1
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
2
|
Nii T, Bungo T, Isobe N, Yoshimura Y. Intestinal inflammation induced by dextran sodium sulphate causes liver inflammation and lipid metabolism disfunction in laying hens. Poult Sci 2020; 99:1663-1677. [PMID: 32111331 PMCID: PMC7587789 DOI: 10.1016/j.psj.2019.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023] Open
Abstract
Gut inflammation caused by various factors including microbial infection leads to disorder of absorption of dietary nutrients and decrease in egg production in laying hens. We hypothesized that intestinal inflammation may affect egg production in laying hens through its impact on liver function. Dextran sodium sulphate (DSS) is known to induce intestinal inflammation in mammals, but whether it also induces inflammation in laying hens is not known. The goal of this study was to assess whether oral administration of DSS is a useful model of intestinal inflammation in laying hens and to characterize the effects of intestinal inflammation on egg production using this model. White Leghorn hens (350-day old) were administrated with or without 0.9 g of DSS/kg BW in drinking water for 5 D (n = 8, each). All laid eggs were collected, and their whole and eggshell weights were recorded. Blood was collected every day and used for biochemical analysis. Liver and intestinal tissues (duodenum, jejunum, ileum, cecum, cecal-tonsil, and colon) were collected 1 D after the final treatment. These tissue samples were used for histological analysis and PCR analysis. Oral administration of DSS in laying hens caused 1) histological disintegration of the cecal mucosal epithelium and increased monocyte/macrophage infiltration and IL-1β, IL-6, CXCLi2, IL-10, and TGFβ-4 gene expression; 2) decreased egg production; 3) increased leukocyte infiltration and IL-1β, CXCLi2, and IL-10 expression in association with a high frequency of lipopolysaccharide-positive cells in the liver; and 4) decreased expression of genes related to lipid synthesis, lipoprotein uptake, and yolk precursor production. These results suggested that oral administration of DSS is a useful method for inducing intestinal inflammation in laying hens, and intestinal inflammation may reduce egg production by disrupting egg yolk precursor production in association with liver inflammation.
Collapse
Affiliation(s)
- T Nii
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan.
| | - T Bungo
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - N Isobe
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Y Yoshimura
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
3
|
Lee CC, Tung CY, Wu CC, Lin TL. AVIAN INNATE IMMUNITY WITH AN EMPHASIS ON CHICKEN MELANOMA DIFFERENTIATION-ASSOCIATED GENE 5 (MDA5). ACTA ACUST UNITED AC 2019. [DOI: 10.1142/s1682648519300016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Avian species have immune system to fight invading pathogens. The immune system comprises innate and adaptive immunity. Innate immunity relies on pattern recognition receptors to sense particular molecules present in pathogens, i.e. pathogen-associated molecular patterns (PAMPs), or danger signals in the environment, i.e. danger-associated molecular patterns (DAMPs). Cytoplasmic retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs) are the sensors recognizing cytoplasmic PAMP and/or DAMP. Among common avian species, chickens do not have RIG-I whereas ducks and finches do. Therefore, the other RLR member, melanoma differentiation-associated gene 5 (MDA5), is believed to play an important role to recognize intracellular pathogens in chickens. Chicken MDA5 has been identified and its function determined. Chicken MDA5 maintains the same domain architecture compared with MDA5 analogs in other animal species. The expression of chicken MDA5 was upregulated when a synthetic double-stranded RNA (dsRNA), polyriboinosinic:polyribocytidylic acids (poly(I:C)), was transfected into chicken cells, whereas that did not change when cells were incubated with poly(I:C). The enhanced expression of chicken MDA5 in chicken cells upregulated the expression of chicken interferon-[Formula: see text] (IFN-[Formula: see text]). The infection of dsRNA infectious bursal disease virus (IBDV) in non-immune cells triggered the activation of chicken MDA5 signaling pathway, leading to the production of IFN-[Formula: see text] and subsequent response of IFN-stimulated genes. Furthermore, in immune cells like macrophages, chicken MDA5 participated in sensing the infection of IBDV by activating downstream antiviral genes and molecules and modulating adaptive immunity.On the contrary, one of cytoplasmic NLR member, NLR family pyrin domain containing 3 (NLRP3), was cloned and functionally characterized in chicken cells. Chicken NLRP3 conserved the same domain architecture compared with NLRP3 analogs in other animal species. Chicken NLRP3 was highly expressed in kidney, bursa of Fabricius and spleen. The production of mature chicken interleukin 1 [Formula: see text] (IL-1[Formula: see text] in chicken macrophages was stimulated by lipopolysaccharide (LPS) treatment followed by short ATP exposure.In summary, chicken MDA5 was a cytoplasmic dsRNA sensor that mediated the production of type I IFN upon ligand engagement, whereas NLRP3 sensed danger signals, such as ATP, in the cytoplasm and cleaved pro-IL-1[Formula: see text] to produce mature IL-1[Formula: see text]. Chicken MDA5 was not only involved in the activation of innate immune responses in non-immune and immune cells, but it also participated in modulating adaptive immunity in immune cells. Chicken NLRP3 participated in the production of mature chicken IL-1[Formula: see text] upon ligand engagement.
Collapse
Affiliation(s)
- Chih-Chun Lee
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chun-Yu Tung
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Ching Ching Wu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan 10617, R. O. C
| | - Tsang Long Lin
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Elhamouly M, Nii T, Isobe N, Yoshimura Y. Expression of pro- and anti-inflammatory cytokines and chemokines during the ovulatory cycle and effects of aging on their expression in the uterine mucosa of laying hens. Cytokine 2018; 111:303-308. [PMID: 30269026 DOI: 10.1016/j.cyto.2018.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/31/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
Abstract
The aim of this study was to examine whether cytokines and chemokines expressed in the uterine mucosa play a role in the process of eggshell formation in the chicken uterus. Changes in the expression levels of pro- and anti-inflammatory cytokines and chemokines in the uterine mucosa during an ovulatory cycle (experiment 1) and effects of aging on their expression (experiment 2) were examined. In experiment 1, the expression of the pro-inflammatory cytokines IL1β, IL6, TNFSF15, and IFNγ, and a chemokine CX3CL1 was found to increase during eggshell biomineralization (16 h following oviposition), while anti-inflammatory TGFβ2 expression was found to increase at 4 h following oviposition. In experiment 2, a higher expression of the anti-inflammatory cytokines TGFβ2 and TGFβ3, and chemokines CXCLi2 and CX3CL1, was observed in aged hens than in young hens. A significantly higher number of macrophages and CD8+ T cells were observed in the uterine tissue of aged hens than in young hens. Furthermore, the expression of adhesion molecules associated with leukocytic infiltration was found to be higher in aged hens than in young hens. We conclude that the eggshell formation process may be affected by the pro- and anti-inflammatory cytokines and chemokines. The balanced expressions of these molecules might be disrupted in aged hens.
Collapse
Affiliation(s)
- M Elhamouly
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - T Nii
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - N Isobe
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Y Yoshimura
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
5
|
Effects of TLR Ligands on the Expression of Cytokines and Possible Role of NF κB in its Process in the Theca of Chicken Follicles. J Poult Sci 2018; 55:288-300. [PMID: 32055188 PMCID: PMC6756407 DOI: 10.2141/jpsa.0170217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/23/2018] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to determine the effects of Toll-like receptor (TLR) ligands on the expression of cytokines in chicken follicular theca and to investigate whether nuclear factor-κB (NFκB) was involved in their expression. The follicular theca was collected from the largest follicle of laying hens. In experiment 1, the expression of TLRs in the theca interna and externa was confirmed using RT-PCR. The theca tissues were then incubated with or without Pam3CSK4 (TLR2 ligand), poly I:C (TLR3 ligand), LPS (TLR4 ligand), flagellin (TLR5 ligand), R837 (TLR7 ligand), and CpG-ODN (TLR21 ligand) for 3 h, after which cytokine expression (IL-1β, IL-6, TNFSF15, CXCLi2, IFN-α, and IFN-β) was analyzed by real-time PCR. In experiment 2, the theca tissues were incubated in a medium containing Pam3CSK4, poly I:C, LPS, or CpG-ODN with or without BAY 11-7085 (an inhibitor of NFκB) for 3 h. The results of experiment 1 revealed that all TLRs, namely TLR1 (type 1 and 2), TLR2 (type 1 and 2), 3–5, 7, 15, and 21, were expressed in the follicular theca, although the PCR products of TLR1 (type 2) and TLR21 were faint. Moreover, Pam3CSK4 and LPS upregulated the expression of all detected cytokines, except for IFN-α, whose expression was not upregulated by LPS. Poly I:C upregulated the expression of IL-6, CXCLi2, and IFN-β, while CpG-ODN upregulated IL-1β. Flagellin and R837 did not significantly affect cytokine expression. In experiment 2, the expression of IL-1β, IL-6, CXCLi2 and IFN-β in tissues incubated with LPS was downregulated by BAY 11-7085. These results suggest that the innate immune system, including pattern recognition by TLRs and cytokine synthesis, occur in the theca; whereas, functions for recognition of bacterial patterns is more developed than that of viral ones.
Collapse
|
6
|
Infectious Laryngotracheitis Virus Viral Chemokine-Binding Protein Glycoprotein G Alters Transcription of Key Inflammatory Mediators In Vitro and In Vivo. J Virol 2017; 92:JVI.01534-17. [PMID: 29070686 DOI: 10.1128/jvi.01534-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/11/2017] [Indexed: 01/05/2023] Open
Abstract
Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that infects chickens, causing upper respiratory tract disease and significant losses to poultry industries worldwide. Glycoprotein G (gG) is a broad-range viral chemokine-binding protein conserved among most alphaherpesviruses, including ILTV. A number of studies comparing the immunological parameters between infection with gG-expressing and gG-deficient ILTV strains have demonstrated that expression of gG is associated with increased virulence, modification of the amount and the composition of the inflammatory response, and modulation of the immune responses toward antibody production and away from cell-mediated immune responses. The aims of the current study were to examine the establishment of infection and inflammation by ILTV and determine how gG influences that response to infection. In vitro infection studies using tracheal organ tissue specimen cultures and blood-derived monocytes and in vivo infection studies in specific-pathogen-free chickens showed that leukocyte recruitment to the site of infection is an important component of the induced pathology and that this is influenced by the expression of ILTV gG and changes in the transcription of the chicken orthologues of mammalian CXC chemokine ligand 8 (CXCL8), chicken CXCLi1 and chicken CXCLi2, among other cytokines and chemokines. The results from this study demonstrate that ILTV gG interferes with chemokine and cytokine transcription at different steps of the inflammatory cascade, thus altering inflammation, virulence, and the balance of the immune response to infection.IMPORTANCE Infectious laryngotracheitis virus is an alphaherpesvirus that expresses gG, a conserved broad-range viral chemokine-binding protein known to interfere with host immune responses. However, little is known about how gG modifies virulence and influences the inflammatory signaling cascade associated with infection. Here, data from in vitro and in vivo infection studies are presented. These data show that gG has a direct impact on the transcription of cytokines and chemokine ligands in vitro (such as chicken CXCL8 orthologues, among others), which explains the altered balance of the inflammatory response that is associated with gG during ILTV infection of the upper respiratory tract of chickens. This is the first report to associate gG with the dysregulation of cytokine transcription at different stages of the inflammatory cascade triggered by ILTV infection of the natural host.
Collapse
|
7
|
Kim WH, Lillehoj HS, Lim Y, Min W, Sullivan YB, Kakach L, LaBresh JW. Development and characterization of mouse monoclonal antibodies reactive with chicken CXCLi2. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:30-36. [PMID: 28223253 DOI: 10.1016/j.dci.2017.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
Interleukin-8(IL-8)/CXCL8 is a CXC-family chemokine that attracts lymphocytes to sites of tissue damage and plays a role in the inflammatory response and wound healing. Chicken chemotactic and angiogenic factor was referred to as chCXCLi2 and has been studied as one of human CXCL8 homologue for more than 20 years. However, no monoclonal antibodies (mAbs) that specifically detect chCXCLi2 have been developed. Here, we developed and characterized mouse mAbs against chCXCLi2 to define its immunological properties. Two mouse mAbs against chCXCLi2 were generated and confirmed to display specific binding with not only recombinants, but endogenous chCXCLi2 by Western blot analysis, ELISA, and immunocytochemistry. Inhibition of chCXCLi2-induced chemotactic activity on peripheral blood lymphocytes, proliferation of chicken macrophage cells and expression of alpha smooth-muscle actin in chicken embryonic fibroblast cells by antibodies indicate that these antibodies are capable of blocking chCXCLi2 bioactivity. These chCXCLi2 mAbs will be useful reagents for future investigations of inflammation in poultry.
Collapse
Affiliation(s)
- Woo H Kim
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, ARS, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, ARS, U.S. Department of Agriculture, Beltsville, MD 20705, USA.
| | - Yeaseul Lim
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, ARS, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Wongi Min
- College of Veterinary Medicine & Research Institute of Life Science, Gyeongsang National University, Jinju 52828, South Korea
| | | | | | | |
Collapse
|
8
|
Quan R, Zhu S, Wei L, Wang J, Yan X, Li Z, Liu J. Transcriptional profiles in bursal B-lymphoid DT40 cells infected with very virulent infectious bursal disease virus. Virol J 2017; 14:7. [PMID: 28086922 PMCID: PMC5237357 DOI: 10.1186/s12985-016-0668-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022] Open
Abstract
Background Infectious bursal disease virus (IBDV) causes a highly contagious, immunosuppressive disease in chickens. The virus mainly infects immature B lymphocytes in the bursa of Fabricius (BF). Chicken B cell line DT40, an avian leukosis virus-induced B cell line, supports very virulent IBDV (vvIBDV) infection in vitro and thereby serves as a good model for investigating the infection and pathogenesis of this virus. However, a transcriptome-wide understanding of the interaction between vvIBDV and B cells has not yet been achieved. This study aimed to employ time-course DNA microarrays to investigate gene expression patterns in DT40 cells after infection with vvIBDV strain LX. Results DT40 cells infected with vvIBDV exhibited alterations in the expression of many important host genes involved in signal transduction pathways, including MAPK signaling, PI3K/mTOR signaling, cell death and survival, BCR signaling, and antigen presentation. The changes in cellular mRNA levels identified by microarray analysis were confirmed for 8 selected genes using real-time reverse transcription-PCR. The upregulation of inflammatory cytokines and Toll-like receptors (TLRs) in the bursa of vvIBDV-infected chickens might involve excessive activation of the innate immune and inflammatory responses and contribute to tissue damage. Conclusions The present study is the first to provide a comprehensive differential transcriptional profile of cultured DT40 cells in response to vvIBDV infection and further extends our understanding of the molecular mechanisms underlying vvIBDV infection and pathogenesis.
Collapse
Affiliation(s)
- Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Xu Yan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Zixuan Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China.
| |
Collapse
|
9
|
Saint-Cyr MJ, Haddad N, Taminiau B, Poezevara T, Quesne S, Amelot M, Daube G, Chemaly M, Dousset X, Guyard-Nicodème M. Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. Int J Food Microbiol 2016; 247:9-17. [PMID: 27432696 DOI: 10.1016/j.ijfoodmicro.2016.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 06/08/2016] [Accepted: 07/07/2016] [Indexed: 12/17/2022]
Abstract
Campylobacteriosis is the most frequently reported zoonotic disease in humans in the EU since 2005. As chicken meat is the main source of contamination, reducing the level of Campylobacter in broiler chicken will lower the risk to consumers. The aim of this project was to evaluate the ability of Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers and to investigate the mechanisms that could be involved. Thirty broilers artificially contaminated with C. jejuni were treated by oral gavage with MRS broth or a bacterial suspension (107CFU) of Lb. salivarius SMXD51 (SMXD51) in MRS broth. At 14 and 35days of age, Campylobacter and Lb. salivarius loads were assessed in cecal contents. The impact of the treatment on the avian gut microbiota at day 35 was also evaluated. At day 14, the comparison between the control and treated groups showed a significant reduction (P<0.05) of 0.82 log. After 35days, a significant reduction (P<0.001) of 2.81 log in Campylobacter loads was observed and 73% of chickens treated with the culture exhibited Campylobacter loads below 7log10CFU/g. Taxonomic analysis revealed that SMXD51 treatment induced significant changes (P<0.05) in a limited number of bacterial genera of the avian gut microbiota and partially limited the impact of Campylobacter on Anaerotruncus sp. decrease and Subdoligranulum sp. increase. Thus, SMXD51 exhibits an anti-Campylobacter activity in vivo and can partially prevent the impact of Campylobacter on the avian gut microbiota.
Collapse
Affiliation(s)
| | - Nabila Haddad
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne Loire, Nantes, France
| | - Bernard Taminiau
- FARAH, Department of Food Sciences, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Typhaine Poezevara
- Hygiene and Quality of Poultry and Pork Products Unit, ANSES, Ploufragan/Plouzané Laboratory, Université Bretagne Loire, Ploufragan, France
| | - Ségolène Quesne
- Hygiene and Quality of Poultry and Pork Products Unit, ANSES, Ploufragan/Plouzané Laboratory, Université Bretagne Loire, Ploufragan, France
| | - Michel Amelot
- Department of Poultry Experimentation, ANSES, Ploufragan/Plouzané Laboratory, Université Bretagne Loire, Ploufragan, France
| | - Georges Daube
- FARAH, Department of Food Sciences, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pork Products Unit, ANSES, Ploufragan/Plouzané Laboratory, Université Bretagne Loire, Ploufragan, France
| | - Xavier Dousset
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne Loire, Nantes, France.
| | - Muriel Guyard-Nicodème
- Hygiene and Quality of Poultry and Pork Products Unit, ANSES, Ploufragan/Plouzané Laboratory, Université Bretagne Loire, Ploufragan, France.
| |
Collapse
|
10
|
Dalgaard TS, Skovgaard K, Norup LR, Pleidrup J, Permin A, Schou TW, Vadekær DF, Jungersen G, Juul-Madsen HR. Immune gene expression in the spleen of chickens experimentally infected with Ascaridia galli. Vet Immunol Immunopathol 2015; 164:79-86. [PMID: 25649508 DOI: 10.1016/j.vetimm.2015.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/02/2014] [Accepted: 01/06/2015] [Indexed: 01/05/2023]
Abstract
Ascaridia galli is a gastrointestinal nematode infecting chickens. Chickens kept in alternative rearing systems or at free-range experience increased risk for infection with resulting high prevalences. A. galli infection causes reduced weight gain, decreased egg production and in severe cases increased mortality. More importantly, the parasitised chickens are more susceptible to secondary infections and their ability to develop vaccine-induced protective immunity against other diseases may be compromised. Detailed information about the immune response to the natural infection may be exploited to enable future vaccine development. In the present study, expression of immune genes in the chicken spleen during an experimental infection with A. galli was investigated using the Fluidigm(®) BioMark™ microfluidic qPCR platform which combines automatic high-throughput with attractive low sample and reagent consumption. Spleenic transcription of immunological genes was compared between infected chickens and non-infected controls at week 2, 6, and 9 p.i. corresponding to different stages of parasite development/maturation. At week 2 p.i. increased expression of IL-13 was observed in infected chickens. Increased expression of MBL, CRP, IFN-α, IL-1β, IL-8, IL-12β and IL-18 followed at week 6 p.i. and at both week 6 and 9 p.i. expression of DEFβ1 was highly increased in infected chickens. In summary, apart from also earlier reported increased expression of the Th2 signature cytokine IL-13 we observed only few differentially expressed genes at week 2 p.i. which corresponds to the larvae histotrophic phase. In contrast, we observed increased expression of pro-inflammatory cytokines and acute phase proteins in infected chickens, by week 6 p.i. where the larvae re-enter the intestinal lumen. Increased expression of DEFβ1 was observed in infected chickens at week 6 p.i. but also at week 9 p.i. which corresponds to a matured stage where adult worms are present in the intestinal lumen.
Collapse
Affiliation(s)
- Tina S Dalgaard
- Department of Animal Science, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark.
| | - Kerstin Skovgaard
- National Veterinary Institute, Division of Veterinary Diagnostics and Research, Technical University of Denmark, Bülowsvej 27, DK-1870 Frederiksberg C, Denmark
| | - Liselotte R Norup
- Department of Animal Science, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark
| | - Janne Pleidrup
- Department of Animal Science, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark
| | - Anders Permin
- National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - Torben W Schou
- Department of Environment and Toxicology, DHI, Agern Allé 5, DK-2970 Hørsholm, Denmark
| | - Dorte F Vadekær
- National Veterinary Institute, Division of Veterinary Diagnostics and Research, Technical University of Denmark, Bülowsvej 27, DK-1870 Frederiksberg C, Denmark
| | - Gregers Jungersen
- National Veterinary Institute, Division of Veterinary Diagnostics and Research, Technical University of Denmark, Bülowsvej 27, DK-1870 Frederiksberg C, Denmark
| | - Helle R Juul-Madsen
- Department of Animal Science, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark
| |
Collapse
|
11
|
Munyaka P, Tactacan G, Jing M, Karmin O, House J, St. Paul M, Sharif S, Rodriguez-Lecompte J. Response of older laying hens to an Escherichia coli lipopolysaccharide challenge when fed diets with or without supplemental folic acid. Poult Sci 2013; 92:105-13. [DOI: 10.3382/ps.2012-02579] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Effects of Lipopolysaccharide on the Recruitment of T Cells in the Seminal Tract of Roosters. J Poult Sci 2013. [DOI: 10.2141/jpsa.0120081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Prospects and challenges of using chicken cytokines in disease prevention. Vaccine 2012; 30:7165-73. [DOI: 10.1016/j.vaccine.2012.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/26/2012] [Accepted: 10/07/2012] [Indexed: 12/12/2022]
|
14
|
Zhang M, Nii T, Isobe N, Yoshimura Y. Expression of Toll-like receptors and effects of lipopolysaccharide on the expression of proinflammatory cytokines and chemokine in the testis and epididymis of roosters. Poult Sci 2012; 91:1997-2003. [DOI: 10.3382/ps.2012-02236] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Sandford EE, Orr M, Shelby M, Li X, Zhou H, Johnson TJ, Kariyawasam S, Liu P, Nolan LK, Lamont SJ. Leukocyte transcriptome from chickens infected with avian pathogenic Escherichia coli identifies pathways associated with resistance. RESULTS IN IMMUNOLOGY 2012; 2:44-53. [PMID: 24371566 DOI: 10.1016/j.rinim.2012.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 02/17/2012] [Accepted: 02/21/2012] [Indexed: 12/13/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis, which is responsible for morbidity and mortality in chickens. Gene expression patterns have previously been demonstrated to differ between chicken populations that are resistant vs. susceptible to bacterial infection, but little is currently known about gene expression response to APEC. Increased understanding of gene expression patterns associated with resistance will facilitate genetic selection to increase resistance to APEC. Male broiler chicks were vaccinated at 2 weeks of age and challenged with APEC at 4 weeks of age. Peripheral blood leukocytes were collected at 1 and 5 day post-infection. Lesions on the liver, pericardium, and air sacs were used to assign a mild or severe pathology status to non-vaccinated, challenged chicks. Ten treatment groups were therefore generated with a priori factors of vaccination, challenge, day post-infection, and the a posteriori factor of pathology status. Global transcriptomic response was evaluated using the Agilent 44K chicken microarray. APEC infection resulted in more up-regulation than down-regulation of differentially expressed genes. Immune response and metabolic processes were enriched with differentially expressed genes. Although vaccination significantly reduced lesions in challenged bird, there was no detectable effect of vaccination on gene expression. This study investigated the transcriptomic differences in host responses associated with mild vs. severe pathology, in addition to the effects of vaccination and challenge, thus revealing genes and networks associated with response to APEC and providing a foundation for future studies on, and genetic selection for, genetic resistance to APEC.
Collapse
Affiliation(s)
- Erin E Sandford
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Megan Orr
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Mandy Shelby
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Xianyao Li
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | - Huaijun Zhou
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Subhashinie Kariyawasam
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16082, USA
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Lisa K Nolan
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
16
|
Nii T, Sonoda Y, Isobe N, Yoshimura Y. Effects of lipopolysaccharide on the expression of proinflammatory cytokines and chemokines and the subsequent recruitment of immunocompetent cells in the oviduct of laying and molting hens. Poult Sci 2011; 90:2332-41. [DOI: 10.3382/ps.2011-01596] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Rauf A, Khatri M, Murgia MV, Jung K, Saif YM. Differential modulation of cytokine, chemokine and Toll like receptor expression in chickens infected with classical and variant infectious bursal disease virus. Vet Res 2011; 42:85. [PMID: 21749706 PMCID: PMC3146834 DOI: 10.1186/1297-9716-42-85] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 07/12/2011] [Indexed: 01/09/2023] Open
Abstract
Infectious bursal disease (IBD) is an important immunosuppressive disease of chickens. The causative agent, infectious bursal disease virus (IBDV), consists of two serotypes, 1 and 2. Serotype 1 consists of classic IBDV (cIBDV) and variant IBDV (vIBDV). Both of these strains vary in antigenicity and pathogenesis. The goal of this study was to compare the immunopathogenesis of cIBDV and vIBDV. Three-week-old specific pathogen free chickens were inoculated intraocularly with standard challenge strain (STC) (cIBDV) and a variant strain Indiana (IN) (vIBDV). The cIBDV produced more pronounced bursal damage, inflammatory response and infiltration of T cells as compared to vIBDV. There were significant differences in the expression of innate (IFN-α and IFN-β), proinflammatory cytokine and mediator (IL-6 and iNOS) in cIBDV- and vIBDV-infected bursas. The expression of chemokines genes, IL-8 and MIP-α was also higher in cIBDV-infected chickens during the early phase of infection. The expression of Toll like receptor 3 (TLR3) was downregulated at post inoculation days (PIDs) 3, 5, and 7 in the bursas of vIBDV-infected chickens whereas TLR3 was upregulated at PIDs 3 and 5 in cIBDV-infected bursas. In vIBDV-infected bursa, TLR7 expression was downregulated at PIDs 3 and 5 and upregulated at PID 7. However, TLR7 was upregulated at PIDs 3 and 7 in cIBDV-infected bursas. The expression of MyD88 was downregulated whereas TRIF gene expression was upregulated in cIBDV- and vIBDV-infected bursa. These findings demonstrate the critical differences in bursal lesions, infiltration of T cells, expression of cytokines, chemokines and TLRs in the bursa of cIBDV-and vIBDV-infected chickens.
Collapse
Affiliation(s)
- Abdul Rauf
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA.
| | | | | | | | | |
Collapse
|
18
|
Cytokine responses and inducible nitrous oxide synthase expression patterns in neonatal chicken brain microglia infected with very virulent Marek's disease virus strain YL040920. Vet Immunol Immunopathol 2011; 142:14-24. [PMID: 21501879 DOI: 10.1016/j.vetimm.2011.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 03/20/2011] [Accepted: 03/28/2011] [Indexed: 11/20/2022]
Abstract
Purified and enriched brain microglia from neonatal chickens were infected with live Marek's disease virus (MDV)-both the very virulent (vv) YL040920 strain and the attenuated vaccine strain CVI988/Rispens in vitro. Although YL040920-infected microglia showed lower viral DNA loads compared with those infected with CVI988/Rispens at the same infectious dose (400 plaque-forming units for each), no significant differences in IFN-γ and IL-12p35 transcription were detected between the two MDV strains. Chicken microglia infected with live or fixed YL040920 expressed dramatically higher levels of IL-12p40, IL-8, and macrophage inflammatory protein-1β (MIP-1β) transcripts compared with those infected with CVI988/Rispens. On the other hand, CVI988/Rispens induced significantly higher levels of IFN-β transcription than YL040920, especially the live virus. Inducible nitric oxide (NO) synthase (iNOS) transcription and NO production correlated with levels of both YL040920 and CVI988/Rispens live strain infection. Moreover, fixed MDVs induced higher levels of iNOS/NO than live viruses, especially with CVI988/Rispens. This study demonstrates that chicken microglial cells can become infected with live YL040920 and CVI988/Rispens and that microglia represent cellular sources of IL-12p40, IL-12p35, IFN-γ, IFN-β, IL-8, MIP-1β, iNOS mRNA, and NO expression after MDV infection in vitro. Transcription levels of IL-12p35 and IFN-γ were associated with MDV DNA replication, whereas transcription levels of IL-12p40, IFN-β, IL-8, and MIP-1β were associated with both MDV DNA replication and expression of viral specific genes. The transcription of iNOS was responsible for expression of viral specific genes, whereas it was suppressed by viral DNA replication during infection. Although YL040920, compared with CVI988/Rispens, induced similar levels of the typical Th1-type cytokine IFN-γ in microglia, vvMDV induced significant increases in other cytokines [IL-12 (p40 and 12p35), IL-8, and MIP-1β]. More detailed investigation, as well as in vivo testing of the effects of vvMDV infection on Th1 responses, iNOS expression, and NO production in the brain of chickens should be undertaken.
Collapse
|
19
|
|
20
|
Innate immune gene expression differentiates the early avian intestinal response between Salmonella and Campylobacter. Vet Immunol Immunopathol 2009; 132:191-8. [DOI: 10.1016/j.vetimm.2009.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 01/07/2023]
|
21
|
Induction of innate host responses in the lungs of chickens following infection with a very virulent strain of Marek's disease virus. Virology 2009; 393:250-7. [DOI: 10.1016/j.virol.2009.08.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/21/2009] [Accepted: 08/03/2009] [Indexed: 11/23/2022]
|
22
|
Shini S, Kaiser P. Effects of stress, mimicked by administration of corticosterone in drinking water, on the expression of chicken cytokine and chemokine genes in lymphocytes. Stress 2009; 12:388-99. [PMID: 19006006 DOI: 10.1080/10253890802526894] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In this study, we identify molecular mediators that participate in the regulation of the immune response during corticosterone-induced stress in chickens. At 7 weeks of age, 120 chickens were exposed for 1 week to corticosterone treatment. Cytokine and chemokine mRNA expression levels were evaluated in peripheral blood and splenic lymphocytes. Expression levels of interleukin (IL)-1beta, IL-6, IL-18 and transforming growth factor (TGF)-beta4 mRNA were significantly up-regulated in lymphocytes 3 h after first treatment with corticosterone. TGF-beta4 and IL-18 remained elevated 1 week post-initial treatment. Compared with controls, corticosterone-treated birds showed greater expression levels of chemokine (CC) mRNA, particularly for CCLi2, CCL5 (RANTES), CCL16 and CXCLi1, in peripheral and splenic lymphocytes 3 h post-initial exposure. CCLi2 mRNA was highly expressed in splenocytes at all time-points. Administration of corticosterone significantly increased circulating corticosterone concentrations and decreased total lymphocyte counts at 3, 24 h and 1 week post-initiation of corticosterone treatment. There was a positive correlation between plasma corticosterone concentrations and CCL5 and CCL16 mRNA at 3 h post-initial administration. At 1 week post-initial treatment, corticosterone concentrations correlated positively with CCL5 and negatively with IL-18 mRNA level. Conditions associated with significant changes in corticosterone levels might therefore affect the immune response by increasing pro-inflammatory responses, leading to potential modulation of the Th1/Th2 balance.
Collapse
Affiliation(s)
- S Shini
- School of Animal Studies, University of Queensland, Gatton, Australia.
| | | |
Collapse
|
23
|
Zhou X, Guo Q, Dai H. Molecular characterization and expression profiles in response to bacterial infection of Chinese soft-shelled turtle interleukin-8 (IL-8), the first reptilian chemokine gene. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:838-847. [PMID: 19428485 DOI: 10.1016/j.dci.2009.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/20/2009] [Accepted: 02/09/2009] [Indexed: 05/27/2023]
Abstract
In this study, an IL-8 homologue has been cloned and identified from a reptile, Chinese soft-shelled turtle for the first time. The full-length cDNA of turtle IL-8 was 1188bp and contained a 312bp open reading frame (ORF) coding for a protein of 104 amino acids. The chemokine CXC domain, which contained Glu-Leu-Arg (ELR) motif and four cysteine residues, was well conserved in turtle IL-8. The 4924bp genomic DNA of turtle IL-8 contained four exons and three introns. Phylogenetic analysis showed that the amino acid sequence of turtle IL-8 clustered together with birds. RT-PCR analysis showed that turtle IL-8 mRNA was constitutively expressed liver, spleen, kidney, heart, blood and intestine tissues of control turtles. Real-time quantitative PCR analysis further indicated that the turtle IL-8 mRNA expression was apparent in various tissues at 8h and up-regulated significantly during 8h-7d after Aeromonas hydrophila infection. The present studies will help us to understand the evolution of IL-8 molecule and the inflammatory response mechanism in reptiles.
Collapse
Affiliation(s)
- Xiuxia Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | | |
Collapse
|
24
|
Measurement of avian cytokines with real-time RT-PCR following infection with the avian influenza virus. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 436:127-34. [PMID: 18370047 DOI: 10.1007/978-1-59745-279-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Functional and molecular techniques have both been employed to measure the production of cytokines following influenza infection. Historically, the use of functional or antibody-based techniques was employed in mammalian immunology. In avian immunology, only a few commercial antibodies are available to measure avian cytokines. However, the determination of the genomic sequence of Gallus gallus species has made it possible to measure cytokine induction without monoclonal antibody- or functional-based tests, but rather based on molecular techniques. Although these tests do not measure functionally expressed cytokines, the lack of reagents to identify and quantify avian cytokines makes them critical to extend any measure of cytokine response. Measurement of cytokine induction, based on the design of primers and probes for RT-PCR or real-time RT-PCR for the cytokine mRNA, has become one of the more recent technologies reported to measure avian cytokines. It is important to note that small nucleotide polymorphisms between different lines of birds may result in substandard results when using published primer and probe sequences. This requires empirical testing to ensure adequate results.
Collapse
|
25
|
Poh TY, Pease J, Young JR, Bumstead N, Kaiser P. Re-evaluation of Chicken CXCR1 Determines the True Gene Structure. J Biol Chem 2008; 283:16408-15. [DOI: 10.1074/jbc.m800998200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
26
|
Wu YF, Shien JH, Yin HH, Chiow SH, Lee LH. Structural and functional homology among chicken, duck, goose, turkey and pigeon interleukin-8 proteins. Vet Immunol Immunopathol 2008; 125:205-15. [PMID: 18757102 DOI: 10.1016/j.vetimm.2008.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 02/18/2008] [Accepted: 03/04/2008] [Indexed: 11/17/2022]
Abstract
Interleukin (IL)-8-encoding regions of five avian species were cloned, sequenced and characterized. Each IL-8-encoding region is 312 nucleotides long and encodes IL-8 which is 103 amino acids. Pairwise sequence analysis showed that sequence identities of IL-8-encoding regions ranged from 87% to 100%. The IL-8 protein identities varied from 84% to 100%. Phylogenetic analysis indicated that IL-8-encoding regions and encoded proteins of chicken, duck, goose and turkey clustered together and evolved into a distinct phylogenetic lineage from that of pigeon which evolved into a second lineage. The results from binding reactivities of antiserum against each recombinant IL-8 (rIL-8) protein to homologous or heterologous rIL-8 proteins, chemotactic activities of each rIL-8 protein or reduction levels of the chemotactic activity of rIL-8 protein which was pretreated with homologous or heterlogous antiserum have suggested that all five IL-8 proteins were functionally active, and shared structural and functional identity with each other.
Collapse
Affiliation(s)
- Yung Fu Wu
- Graduate Institute of Veterinary Microbiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
27
|
Kaiser P. The avian immune genome – a glass half-full or half-empty? Cytogenet Genome Res 2007; 117:221-30. [PMID: 17675863 DOI: 10.1159/000103183] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 02/07/2007] [Indexed: 11/19/2022] Open
Abstract
Although in broad terms the avian immune response is remarkably similar to that of mammals, when one looks at specifics birds have a different repertoire of immune organs, cells and molecules compared to those characterized in mammals. Birds lack organized lymph nodes, yet have the Bursa of Fabricius. Birds lack neutrophils and functional eosinophils, yet have a distinct group of polymorphonuclear granulocytes known as heterophils. Birds also have a different repertoire of cytokines, chemokines, Toll-like receptors, defensins and integrins, as detailed in this review.
Collapse
Affiliation(s)
- P Kaiser
- Institute for Animal Health, Compton, Berkshire, UK.
| |
Collapse
|
28
|
Kaiser P, Poh TY, Rothwell L, Avery S, Balu S, Pathania US, Hughes S, Goodchild M, Morrell S, Watson M, Bumstead N, Kaufman J, Young JR. A genomic analysis of chicken cytokines and chemokines. J Interferon Cytokine Res 2006; 25:467-84. [PMID: 16108730 DOI: 10.1089/jir.2005.25.467] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
As most mechanisms of adaptive immunity evolved during the divergence of vertebrates, the immune systems of extant vertebrates represent different successful variations on the themes initiated in their earliest common ancestors. The genes involved in elaborating these mechanisms have been subject to exceptional selective pressures in an arms race with highly adaptable pathogens, resulting in highly divergent sequences of orthologous genes and the gain and loss of members of gene families as different species find different solutions to the challenge of infection. Consequently, it has been difficult to transfer to the chicken detailed knowledge of the molecular mechanisms of the mammalian immune system and, thus, to enhance the already significant contribution of chickens toward understanding the evolution of immunity. The availability of the chicken genome sequence provides the opportunity to resolve outstanding questions concerning which molecular components of the immune system are shared between mammals and birds and which represent their unique evolutionary solutions. We have integrated genome data with existing knowledge to make a new comparative census of members of cytokine and chemokine gene families, distinguishing the core set of molecules likely to be common to all higher vertebrates from those particular to these 300 million-year-old lineages. Some differences can be explained by the different architectures of the mammalian and avian immune systems. Chickens lack lymph nodes and also the genes for the lymphotoxins and lymphotoxin receptors. The lack of functional eosinophils correlates with the absence of the eotaxin genes and our previously reported observation that interleukin- 5 (IL-5) is a pseudogene. To summarize, in the chicken genome, we can identify the genes for 23 ILs, 8 type I interferons (IFNs), IFN-gamma, 1 colony-stimulating factor (GM-CSF), 2 of the 3 known transforming growth factors (TGFs), 24 chemokines (1 XCL, 14 CCL, 8 CXCL, and 1 CX3CL), and 10 tumor necrosis factor superfamily (TNFSF) members. Receptor genes present in the genome suggest the likely presence of 2 other ILs, 1 other CSF, and 2 other TNFSF members.
Collapse
Affiliation(s)
- Pete Kaiser
- Institute for Animal Health, Compton, Berkshire RG20 7NN, U.K.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Smith CK, Kaiser P, Rothwell L, Humphrey T, Barrow PA, Jones MA. Campylobacter jejuni-induced cytokine responses in avian cells. Infect Immun 2005; 73:2094-100. [PMID: 15784550 PMCID: PMC1087459 DOI: 10.1128/iai.73.4.2094-2100.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni is a major cause of human inflammatory enteritis. During the course of human disease numerous proinflammatory cytokines are produced. Little is known, however, about the cytokine responses produced during the interaction of this bacterium with the avian host. Campylobacter has been considered a commensal of the avian host. Any differences in innate responses to this pathogen between the human and avian hosts should lead to a greater understanding of the disease process in humans. We have demonstrated expression of proinflammatory cytokines and chemokines in response to Campylobacter infection in avian primary chick kidney cells and the avian macrophage cell line HD11. The data indicate that Campylobacter can stimulate the avian host in a proinflammatory manner. The data strongly suggest that the lack of pathology in vivo is not due to an inability of Campylobacter to stimulate a proinflammatory response from avian cells.
Collapse
Affiliation(s)
- Chris K Smith
- Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Jarosinski KW, Njaa BL, O'connell PH, Schat KA. Pro-inflammatory Responses in Chicken Spleen and Brain Tissues after Infection with Very Virulent Plus Marek's Disease Virus. Viral Immunol 2005; 18:148-61. [PMID: 15802959 DOI: 10.1089/vim.2005.18.148] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In chickens infected with virulent (v) or very virulent (vv) Marek's disease (MD) virus (MDV) strains, small to moderate increases in plasma nitric oxide (NO) levels are seen, respectively, whereas very virulent plus (vv+) strains induce very high levels in vivo. The data presented in this report show that chickens presenting with clinical neurological disease following infection with the vv+ RK-1 strain have significantly higher in vivo NO levels compared to RK-1-infected non-symptomatic chickens. Using quantitative real-time PCR (qPCR) assays, DNA was used to measure MDV copy numbers in the spleen and brain of P2a (MD-susceptible) and N2a (MD-resistant) chickens following infection with the JM-16 (v) or RK-1 (vv+) strains. RNA was used to measure inducible NO synthase (iNOS), interferon-gamma (IFN-gamma), interleukin (IL)-1beta, IL-6, and IL-8 mRNA levels, in addition to MDV-specific mRNA expression using quantitative RT-PCR (qRT-PCR) assays. Viral DNA loads were found to be considerably higher in RK-1-infected chickens than JM-16-infected chickens at most time points in both organs, with viral copy numbers being two to four logs lower in the brain. Large increases in iNOS, IFN-alpha, IL-1beta, IL-6, and IL-8 were seen in the brains of RK-1-infected chickens. These data strongly support the hypothesis that pro-inflammatory responses, including high levels of iNOS/NO, IFN-alpha, and pro-inflammatory cytokine expression in the chicken brain, may play a major role in the neurological diseases associated with vv+MDV strains.
Collapse
Affiliation(s)
- Keith W Jarosinski
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
31
|
Cortes PL, Cardona CJ. Pathogenesis of a Marek's disease virus mutant lacking vIL-8 in resistant and susceptible chickens. Avian Dis 2004; 48:50-60. [PMID: 15077797 DOI: 10.1637/7050] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A homologue of interleukin-8, viral interleukin-8 (vIL-8) has been identified in the genome of Marek's disease virus (MDV). This protein attracts peripheral blood mononuclear cells in vitro although its role in the pathogenesis of Marek's disease (MD) is not known. P chickens, genetically susceptible to MD, and N chickens, genetically resistant to the disease, were inoculated with either RB1B MDVor RB1BvIL-8smGFP, a vIL8 knockout RB1B MDV, to assess the role of vIL8 in the pathogenesis of MD. The tumor incidence was highest in the P birds given the RBIB virus, where the incidence was 100%. Tumor incidence in N birds given RB1B was 41.5%. Thirty-one percent of the P birds given RB1BvIL-8smGFP developed tumors, and no N bird given RB1BvIL-8smGFP developed tumors. Histologically, the tumors from RB1B-inoculated birds were larger and more invasive and had a more homogeneous cellular composition than those from RB1BvIL-8smGFP-inoculated birds, which were best described as microtumors. These microtumors did not obliterate the normal architecture of the tissues, and in contrast to the RBIB tumors, moderate numbers of heterophils were admixed with the proliferating lymphocytes. Susceptible birds receiving RB1B had the highest viral titers throughout the study, followed by the resistant birds inoculated with RB1B. P and N birds receiving RB1BvIL-8smGFP virus had consistently lower levels of viremia than their RB1B-inoculated counterparts although virus could be recovered from the birds during all stages of MD. In addition, the RB1BvIL-8smGFP virus was detected in birds held in contact with the inoculated group, although no tumors developed in contact control birds. This result indicates that RB1BvIL-8smGFP replicates in vivo but not as well as RB1B and that vIL8 is not essential for the completion of the pathogenesis of MD.
Collapse
Affiliation(s)
- Portia L Cortes
- Department of Population Health and Reproduction, 1114 Tupper Hall, University of California, Davis, Davis, CA 95616, USA
| | | |
Collapse
|
32
|
Wigley P, Kaiser P. Avian cytokines in health and disease. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2003. [DOI: 10.1590/s1516-635x2003000100001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Kogut MH. Dynamics of a protective avian inflammatory response: the role of an IL-8-like cytokine in the recruitment of heterophils to the site of organ invasion by Salmonella enteritidis. Comp Immunol Microbiol Infect Dis 2002; 25:159-72. [PMID: 12053914 DOI: 10.1016/s0147-9571(01)00035-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Increased resistance to Salmonella enteritidis (SE) organ infectivity in chickens can be conferred by the prophylactic administration of SE-immune lymphokines (ILK). Resistance is associated with an enhanced heterophilic accumulation within 4 h of ILK injection. In these studies, the role of IL-8 in ILK-mediated heterophil recruitment during SE infections in young chickens was investigated. Heterophil accumulation was enhanced 2-4 h after the i.p. injection of both ILK and SE (ILK/SE) when compared to the control chicks. An i.p. injection of a rabbit polyclonal anti-human IL-8 antibody significantly (P < 0.01) reduced the accumulation of heterophils in the peritoneum after the injection of ILK/SE. Injections of preimmune rabbit IgG had no effect on peritoneal heterophil numbers. Within 2 h of injection of ILK/SE, a ten-fold increase in heterophil chemotactic activity was found in the peritoneal lavage fluid from these chicks compared to the saline control chicks. Pretreatment, with the anti-IL-8 antibody, of the peritoneal lavage fluids collected from the ILK/SE-treated chicks dramatically reduced this heterophil chemotactic activity. Treatment of the lavage fluids from all groups with preimmune IgG had no effect on heterophil chemotaxis. Additionally, pretreatment of ILK with the anti-human IL-8 antibody had no effect on heterophil chemotaxis. The results from these experiments suggest that IL-8 is produced locally by the host in response to both the SE infection and the ILK. With these studies, it was established that IL-8 is a major chemotactic factor produced by the host, which aids in mediating the ILK/SE-induced recruitment of heterophils to the site of SE invasion.
Collapse
Affiliation(s)
- Michael H Kogut
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX 77845, USA.
| |
Collapse
|
34
|
Parcells MS, Lin SF, Dienglewicz RL, Majerciak V, Robinson DR, Chen HC, Wu Z, Dubyak GR, Brunovskis P, Hunt HD, Lee LF, Kung HJ. Marek's disease virus (MDV) encodes an interleukin-8 homolog (vIL-8): characterization of the vIL-8 protein and a vIL-8 deletion mutant MDV. J Virol 2001; 75:5159-73. [PMID: 11333897 PMCID: PMC114921 DOI: 10.1128/jvi.75.11.5159-5173.2001] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chemokines induce chemotaxis, cell migration, and inflammatory responses. We report the identification of an interleukin-8 (IL-8) homolog, termed vIL-8, encoded within the genome of Marek's disease virus (MDV). The 134-amino-acid vIL-8 shares closest homology to mammalian and avian IL-8, molecules representing the prototype CXC chemokine. The gene for vIL-8 consists of three exons which map to the BamHI-L fragment within the repeats flanking the unique long region of the MDV genome. A 0.7-kb transcript encoding vIL-8 was detected in an n-butyrate-treated, MDV-transformed T-lymphoblastoid cell line, MSB-1. This induction is essentially abolished by cycloheximide and herpesvirus DNA polymerase inhibitor phosphonoacetate, indicating that vIL-8 is expressed with true late (gamma2) kinetics. Baculovirus-expressed vIL-8 was found to be secreted into the medium and shown to be functional as a chemoattractant for chicken peripheral blood mononuclear cells but not for heterophils. To characterize the function of vIL-8 with respect to MDV infection in vivo, a recombinant MDV was constructed with a deletion of all three exons and a soluble-modified green fluorescent protein (smGFP) expression cassette inserted at the site of deletion. In two in vivo experiments, the vIL-8 deletion mutant (RB1BvIL-8DeltasmGFP) showed a decreased level of lytic infection in comparison to its parent virus, an equal-passage-level parent virus, and to another recombinant MDV containing the insertion of a GFP expression cassette at the nonessential US2 gene. RB1BvIL-8DeltasmGFP retained oncogenicity, albeit at a greatly reduced level. Nonetheless, we have been able to establish a lymphoblastoid cell line from an RB1BvIL-8DeltasmGFP-induced ovarian lymphoma (MDCC-UA20) and verify the presence of a latent MDV genome lacking vIL-8. Taken together, these data describe the identification and characterization of a chemokine homolog encoded within the MDV genome that is dispensable for transformation but may affect the level of MDV in vivo lytic infection.
Collapse
Affiliation(s)
- M S Parcells
- Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas 72701, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sharma JM, Kim IJ, Rautenschlein S, Yeh HY. Infectious bursal disease virus of chickens: pathogenesis and immunosuppression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2000; 24:223-35. [PMID: 10717289 DOI: 10.1016/s0145-305x(99)00074-9] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Infectious bursal disease virus (IBDV) is an important immunosuppressive virus of chickens. The virus is ubiquitous and, under natural conditions, chickens acquire infection by the oral route. IgM+ cells serve as targets for the virus. The most extensive virus replication takes place in the bursa of Fabricius. The acute phase of the disease lasts for about 7-10 days. Within this phase, bursal follicles are depleted of B cells and the bursa becomes atrophic. Abundant viral antigen can be detected in the bursal follicles and other peripheral lymphoid organs such as the cecal tonsils and spleen. CD4(+) and CD8(+) T cells accumulate at and near the site of virus replication. The virus-induced bursal T cells are activated, exhibit upregulation of cytokine genes, proliferate in response to in vitro stimulation with IBDV and have suppressive properties. Chickens may die during the acute phase of the disease although IBDV induced mortality is highly variable and depends, among other factors, upon the virulence of the virus strain. Chickens that survive the acute disease clear the virus and recover from its pathologic effects. Bursal follicles are repopulated with IgM(+) B cells. Clinical and subclinical infection with IBDV may cause immunosuppression. Both humoral and cellular immune responses are compromised. Inhibition of the humoral immunity is attributed to the destruction of immunoglobulin-producing cells by the virus. Other mechanisms such as altered antigen-presenting and helper T cell functions may also be involved. Infection with IBDV causes a transient inhibition of the in vitro proliferative response of T cells to mitogens. This inhibition is mediated by macrophages which are activated in virus-exposed chickens and exhibit a marked enhancement of expression of a number of cytokine genes. We speculate that T cell cytokines such as interferon (IFN)-gamma may stimulate macrophages to produce nitric oxide (NO) and other cytokines with anti-proliferative activity. Additional studies are needed to identify the possible direct immunosuppressive effect of IBDV on T cells and their functions. Studies are also needed to examine effects of the virus on innate immunity. Earlier data indicate that the virus did not affect normal natural killer (NK) cell levels in chickens.
Collapse
Affiliation(s)
- J M Sharma
- Department of Veterinary PathoBiology, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
Upon stimulation with lipopolysaccharide (LPS) the chicken macrophage cell line HD-11 secretes factors with cytokine activity. To characterize these molecules, representational difference analysis with RNA of LPS-induced and uninduced HD-11 cells was performed. Two cDNA clones were isolated that code for polypeptides with structural features of chemokines. cDNA K60 codes for a novel CXC chemokine of 104 residues including a putative signal peptide of 20 amino acids at the N-terminus. It is 67% identical to the previously cloned chicken chemokine 9E3/CEF4. K60 exhibits a similar degree of sequence identity to human interleukin 8 and other related CXC chemokines (about 50%), rendering straight-forward predictions of its biological properties difficult. cDNA K203 codes for a novel CC chemokine of 89 amino acids including a putative N-terminal signal peptide of 21 residues. It is 43% identical to a previously characterized chicken protein with homology to mammalian macrophage inflammatory protein 1beta (MIP-1beta). K203 exhibits about 50% sequence identity to human MIP-1beta and other related CC chemokines.
Collapse
Affiliation(s)
- C Sick
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, University of Freiburg, Freiburg, 79008, Germany
| | | | | | | |
Collapse
|
37
|
Lawson S, Rothwell L, Kaiser P. Turkey and chicken interleukin-2 cross-react in in vitro proliferation assays despite limited amino acid sequence identity. J Interferon Cytokine Res 2000; 20:161-70. [PMID: 10714551 DOI: 10.1089/107999000312568] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We cloned the cDNA of turkey interleukin-2 (IL-2), initially using oligonucleotide primers based on the sequence of the chicken IL-2 gene. Compared with the only other cytokines available for comparison, the interferons (IFN), the coding regions of the turkey and chicken IL-2 genes are much less conserved (86.24% nucleotide identical and 69.93% amino acid identical). The lack of nucleotide conservation was spread across the entire length of the coding region. In comparison, the promoters of the two avian IL-2 genes shared a high degree of identity (95.71% identical over 380 nucleotides). Phylogenetic analysis shows that turkey and chicken IL-2 have diverged to a greater extent than IL-2 from closely related mammalian species. Surprisingly, considering the low level of amino acid identity, including residues known to be important in binding the IL-2 receptor in mammalian species, both turkey and chicken IL-2 cross-react in functional assays.
Collapse
Affiliation(s)
- S Lawson
- Institute for Animal Health, Compton, Berkshire, UK.
| | | | | |
Collapse
|
38
|
Siatskas C, Boyd R. Regulation of chicken haemopoiesis by cytokines. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2000; 24:37-59. [PMID: 10689097 DOI: 10.1016/s0145-305x(99)00051-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The continuous production, control and functional activation of blood cells involves a complex series of cellular events in which a small population of stem cells generates large numbers of mature cells. The survival, proliferation and development of these cells is strictly dependent on extracellular signals, among these are polypeptide regulators generally known as cytokines. While a large number of mammalian cytokines with proliferative and inhibitory effects have been described in detail, it is surprising that comparatively little is known of the avian system. Given the success of human cytokines as a model, the ability to manipulate the chicken haemopoietic and lymphopoietic systems by precise application of purified cytokines provides a rational approach to defence against disease. As a general caveat, an increased awareness of the existence of regulatory networks and the likelihood that these regulators were designed to function most effectively when acting in combination, will provide an understanding into the regulation of haemopoiesis and hence find application in both clinical and agricultural research.
Collapse
Affiliation(s)
- C Siatskas
- Department of Pathology and Immunology, Monash University Medical School, Commercial Road, Prahran, 3181, Melbourne, Australia.
| | | |
Collapse
|
39
|
Kaiser P, Sonnemans D, Smith LM. Avian IFN-gamma genes: sequence analysis suggests probable cross-species reactivity among galliforms. J Interferon Cytokine Res 1998; 18:711-9. [PMID: 9781810 DOI: 10.1089/jir.1998.18.711] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Little is known about the evolution of cytokines in non-mammalian systems. To address this problem, we attempted to clone the gene for interferon-gamma (IFN-gamma) from a variety of avian species using oligonucleotide primers based on the sequence of the chicken IFN-gamma gene. The coding sequence and partial intron sequences were determined for four species, namely guinea fowl, ring-necked pheasant, Japanese quail, and turkey. To obtain sequence information on the gene extremities, a modified 5' and 3' RACE protocol was used. The sequence information showed that the coding regions of the IFN-gamma gene are highly conserved among the species studied (93.5%-96.7% and 87.8%-97.6% at the nucleotide and peptide levels, respectively) and are more conserved at the amino-terminal region (exons 1 and 2) than the carboxyl-terminal (exons 3 and 4). This high degree of overall identity at the predicted primary amino acid sequence level of the protein, including the deduced IFN-gamma receptor binding motifs, suggests that IFN-gamma may be cross-reactive among these species. Phylogenetic analysis shows that the similarity of the avian IFN-gamma sequences parallels the presumed evolutionary relationships between the species.
Collapse
Affiliation(s)
- P Kaiser
- Institute for Animal Health, Compton, Berkshire, UK.
| | | | | |
Collapse
|
40
|
Abstract
Macrophages are key regulatory cells of the immune system involved in initiating and directing the innate and specific immune responses, the systemic acute phase response, tissue repair, and tissue remodeling. In the early stages of a challenge from invading microorganisms or from tissue injury, macrophages defend local and systemic homeostasis by initiating a complex series of cellular, biochemical, and behavioral events. These pathophysiological adjustments are mediated by an extensive variety of communication molecules, including: cytokines, cytokine inhibitors, endocrine hormones, eicosanoids, neurotransmitters, and reactive oxygen intermediates. The cytokines produced by macrophages (monokines) are not well characterized relative to their mammalian counterparts, but a variety of chemokine, pro-inflammatory, and colony-stimulating factor activities have been described. Although the sequence homology, and thus species cross-reactivity, between avian and mammalian cytokines is typically low, the functional characteristics appear to be generally similar. The pro-inflammatory cytokines are important initiators and regulators of the local immune response. They are also released in sufficient quantities during some infections to coordinate a systemic acute phase response that impacts the growth, reproduction, and well-being of poultry. An understanding of the mechanisms and molecules used by macrophages to regulate immune and inflammatory responses may permit the development of products, diets, or husbandry techniques to modulate immunity for the enhancement of the productivity of poultry.
Collapse
Affiliation(s)
- K C Klasing
- Department of Avian Sciences, University of California, Davis 95616, USA.
| |
Collapse
|
41
|
Kim IJ, Karaca K, Pertile TL, Erickson SA, Sharma JM. Enhanced expression of cytokine genes in spleen macrophages during acute infection with infectious bursal disease virus in chickens. Vet Immunol Immunopathol 1998; 61:331-41. [PMID: 9613445 DOI: 10.1016/s0165-2427(97)00135-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We examined the effects of infectious bursal disease virus (IBDV) on splenic T cells and macrophages. In acute IBDV infection, splenocytes responded poorly to Con A stimulation. However, when T cells were isolated from whole spleen cells, purified T cells responded normally to Con A. This result indicated that functional T cells were present in the spleen but mitogen-induced proliferation of T cells was being suppressed by other cells. Previous studies indicated that soluble factors from suppressor cells may mediate this inhibition of T cell mitogenesis. We thus examined the effects of IBDV on spleen adherent cells. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to quantitate the expression of several cytokine genes in splenic macrophages. In acute IBDV infection, splenic macrophages exhibited enhanced gene expression of type I interferon (IFN), chicken myelomonocytic growth factor (cMGF), an avian homolog of mammalian IL-6, and 9E3/CEF4, an avian homolog of mammalian IL-8. Mitogen-stimulated spleen cell cultures also produced elevated levels of nitric oxide. The elevation of cytokine gene expression by macrophages occurred transiently during the acute phase of viral infection and coincided with in vitro inhibition of T cell mitogenic response of spleen cells.
Collapse
Affiliation(s)
- I J Kim
- Department of Veterinary PathoBiology, College of Veterinary Medicine, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | |
Collapse
|
42
|
Vaingankar SM, Martins-Green M. Thrombin aivation of the 9E3/CEF4 chemokine involves tyrosine kinases including c-src and the epidermal growth factor receptor. J Biol Chem 1998; 273:5226-34. [PMID: 9478978 DOI: 10.1074/jbc.273.9.5226] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The 9E3/CEF4 gene codes for a chemokine that is highly homologous to human interleukin-8 and melanoma growth-stimulating activity/groalpha. These chemokines belong to a family of molecular mediators that are importantly involved in inflammation, wound healing, tumor development, and viral entry into cells. On the chorioallantoic membrane the 9E3 protein is chemotactic for monocyte/macrophages and lymphocytes and is angiogenic. In cultured chicken embryo fibroblasts, which have many of the properties of wound fibroblasts, the gene is stimulated by a variety of agents including oncogenes, growth factors, phorbol esters, and thrombin. The strong stimulation of 9E3 by thrombin in culture correlates well with the observation that in young chicks this gene is stimulated to very high levels in fibroblasts upon wounding and remains high throughout wound repair. Activation of 9E3 by thrombin: (i) occurs very rapidly, one minute exposure to thrombin is sufficient to initiate the signals necessary for gene activation; (ii) is independent of mitogenesis; (iii) operates through the proteolytically activated receptor for thrombin; (iv) is mediated by tyrosine kinases, including c-src and the epidermal growth factor (EGF) receptor, rather than Ser/Thr kinases such as protein kinase C and protein kinase A. Inhibition of either c-src or the EGF receptor tyrosine kinase inhibits the stimulation of 9E3 by thrombin. We show here for the first time that activation of the EGF receptor through a cell-surface receptor that does not have tyrosine kinase activity can lead to expression of an immediate early response gene which encodes for a secreted protein, a chemokine. This rapidly activated tyrosine kinase pathway may be a general stress response by which in vivo a localized cell population reacts to emergency situations such as viral infection, wounding, or tumor growth.
Collapse
Affiliation(s)
- S M Vaingankar
- Department of Biology, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
43
|
Kaiser P, Wain HM, Rothwell L. Structure of the chicken interferon-gamma gene, and comparison to mammalian homologues. Gene X 1998; 207:25-32. [PMID: 9511740 DOI: 10.1016/s0378-1119(97)00600-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The sequence of the chicken interferon-gamma (ifn-gamma) gene was determined, one of the first non-mammalian cytokine gene structures to be elucidated. Initial genomic clones were amplified from chicken genomic DNA and were used to isolate a cosmid clone covering the entire gene for sequencing. The exon:intron structure of chicken ifn-gamma is very similar to those of its mammalian homologues, with the exception of the third intron, which is markedly shorter in the chicken. The first exon contains both 5' UTR and signal sequence and the first 22 aa of the mature protein. The remainder of the coding region lies in exons 2-4. Exon 4 also encodes the stop codon and the 3' UTR, including two possible polyadenylation signals. A number of potential regulatory sequences similar to those found in mammals have been identified, in the promoter, in each intron and in the 3' UTR. In the promoter, these include the TATAATA- and CCAT-boxes, a consensus GATA motif in the reverse orientation and a potential NF-kappa B binding site. Other regulatory elements identified in the promoters of mammalian ifn-gamma genes are absent. Internal to the gene structure, regulatory sequences identified include elements found in the DNase I hypersensitivity region of the first intron of the human ifn-gamma gene and several potential NF-kappa B binding sites. The 3' UTR contains an AT-rich sequence, including nine repeats of the 'instability' motif ATTTA. As in mammals, chicken ifn-gamma is a single copy gene. The gene is highly conserved, with no polymorphisms yet identified using either RFLP or SSCP in the coding region. However, promoter sequence polymorphisms between different inbred lines of chickens have been identified, with possible links to disease resistance.
Collapse
Affiliation(s)
- P Kaiser
- Institute for Animal Health, Compton, Berkshire, UK.
| | | | | |
Collapse
|
44
|
Martins-Green M, Hanafusa H. The 9E3/CEF4 gene and its product the chicken chemotactic and angiogenic factor (cCAF): potential roles in wound healing and tumor development. Cytokine Growth Factor Rev 1997; 8:221-32. [PMID: 9462487 DOI: 10.1016/s1359-6101(97)00016-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 9E3/CEF4 gene was one of the first inducible chemokine genes to be discovered. Its product, the chicken chemotactic and angiogenic factor (cCAF), is highly homologous to IL-8. It is expressed at low levels in tissues of mesenchymal origin but is highly expressed shortly after wounding and persists throughout the period of granulation tissue formation. It also is highly expressed around Rous sarcoma virus-induced tumors. The most potent natural stimulator of this gene is thrombin and in vivo cCAF is chemotactic for monocytes and lymphocytes and is angiogenic. The chemotactic properties can be potentially important in the inflammatory response and in the deterrence of tumors, whereas the angiogenic properties could be important in wound repair and tumor growth. The very rapid stimulation of 9E3 by thrombin and fast synthesis and secretion of cCAF suggest that this is a new type of stress response protein whose rapid production is designed to protect tissues rather than individual cells.
Collapse
Affiliation(s)
- M Martins-Green
- Department of Biology, University of California, Riverside 92521, USA.
| | | |
Collapse
|
45
|
Weining KC, Schultz U, Münster U, Kaspers B, Staeheli P. Biological properties of recombinant chicken interferon-gamma. Eur J Immunol 1996; 26:2440-7. [PMID: 8898958 DOI: 10.1002/eji.1830261026] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Supernatants of the chicken T cell line 855 contain antiviral and macrophage activating factor activity and strongly activate transcription of the guanylate binding protein (GBP) gene in chicken cells. To characterize the cytokine responsible for the GBP-inducing activity, we chose a cDNA expression cloning strategy in COS cells. Sequencing a positive clone revealed that it encode chicken interferon-gamma (ChIFN-gamma). Histidine-tagged ChIFN-gamma was expressed in Escherichia coli and purified by nickel chelate affinity chromatography. ChIFN-gamma from COS cells and E. coli both potently induced GBP RNA synthesis but were rather poor antiviral agents. In macrophages, recombinant ChIFN-strongly stimulated secretion of nitric oxide and enhanced expression of major histocompatibility complex class II antigen. A rabbit antiserum to E. coli derived ChIFN-gamma effectively neutralized the macrophage-activating factor activity secreted by concanavalin A-induced spleen cells and various T cell lines, suggesting that IFN-gamma is the major macrophage-activating factor of the chicken.
Collapse
Affiliation(s)
- K C Weining
- Abteilung Virologie, University of Freiburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Suresh M, Karaca K, Foster D, Sharma JM. Molecular and functional characterization of turkey interferon. J Virol 1995; 69:8159-63. [PMID: 7494342 PMCID: PMC189774 DOI: 10.1128/jvi.69.12.8159-8163.1995] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The turkey interferon (TkIFN) gene encodes a signal peptide and a mature protein of 30 and 162 amino acids, respectively. TkIFN mRNA expression was induced by reoviral double-stranded RNA in fibroblasts. The recombinant TkIFN protein possessed species-specific antiviral activity and in synergy with lipopolysaccharide (LPS) induced bone marrow macrophages to produce nitric oxide (NO). LPS or TkIFN alone did not induce bone marrow macrophages to produce significant amounts of NO, which showed that TkIFN provided one of the two signals necessary to induce NO production in turkey macrophages. Unlike the anti-inflammatory nature of mammalian alpha/beta IFNs, TkIFN augmented the LPS-induced expression of interleukin-8, a proinflammatory cytokine. This finding suggests a role for TkIFN in inflammatory conditions.
Collapse
Affiliation(s)
- M Suresh
- Department of Veterinary PathoBiology, College of Veterinary Medicine, University of Minnesota, St. Paul 55108, USA
| | | | | | | |
Collapse
|
47
|
Meier RW, Niklaus G, Fey MF, Tobler A. The induction kinetics of Il-8 messenger RNA in HL60 cells demonstrate the participation of negative-acting gene(s). Leuk Res 1995; 19:449-55. [PMID: 7637390 DOI: 10.1016/0145-2126(94)00151-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Interleukin-8 (IL-8) mRNA was rapidly, but not permanently, induced at high levels by phorbol-12myristate-13acetate (PMA) in HL60 cells. Ongoing protein synthase does not seem to be required for the initial induction of IL-8 gene expression. However, the rate of transient induction kinetics was modulated by cycloheximide (CHX) indicating that secondary response genes are involved in the regulation of IL-8 RNA levels. Repression of the induced IL8 mRNA by 21 h PMA-treatment was due to reduced transcriptional activity of the gene. In HL60 cells stimulated for 1.5 and 21 h the half-lives of the lL-8 transcripts were markedly increased, suggesting the presence of negatively-acting transcriptional regulator(s).
Collapse
Affiliation(s)
- R W Meier
- Institute of Pathology, Albert-Ludwigs-University, Freiburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
48
|
Abstract
Leukocytic cytokines are produced by cells of the immune system and are prominent regulators of the immune response and in some cases various systemic responses. Leukocytic cytokines are released during immune responses and may act in autocrine, paracrine, or endocrine manners. Although over a dozen avian leukocytic cytokines have been described based on functional activities, characterization at the molecular level is not well developed. Two exceptions are 1) myelomonocytic growth factor, a colony-stimulating factor-like cytokine required for the growth and differentiation of hematopoietic precursor cells, particularly myelomonocytic cells; and 2) the avian transforming growth factor-beta (TGF-beta) family of cytokines, which modulate wound healing, bone metabolism, and cellular differentiation. Cytokines with bioactivities similar to mammalian interleukin (IL)-1, IL-2, IL-6, and interferon-gamma have been at least partially purified. Cytokines with bioactivities similar to mammalian IL-8, colony-stimulating factor, and tumor necrosis factor-alpha have been reported but are not well characterized at the molecular level. With a few exceptions, including TGF-beta and thymulin, highly purified leukocytic cytokines of mammalian origin have diminished or no specific activity in avian assay systems. The chicken IL-1 receptor has been cloned and the predicted amino acid sequence shares 60% homology with the human IL-1 receptor. A component of the chicken IL-2 receptor has been partially purified but little is known about other avian leukocytic cytokine receptors. Potential applications of leukocytic cytokines in poultry production originate from their regulation of a variety of functions such as disease resistance, would healing, bone accretion, nutrient partitioning, appetite, growth, and reproduction.
Collapse
Affiliation(s)
- K C Klasing
- Department of Avian Sciences, University of California, Davis 95616
| |
Collapse
|