-known, but poorly understood sex differences in immunity and autoimmunity.
Collapse
Affiliation(s)
- Adora A Lin
- Division of Immunobiology, Cincinnati Children's Hospital, 3333 Burnet Ave., MLC 7038, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
11
|
Lucas M, Vonarbourg C, Aichele P, Diefenbach A. Studying NK cell/dendritic cell interactions. Methods Mol Biol 2010; 612:97-126. [PMID: 20033637 DOI: 10.1007/978-1-60761-362-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although NK cells were originally identified as "naturally" active cells believed to follow a cell-autonomous activation program, it is now widely accepted that NK cells need to interact with dendritic cells for their full functional activation and for their homeostasis. In this chapter, we will provide an experimental guide to the analysis of NK cell/DC interactions in vitro and in vivo. We have put special emphasis on the recently developed mouse models allowing the inducible and specific ablation of various subsets of DCs and other myeloid cells.
Collapse
Affiliation(s)
- Mathias Lucas
- Institute of Medical Microbiology & Hygiene, University of Freiburg Medical Center, Freiburg, Germany
| | | | | | | |
Collapse
|
12
|
Gamma interferon signaling in macrophage lineage cells regulates central nervous system inflammation and chemokine production. J Virol 2009; 83:8604-15. [PMID: 19515766 DOI: 10.1128/jvi.02477-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intracranial (i.c.) infection of mice with lymphocytic choriomeningitis virus (LCMV) results in anorexic weight loss, mediated by T cells and gamma interferon (IFN-gamma). Here, we assessed the role of CD4(+) T cells and IFN-gamma on immune cell recruitment and proinflammatory cytokine/chemokine production in the central nervous system (CNS) after i.c. LCMV infection. We found that T-cell-depleted mice had decreased recruitment of hematopoietic cells to the CNS and diminished levels of IFN-gamma, CCL2 (MCP-1), CCL3 (MIP-1alpha), and CCL5 (RANTES) in the cerebrospinal fluid (CSF). Mice deficient in IFN-gamma had decreased CSF levels of CCL3, CCL5, and CXCL10 (IP-10), and decreased activation of both resident CNS and infiltrating antigen-presenting cells (APCs). The effects of IFN-gamma signaling on macrophage lineage cells was assessed using transgenic mice, called "macrophages insensitive to interferon gamma" (MIIG) mice, that express a dominant-negative IFN-gamma receptor under the control of the CD68 promoter. MIIG mice had decreased levels of CCL2, CCL3, CCL5, and CXCL10 compared to controls despite having normal numbers of LCMV-specific CD4(+) T cells in the CNS. MIIG mice also had decreased recruitment of infiltrating macrophages and decreased activation of both resident CNS and infiltrating APCs. Finally, MIIG mice were significantly protected from LCMV-induced anorexia and weight loss. Thus, these data suggest that CD4(+) T-cell production of IFN-gamma promotes signaling in macrophage lineage cells, which control (i) the production of proinflammatory cytokines and chemokines, (ii) the recruitment of macrophages to the CNS, (iii) the activation of resident CNS and infiltrating APC populations, and (iv) anorexic weight loss.
Collapse
|
13
|
von Herrath M, Whitton JL. Animal models using lymphocytic choriomeningitis virus. ACTA ACUST UNITED AC 2008; Chapter 19:Unit 19.10. [PMID: 18432751 DOI: 10.1002/0471142735.im1910s36] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit includes protocols for inducing systemic infection and persistent infection of mice with lymphocytic choriomeningitis virus (LCMV). Methods used to measure T cell responses to LCMV are then described. A protocol to assess anti-LCMV immunity in vivo is also included. Support protocols for preparing LCMV stocks and measuring LCMV titers using a plaque assay are also included. Finally, a support protocol for detecting anti-LCMV antibodies by ELISA is presented.
Collapse
Affiliation(s)
- M von Herrath
- The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
14
|
Dauner JG, Williams IR, Jacob J. Differential microenvironment localization of effector and memory CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:291-9. [PMID: 18097030 DOI: 10.4049/jimmunol.180.1.291] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CD8 T cells are critical for the clearance of intracellular pathogens. Upon infection, naive CD8 T cells differentiate into effector cells that target and eliminate infected cells. Following clearance of the pathogen, most effector cells die, although a small fraction survives to establish a memory population. Subsequent exposure to the same pathogen induces a rapid response of memory T cells and efficient elimination of the pathogen. Although much is known about the CD8 T cell response, the precise microenvironment location of effector and memory CD8 T cells in secondary lymphoid organs is not well characterized. In this study, we present an in situ analysis of the localization of effector and memory CD8 T cells during the murine immune response to lymphocytic choriomenginits virus. We identified the location of these cells using a transgenic mouse model system in which CD8 T cells are irreversibly tagged with yellow fluorescent protein (YFP) after activation. After infection, YFP+ CD8 T cells were initially observed within T cell zones. Later, these cells were found in the red pulp and a disruption of all CD8 T cell zones was observed. After resolution of the immune response, YFP+ memory CD8 T cells were observed primarily in T cells zones. Thus, in the spleens of mice, effector CD8 T cells localize to the red pulp and memory CD8 T cells localize to the T cell zones. Upon rechallenge, memory CD8 T cells rapidly proliferate and the secondary effector CD8 T cells are found in the red pulp.
Collapse
Affiliation(s)
- Joseph G Dauner
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | | | | |
Collapse
|
15
|
Lang KS, Hegazy AN, Lang PA, Eschli B, Löhning M, Hengartner H, Zinkernagel RM, Recher M. "Negative vaccination" by specific CD4 T cell tolerisation enhances virus-specific protective antibody responses. PLoS One 2007; 2:e1162. [PMID: 18000535 PMCID: PMC2048666 DOI: 10.1371/journal.pone.0001162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 10/13/2007] [Indexed: 12/02/2022] Open
Abstract
Background Cooperation of CD4+ T helper cells with specific B cells is crucial for protective vaccination against pathogens by inducing long-lived neutralizing antibody responses. During infection with persistence-prone viruses, prolonged virus replication correlates with low neutralizing antibody responses. We recently described that a viral mutant of lymphocytic choriomeningitis virus (LCMV), which lacks a T helper epitope, counterintuitively induced an enhanced protective antibody response. Likewise, partial depletion of the CD4+ T cell compartment by using anti-CD4 antibodies enhanced protective antibodies. Principal Findings Here we have developed a protocol to selectively reduce the CD4+ T cell response against viral CD4+ T cell epitopes. We demonstrate that in vivo treatment with LCMV-derived MHC-II peptides induced non-responsiveness of specific CD4+ T cells without affecting CD4+ T cell reactivity towards other antigens. This was associated with accelerated virus-specific neutralizing IgG-antibody responses. In contrast to a complete absence of CD4+ T cell help, tolerisation did not impair CD8+ T cell responses. Conclusions This result reveals a novel “negative vaccination” strategy where specific CD4+ T cell unresponsiveness may be used to enhance the delayed protective antibody responses in chronic virus infections.
Collapse
Affiliation(s)
- Karl S Lang
- Institute of Experimental Immunology, Department of Pathology, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Botten JW, Kotturi MF. Adaptive immunity to Lymphocytic choriomeningitis virus: new insights into antigenic determinants. Future Virol 2007. [DOI: 10.2217/17460794.2.5.495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lymphocytic choriomeningitis virus (LCMV) is one of the most studied infectious disease models in mice. Human infection with LCMV can result in severe disease, ranging from aseptic meningitis in immunocompetent individuals, hydrocephalus, chorioretinitis or microcephaly in fetal infection, or to a highly lethal outcome in immunosuppressed individuals. This review examines recent advances in our understanding of the adaptive immune response to LCMV and how the cell-mediated and humoral immune responses contribute to protective immunity. New insights into the antigenicity of the LCMV proteome and the complexity of the cell-mediated immune response are addressed. We also discuss state-of-the-art approaches for T-cell epitope discovery in murine and human backgrounds and their recent application to LCMV. New findings regarding CD4+ T-cell dysregulation during chronic LCMV infection, and potential avenues for the treatment of chronic viral infection through modulation of the programmed cell death-1 receptor and/or IL-10 signaling pathways, are also evaluated.
Collapse
Affiliation(s)
- Jason W Botten
- The Scripps Research Institute, Molecular & Integrative Neurosciences Department, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maya F Kotturi
- La Jolla Institute for Allergy & Immunology, Division of Vaccine Discovery, 9420 Athena Circle, La Jolla, CA 92037, USA
| |
Collapse
|
17
|
Kim TG, Ruprecht R, Langridge WHR. SIVmac Gag p27 capsid protein gene expression in potato. Protein Expr Purif 2005; 36:312-7. [PMID: 15249055 DOI: 10.1016/j.pep.2004.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 04/16/2004] [Indexed: 11/23/2022]
Abstract
A cDNA encoding the Simian immunodeficiency virus type (SIV(mac)) Gag capsid protein was introduced into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation methods. The gag gene was detected in the genomic DNA of transformed leaf tissues by PCR DNA amplification. Immunoblot analysis of transformed potato plant extracts with anti-Gag monoclonal antibody showed that biologically active Gag protein was synthesized in transformed tuber tissues. Based on ELISA results, recombinant Gag protein made up 0.006-0.014% of total soluble tuber protein. The synthesis of SIV Gag in transformed potato tubers opens the way for development of Gag-based edible plant vaccines for protection against SIV and potentially HIV-1 infection.
Collapse
Affiliation(s)
- Tae-Geum Kim
- Department of Biochemistry and Microbiology, Center for Molecular Biology and Gene Therapy, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
18
|
Alimonti JB, Ball TB, Fowke KR. Mechanisms of CD4+ T lymphocyte cell death in human immunodeficiency virus infection and AIDS. J Gen Virol 2003; 84:1649-1661. [PMID: 12810858 DOI: 10.1099/vir.0.19110-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIDS, caused by the retroviruses human immunodeficiency virus type 1 and type 2 (HIV-1 and HIV-2), has reached pandemic proportions. Therefore, it is critical to understand how HIV causes AIDS so that appropriate therapies can be formulated. Primarily, HIV infects and kills CD4(+) T lymphocytes, which function as regulators and amplifiers of the immune response. In the absence of effective anti-retroviral therapy, the hallmark decrease in CD4(+) T lymphocytes during AIDS results in a weakened immune system, impairing the body's ability to fight infections or certain cancers such that death eventually ensues. The major mechanism for CD4(+) T cell depletion is programmed cell death (apoptosis), which can be induced by HIV through multiple pathways. Death of HIV-infected cells can result from the propensity of infected lymphocytes to form short-lived syncytia or from an increased susceptibility of the cells to death. However, the apoptotic cells appear to be primarily uninfected bystander cells and are eradicated by two different mechanisms: either a Fas-mediated mechanism during activation-induced cell death (AICD), or as a result of HIV proteins (Tat, gp120, Nef, Vpu) released from infected cells stimulating apoptosis in uninfected bystander cells. There is also evidence that as AIDS progresses cytokine dysregulation occurs, and the overproduction of type-2 cytokines (IL-4, IL-10) increases susceptibility to AICD whereas type-1 cytokines (IL-12, IFN-gamma) may be protective. Clearly there are multiple causes of CD4(+) T lymphocyte apoptosis in AIDS and therapies that block or decrease that death could have significant clinical benefit.
Collapse
Affiliation(s)
- Judie B Alimonti
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 539-730 William Avenue, Winnipeg, MB, Canada R3E 0W3
| | - T Blake Ball
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 539-730 William Avenue, Winnipeg, MB, Canada R3E 0W3
| | - Keith R Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 539-730 William Avenue, Winnipeg, MB, Canada R3E 0W3
| |
Collapse
|
19
|
Roopenian DC, Christianson GJ, Sproule TJ, Brown AC, Akilesh S, Jung N, Petkova S, Avanessian L, Choi EY, Shaffer DJ, Eden PA, Anderson CL. The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3528-33. [PMID: 12646614 DOI: 10.4049/jimmunol.170.7.3528] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abs of the IgG isotype are efficiently transported from mother to neonate and have an extended serum t(1/2) compared with Abs of other isotypes. Circumstantial evidence suggests that the MHC class I-related protein, the neonatal FcR (FcRn), is the FcR responsible for both in vivo functions. To understand the phenotypes imposed by FcRn, we produced and analyzed mice with a defective FcRn gene. The results provide direct evidence that perinatal IgG transport and protection of IgG from catabolism are mediated by FcRn, and that the latter function is key to IgG homeostasis, essential for generating a potent IgG response to foreign Ags, and the basis of enhanced efficacy of Fc-IgG-based therapeutics. FcRn is therefore a promising therapeutic target for enhancing protective humoral immunity, treating autoimmune disease, and improving drug efficacy.
Collapse
MESH Headings
- Abatacept
- Animals
- Animals, Newborn/genetics
- Animals, Newborn/growth & development
- Animals, Newborn/immunology
- CD40 Ligand/immunology
- Crosses, Genetic
- Female
- Half-Life
- Histocompatibility Antigens Class I/physiology
- Homeostasis/immunology
- Humans
- Immune Sera/administration & dosage
- Immune Sera/metabolism
- Immunity, Cellular/genetics
- Immunoconjugates/administration & dosage
- Immunoconjugates/metabolism
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/blood
- Immunoglobulin G/metabolism
- Immunosuppressive Agents/administration & dosage
- Immunosuppressive Agents/metabolism
- Injections, Intraperitoneal
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Protein Transport/genetics
- Protein Transport/immunology
- Receptors, Fc/deficiency
- Receptors, Fc/genetics
- Receptors, Fc/metabolism
- Receptors, IgG/physiology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
Collapse
|
20
|
Kamperschroer C, Quinn DG. The role of proinflammatory cytokines in wasting disease during lymphocytic choriomeningitis virus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:340-9. [PMID: 12077263 DOI: 10.4049/jimmunol.169.1.340] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection with pathogens often leads to loss of body weight, but the cause of weight loss during infection is poorly understood. We used the infection of mice with lymphocytic choriomeningitis virus (LCMV) as a model to study how pathogens induce weight loss. If LCMV is introduced into the CNS of CTL-deficient mice, the immune response against the virus leads to a severe weight loss called wasting disease. We planned to determine what components of this antiviral immune response mediate wasting disease. By adoptive transfer, we show that CD4 T cells activated by LCMV infection are sufficient to cause wasting disease. We examined the role of cytokines in LCMV-induced wasting disease using mice lacking specific cytokines or cytokine receptors. Results of adoptive transfer experiments suggest that TNF-alpha is not involved in LCMV-induced wasting disease and show that IFN-gamma contributes to the disease. Consistent with a role for IFN-gamma in wasting, we find that IFN-gamma is necessary for LCMV-specific CD4 T cell responses in the CNS, most likely because it is required to induce MHC class II expression. Our data also indicate that IL-1 is required for LCMV-induced wasting and that IL-6 contributes to the wasting disease. Additionally, our results identify alpha-melanocyte-stimulating hormone as a potential mediator of the disease. Overall, this work defines the critical role of virus-primed CD4 T cells and of proinflammatory cytokines in the pathogenesis of wasting disease induced by LCMV infection.
Collapse
Affiliation(s)
- Cris Kamperschroer
- Department of Microbiology and Immunology, Loyola University Chicago Medical Center, Maywood, IL 60153, USA
| | | |
Collapse
|
21
|
Rowell JF, Griffin DE. Contribution of T cells to mortality in neurovirulent Sindbis virus encephalomyelitis. J Neuroimmunol 2002; 127:106-14. [PMID: 12044981 DOI: 10.1016/s0165-5728(02)00108-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intranasal inoculation of C57BL/6 mice with a neurovirulent strain of Sindbis virus (SV) results in fatal encephalomyelitis. Mice with selective immune deficiencies were studied to determine the role of the immune response in fatal outcome. Mortality was decreased in mice deficient in alphabeta, but not gammadelta, T cells demonstrating a contribution of alphabeta T cells. Mice lacking either CD4+ or CD8+ T cells also had reduced mortality and mice lacking interferon (IFN)-gamma were completely protected. Clearance of infectious virus was identical in mice without T cells or IFN-gamma, but clearance of viral RNA was delayed compared to normal mice. Mice unable to produce antibody, perforin, Fas, TNF-alpha receptor1, IL-6 or IL-12 were not protected. These data suggest that T cells contribute to fatal acute viral encephalomyelitis through the production of IFN-gamma.
Collapse
Affiliation(s)
- Jennifer F Rowell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
22
|
Ciurea A, Hunziker L, Martinic MM, Oxenius A, Hengartner H, Zinkernagel RM. CD4+ T-cell-epitope escape mutant virus selected in vivo. Nat Med 2001; 7:795-800. [PMID: 11433343 DOI: 10.1038/89915] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mutations in viral genomes that affect T-cell-receptor recognition by CD8+ cytotoxic T lymphocytes have been shown to allow viral evasion from immune surveillance during persistent viral infections. Although CD4+ T-helper cells are crucially involved in the maintenance of effective cytotoxic T-lymphocyte and neutralizing-antibody responses, their role in viral clearance and therefore in imposing similar selective pressures on the virus is unclear. We show here that transgenic virus-specific CD4+ Tcells, transferred into mice persistently infected with lymphocytic choriomeningitis virus, select for T-helper epitope mutant viruses that are not recognized. Together with the observed antigenic variation of the same T-helper epitope during polyclonal CD4+ T-cell responses in infected pore-forming protein-deficient C57BL/6 mice, this finding indicates that viral escape from CD4+ T lymphocytes is a possible mechanism of virus persistence.
Collapse
Affiliation(s)
- A Ciurea
- Institute for Experimental Immunology, University Hospital, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
23
|
Kushnir N, Bos NA, Zuercher AW, Coffin SE, Moser CA, Offit PA, Cebra JJ. B2 but not B1 cells can contribute to CD4+ T-cell-mediated clearance of rotavirus in SCID mice. J Virol 2001; 75:5482-90. [PMID: 11356955 PMCID: PMC114260 DOI: 10.1128/jvi.75.12.5482-5490.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies utilizing various immunodeficient mouse models of rotavirus (RV) infection demonstrated significant roles of RV-specific secretory immunoglobulin A (IgA), CD4+ T cells, and CD8+ T cells in the clearance of RV and protection from secondary infection. Secretion of small but detectable amounts of IgA in RV-infected alphabeta T-cell receptor knockout mice (11) and distinctive anatomical localization and physiology of B1 cells suggested that B1 cells might be capable of producing RV-specific intestinal IgA in a T-cell-independent fashion and, therefore, be responsible for ablation of RV shedding. We investigated the role of B1 cells in the resolution of primary RV infection using a SCID mouse model. We found that the adoptive transfer of unseparated peritoneal exudate cells ablates RV shedding and leads to the production of high levels of RV-specific intestinal IgA. In contrast, purified B1 cells do not ablate RV shedding and do not induce a T-cell-independent or T-cell-dependent, RV-specific IgA response but do secrete large amounts of polyclonal (total) intestinal IgA. Cotransfer of mixtures of purified B1 cells and B1-cell-depleted peritoneal exudate cells differing in IgA allotypic markers also demonstrated that B2 cells (B1-cell-depleted peritoneal exudate cells) and not B1 cells produced RV-specific IgA. To our knowledge, this is the first observation that B1 cells are unable to cooperate with CD4+ T cells and produce virus-specific intestinal IgA antibody. We also observed that transferred CD4+ T cells alone are capable of resolving RV shedding, although no IgA is secreted. These data suggest that RV-specific IgA may not be obligatory for RV clearance but may protect from reinfection and that effector CD4+ T cells alone can mediate the resolution of primary RV infection. Reconstitution of RV-infected SCID mice with B1 cells results in the outgrowth of contaminating, donor CD4+ T cells that are unable to clear RV, possibly because their oligoclonal specificities may be ineffective against RV antigens.
Collapse
Affiliation(s)
- N Kushnir
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Hildeman D, Muller D. Immunopathologic weight loss in intracranial LCMV infection initiated by the anorexigenic effects of IL-1beta. Viral Immunol 2001; 13:273-85. [PMID: 11016593 DOI: 10.1089/08828240050144617] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) infection of beta2-microglobulin-deficient (beta2m-/-) mice results in a substantial loss of body weight that is not mediated by the virus itself, but rather by CD4+ T cells responding to the viral infection. In this study, we further characterized LCMV-induced weight loss in immunocompetent and beta32m-/- mice. We show that intracranial (i.c.), but not intraperitoneal (i.p.) LCMV infection elicited significant weight loss and that weight loss was preceded by anorexia. Also, uninfected mice fed an equivalent amount as eaten by infected mice had similar weight loss compared to their infected counterparts. Interestingly, both weight loss and anorexia were greater in female than male beta2m-/- mice. LCMV-infected female beta2m-/- mice also had significantly more interleukin (IL)-betag in their cerebrospinal fluid (CSF) than did male beta2m-/- mice. Finally, intracerebroventricular (i.c.v.) administration of anti-IL-1beta antibody, but not control immunoglobulin G (IgG), attenuated the initial weight loss and increased food intake. Taken together, these results suggest that the majority of weight loss after intracranial LCMV infection is the result of anorexia and IL-1beta mediates initial anorexic weight loss.
Collapse
Affiliation(s)
- D Hildeman
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, USA.
| | | |
Collapse
|
25
|
Boyer O, Cohen JL, Bellier B, Thomas-Vaslin V, Klatzmann D, Saron MF. Transient control of a virus-induced immunopathology by genetic immunosuppression. Gene Ther 2000; 7:1536-42. [PMID: 11021591 DOI: 10.1038/sj.gt.3301276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ability to control T cell reactivity using suicide genes opens new perspectives for the treatment of T cell-mediated diseases. The therapeutic effect is achieved by the selective killing of thymidine kinase gene-modified activated T cells by ganciclovir (GCV). This strategy has been shown to control T cell alloreactivity efficiently after bone marrow or solid organ transplantation. Here, we aimed to determine whether an immunopathological process induced by a viral infection could be controlled by GCV when T cells express a thymidine kinase transgene. When transgenic mice were infected with the lymphocytic choriomeningitis virus, administration of GCV resulted in an efficient, but only transient, control of the immunopathological immune response. Further analysis revealed the existence of a minute population of GCV-insensitive T cells. These cells expand in response to the virus despite the presence of GCV and cause immunopathology before viral elimination is finally obtained. Thus, when confronted with a replicative virus, the efficacy of this genetic immunosuppression strategy is highly dependent on the presence of even small numbers of GCV-insensitive cells. These results emphasize the need for sufficient preclinical investigations with regard to the pathology and the nature of the immune response if suicide gene transfer is envisioned for new therapeutic indications.
Collapse
Affiliation(s)
- O Boyer
- ESA 7087 CNRS/UPMC, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | |
Collapse
|
26
|
Thomsen AR, Nansen A, Andreasen SO, Wodarz D, Christensen JP. Host factors influencing viral persistence. Philos Trans R Soc Lond B Biol Sci 2000; 355:1031-41. [PMID: 11186304 PMCID: PMC1692806 DOI: 10.1098/rstb.2000.0640] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
With the aim of characterizing the antiviral immune response to a non-cytocidal virus, we studied the outcome of lymphocytic choriomeningitis virus infection in a number of gene knockout mouse strains. Two virus strains differing markedly in their capacity to spread and replicate inside the murine host were used. Our results reveal that very different outcomes may be observed depending on virus strain and immunocompetence of the host. Thus while CD4+ cells are not critical during the initial phase of virus control, infectious virus reappear in mice lacking CD4+ cells, B cells or CD40 ligand. Reappearance of virus is associated with impaired long-term CD8+ T-cell mediated immune surveillance, and the time to virus resurgence is inversely correlated to the replication rate of the virus. Our studies also reveal that interferon-gamma is a central cytokine, and depending on the rate of virus replication, mice lacking the ability to produce interferon-gamma may develop either a severe, mostly fatal, T-cell mediated wasting syndrome or a chronic infection characterized by long-term coexistence of antiviral cytotoxic T lymphocytes and infectious virus. Mathematical modelling indicates that these different outcomes may be explained in relatively simple mathematical terms. This suggests that modelling may be used as a means to predict critical host and virus parameters. Therefore, combining mathematical modelling with precise, quantitative, in vivo analyses looks to be a promising approach in addressing central quantitative issues in immunobiology.
Collapse
Affiliation(s)
- A R Thomsen
- Institute of Medical Microbiology & Immunology, The Panum Institute, University of Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
27
|
Kimura T, Griffin DE. The role of CD8(+) T cells and major histocompatibility complex class I expression in the central nervous system of mice infected with neurovirulent Sindbis virus. J Virol 2000; 74:6117-25. [PMID: 10846095 PMCID: PMC112110 DOI: 10.1128/jvi.74.13.6117-6125.2000] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the role of CD8(+) T cells infiltrating the neural parenchyma during encephalitis induced by neurovirulent Sindbis virus (NSV). NSV preferentially infects neurons in the mouse brain and spinal cord; however, it is generally accepted that neurons can express few if any major histocompatibility complex (MHC) class I molecules. We evaluated the possible roles and interactions of CD8(+) T cells during NSV encephalitis and demonstrated that MHC class I antigen (H2K/D) was expressed on endothelial cells, inflammatory cells, and ependymal cells after intracerebral inoculation of NSV. No immunoreactivity was observed in neurons. On the other hand, in situ hybridization with probes for MHC class I heavy chain, beta2 microglobulin, and TAP1 and TAP2 mRNAs revealed increased expression in a majority of neurons, as well as in inflammatory cells, endothelial cells, and ependymal cells in the central nervous system of infected mice. NSV-infected neurons may fail to express MHC class I molecules due to a posttranscriptional block or may express only nonclassical MHC class I genes. To better understand the role CD8(+) T cells play during fatal encephalitis induced by NSV, mice lacking functional CD8(+) T cells were studied. The presence or absence of CD8 did not alter outcome, but absence of beta2 microglobulin improved survival. Interestingly, the intracellular levels of viral RNA decreased more rapidly in immunocompetent mice than in mice without functional CD8(+) T cells. These observations suggest that CD8(+) T cells may act indirectly, possibly via cytokines, to contribute to the clearance of viral RNA in neurons.
Collapse
Affiliation(s)
- T Kimura
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
28
|
Ciurea A, Klenerman P, Hunziker L, Horvath E, Senn BM, Ochsenbein AF, Hengartner H, Zinkernagel RM. Viral persistence in vivo through selection of neutralizing antibody-escape variants. Proc Natl Acad Sci U S A 2000; 97:2749-54. [PMID: 10688894 PMCID: PMC16001 DOI: 10.1073/pnas.040558797] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite initial virus control by CD8(+) cytotoxic T lymphocytes (CTLs), noncytopathic or variably cytopathic viruses (e.g., hepatitis B and C viruses, HIV) are able to establish persistent infections. The role of neutralizing antibodies (nAbs) in controlling disease progression is unclear. Therefore, the phenomenon of viral evasion from the nAb response and its implications for virus persistence remain controversial. Here we demonstrate nAb-mediated viral clearance in CTL-deficient mice infected with the prototypic noncytopathic lymphocytic choriomeningitis virus (strain WE). During prolonged CTL absence, neutralization-resistant virus mutants were selected in individual mice within 70-90 days. In naive animals infected with these virus variants only low nAb responses were induced, resulting in an increased tendency of virus to persist.
Collapse
Affiliation(s)
- A Ciurea
- Institute for Experimental Immunology, University Hospital, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Freland S, Ljunggren HG. Beta 2-microglobulin/CD8 -/- mice reveal significant role for CD8+ T cells in graft rejection responses in beta 2-microglobulin -/- mice. Scand J Immunol 2000; 51:219-23. [PMID: 10736089 DOI: 10.1046/j.1365-3083.2000.00712.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Beta 2-microglobulin (beta 2m) -/- mice have often been used as a model to investigate host resistance to grafted tissues in the absence of CD8+ T cells. However, the realization that beta 2m -/- mice have a small pool of CD8+ T cells imply that these cells may take part in immune responses in vivo. To directly address the role of CD8+ T cell responses in beta 2m -/- mice, we introduced a CD8 null mutation into these mice. The beta 2m/CD8 -/- mice and the corresponding control mice were primed, and challenged with syngeneic tumour grafts. While beta 2m -/- mice readily cleared such tumour grafts, similar tumour grafts grew progressively in a dose dependent manner in the beta 2m/CD8 -/- mice. The present results imply that residual CD8+ T cells in beta 2m -/- mice may carry out significant biological functions, and suggest that studies using beta 2m -/- mice as a model for CD8+ T cell deficiency must be regarded with some caution.
Collapse
Affiliation(s)
- S Freland
- Microbiology and Tumour Biology Center, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
30
|
Nansen A, Jensen T, Christensen JP, Andreasen SØ, Röpke C, Marker O, Thomsen AR. Compromised Virus Control and Augmented Perforin-Mediated Immunopathology in IFN-γ-Deficient Mice Infected with Lymphocytic Choriomeningitis Virus. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.11.6114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
To define the role of IFN-γ in the control of acute infection with a noncytopathogenic virus, mice with targeted defects of the genes encoding IFN-γ, perforin, or both were infected i.v. with two strains of lymphocytic choriomeningitis virus differing markedly in their capacity to spread in wild-type mice. Our results reveal that IFN-γ is pivotal to T cell-mediated control of a rapidly invasive stain, whereas it is less important in the acute elimination of a slowly invasive strain. Moreover, the majority of mice infected with the rapidly invasive strain succumb to a wasting syndrome mediated by CD8+ effector cells. The primary effector mechanism underlying this disease is perforin-dependent lysis, but other mechanisms are also involved. Wasting disease can be prevented if naive CD8+ cells from mice transgenic for an MHC class I-restricted lymphocytic choriomeningitis virus-specific TCR are adoptively transferred before virus challenge, indicating that the disease is the result of an unfortunate balance between virus replication in internal organs, e.g., liver and spleen, and the host response; resetting this balance by increasing host responsiveness will again lead to a rapidly controlled infection and limited tissue damage. Thus, the presence or absence of IFN-γ determines whether CTLs will clear infection with this noncytopathogenic virus or induce severe immunopathology.
Collapse
Affiliation(s)
| | - Teis Jensen
- *Institute of Medical Microbiology and Immunology and
| | | | | | - Carsten Röpke
- †Medical Anatomy, University of Copenhagen, Copenhagen, Denmark
| | - Ole Marker
- *Institute of Medical Microbiology and Immunology and
| | | |
Collapse
|
31
|
Acha-Orbea H, Finke D, Attinger A, Schmid S, Wehrli N, Vacheron S, Xenarios I, Scarpellino L, Toellner KM, MacLennan IC, Luther SA. Interplays between mouse mammary tumor virus and the cellular and humoral immune response. Immunol Rev 1999; 168:287-303. [PMID: 10399081 DOI: 10.1111/j.1600-065x.1999.tb01299.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mouse mammary tumor virus has developed strategies to exploit the immune response. It requires vigorous immune stimulation to achieve efficient infection. The infected antigen-presenting cells present a viral superantigen on the cell surface which stimulates strong CD4-mediated T-cell help but CD8 T-cell responses are undetectable. Despite the high frequency of superantigen-reactive T cells, the superantigen-induced immune response is comparable to classical antigen responses in terms of T-cell priming, T-cell-B-cell collaboration as well as follicular and extra-follicular B-cell differentiation. Induction of systemic anergy is observed, similar to classical antigen responses where antigen is administered systemically but does not influence the role of the superantigen-reactive T cells in the maintenance of the chronic germinal center reaction. So far we have been unable to detect a cytotoxic T-cell response to mouse mammary tumor virus peptide antigens or to the superantigen. This might yet represent another step in the viral infection strategy.
Collapse
Affiliation(s)
- H Acha-Orbea
- Ludwing Institute of Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Su HC, Cousens LP, Fast LD, Slifka MK, Bungiro RD, Ahmed R, Biron CA. CD4+ and CD8+ T Cell Interactions in IFN-γ and IL-4 Responses to Viral Infections: Requirements for IL-2. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.10.5007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Cytokine responses to lymphocytic choriomeningitis virus infections were evaluated, and CD8+ T cell, CD4+ T cell, and IL-2 contributions delineated. In immunocompetent mice, lymphocytic choriomeningitis virus induced both IFN-γ and IL-4 as well as IL-2. Experiments in mice either β2-microglobulin-deficient, lacking MHC class I molecules and CD8+ T cells, or Aβb-deficient, lacking MHC class II molecules and CD4+ T cells, demonstrated that mixtures of T cell responses were required for optimal ex vivo cytokine productions. Intracellular cytokine expression analyses of cells from immunocompetent and immunodeficient mice showed that CD8+ T cells were predominant IFN-γ producers, and that expansion of CD8+ T cells primed to make IFN-γ was independent of CD4+ T cells in vivo. Studies in IL-2-deficient mice demonstrated that this cytokine promoted IFN-γ and IL-4 responses, and ex vivo experiments showed that exogenous IL-2 was required to maintain high-level IFN-γ production by in vivo-primed CD8+ T cells. Conditions associated with cytokine decreases were accompanied by reduced detectable plasma Ab responses. The results indicate that, although IL-2-dependent CD8+ T cell proliferation does not require endogenous CD4+ T cells, IL-2 production by the CD4+ T cells may promote continued cytokine release from activated CD8+ T cells. By defining these critical steps in cellular and cytokine interactions for shaping endogenous immune responses, the studies advance understanding of the unique conditions regulating CD8+ T cell responses to viral challenges.
Collapse
Affiliation(s)
| | | | - Loren D. Fast
- †Medicine, Division of Biology and Medicine, Brown University, Providence, RI 02912; and
| | - Mark K. Slifka
- ‡Emory Vaccine Center, Emory University, Atlanta, GA 30322
| | | | - Rafi Ahmed
- ‡Emory Vaccine Center, Emory University, Atlanta, GA 30322
| | | |
Collapse
|
33
|
Frelinger JA, Serody J. Immune response of beta 2-microglobulin-deficient mice to pathogens. Curr Top Microbiol Immunol 1998; 232:99-114. [PMID: 9557395 DOI: 10.1007/978-3-642-72045-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J A Frelinger
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
34
|
Thomsen AR, Nansen A, Christensen JP. Virus-induced T cell activation and the inflammatory response. Curr Top Microbiol Immunol 1998; 231:99-123. [PMID: 9479863 DOI: 10.1007/978-3-642-71987-5_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- A R Thomsen
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Denmark
| | | | | |
Collapse
|
35
|
Hildeman D, Yañez D, Pederson K, Havighurst T, Muller D. Vaccination against persistent viral infection exacerbates CD4+ T-cell-mediated immunopathological disease. J Virol 1997; 71:9672-8. [PMID: 9371632 PMCID: PMC230276 DOI: 10.1128/jvi.71.12.9672-9678.1997] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) infection of normal mice results in a fatal immunopathologic meningitis mediated by CD8+ cytotoxic T lymphocytes (CTL). We have previously shown that female beta2-microglobulin-deficient (beta2m-/-) mice, which are also deficient in CD8+ T cells, are susceptible to LCMV-induced immune-mediated meningitis, characterized by significant weight loss and mortality. This LCMV disease in beta2m-/- mice is mediated by CD4+ T lymphocytes. Our previous studies have also demonstrated that male beta2m-/- mice are less susceptible than female beta2m-/- mice to LCMV-induced, immune-mediated mortality and weight loss. In this report, we show that vaccination of male beta2m-/- mice enhances immunopathology following intracranial infection with LCMV. We observed increased production of gamma interferon (IFN-gamma), an increase in CD4+ CTL precursor frequency, and an increased frequency of IFN-gamma-producing cells from spleen cells of vaccinated male beta2m-/- mice. Vaccinated male beta2m-/- mice also had significantly increased inflammation in the cerebrospinal fluid (CSF), characterized by a large CD4+ T-cell infiltrate. CSF cells from vaccinated mice showed increased production of IFN-gamma on day 7 postchallenge. Neither vaccinated nor control beta2m-/- mice were able to clear virus, and the two groups had similarly high levels of virus early after infection. These results suggest that the magnitude of the early immune response is more important than the level of virus in the brain in determining the outcome of immunopathology in beta2m-/- mice. We show here that vaccination can increase CD4+ T-cell-dependent immunopathology to a persistent viral infection.
Collapse
Affiliation(s)
- D Hildeman
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | |
Collapse
|
36
|
Quinn DG, Zajac AJ, Hioe CE, Frelinger JA. Virus-specific, CD8+ major histocompatibility complex class I-restricted cytotoxic T lymphocytes in lymphocytic choriomeningitis virus-infected beta2-microglobulin-deficient mice. J Virol 1997; 71:8392-6. [PMID: 9343195 PMCID: PMC192301 DOI: 10.1128/jvi.71.11.8392-8396.1997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Following infection with lymphocytic choriomeningitis virus (LCMV), normal adult mice generate virus-specific, major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTL) which clear the virus after intraperitoneal infection or cause death following intracranial (i.c.) infection. We have investigated the response of beta2-microglobulin-deficient (beta2m-) mice of the H-2d haplotype (KOD mice) to LCMV infection. Unlike H-2b beta2m- mice, which generate CD4+ MHC class II-restricted CTL in response to LCMV, KOD mice generate high levels of CD8+ MHC class I-restricted, virus-specific CTL. These CTL are specific for the LCMV nucleoprotein epitope (residues 118 to 126) in association with the Ld class I molecule, analogous to the CTL response in wild-type mice. KOD mice are also susceptible to lethal LCM disease, with 75 to 80% of the mice dying 7 to 9 days following i.c. infection with virus. Similar to results with normal mice, lethal LCM disease in KOD mice is prevented by in vivo depletion of CD8+ T cells prior to i.c. infection. In contrast to wild-type mice, however, KOD mice cannot control LCMV and become persistently infected. Overall, these results demonstrate that beta2m is not an absolute requirement for presentation of endogenous antigen on Ld or for induction of virus-specific Ld-restricted CTL in vivo.
Collapse
Affiliation(s)
- D G Quinn
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | | | |
Collapse
|
37
|
|
38
|
Major AS, Cuff CF. Enhanced mucosal and systemic immune responses to intestinal reovirus infection in beta2-microglobulin-deficient mice. J Virol 1997; 71:5782-9. [PMID: 9223466 PMCID: PMC191832 DOI: 10.1128/jvi.71.8.5782-5789.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enteric infection of mice with respiratory enteric orphan virus (reovirus) type 1, strain Lang elicits both humoral and cellular immune responses. To investigate the role of CD8+, alpha/beta T-cell receptor (TCR)+ T cells in mucosal immunity to an enteric pathogen, we examined immune responses and viral clearance following enteric reovirus infection in C57BL/6, B6129F2, and beta2-microglobulin-deficient (beta2m-/-) mice. Analysis of Peyer's patch and lamina propria culture supernatants revealed a two- to threefold increase in levels of reovirus-specific immunoglobulin A in beta2m-/- mice compared to normal controls. These data corresponded to a similar increase in the frequency of virus-specific immunoglobulin A-producing cells in Peyer's patches and lamina propria and an increase in immunoglobulin G-producing cells in spleens from beta2m-/- mice compared to controls. These increased humoral immune responses were not due to a difference in B-cell populations because cell counts and flow cytometric analyses showed that beta2m-/- and control mice had similar numbers and percentages of B cells in mucosal and systemic tissues. Analysis of cytokine message by reverse transcriptase-PCR 5 and 10 days after infection revealed no difference in message level for transforming growth factor beta, gamma interferon, interleukin-4, interleukin-5, or interleukin-6 for all mouse strains. Virus tissue titers determined by plaque assay at 5 and 10 days after infection demonstrated that beta2m-/- mice cleared reovirus from the small intestines with the same efficiency as control mice. Collectively, these data suggest that CD8+, alpha/beta TCR+ T cells may regulate mucosal and systemic humoral immune responses to oral infection with reovirus.
Collapse
Affiliation(s)
- A S Major
- Department of Microbiology and Immunology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown 26506, USA
| | | |
Collapse
|
39
|
Lamousé-Smith E, McCarthy SA. Allospecific cytotoxic T cells generated from beta 2m-/- mice in primary MLC: analysis of activation requirements, specificity, and phenotype. Cell Immunol 1997; 179:107-15. [PMID: 9268494 DOI: 10.1006/cimm.1997.1162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been demonstrated by several investigators that beta 2m-/- knockout mice are deficient in the expression of MHC Class I molecules but can nevertheless generate CD8(+) allospecific cytotoxic T cells following vigorous in vivo priming. We demonstrate here that in vivo priming is not necessary to generate MHC Class I allospecific CTL from beta 2m-/- mice. When splenocytes from naive unprimed beta 2m-/- mice were provided exogenous cytokines in MHC Class I disparate primary MLC, allospecific cytolytic effectors were generated. beta 2m-/- MHC Class I allospecific CTL that were CD3+ and Thy1.2+ were otherwise heterogeneous in phenotype, including CD8+, CD4+, CD8-CD4-, TCR alpha beta+, and TCR gamma delta+ T cells. This phenotypic variability of beta 2m-/- CTL generated in primary MLC reveals the diversity of CTL precursors that develop in vivo in the absence of MHC Class I.
Collapse
Affiliation(s)
- E Lamousé-Smith
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA
| | | |
Collapse
|
40
|
Von Herrath MG, Coon B, Oldstone MB. Low-affinity cytotoxic T-lymphocytes require IFN-gamma to clear an acute viral infection. Virology 1997; 229:349-59. [PMID: 9126248 DOI: 10.1006/viro.1997.8442] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The majority of the response of cytotoxic T-lymphocytes (CTL) to lymphocytic choriomeningitis virus (LCMV) in H-2d mice is directed toward one epitope located on the nucleoprotein (NP, aa 118-126), and usually no primary responses to other epitopes are detectable. Previous studies have shown that thymic expression of lymphocytic choriomeningitis virus-nucleoprotein (LCMV-NP) in H-2d transgenic mice (Thy-NP mice) leads to deletion of high-affinity anti-LCMV-NP CTL by negative selection. Selection is incomplete, so that low-affinity NP-specific CTL pass through the thymus and are detectable in the periphery. To analyze the importance of interferon-gamma (IFN-gamma) in the ability of low-affinity antiviral CTL to clear an acute viral infection, double transgenic mice were generated that are IFN-gamma deficient and express the NP of LCMV in the thymus (Thy-NP x IFN-gamma -/- mice). When infected with LCMV, these bigenic mice were unable to clear the infection despite generating low-affinity primary antiviral CTL, and they became persistently infected. In contrast, IFN-gamma competent Thy-NP mice cleared LCMV within 7-8 days and IFN-gamma deficient mice that did not express NP in their thymus generated high-affinity CTL that terminated an acute LCMV infection within 10-12 days post-viral challenge. Persistently infected IFN-gamma deficient mice selectively depleted LCMV-specific CTL and displayed reduced levels of antigen-presenting cells in the spleen, and 60% of these mice died at 2-3 months postinfection. Thus, IFN-gamma is required for clearing an acute viral infection in the absence of a high-affinity CTL response. In the absence of IFN-gamma persistent viral infection results despite the presence of low-affinity CTL.
Collapse
Affiliation(s)
- M G Von Herrath
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
41
|
Baldridge JR, McGraw TS, Paoletti A, Buchmeier MJ. Antibody prevents the establishment of persistent arenavirus infection in synergy with endogenous T cells. J Virol 1997; 71:755-8. [PMID: 8985412 PMCID: PMC191113 DOI: 10.1128/jvi.71.1.755-758.1997] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A cardinal feature of the biology of lymphocytic choriomeningitis virus (LCMV) is its ability to establish persistent infections in mice. Persistence is usually established by infection of the mouse during the in utero or neonatal period. Susceptibility can be extended to the adult by treatment with immunosuppressive agents or by infection with immunosuppressive strains of LCMV. In this study we investigated the capacity of passively acquired anti-LCMV antibodies to prevent the establishment of persistence in both neonatal and adult mice. Suckling BALB/c mouse pups nursed by mothers immunized against LCMV before pregnancy had higher survival rates following infection than controls and withstood challenge doses of up to 400 PFU without becoming persistently infected. To establish that maternal antibody alone and not maternally derived T cells provided this protection, nonimmune mothers were infused with monoclonal anti-LCMV neutralizing antibodies within 24 h after delivering their pups. Pups nursing on these passively immunized mothers were resistant to persistent LCMV infection. The establishment of persistence in adult BALB/c mice by the immunosuppressive, macrophage-tropic LCMV variant, clone 13 was also prevented by prophylactic treatment with anti-LCMV monoclonal antibodies. However, the protection afforded by passively acquired antibody was found to be incomplete if the recipients lacked functional CD8+ T cells. While 65% of neonatal athymic (nu/nu) mice nursed by immune nu/+ dams resisted low-dose viral challenge (25 PFU), the majority of nude pups challenged with high doses of virus (100 PFU) became persistently infected. Also, protection was incomplete in beta2-microglobulin knockout mice, which lack functional CD8+ T cells, suggesting that a cooperative effect was exerted by the combination of neutralizing antibody and endogenous T cells. These results indicate that antibodies provide an effective barrier to the establishment of persistent infections in immunocompetent mice and reaffirm that vaccines which induce strong humoral responses may provide efficient protection against arenavirus infections.
Collapse
Affiliation(s)
- J R Baldridge
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
42
|
Zajac AJ, Quinn DG, Cohen PL, Frelinger JA. Fas-dependent CD4+ cytotoxic T-cell-mediated pathogenesis during virus infection. Proc Natl Acad Sci U S A 1996; 93:14730-5. [PMID: 8962123 PMCID: PMC26204 DOI: 10.1073/pnas.93.25.14730] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
beta 2-Microglobulin-deficient (beta 2m-) mice generate a CD4+ major histocompatibility complex class II-restricted cytotoxic T-lymphocyte (CTL) response following infection with lymphocytic choriomeningitis (LCM) virus (LCMV). We have determined the cytotoxic mechanism used by these CD4+ CTLs and have examined the role of this cytotoxic activity in pathogenesis of LCM disease in beta 2m- mice. Lysis of LCMV-infected target cells by CTLs from beta 2m- mice is inhibited by addition of soluble Fas-Ig fusion proteins or by pretreatment of the CTLs with the protein synthesis inhibitor emetine. In addition, LCMV-infected cell lines that are resistant to anti-Fas-induced apoptosis are refractory to lysis by these virus-specific CD4+ CTLs. These data indicate that LCMV-specific CD4+ CTLs from beta 2m- mice use a Fas-dependent lytic mechanism. Intracranial (i.c.) infection of beta 2m- mice with LCMV results in loss of body weight. Fas-deficient beta 2m- Jpr mice develop a similar wasting disease following i.c. infection. This suggests that Fas-dependent cytotoxicity is not required for LCMV-induced weight loss. A potential mediator of this chronic wasting disease is tumor necrosis factor (TNF)-alpha, which is produced by LCMV-specific CD4+ CTLs. In contrast to LCMV-induced weight loss, lethal LCM disease in beta 2m- mice is dependent on Fas-mediated cytotoxicity. Transfer of immune splenocytes from LCMV-infected beta 2m- mice into irradiated infected beta 2m- mice results in death of recipient animals. In contrast, transfer of these splenocytes into irradiated infected beta 2m- Jpr mice does not cause death. Thus a role for CD4+ T-cell-mediated cytotoxicity in virus-induced immunopathology has now been demonstrated.
Collapse
Affiliation(s)
- A J Zajac
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
43
|
Weck KE, Barkon ML, Yoo LI, Speck SH, Virgin HW IV. Mature B cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. J Virol 1996; 70:6775-80. [PMID: 8794315 PMCID: PMC190721 DOI: 10.1128/jvi.70.10.6775-6780.1996] [Citation(s) in RCA: 237] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Murine gammaherpesvirus 68 (gamma HV-68; also referred to as MHV-68) is a gammaherpesvirus which infects murid rodents. Previous studies showed that CD8 T cells are important for controlling gamma HV-68 replication during the first 2 weeks of infection and suggested a role for B cells in latent or persistent gamma HV-68 infection. To further define the importance of B cells and CD8 T cells during acute and chronic gamma HV-68 infection, we examined splenic infection in mice with null mutations in the transmembrane domain of the mu-heavy-chain constant region (MuMT; B-cell and antibody deficient) or in the beta2-microglobulin gene (beta2 -/-; CD8 deficient). Immunocompetent mice infected intraperitoneally with gamma HV-68 demonstrated peak splenic titers 9 to 10 days postinfection, cleared infectious virus 15 to 20 days postinfection, and harbored low levels of latent virus at 6 weeks postinfection. Beta2-/- mice showed peak splenic gamma HV-68 titers similar to those of normal mice but were unable to clear infectious virus completely from the spleen, demonstrating persistent infectious virus 6 weeks postinfection. These data indicate that CD8 T cells are important for clearing infectious gamma HV-68 from the spleen. Infected MuMT mice did not demonstrate detectable infectious gamma HV-68 in the spleen at any time after infection, indicating that mature B lymphocytes are necessary for acute splenic infection by gamma HV-68. Despite the lack of measurable acute infection, MuMT spleen cells harbored latent virus 6 weeks postinfection at a level about 100-fold higher than that in normal mice. These data demonstrate establishment of latency by a herpesvirus in an organ in the absence of acute viral replication in that organ. In addition, they demonstrate that gamma HV-68 can establish latency in a cell type other than mature B lymphocytes.
Collapse
Affiliation(s)
- K E Weck
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
44
|
Hildeman D, Salvato M, Whitton JL, Muller D. Vaccination protects beta 2 microglobulin deficient mice from immune mediated mortality but not from persisting viral infection. Vaccine 1996; 14:1223-9. [PMID: 8961509 DOI: 10.1016/s0264-410x(96)00028-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intracranial (i.c.) infection of immunocompetent mice with lymphocytic choriomeningitis virus (LCMV) results in immunopathological lethal meningitis mediated by CD8+ cytotoxic T lymphocytes (CTL). Vaccination of immunocompetent mice elicits a CD8+ CTL response that can protect the mice from lethal meningitis. beta 2 microglobulin-deficient (beta 2m-/-) mice are deficient in CD8+ CTL, exhibit CD4+ CTL, and, after i.c. LCMV infection, undergo a less severe meningitis with decreased mortality and additionally develop a wasting disease. Both wasting disease and mortality in beta 2m-/- mice are mediated by CD4+ T cells. We studied the effects of vaccination and challenge dose on weight loss, mortality and viral clearance after i.c. LCMV infection in beta 2m-/- mice. Unvaccinated beta 2m-/- mice had significant weight loss and mortality at doses of 200 and 10(3) p.f.u. LCMV, while a dose of 10(6) p.f.u. LCMV elicited significant mortality but less weight loss. Vaccination with u.v.-inactivated LCMV in complete Freund's adjuvant or with vaccinia virus expressing the LCMV glycoprotein or nucleoprotein genes protected beta 2m-/- mice from mortality but not weight loss after 200 p.f.u. LCMV challenge. Although protected from mortality, beta 2m-/- mice were unable to clear LCMV from their brains or spleens. Therefore, we show that vaccination can protect against lethal immune-meningitis in the face of persistent infection.
Collapse
Affiliation(s)
- D Hildeman
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison 53706, USA
| | | | | | | |
Collapse
|
45
|
Cardin RD, Brooks JW, Sarawar SR, Doherty PC. Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells. J Exp Med 1996; 184:863-71. [PMID: 9064346 PMCID: PMC2192775 DOI: 10.1084/jem.184.3.863] [Citation(s) in RCA: 425] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A unique experimental model has been developed for dissecting the integrity of CD8+ T cell-mediated immunity to a persistent gammaherpesvirus under conditions of CD4+ T cell deficiency. Respiratory challenge of major histocompatibility complex class II -/- and +/+ C57BL/6J mice with the murine gammaherpesvirus 68 (MHV-68) leads to productive infection of both lung and adrenal epithelial cells. Virus titers peak within 5-10 d, and are no longer detected after day 15. Persistent, latent infection is established concurrently in splenic and lymph node B cells, with higher numbers of MHV-68+ lymphocytes being found in all lymphoid sites analyzed from the +/+ mice concurrent with the massive, but transient splenomegaly that occurred only in this group. From day 17, however, the numbers of infected B lymphocytes were consistently higher in the -/- group, while the frequency of this population diminished progressively in the +/+ controls. Infectious MHV-68 was again detected in the respiratory tract and the adrenals of the -/- (but not the +/+) mice from day 22 after infection. The titers in these sites rose progressively, with the majority of the -/- mice dying between days 120 and 133. Even so, some CD8+ effectors were still functioning as late as 100 d after infection. Depletion of CD8+ T cells at this stage led to higher virus titers in the -/- lung, and to the development of wasting in some of the -/- mice. Elimination of the CD8+ T cells from the +/+ group (day 80) increased the numbers of MHV-68+ cells in the spleen, but did not reactivate the infection in the respiratory tract. The results are consistent with the interpretation that CD8+ T cell-mediated control of this persistent gammaherpesvirus is progressively lost in the absence of the CD4+ T cell subset. This parallels what may be happening in AIDS patients who develop Kaposi's sarcoma and various Epstein Barr virus associated disease processes.
Collapse
Affiliation(s)
- R D Cardin
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
46
|
Ljunggren HG, Glas R, Sandberg JK, Kärre K. Reactivity and specificity of CD8+ T cells in mice with defects in the MHC class I antigen-presenting pathway. Immunol Rev 1996; 151:123-48. [PMID: 8872488 DOI: 10.1111/j.1600-065x.1996.tb00706.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- H G Ljunggren
- Microbiology and Tumor Biology Center, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
47
|
Barkon ML, Haller BL, Virgin HW. Circulating immunoglobulin G can play a critical role in clearance of intestinal reovirus infection. J Virol 1996; 70:1109-16. [PMID: 8551570 PMCID: PMC189918 DOI: 10.1128/jvi.70.2.1109-1116.1996] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reoviruses are encapsidated double-stranded RNA viruses that cause systemic disease in mice after peroral (p.o.) inoculation and primary replication in the intestine. In this study, we define components of the immune system involved in the clearing of reovirus from the proximal small intestine. The intestines of immunocompetent adult CB17, 129, and C57BL/6 mice were cleared of reovirus serotype 3 clone 9 (T3C9) within 7 days of p.o. inoculation. Antigen-specific lymphocytes were important for the clearance of intestinal infection, since severe combined immunodeficient (SCID) mice failed to clear T3C9 infection. To define specific immune components required for intestinal clearance, reovirus infection of mice with null mutations in the immunoglobulin M (IgM) transmembrane exon (MuMT; B cell and antibody deficient) or beta 2 microglobulin gene (beta 2-/-; CD8 deficient) was evaluated. beta 2-/- mice cleared reovirus infection with normal kinetics, while MuMT mice showed delayed clearance of T3C9 7 to 11 days after p.o. inoculation. Adoptive transfer of splenic lymphocytes from reovirus-immune CB17 mice inhibited growth of T3C9 in CB17 SCID mouse intestine 11 days after p.o. inoculation. The efficiency of viral clearance by adoptively transferred cells was significantly diminished by depletion of B cells prior to adoptive transfer. Results in SCID and MuMT mice demonstrate an important role for B cells or IgG in clearance of reovirus from the intestines. Polyclonal reovirus-immune rabbit serum, protein A-purified immune IgG, and murine monoclonal IgG2a antibody specific for reovirus outer capsid protein sigma 3 administered intraperitoneally all normalized clearance of reovirus from intestinal tissue in MuMT mice. This result demonstrates an IgA-independent role for IgG in the clearance of intestinal virus infection. Polyclonal reovirus-immune serum also significantly decreased reovirus titers in the intestines of SCID mice, demonstrating a T-cell-independent role for antibody in the clearance of intestinal reovirus infection. B cells and circulating IgG play an important role in the clearance of reovirus from intestines, suggesting that IgG may play a more prominent functional role at mucosal sites of primary viral replication than was previously supposed.
Collapse
Affiliation(s)
- M L Barkon
- Center for Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
48
|
Topham DJ, Tripp RA, Sarawar SR, Sangster MY, Doherty PC. Immune CD4+ T cells promote the clearance of influenza virus from major histocompatibility complex class II -/- respiratory epithelium. J Virol 1996; 70:1288-91. [PMID: 8551597 PMCID: PMC189945 DOI: 10.1128/jvi.70.2.1288-1291.1996] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The experiments described establish that CD4+ T-cell-dependent effector mechanisms can eliminate an H3N2 influenza A virus from lung cells that are unable to express class II major histocompatibility complex (MHC) glycoproteins. Radiation chimeras were made by using CD4+ T cells and bone marrow from CD8-depleted, MHC class II +/+ mice and irradiated (950 rads) MHC class II -/- recipients. The influenza virus-specific CD4+ T-cell responses in these +/+-->-/- mice were not obviously different from those in the +/+-->+/+ controls: the cytokine profiles, the spectra of plasma cells producing the various immunoglobulin isotypes, and the frequencies of virus-specific CD4+ T cells were similar for the two groups. Expression of class II MHC glycoproteins on stimulator cells, B lymphocytes, and monocytes/macrophages is apparently sufficient for CD4+ T cells to terminate influenza virus infection of MHC class II -/- respiratory epithelium. A possible explanation is that the local spread of this lytic virus in the lung is limited by cytokines and/or antibody.
Collapse
Affiliation(s)
- D J Topham
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
49
|
von Herrath MG, Yokoyama M, Dockter J, Oldstone MB, Whitton JL. CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge. J Virol 1996; 70:1072-9. [PMID: 8551565 PMCID: PMC189913 DOI: 10.1128/jvi.70.2.1072-1079.1996] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Although primary antiviral CD8+ cytotoxic T lymphocytes (CTL) can be induced in mice depleted of CD4+ T cells, the role of CD4+ T lymphocytes in the generation and maintenance of antiviral memory CTL is uncertain. This question, and the consequences upon vaccine-mediated protection, were investigated in transgenic CD4 knockout (CD4ko) mice, which lack CD4+ T lymphocytes. Infection of immunocompetent C57BL/6 mice with lymphocytic choriomeningitis virus (LCMV), or with recombinant vaccinia viruses bearing appropriate LCMV sequences, induces long-lasting protective immunity, mediated mainly by antiviral CD8+ CTL. Here we report two important findings. First, LCMV-specific CD8+ memory CTL are maintained at considerably lower levels in CD4ko mice than in normal C57BL/6J mice; we demonstrate a reduction in precursor CTL evident as soon as 30 days postimmunization and declining, by day 120, to levels 1 to 2 log units below those in normal mice. Thus, CD4+ T cells appear to be important to the generation and maintenance of their CD8+ counterparts. Second, this reduction has an important biological consequence; compared with immunocompetent mice, CD4ko mice immunized with vaccinia virus recombinants expressing nucleoprotein or glycoprotein of LCMV are less effectively protected from subsequent LCMV challenge. Thus, this study underscores the potential importance of CD4+ T lymphocytes in generation of appropriate levels of CD(8+)-cell-mediated immunoprotective memory and has implications for vaccine efficacy in individuals with immune defects in which CD4 levels may be reduced, such as AIDS.
Collapse
Affiliation(s)
- M G von Herrath
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- P C Doherty
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|