1
|
Chaiyasak S, Piewbang C, Ratthanophart J, Techakriengkrai N, Rattanaporn K, Techangamsuwan S. Detection of Antibodies against Feline Morbillivirus by Recombinant Matrix Enzyme-Linked Immunosorbent Assay. Viruses 2024; 16:1339. [PMID: 39205313 PMCID: PMC11358928 DOI: 10.3390/v16081339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Feline morbillivirus (FeMV) has been associated with feline health, although its exact role in pathogenesis is still debated. In this study, an indirect enzyme-linked immunosorbent assay (i-ELISA) targeting a recombinant matrix protein of FeMV (rFeMV-M) was developed and assessed in comparison to a Western blotting (WB) assay. The i-ELISA was evaluated using blood samples from 136 cats that were additionally tested with real-time reverse-transcription PCR (RT-qPCR). The i-ELISA exhibited a sensitivity of 90.1%, specificity of 75.6%, positive predictive value of 88.2%, and negative predictive value of 79.1%. The agreement between i-ELISA and WB analyses was substantial (a κ coefficient of 0.664 with a 95% confidence interval of 0.529 to 0.799). Within the study group, 68.4% (93/136) of the cats were serologically positive in the i-ELISA and 66.9% (91/136) in the WB assay, with 11.8% (11/93) of false positivity with the i-ELISA. However, only 8.1% (11/136) of the cats tested positive for FeMV using RT-qPCR (p < 0.001). The developed i-ELISA proved effective in identifying FeMV-infected cats and indicated the prevalence of FeMV exposure. Combining FeMV antibody detection through i-ELISA with FeMV RT-qPCR could offer a comprehensive method to determine and monitor FeMV infection status. Nevertheless, this assay still requires refinement due to a significant number of false positive results, which can lead to the misdiagnosis of cats without antibodies as having antibodies. This study also provided the first evidence of seroprevalence against FeMV among cat populations in Thailand, contributing valuable insights into the geographic distribution and prevalence of this virus.
Collapse
Affiliation(s)
- Surangkanang Chaiyasak
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.C.); (C.P.)
- Veterinary Infectious Diseases Research Unit, Faculty of Veterinary Science, Mahasarakham University, Maha Sarakham 44000, Thailand
| | - Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.C.); (C.P.)
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jadsada Ratthanophart
- National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand;
| | - Navapon Techakriengkrai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Kittipong Rattanaporn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.C.); (C.P.)
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Iwasaki M. [Molecular basis for the multiplication of negative-strand RNA viruses: basic research and potential applications in vaccine development]. Uirusu 2022; 72:67-78. [PMID: 37899232 DOI: 10.2222/jsv.72.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Viruses achieve their efficient reproduction by utilizing their limited components (nucleic acids, lipids, and proteins) and host cell machineries. A detailed understanding of virus-virus and virus-host interactions will lead to the elucidation of mechanisms underlying viral pathogenesis and the development of novel medical countermeasures. We elucidated the details of several such interactions and their roles in the multiplication of negative-strand RNA viruses, measles virus, and Lassa virus. These discoveries were harnessed to develop a novel genetic approach for the generation of live-attenuated vaccine candidates with a well-defined molecular mechanism of attenuation. This article describes our findings.
Collapse
Affiliation(s)
- Masaharu Iwasaki
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
3
|
De Luca E, Sautto GA, Crisi PE, Lorusso A. Feline Morbillivirus Infection in Domestic Cats: What Have We Learned So Far? Viruses 2021; 13:v13040683. [PMID: 33921104 PMCID: PMC8071394 DOI: 10.3390/v13040683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
Feline morbillivirus (FeMV) was identified for the first time in stray cats in 2012 in Hong Kong and, since its discovery, it was reported in domestic cats worldwide. Although a potential association between FeMV infection and tubulointerstitial nephritis (TIN) has been suggested, this has not been proven, and the subject remains controversial. TIN is the most frequent histopathological finding in the context of feline chronic kidney disease (CKD), which is one of the major clinical pathologies in feline medicine. FeMV research has mainly focused on defining the epidemiology, the role of FeMV in the development of CKD, and its in vitro tropism, but the pathogenicity of FeMV is still not clear, partly due to its distinctive biological characteristics, as well as to a lack of a cell culture system for its rapid isolation. In this review, we summarize the current knowledge of FeMV infection, including genetic diversity of FeMV strains, epidemiology, pathogenicity, and clinicopathological findings observed in naturally infected cats.
Collapse
Affiliation(s)
- Eliana De Luca
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy;
| | | | - Paolo Emidio Crisi
- Faculty of Veterinary Medicine, Veterinary University Hospital, University of Teramo, 64100 Teramo, Italy;
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy;
- Correspondence: ; Tel.: +39-0861332440
| |
Collapse
|
4
|
Understanding of Zaire ebolavirus-human protein interaction for drug repurposing. Virusdisease 2020; 31:28-37. [PMID: 32206696 DOI: 10.1007/s13337-020-00570-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
The Ebola virus is a human aggressive pathogen causes Ebola virus disease that threatens public health, for which there is no Food Drug Administration approved medication. Drug repurposing is an alternative method to find the novel indications of known drugs to treat the disease effectively at low cost. The present work focused on understanding the host-virus interaction as well as host virus drug interaction to identify the disease pathways and host-directed drug targets. Thus, existing direct physical Ebola-human protein-protein interaction (PPI) was collected from various publicly available databases and also literature through manual curation. Further, the functional and pathway enrichment analysis for the proteins were performed using database for annotation, visualization, and integrated discovery and the enriched gene ontology biological process terms includes chromatin assembly or disassembly, nucleosome organization, nucleosome assembly. Also, the enriched Kyoto Encyclopedia of Genes and Genome pathway terms includes systemic lupus erythematosus, alcoholism, and viral carcinogenesis. From the PPI network, important large histone clusters and tubulin were observed. Further, the host-virus and host-virus-drug interaction network has been generated and found that 182 drugs are associated with 45 host genes. The obtained drugs and their interacting targets could be considered for Ebola treatment.
Collapse
|
5
|
Kennedy JM, Earle JP, Omar S, Abdullah H, Nielsen O, Roelke-Parker ME, Cosby SL. Canine and Phocine Distemper Viruses: Global Spread and Genetic Basis of Jumping Species Barriers. Viruses 2019; 11:E944. [PMID: 31615092 PMCID: PMC6833027 DOI: 10.3390/v11100944] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Canine distemper virus (CDV) and phocine distemper (PDV) are closely-related members of the Paramyxoviridae family, genus morbillivirus, in the order Mononegavirales. CDV has a broad host range among carnivores. PDV is thought to be derived from CDV through contact between terrestrial carnivores and seals. PDV has caused extensive mortality in Atlantic seals and other marine mammals, and more recently has spread to the North Pacific Ocean. CDV also infects marine carnivores, and there is evidence of morbillivirus infection of seals and other species in Antarctica. Recently, CDV has spread to felines and other wildlife species in the Serengeti and South Africa. Some CDV vaccines may also have caused wildlife disease. Changes in the virus haemagglutinin (H) protein, particularly the signaling lymphocyte activation molecule (SLAM) receptor binding site, correlate with adaptation to non-canine hosts. Differences in the phosphoprotein (P) gene sequences between disease and non-disease causing CDV strains may relate to pathogenicity in domestic dogs and wildlife. Of most concern are reports of CDV infection and disease in non-human primates raising the possibility of zoonosis. In this article we review the global occurrence of CDV and PDV, and present both historical and genetic information relating to these viruses crossing species barriers.
Collapse
Affiliation(s)
- Judith M. Kennedy
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - J.A. Philip Earle
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - Shadia Omar
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - Hani’ah Abdullah
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - Ole Nielsen
- Department of Fisheries and Oceans Canada, Winnipeg, Manitoba R3T 2N6, Canada;
| | | | - S. Louise Cosby
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
- Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
| |
Collapse
|
6
|
Sato Y, Watanabe S, Fukuda Y, Hashiguchi T, Yanagi Y, Ohno S. Cell-to-Cell Measles Virus Spread between Human Neurons Is Dependent on Hemagglutinin and Hyperfusogenic Fusion Protein. J Virol 2018; 92:e02166-17. [PMID: 29298883 PMCID: PMC5827375 DOI: 10.1128/jvi.02166-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 12/30/2022] Open
Abstract
Measles virus (MV) usually causes acute infection but in rare cases persists in the brain, resulting in subacute sclerosing panencephalitis (SSPE). Since human neurons, an important target affected in the disease, do not express the known MV receptors (signaling lymphocyte activation molecule [SLAM] and nectin 4), how MV infects neurons and spreads between them is unknown. Recent studies have shown that many virus strains isolated from SSPE patients possess substitutions in the extracellular domain of the fusion (F) protein which confer enhanced fusion activity. Hyperfusogenic viruses with such mutations, unlike the wild-type MV, can induce cell-cell fusion even in SLAM- and nectin 4-negative cells and spread efficiently in human primary neurons and the brains of animal models. We show here that a hyperfusogenic mutant MV, IC323-F(T461I)-EGFP (IC323 with a fusion-enhancing T461I substitution in the F protein and expressing enhanced green fluorescent protein), but not the wild-type MV, spreads in differentiated NT2 cells, a widely used human neuron model. Confocal time-lapse imaging revealed the cell-to-cell spread of IC323-F(T461I)-EGFP between NT2 neurons without syncytium formation. The production of virus particles was strongly suppressed in NT2 neurons, also supporting cell-to-cell viral transmission. The spread of IC323-F(T461I)-EGFP was inhibited by a fusion inhibitor peptide as well as by some but not all of the anti-hemagglutinin antibodies which neutralize SLAM- or nectin-4-dependent MV infection, suggesting the presence of a distinct neuronal receptor. Our results indicate that MV spreads in a cell-to-cell manner between human neurons without causing syncytium formation and that the spread is dependent on the hyperfusogenic F protein, the hemagglutinin, and the putative neuronal receptor for MV.IMPORTANCE Measles virus (MV), in rare cases, persists in the human central nervous system (CNS) and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection. This neurological complication is almost always fatal, and there is currently no effective treatment for it. Mechanisms by which MV invades the CNS and causes the disease remain to be elucidated. We have previously shown that fusion-enhancing substitutions in the fusion protein of MVs isolated from SSPE patients contribute to MV spread in neurons. In this study, we demonstrate that MV bearing the hyperfusogenic mutant fusion protein spreads between human neurons in a cell-to-cell manner. Spread of the virus was inhibited by a fusion inhibitor peptide and antibodies against the MV hemagglutinin, indicating that both the hemagglutinin and hyperfusogenic fusion protein play important roles in MV spread between human neurons. The findings help us better understand the disease process of SSPE.
Collapse
Affiliation(s)
- Yuma Sato
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Shumpei Watanabe
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshinari Fukuda
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Takao Hashiguchi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Shinji Ohno
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
- Department of Virology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
7
|
Yu X, Cheng J, He Z, Li C, Song Y, Xue J, Yang H, Zhang R, Zhang G. The glutamic residue at position 402 in the C-terminus of Newcastle disease virus nucleoprotein is critical for the virus. Sci Rep 2017; 7:17471. [PMID: 29234115 PMCID: PMC5727133 DOI: 10.1038/s41598-017-17803-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/30/2017] [Indexed: 11/09/2022] Open
Abstract
The nucleocapsid proteins (NPs) of Newcastle disease virus (NDV) and other paramyxoviruses play an important functional role during genomic RNA replication. Our previous study showed that the NP-encoding gene significantly influenced viral replication. Here, we investigated the roles of certain amino acid residues in the NP C-terminus in viral replication and virulence. Results showed that the glutamic acid residue at position 402 (E402) in the C-terminus of the NP is critical for RNA synthesis in the NDV mini-genome system. Mutation of E402 resulted in larger viral plaques that appeared more quickly, and increased the virulence of NDV. Further study indicated that the mutant virus had increased RNA levels during the early stages of virus infection, but that RNA replication was inhibited at later time points. These findings increase our knowledge of viral replication and contribute to a more comprehensive understanding of the virulence factors associated with NDV.
Collapse
Affiliation(s)
- Xiaohui Yu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jinlong Cheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zirong He
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chuang Li
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yang Song
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jia Xue
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Huiming Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Rui Zhang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Cox RM, Plemper RK. Structure and organization of paramyxovirus particles. Curr Opin Virol 2017; 24:105-114. [PMID: 28601688 DOI: 10.1016/j.coviro.2017.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 11/25/2022]
Abstract
The paramyxovirus family comprises major human and animal pathogens such as measles virus (MeV), mumps virus (MuV), the parainfluenzaviruses, Newcastle disease virus (NDV), and the highly pathogenic zoonotic hendra (HeV) and nipah (NiV) viruses. Paramyxovirus particles are pleomorphic, with a lipid envelope, nonsegmented RNA genomes of negative polarity, and densely packed glycoproteins on the virion surface. A number of crystal structures of different paramyxovirus proteins and protein fragments were solved, but the available information concerning overall virion organization remains limited. However, recent studies have reported cryo-electron tomography-based reconstructions of Sendai virus (SeV), MeV, NDV, and human parainfluenza virus type 3 (HPIV3) particles and a surface assessment of NiV-derived virus-like particles (VLPs), which have yielded innovative hypotheses concerning paramyxovirus particle assembly, budding, and organization. Following a summary of the current insight into paramyxovirus virion morphology, this review will focus on discussing the implications of these particle reconstructions on the present models of paramyxovirus assembly and infection.
Collapse
Affiliation(s)
- Robert M Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, United States
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
9
|
Yu X, Shahriari S, Li HM, Ghildyal R. Measles Virus Matrix Protein Inhibits Host Cell Transcription. PLoS One 2016; 11:e0161360. [PMID: 27551716 PMCID: PMC4994966 DOI: 10.1371/journal.pone.0161360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 07/06/2016] [Indexed: 12/22/2022] Open
Abstract
Measles virus (MeV) is a highly contagious virus that still causes annual epidemics in developing countries despite the availability of a safe and effective vaccine. Additionally, importation from endemic countries causes frequent outbreaks in countries where it has been eliminated. The M protein of MeV plays a key role in virus assembly and cytopathogenesis; interestingly, M is localised in nucleus, cytoplasm and membranes of infected cells. We have used transient expression of M in transfected cells and in-cell transcription assays to show that only some MeV M localizes to the nucleus, in addition to cell membranes and the cytoplasm as previously described, and can inhibit cellular transcription via binding to nuclear factors. Additionally, MeV M was able to inhibit in vitro transcription in a dose-dependent manner. Importantly, a proportion of M is also localized to nucleus of MeV infected cells at early times in infection, correlating with inhibition of cellular transcription. Our data show, for the first time, that MeV M may play a role early in infection by inhibiting host cell transcription.
Collapse
Affiliation(s)
- Xuelian Yu
- Section of Epidemiology & Statistics, Department of Public Health, Xinjiang Medical University, 393 XinYi Road, Urumqi, PR China
| | - Shadi Shahriari
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of ESTeM, University of Canberra, Bruce, ACT 2617, Canberra, Australia
| | - Hong-Mei Li
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Parade, Melbourne, VIC 3800, Australia
| | - Reena Ghildyal
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of ESTeM, University of Canberra, Bruce, ACT 2617, Canberra, Australia
- * E-mail:
| |
Collapse
|
10
|
Audsley MD, Jans DA, Moseley GW. Roles of nuclear trafficking in infection by cytoplasmic negative-strand RNA viruses: paramyxoviruses and beyond. J Gen Virol 2016; 97:2463-2481. [PMID: 27498841 DOI: 10.1099/jgv.0.000575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome replication and virion production by most negative-sense RNA viruses (NSVs) occurs exclusively in the cytoplasm, but many NSV-expressed proteins undergo active nucleocytoplasmic trafficking via signals that exploit cellular nuclear transport pathways. Nuclear trafficking has been reported both for NSV accessory proteins (including isoforms of the rabies virus phosphoprotein, and V, W and C proteins of paramyxoviruses) and for structural proteins. Trafficking of the former is thought to enable accessory functions in viral modulation of antiviral responses including the type I IFN system, but the intranuclear roles of structural proteins such as nucleocapsid and matrix proteins, which have critical roles in extranuclear replication and viral assembly, are less clear. Nevertheless, nuclear trafficking of matrix protein has been reported to be critical for efficient production of Nipah virus and Respiratory syncytial virus, and nuclear localization of nucleocapsid protein of several morbilliviruses has been linked to mechanisms of immune evasion. Together, these data point to the nucleus as a significant host interface for viral proteins during infection by NSVs with otherwise cytoplasmic life cycles. Importantly, several lines of evidence now suggest that nuclear trafficking of these proteins may be critical to pathogenesis and thus could provide new targets for vaccine development and antiviral therapies.
Collapse
Affiliation(s)
- Michelle D Audsley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, BIO21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3000, Australia
| |
Collapse
|
11
|
Timm C, Gupta A, Yin J. Robust kinetics of an RNA virus: Transcription rates are set by genome levels. Biotechnol Bioeng 2015; 112:1655-62. [PMID: 25726926 DOI: 10.1002/bit.25578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/02/2015] [Accepted: 02/16/2015] [Indexed: 12/19/2022]
Abstract
In order to persist in nature, RNA viruses have evolved strategies to grow in diverse host environments. To better understand how such strategies might work, we used qRT-PCR to measure viral RNA species during cellular infections by a model RNA virus, vesicular stomatitis virus (VSV). Absolute levels of the VSV major transcript and genome were measured for infections in BHK and PC3 cells, across different multiplicities of infection (MOI 1, 10, 100), in the absence or presence of protein synthesis, as well as in cells in an interferon-activated anti-viral state. While viral genome replication was delayed in more resistant host cells, kinetic modeling of these data revealed a simple linear relationship between the mRNA production rate and genome levels under all tested conditions. These results indicate that while viral transcription and genome replication both depend on the availability of the viral RNA-dependent RNA polymerase and host cellular resources, transcription proceeds without apparent limits on these resources.
Collapse
Affiliation(s)
- Collin Timm
- Department of Chemical and Biological Engineering, Systems Biology Theme, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, 53706, Wisconsin
| | - Ankur Gupta
- Department of Chemical and Biological Engineering, Systems Biology Theme, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, 53706, Wisconsin
| | - John Yin
- Department of Chemical and Biological Engineering, Systems Biology Theme, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, 53706, Wisconsin.
| |
Collapse
|
12
|
|
13
|
Strandin T, Hepojoki J, Vaheri A. Cytoplasmic tails of bunyavirus Gn glycoproteins-Could they act as matrix protein surrogates? Virology 2013; 437:73-80. [PMID: 23357734 DOI: 10.1016/j.virol.2013.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/21/2012] [Accepted: 01/02/2013] [Indexed: 12/31/2022]
Abstract
Viruses of the family Bunyaviridae are negative-sense RNA viruses (NRVs). Unlike other NRVs bunyaviruses do not possess a matrix protein, which typically facilitates virus release from host cells and acts as an anchor between the viral membrane and its genetic core. Therefore the functions of matrix protein in bunyaviruses need to be executed by other viral proteins. In fact, the cytoplasmic tail of glycoprotein Gn (Gn-CT) of various bunyaviruses interacts with the genetic core (nucleocapsid protein and/or genomic RNA). In addition the Gn-CT of phleboviruses (a genus in the family Bunyaviridae) has been demonstrated to be essential for budding. This review brings together what is known on the role of various bunyavirus Gn-CTs in budding and assembly, and hypothesizes on their yet unrevealed functions in viral life cycle by comparing to the matrix proteins of NRVs.
Collapse
Affiliation(s)
- Tomas Strandin
- Department of Virology, Haartman Institute, P.O. Box 21, FI-00014, University of Helsinki, Finland.
| | | | | |
Collapse
|
14
|
Kranzusch PJ, Whelan SPJ. Architecture and regulation of negative-strand viral enzymatic machinery. RNA Biol 2012; 9:941-8. [PMID: 22767259 DOI: 10.4161/rna.20345] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Negative-strand (NS) RNA viruses initiate infection with a unique polymerase complex that mediates both mRNA transcription and subsequent genomic RNA replication. For nearly all NS RNA viruses, distinct enzymatic domains catalyzing RNA polymerization and multiple steps of 5' mRNA cap formation are contained within a single large polymerase protein (L). While NS RNA viruses include a variety of emerging human and agricultural pathogens, the enzymatic machinery driving viral replication and gene expression remains poorly understood. Recent insights with Machupo virus and vesicular stomatitis virus have provided the first structural information of viral L proteins, and revealed how the various enzymatic domains are arranged into a conserved architecture shared by both segmented and nonsegmented NS RNA viruses. In vitro systems reconstituting RNA synthesis from purified components provide new tools to understand the viral replicative machinery, and demonstrate the arenavirus matrix protein regulates RNA synthesis by locking a polymerase-template complex. Inhibition of gene expression by the viral matrix protein is a distinctive feature also shared with influenza A virus and nonsegmented NS RNA viruses, possibly illuminating a conserved mechanism for coordination of viral transcription and polymerase packaging.
Collapse
Affiliation(s)
- Philip J Kranzusch
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
15
|
Dong J, Zhu W, Saito A, Goto Y, Iwata H, Haga T. The E89K Mutation in the Matrix Protein of the Measles Virus Affects In Vitro Cell Death and Virus Replication Efficiency in Human PBMC. Open Virol J 2012; 6:68-72. [PMID: 22715352 PMCID: PMC3377886 DOI: 10.2174/1874357901206010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/14/2012] [Accepted: 03/29/2012] [Indexed: 12/23/2022] Open
Abstract
Matrix protein is known to have an important role in the process of virus assembly and virion release during measles virus replication. In the present in vitro study, a single mutation of E89K in the matrix protein was shown to affect cell death and virus replication efficiency in human PBMC. One strain with this mutation caused less cell death than the parental virus, and possessed high virus replication efficiency. Moreover, by Annexin V-FITC staining, polycaspase FLICA staining, and double labeling with poly-caspase FLICA and the Hoechst stain, the cell death seen was shown to be apoptosis.
Collapse
Affiliation(s)
- Jianbao Dong
- Department of Veterinary Microbiology, University of Miyazaki, Miyazaki 889-2192, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Hepojoki J, Strandin T, Lankinen H, Vaheri A. Hantavirus structure--molecular interactions behind the scene. J Gen Virol 2012; 93:1631-1644. [PMID: 22622328 DOI: 10.1099/vir.0.042218-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viruses of the genus Hantavirus, carried and transmitted by rodents and insectivores, are the exception in the vector-borne virus family Bunyaviridae, since viruses of the other genera are transmitted via arthropods. The single-stranded, negative-sense, RNA genome of hantaviruses is trisegmented into small, medium and large (S, M and L) segments. The segments, respectively, encode three structural proteins: nucleocapsid (N) protein, two glycoproteins Gn and Gc and an RNA-dependent RNA-polymerase. The genome segments, encapsidated by the N protein to form ribonucleoproteins, are enclosed inside a lipid envelope that is decorated by spikes composed of Gn and Gc. The virion displays round or pleomorphic morphology with a diameter of roughly 120-160 nm depending on the detection method. This review focuses on the structural components of hantaviruses, their interactions, the mechanisms behind virion assembly and the interactions that maintain virion integrity. We attempt to summarize recent results on the virion structure and to suggest mechanisms on how the assembly is driven. We also compare hantaviruses to other bunyaviruses with known structure.
Collapse
Affiliation(s)
- Jussi Hepojoki
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| | - Tomas Strandin
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| | - Hilkka Lankinen
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland
| |
Collapse
|
17
|
Shu Y, Habchi J, Costanzo S, Padilla A, Brunel J, Gerlier D, Oglesbee M, Longhi S. Plasticity in structural and functional interactions between the phosphoprotein and nucleoprotein of measles virus. J Biol Chem 2012; 287:11951-67. [PMID: 22318731 DOI: 10.1074/jbc.m111.333088] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The measles virus (MeV) phosphoprotein (P) tethers the polymerase to the nucleocapsid template for transcription and genome replication. Binding of P to nucleocapsid is mediated by the X domain of P (XD) and a conserved sequence (Box-2) within the C-terminal domain of the nucleoprotein (N(TAIL)). XD binding induces N(TAIL) α-helical folding, which in turn has been proposed to stabilize the polymerase-nucleocapsid complex, with cycles of binding and release required for transcription and genome replication. The current work directly assessed the relationships among XD-induced N(TAIL) folding, XD-N(TAIL) binding affinity, and polymerase activity. Amino acid substitutions that abolished XD-induced N(TAIL) α-helical folding were created within Box-2 of Edmonston MeV N(TAIL). Polymerase activity in minireplicons was maintained despite a 35-fold decrease in XD-N(TAIL) binding affinity or reduction/loss of XD-induced N(TAIL) alpha-helical folding. Recombinant infectious virus was recovered for all mutants, and transcriptase elongation rates remained within a 1.7-fold range of parent virus. Box-2 mutations did however impose a significant cost to infectivity, reflected in an increase in the amount of input genome required to match the infectivity of parent virus. Diminished infectivity could not be attributed to changes in virion protein composition or production of defective interfering particles, where changes from parent virus were within a 3-fold range. The results indicated that MeV polymerase activity, but not infectivity, tolerates amino acid changes in the XD-binding region of the nucleoprotein. Selectional pressure for conservation of the Box-2 sequence may thus reflect a role in assuring the fidelity of polymerase functions or the assembly of viral particles required for optimal infectivity.
Collapse
Affiliation(s)
- Yaoling Shu
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dortmans JCFM, Koch G, Rottier PJM, Peeters BPH. Virulence of Newcastle disease virus: what is known so far? Vet Res 2011; 42:122. [PMID: 22195547 PMCID: PMC3269386 DOI: 10.1186/1297-9716-42-122] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/23/2011] [Indexed: 12/22/2022] Open
Abstract
In the last decade many studies have been performed on the virulence of Newcastle disease virus (NDV). This is mainly due to the development of reverse genetics systems which made it possible to genetically modify NDV and to investigate the contribution of individual genes and genome regions to its virulence. However, the available information is scattered and a comprehensive overview of the factors and conditions determining NDV virulence is lacking. This review summarises, compares and discusses the available literature and shows that virulence of NDV is a complex trait determined by multiple genetic factors.
Collapse
Affiliation(s)
- Jos C F M Dortmans
- Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
19
|
Rima BK, Duprex WP. New concepts in measles virus replication: Getting in and out in vivo and modulating the host cell environment. Virus Res 2011; 162:47-62. [DOI: 10.1016/j.virusres.2011.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 12/24/2022]
|
20
|
Electron cryotomography of measles virus reveals how matrix protein coats the ribonucleocapsid within intact virions. Proc Natl Acad Sci U S A 2011; 108:18085-90. [PMID: 22025713 DOI: 10.1073/pnas.1105770108] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Measles virus is a highly infectious, enveloped, pleomorphic virus. We combined electron cryotomography with subvolume averaging and immunosorbent electron microscopy to characterize the 3D ultrastructure of the virion. We show that the matrix protein forms helices coating the helical ribonucleocapsid rather than coating the inner leaflet of the membrane, as previously thought. The ribonucleocapsid is folded into tight bundles through matrix-matrix interactions. The implications for virus assembly are that the matrix already tightly interacts with the ribonucleocapsid in the cytoplasm, providing a structural basis for the previously observed regulation of RNA transcription by the matrix protein. Next, the matrix-covered ribonucleocapsids are transported to the plasma membrane, where the matrix interacts with the envelope glycoproteins during budding. These results are relevant to the nucleocapsid organization and budding of other paramyxoviruses, where isolated matrix has been observed to form helices.
Collapse
|
21
|
Matrix protein-specific IgA antibody inhibits measles virus replication by intracellular neutralization. J Virol 2011; 85:11090-7. [PMID: 21865386 DOI: 10.1128/jvi.00768-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Measles virus (MV) is still an imposing threat to public health. The matrix (M) protein has been shown not only to function as a structure block in the assembled MV virions, but also to regulate viral RNA synthesis, playing an important role in MV's replication and assembly. In the present study, we generated a panel of IgG monoclonal antibodies (MAbs) against M protein and successfully obtained one IgA MAb (5H7) from the IgG panel. Employing the polarized Vero cells grown in the two-chamber transwell model, we investigated whether M-specific 5H7 IgA MAb could suppress MV's replication and assembly. The data presented indicate that, while failing to show the activities of traditional neutralization and immune exclusion, M-specific IgA MAb was able to effectively inhibit viral replication by intracellular neutralization (78%), supporting the notion that the M protein is important for MV assembly and replication and implying that the M protein was an effective target antigen. The data also showed that MV had a long entry and assembly phase during viral replication, providing an extended window for IgA intervention. The colocalization of M proteins and M-specific 5H7 IgA MAbs demonstrated that the intracellular neutralization was due to the direct binding of the M-specific 5H7 IgA MAbs to the M proteins. In summary, the present study has added another example showing that IgA antibodies targeting internal viral antigens could proactively participate in mucosal immune protection by intracellular neutralization and has provided evidence that M protein might be included as a target antigen in future MV vaccine design.
Collapse
|
22
|
Strandin T, Hepojoki J, Wang H, Vaheri A, Lankinen H. The cytoplasmic tail of hantavirus Gn glycoprotein interacts with RNA. Virology 2011; 418:12-20. [PMID: 21807393 PMCID: PMC7172371 DOI: 10.1016/j.virol.2011.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/06/2011] [Accepted: 06/16/2011] [Indexed: 11/15/2022]
Abstract
We recently characterized the interaction between the intraviral domains of envelope glycoproteins (Gn and Gc) and ribonucleoprotein (RNP) of Puumala and Tula hantaviruses (genus Hantavirus, family Bunyaviridae). Herein we report a direct interaction between spike-forming glycoprotein and nucleic acid. We show that the envelope glycoprotein Gn of hantaviruses binds genomic RNA through its cytoplasmic tail (CT). The nucleic acid binding of Gn-CT is unspecific, as demonstrated by interactions with unrelated RNA and with single-stranded DNA. Peptide scan and protein deletions of Gn-CT mapped the nucleic acid binding to regions that overlap with the previously characterized N protein binding sites and demonstrated the carboxyl-terminal part of Gn-CT to be the most potent nucleic acid-binding site. We conclude that recognition of the RNP complex by the Gn-CT could be mediated by interactions with both genomic RNA and the N protein. This would provide the required selectivity for the genome packaging of hantaviruses.
Collapse
Affiliation(s)
- Tomas Strandin
- Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, PO Box 21, FI-00014, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
23
|
Bankamp B, Takeda M, Zhang Y, Xu W, Rota PA. Genetic characterization of measles vaccine strains. J Infect Dis 2011; 204 Suppl 1:S533-48. [PMID: 21666210 DOI: 10.1093/infdis/jir097] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The complete genomic sequences of 9 measles vaccine strains were compared with the sequence of the Edmonston wild-type virus. AIK-C, Moraten, Rubeovax, Schwarz, and Zagreb are vaccine strains of the Edmonston lineage, whereas CAM-70, Changchun-47, Leningrad-4 and Shanghai-191 were derived from 4 different wild-type isolates. Nucleotide substitutions were found in the noncoding regions of the genomes as well as in all coding regions, leading to deduced amino acid substitutions in all 8 viral proteins. Although the precise mechanisms involved in the attenuation of individual measles vaccines remain to be elucidated, in vitro assays of viral protein functions and recombinant viruses with defined genetic modifications have been used to characterize the differences between vaccine and wild-type strains. Although almost every protein contributes to an attenuated phenotype, substitutions affecting host cell tropism, virus assembly, and the ability to inhibit cellular antiviral defense mechanisms play an especially important role in attenuation.
Collapse
Affiliation(s)
- Bettina Bankamp
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
24
|
A respiratory syncytial virus replicon that is noncytotoxic and capable of long-term foreign gene expression. J Virol 2011; 85:4792-801. [PMID: 21389127 DOI: 10.1128/jvi.02399-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection of most cultured cell lines causes cell-cell fusion and death. Cell fusion is caused by the fusion (F) glycoprotein and is clearly cytopathic, but other aspects of RSV infection may also contribute to cytopathology. To investigate this possibility, we generated an RSV replicon that lacks all three of its glycoprotein genes and so cannot cause cell-cell fusion or virus spread. This replicon includes a green fluorescent protein gene and an antibiotic resistance gene to enable detection and selection of replicon-containing cells. Adaptive mutations in the RSV replicon were not required for replicon maintenance. Cells containing the replicon could be cloned and passaged many times in the absence of antibiotic selection, with 99% or more of the cells retaining the replicon after each cell division. Transient expression of the F and G (attachment) glycoproteins supported the production of virions that could transfer the replicon into most cell lines tested. Since the RSV replicon is not toxic to these cultured cells and does not affect their rate of cell division, none of the 8 internal viral proteins, the viral RNA transcripts, or the host response to these molecules or their activities is cytopathic. However, the level of replicon genome and gene expression is controlled in some manner well below that of complete virus and, as such, might avoid cytotoxicity. RSV replicons could be useful for cytoplasmic gene expression in vitro and in vivo and for screening for compounds active against the viral polymerase.
Collapse
|
25
|
Measles virus infection of the CNS: human disease, animal models, and approaches to therapy. Med Microbiol Immunol 2010; 199:261-71. [PMID: 20390298 DOI: 10.1007/s00430-010-0153-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Indexed: 01/13/2023]
Abstract
Viral infections of the central nervous system(CNS) mostly represent clinically important, often life-threatening complications of systemic viral infections. After acute measles, CNS complications may occur early (acute postinfectious measles encephalitis, APME) or after years of viral persistence (subacute sclerosing panencephalitis, SSPE). In spite of a presumably functional cell-mediated immunity and high antiviral antibody titers, an immunological control of the CNS infection is not achieved in patients suffering from SSPE. There is still no specific therapy for acute complications and persistent MV infections of the CNS. Hamsters, rats, and (genetically unmodified and modified) mice have been used as model systems to study mechanisms of MV-induced CNS infections. Functional CD4+ and CD8+ T cells together with IFN-gamma are required to overcome the infection. With the help of recombinant measles viruses and mice expressing endogenous or transgenic receptors, interesting aspects such as receptor-dependent viral spread and viral determinants of virulence have been investigated. However, many questions concerning the lack of efficient immune control in the CNS are still open. Recent research opened new perspectives using specific antivirals such as short interfering RNA (siRNA) or small molecule inhibitors. Inspite of obvious hurdles, these treatments are the most promising approaches to future therapies.
Collapse
|
26
|
The viral replication complex is associated with the virulence of Newcastle disease virus. J Virol 2010; 84:10113-20. [PMID: 20660202 DOI: 10.1128/jvi.00097-10] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Virulent strains of Newcastle disease virus ([NDV] also known as avian paramyxovirus type 1) can be discriminated from low-virulence strains by the presence of multiple basic amino acid residues at the proteolytic cleavage site of the fusion (F) protein. However, some NDV variants isolated from pigeons (pigeon paramyxovirus type 1 [PPMV-1]) have low levels of virulence, despite the fact that their F protein cleavage sites contain a multibasic amino acid sequence and have the same functionality as that of virulent strains. To determine the molecular basis of this discrepancy, we examined the role of the internal proteins in NDV virulence. Using reverse genetics, the genes encoding the nucleoprotein (NP), phosphoprotein (P), matrix protein (M), and large polymerase protein (L) were exchanged between the nonvirulent PPMV-1 strain AV324 and the highly virulent NDV strain Herts. Recombinant viruses were evaluated for their pathogenicities and replication levels in day-old chickens, and viral genome replication and plaque sizes were examined in cell culture monolayers. We also tested the contributions of the individual NP, P, and L proteins to the activity of the viral replication complex in an in vitro replication assay. The results showed that the replication proteins of Herts are more active than those of AV324 and that the activity of the viral replication complex is directly related to virulence. Although the M protein affected viral replication in vitro, it had only a minor effect on virulence.
Collapse
|
27
|
Wang H, Alminaite A, Vaheri A, Plyusnin A. Interaction between hantaviral nucleocapsid protein and the cytoplasmic tail of surface glycoprotein Gn. Virus Res 2010; 151:205-12. [PMID: 20566401 DOI: 10.1016/j.virusres.2010.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/12/2010] [Accepted: 05/17/2010] [Indexed: 01/07/2023]
Abstract
Hantaviral N and Gn proteins were shown to interact, thus providing the long-awaited evidence for one of the crucial steps in the virus replication at which RNPs are directed to the site of the virus assembly. Using pull-down assay and point mutagenesis it was demonstrated that intact, properly folded zinc fingers in the Gn protein cytoplasmic tail as well as the middle domain of the N protein (that includes aa residues 80-248) are essential for the interaction.
Collapse
Affiliation(s)
- Hao Wang
- Department of Virology, Infection Biology Research Program, Haartman Institute, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
28
|
Salditt A, Koethe S, Pohl C, Harms H, Kolesnikova L, Becker S, Schneider-Schaulies S. Measles virus M protein-driven particle production does not involve the endosomal sorting complex required for transport (ESCRT) system. J Gen Virol 2010; 91:1464-72. [PMID: 20130136 DOI: 10.1099/vir.0.018523-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Assembly and budding of enveloped RNA viruses rely on viral matrix (M) proteins and host proteins involved in sorting and vesiculation of cellular cargoes, such as the endosomal sorting complex required for transport (ESCRT). The measles virus (MV) M protein promotes virus-like particle (VLP) production, and we now show that it shares association with detergent-resistant or tetraspanin-enriched membrane microdomains with ebolavirus VP40 protein, yet accumulates less efficiently at the plasma membrane. Unlike VP40, which recruits ESCRT components via its N-terminal late (L) domain and exploits them for particle production, the M protein does this independently of this pathway, as (i) ablation of motifs bearing similarity to canonical L domains did not affect VLP production, (ii) it did not redistribute Tsg101, AIP-1 or Vps4A to the plasma membrane, and (iii) neither VLP nor infectious virus production was sensitive to inhibition by dominant-negative Vps4A. Importantly, transfer of the VP40 L domain into the MV M protein did not cause recruitment of ESCRT proteins or confer sensitivity of VLP release to Vps4A, indicating that MV particle production occurs independently of and cannot be routed into an ESCRT-dependent pathway.
Collapse
Affiliation(s)
- Andreas Salditt
- Institute for Virology and Immunobiology, University of Wuerzburg, Versbacher Str. 7, D-97078 Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Adaptation of wild-type measles virus to cotton rat lung cells: E89K mutation in matrix protein contributes to its fitness. Virus Genes 2009; 39:330-4. [PMID: 19826940 DOI: 10.1007/s11262-009-0408-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/26/2009] [Indexed: 10/20/2022]
Abstract
Wild-type measles virus (wtMeV) adapted well to cotton rat lung (CRL) cells after serial passages. In order to evaluate the contributions of the individual genes of wtMeV for adaptation, whole genome sequences of the adapted and original viruses were determined and analyzed. The results showed that there were two mutations in the whole genome of the adapted virus. One mutation was located at the 265th nucleotide in the open reading frame (ORF) of the M gene, resulting in the substitution of the 89th amino acid from E (glutamate) to K (lysine). The other was a silent mutation located at the 4182nd nucleotide in the ORF of the L gene. It was demonstrated that the E89K mutation in the M protein is responsible for the adaptation of wtMeV MV99Y in CRL cells. Cotton rats were infected with adapted virus and the original strain via intranasal inoculation. Virus titer results showed that adapted strain replicated better than the original strain in cotton rat lungs. It is suggested that the E89K mutation also contributes to the enhancement of wtMeV replication in a cotton rat model infected intranasally. The results revealed that the E89K mutation in the M protein plays a key role in wtMeV adaptation in cotton rat and CRL cells.
Collapse
|
30
|
Contribution of matrix, fusion, hemagglutinin, and large protein genes of the CAM-70 measles virus vaccine strain to efficient growth in chicken embryonic fibroblasts. J Virol 2009; 83:11645-54. [PMID: 19726516 DOI: 10.1128/jvi.01110-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Attenuated live vaccines of measles virus (MV) have been developed from clinical isolates by serial propagation in heterologous cells, mainly chicken embryonic cells. The safety and effectiveness of these vaccines have been well established. However, the molecular mechanism of their attenuation remains a subject of investigation. The CAM-70 MV vaccine strain was developed from the Tanabe strain by serial propagation in chicken embryonic cells. In the present study, we assessed the contribution of each gene in the CAM-70 strain to efficient growth in chicken embryonic fibroblasts (CEF). We used a cloned MV IC323 based on the wild-type IC-B strain and generated a series of IC323s that possess one or more of the CAM-70 genes. Then, we examined the infection of CEF and CEF expressing human signaling lymphocyte activation molecule with the recombinant MVs. Our results demonstrated that MV needs to adapt to CEF at both the entry and postentry steps and that the CAM-70 matrix protein gene plays an important role in adaptation to CEF at the early stage of the virus replication cycle. The CAM-70 large protein gene was responsible for the efficient transcription and replication in CEF, and the CAM-70 hemagglutinin and fusion protein genes were responsible for efficient entry. Investigations focusing on these genes might elucidate unknown molecular mechanisms underlying the attenuation of MV.
Collapse
|
31
|
The matrix protein of measles virus regulates viral RNA synthesis and assembly by interacting with the nucleocapsid protein. J Virol 2009; 83:10374-83. [PMID: 19656884 DOI: 10.1128/jvi.01056-09] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of measles virus (MV) is encapsidated by the nucleocapsid (N) protein and associates with RNA-dependent RNA polymerase to form the ribonucleoprotein complex. The matrix (M) protein is believed to play an important role in MV assembly by linking the ribonucleoprotein complex with envelope glycoproteins. Analyses using a yeast two-hybrid system and coimmunoprecipitation in mammalian cells revealed that the M protein interacts with the N protein and that two leucine residues at the carboxyl terminus of the N protein (L523 and L524) are critical for the interaction. In MV minigenome reporter gene assays, the M protein inhibited viral RNA synthesis only when it was able to interact with the N protein. The N protein colocalized with the M protein at the plasma membrane when the proteins were coexpressed in plasmid-transfected or MV-infected cells. In contrast, the N protein formed small dots in the perinuclear area when it was expressed without the M protein, or it was incapable of interacting with the M protein. Furthermore, a recombinant MV possessing a mutant N protein incapable of interacting with the M protein grew much less efficiently than the parental virus. Since the M protein has an intrinsic ability to associate with the plasma membrane, it may retain the ribonucleoprotein complex at the plasma membrane by binding to the N protein, thereby stopping viral RNA synthesis and promoting viral particle production. Consequently, our results indicate that the M protein regulates MV RNA synthesis and assembly via its interaction with the N protein.
Collapse
|
32
|
Abstract
Subacute sclerosing panencephalitis (SSPE) is a demyelinating central nervous system disease caused by a persistent measles virus (MV) infection of neurons and glial cells. There is still no specific therapy available, and in spite of an intact innate and adaptive immune response, SSPE leads inevitably to death. In order to select effective antiviral short interfering RNAs (siRNAs), we established a plasmid-based test system expressing the mRNA of DsRed2 fused with mRNA sequences of single viral genes, to which certain siRNAs were directed. siRNA sequences were expressed as short hairpin RNA (shRNA) from a lentiviral vector additionally expressing enhanced green fluorescent protein (EGFP) as an indicator. Evaluation by flow cytometry of the dual-color system (DsRed and EGFP) allowed us to find optimal shRNA sequences. Using the most active shRNA constructs, we transduced persistently infected human NT2 cells expressing virus-encoded HcRed (piNT2-HcRed) as an indicator of infection. shRNA against N, P, and L mRNAs of MV led to a reduction of the infection below detectable levels in a high percentage of transduced piNT2-HcRed cells within 1 week. The fraction of virus-negative cells in these cultures was constant over at least 3 weeks posttransduction in the presence of a fusion-inhibiting peptide (Z-Phe-Phe-Gly), preventing the cell fusion of potentially cured cells with persistently infected cells. Transduced piNT2 cells that lost HcRed did not fuse with underlying Vero/hSLAM cells, indicating that these cells do not express viral proteins any more and are "cured." This demonstrates in tissue culture that NT2 cells persistently infected with MV can be cured by the transduction of lentiviral vectors mediating the long-lasting expression of anti-MV shRNA.
Collapse
|
33
|
Abstract
This review describes the two interrelated and interdependent processes of transcription and replication for measles virus. First, we concentrate on the ribonucleoprotein (RNP) complex, which contains the negative sense genomic template and in encapsidated in every virion. Second, we examine the viral proteins involved in these processes, placing particular emphasis on their structure, conserved sequence motifs, their interaction partners and the domains which mediate these associations. Transcription is discussed in terms of sequence motifs in the template, editing, co-transcriptional modifications of the mRNAs and the phase of the gene start sites within the genome. Likewise, replication is considered in terms of promoter strength, copy numbers and the remarkable plasticity of the system. The review emphasises what is not known or known only by analogy rather than by direct experimental evidence in the MV replication cycle and hence where additional research, using reverse genetic systems, is needed to complete our understanding of the processes involved.
Collapse
Affiliation(s)
- B K Rima
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | | |
Collapse
|
34
|
Bankamp B, Fontana JM, Bellini WJ, Rota PA. Adaptation to cell culture induces functional differences in measles virus proteins. Virol J 2008; 5:129. [PMID: 18954437 PMCID: PMC2582235 DOI: 10.1186/1743-422x-5-129] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 10/27/2008] [Indexed: 11/10/2022] Open
Abstract
Background Live, attenuated measles virus (MeV) vaccine strains were generated by adaptation to cell culture. The genetic basis for the attenuation of the vaccine strains is unknown. We previously reported that adaptation of a pathogenic, wild-type MeV to Vero cells or primary chicken embryo fibroblasts (CEFs) resulted in a loss of pathogenicity in rhesus macaques. The CEF-adapted virus (D-CEF) contained single amino acid changes in the C and matrix (M) proteins and two substitutions in the shared amino terminal domain of the phosphoprotein (P) and V protein. The Vero-adapted virus (D-VI) had a mutation in the cytoplasmic tail of the hemagglutinin (H) protein. Results In vitro assays were used to test the functions of the wild-type and mutant proteins. The substitution in the C protein of D-CEF decreased its ability to inhibit mini-genome replication, while the wild-type and mutant M proteins inhibited replication to the same extent. The substitution in the cytoplasmic tail of the D-VI H protein resulted in reduced fusion in a quantitative fusion assay. Co-expression of M proteins with wild-type fusion and H proteins decreased fusion activity, but the mutation in the M protein of D-CEF did not affect this function. Both mutations in the P and V proteins of D-CEF reduced the ability of these proteins to inhibit type I and II interferon signaling. Conclusion Adaptation of a wild-type MeV to cell culture selected for genetic changes that caused measurable functional differences in viral proteins.
Collapse
Affiliation(s)
- Bettina Bankamp
- Measles, Mumps, Rubella and Herpesvirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, MS C-22, 1600 Clifton Road, Atlanta, Georgia 30333, USA.
| | | | | | | |
Collapse
|
35
|
Measles viruses possessing the polymerase protein genes of the Edmonston vaccine strain exhibit attenuated gene expression and growth in cultured cells and SLAM knock-in mice. J Virol 2008; 82:11979-84. [PMID: 18799577 DOI: 10.1128/jvi.00867-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live attenuated vaccines against measles have been developed through adaptation of clinical isolates of measles virus (MV) in various cultured cells. Analyses using recombinant MVs with chimeric genomes between wild-type and Edmonston vaccine strains indicated that viruses possessing the polymerase protein genes of the Edmonston strain exhibited attenuated viral gene expression and growth in cultured cells as well as in mice expressing an MV receptor, signaling lymphocyte activation molecule, regardless of whether the virus genome had the wild-type or vaccine-type promoter sequence. These data demonstrate that the polymerase protein genes of the Edmonston strain contribute to its attenuated phenotype.
Collapse
|
36
|
Shankar SK, Mahadevan A, Kovoor JME. Neuropathology of viral infections of the central nervous system. Neuroimaging Clin N Am 2008; 18:19-39; vii. [PMID: 18319153 DOI: 10.1016/j.nic.2007.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many viral infections of the nervous system cause stereotyped pathologic features and overlapping clinical and imaging features. Neuroimaging usually offers neuroanatomical localization of the pathology, degree of involvement of the nervous system, and response to therapy during follow up in a few instances. Neuroimaging is a useful adjunct for diagnosis.
Collapse
Affiliation(s)
- Susarla K Shankar
- Department of Neuropathology, National Institute of Mental Health & Neurosciences, Bangalore 560 029, India.
| | | | | |
Collapse
|
37
|
Sips GJ, Chesik D, Glazenburg L, Wilschut J, De Keyser J, Wilczak N. Involvement of morbilliviruses in the pathogenesis of demyelinating disease. Rev Med Virol 2007; 17:223-44. [PMID: 17410634 DOI: 10.1002/rmv.526] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two members of the morbillivirus genus of the family Paramyxoviridae, canine distemper virus (CDV) and measles virus (MV), are well-known for their ability to cause a chronic demyelinating disease of the CNS in their natural hosts, dogs and humans, respectively. Both viruses have been studied for their potential involvement in the neuropathogenesis of the human demyelinating disease multiple sclerosis (MS). Recently, three new members of the morbillivirus genus, phocine distemper virus (PDV), porpoise morbillivirus (PMV) and dolphin morbillivirus (DMV), have been discovered. These viruses have also been shown to induce multifocal demyelinating disease in infected animals. This review focuses on morbillivirus-induced neuropathologies with emphasis on aetiopathogenesis of CNS demyelination. The possible involvement of a morbillivirus in the pathogenesis of multiple sclerosis is discussed.
Collapse
Affiliation(s)
- G J Sips
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Shahhoseini M, Rabbani-Chadegani A, Abdosamadi S. Identification of nonhistone protein LMG(160) as a ribonucleoprotein of the nuclear matrix with a role in transcription in vitro. Biochimie 2007; 89:1343-50. [PMID: 17614192 DOI: 10.1016/j.biochi.2007.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 05/21/2007] [Indexed: 11/29/2022]
Abstract
In this study a fraction of low mobility group nuclear proteins, designated LMG(160) has been identified as a ribonucleoprotein (RNP) which is detectable in the RNP-containing nuclear matrix of hepatocyte cells through western blot analysis. Using different in vitro transcription systems in the absence and presence of LMG(160), it is shown that the intact form of the protein causes a strong inhibition of DNA-templated RNA synthesis in a dose dependent manner. Removal of the RNA moiety with RNase decreased its inhibitory effect. These results indicate, for the first time, the nuclear position of the LMG(160) protein, with a regulatory role on transcription, which might be a quite important finding to better understanding of the biological function of this protein in rat liver nuclei.
Collapse
Affiliation(s)
- Maryam Shahhoseini
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
39
|
Mottet-Osman G, Iseni F, Pelet T, Wiznerowicz M, Garcin D, Roux L. Suppression of the Sendai virus M protein through a novel short interfering RNA approach inhibits viral particle production but does not affect viral RNA synthesis. J Virol 2006; 81:2861-8. [PMID: 17192312 PMCID: PMC1865978 DOI: 10.1128/jvi.02291-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Short RNA interference is more and more widely recognized as an effective method to specifically suppress viral functions in eukaryotic cells. Here, we used an experimental system that allows suppression of the Sendai virus (SeV) M protein by using a target sequence, derived from the green fluorescent protein gene, that was introduced in the 3' untranslated region of the M protein mRNA. Silencing of the M protein gene was eventually achieved by a small interfering RNA (siRNA) directed against this target sequence. This siRNA was constitutively expressed in a cell line constructed by transduction with an appropriate lentivirus vector. Suppression of the M protein was sufficient to diminish virus production by 50- to 100-fold. This level of suppression had no apparent effect on viral replication and transcription, supporting the lack of M involvement in SeV transcription or replication control.
Collapse
Affiliation(s)
- Geneviève Mottet-Osman
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, CMU, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | | | |
Collapse
|
40
|
Chase G, Mayer D, Hildebrand A, Frank R, Hayashi Y, Tomonaga K, Schwemmle M. Borna disease virus matrix protein is an integral component of the viral ribonucleoprotein complex that does not interfere with polymerase activity. J Virol 2006; 81:743-9. [PMID: 17079312 PMCID: PMC1797437 DOI: 10.1128/jvi.01351-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have recently shown that the matrix protein M of Borna disease virus (BDV) copurifies with the affinity-purified nucleoprotein (N) from BDV-infected cells, suggesting that M is an integral component of the viral ribonucleoprotein complex (RNP). However, further studies were hampered by the lack of appropriate tools. Here we generated an M-specific rabbit polyclonal antiserum to investigate the intracellular distribution of M as well as its colocalization with other viral proteins in BDV-infected cells. Immunofluorescence analysis revealed that M is located both in the cytoplasm and in nuclear punctate structures typical for BDV infection. Colocalization studies indicated an association of M with nucleocapsid proteins in these nuclear punctate structures. In situ hybridization analysis revealed that M also colocalizes with the viral genome, implying that M associates directly with viral RNPs. Biochemical studies demonstrated that M binds specifically to the phosphoprotein P but not to N. Binding of M to P involves the N terminus of P and is independent of the ability of P to oligomerize. Surprisingly, despite P-M complex formation, BDV polymerase activity was not inhibited but rather slightly elevated by M, as revealed in a minireplicon assay. Thus, unlike M proteins of other negative-strand RNA viruses, BDV-M seems to be an integral component of the RNPs without interfering with the viral polymerase activity. We propose that this unique feature of BDV-M is a prerequisite for the establishment of BDV persistence.
Collapse
Affiliation(s)
- Geoffrey Chase
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Ghildyal R, Ho A, Jans DA. Central role of the respiratory syncytial virus matrix protein in infection. FEMS Microbiol Rev 2006; 30:692-705. [PMID: 16911040 DOI: 10.1111/j.1574-6976.2006.00025.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Respiratory syncytial virus is the major respiratory pathogen of infants and children worldwide, with no effective treatment or vaccine available. Steady progress has been made in understanding the respiratory syncytial virus life cycle and the consequences of infection, but many areas of respiratory syncytial virus biology remain poorly understood, including the role of subcellular localisation of respiratory syncytial virus gene products such as the matrix protein in the infected host cell. The matrix protein plays a central role in viral assembly and, intriguingly, has been observed to traffic into and out of the nucleus at specific times during the respiratory syncytial virus infectious cycle. Further, the matrix protein has been shown to be able to inhibit transcription, which may be a key to respiratory syncytial virus pathogenesis. This review will focus on the role of the matrix protein in respiratory syncytial virus infection and what is known of its nucleocytoplasmic trafficking, the understanding of which may lead to new therapeutic approaches to combat respiratory syncytial virus, and/or vaccine development.
Collapse
Affiliation(s)
- Reena Ghildyal
- Department of Respiratory and Sleep Medicine, Monash Medical Centre, Clayton, Australia
| | | | | |
Collapse
|
42
|
Yanagi Y, Takeda M, Ohno S. Measles virus: cellular receptors, tropism and pathogenesis. J Gen Virol 2006; 87:2767-2779. [PMID: 16963735 DOI: 10.1099/vir.0.82221-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Measles virus(MV), a member of the genusMorbillivirusin the familyParamyxoviridae, is an enveloped virus with a non-segmented, negative-strand RNA genome. It has two envelope glycoproteins, the haemagglutinin (H) and fusion proteins, which are responsible for attachment and membrane fusion, respectively. Human signalling lymphocyte activation molecule (SLAM; also called CD150), a membrane glycoprotein of the immunoglobulin superfamily, acts as a cellular receptor for MV. SLAM is expressed on immature thymocytes, activated lymphocytes, macrophages and dendritic cells and regulates production of interleukin (IL)-4 and IL-13 by CD4+T cells, as well as production of IL-12, tumour necrosis factor alpha and nitric oxide by macrophages. The distribution of SLAM is in accord with the lymphotropism and immunosuppressive nature of MV.Canine distemper virusandRinderpest virus, other members of the genusMorbillivirus, also use canine and bovine SLAM as receptors, respectively. Laboratory-adapted MV strains may use the ubiquitously expressed CD46, a complement-regulatory molecule, as an alternative receptor through amino acid substitutions in the H protein. Furthermore, MV can infect SLAM−cells, albeit inefficiently, via the SLAM- and CD46-independent pathway, which may account for MV infection of epithelial, endothelial and neuronal cellsin vivo. MV infection, however, is not determined entirely by the H protein–receptor interaction, and other MV proteins can also contribute to its efficient growth by facilitating virus replication at post-entry steps. Identification of SLAM as the principal receptor for MV has provided us with an important clue for better understanding of MV tropism and pathogenesis.
Collapse
Affiliation(s)
- Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Makoto Takeda
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Shinji Ohno
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
43
|
Reuter T, Weissbrich B, Schneider-Schaulies S, Schneider-Schaulies J. RNA interference with measles virus N, P, and L mRNAs efficiently prevents and with matrix protein mRNA enhances viral transcription. J Virol 2006; 80:5951-7. [PMID: 16731933 PMCID: PMC1472597 DOI: 10.1128/jvi.02453-05] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In contrast to studies with genetically modified viruses, RNA interference allows the analysis of virus infections with identical viruses and posttranscriptional ablation of individual gene functions. Using RNase III-generated multiple short interfering RNAs (siRNAs) against the six measles virus genes, we found efficient downregulation of viral gene expression in general with siRNAs against the nucleocapsid (N), phosphoprotein (P), and polymerase (L) mRNAs, the translation products of which form the ribonucleoprotein (RNP) complex. Silencing of the RNP mRNAs was highly efficient in reducing viral messenger and genomic RNAs. siRNAs against the mRNAs for the hemagglutinin (H) and fusion (F) proteins reduced the extent of cell-cell fusion. Interestingly, siRNA-mediated knockdown of the matrix (M) protein not only enhanced cell-cell fusion but also increased the levels of both mRNAs and genomic RNA by a factor of 2 to 2.5 so that the genome-to-mRNA ratio was constant. These findings indicate that M acts as a negative regulator of viral polymerase activity, affecting mRNA transcription and genome replication to the same extent.
Collapse
Affiliation(s)
- Thorsten Reuter
- Institut für Virologie und Immunbiologie, Julius Maximilians Universität, Würzburg, Germany
| | | | | | | |
Collapse
|
44
|
Tahara M, Takeda M, Yanagi Y. Contributions of matrix and large protein genes of the measles virus edmonston strain to growth in cultured cells as revealed by recombinant viruses. J Virol 2006; 79:15218-25. [PMID: 16306593 PMCID: PMC1316043 DOI: 10.1128/jvi.79.24.15218-15225.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Edmonston strain of measles virus (MV) was obtained by sequential passages of the original isolate in various cultured cells. Although attenuated in vivo, it grows efficiently in most primate cell lines. Previous studies have revealed that MV tropism cannot be solely explained by the use of CD150 and/or CD46 as a cellular receptor. In order to evaluate the contributions of individual genes of the Edmonston strain to growth in cultured cells, we generated a series of recombinant viruses in which part of the genome of the clinical isolate IC-B (which uses CD150 as a receptor) was replaced with the corresponding sequences of the Edmonston strain. The recombinant virus possessing the Edmonston hemagglutinin (H) gene (encoding the receptor-binding protein) grew as efficiently in Vero cells as the Edmonston strain. Those viruses having either the matrix (M) or large (L) protein gene from the Edmonston strain could also replicate well in Vero cells, although they entered them at low efficiencies. P64S and E89K substitutions were responsible for the ability of the M protein to make virus grow efficiently in Vero cells, while the first half of the Edmonston L gene was important for better replication. Despite efficient growth in Vero cells, the recombinant viruses with these mutations had growth disadvantage in CD150-positive lymphoid B95a cells. Thus, not only the H gene but also the M and L genes contribute to efficient replication of the Edmonston strain in some cultured cells.
Collapse
Affiliation(s)
- Maino Tahara
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
45
|
Ruthel G, Demmin GL, Kallstrom G, Javid MP, Badie SS, Will AB, Nelle T, Schokman R, Nguyen TL, Carra JH, Bavari S, Aman MJ. Association of ebola virus matrix protein VP40 with microtubules. J Virol 2005; 79:4709-19. [PMID: 15795257 PMCID: PMC1069569 DOI: 10.1128/jvi.79.8.4709-4719.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses exploit a variety of cellular components to complete their life cycles, and it has become increasingly clear that use of host cell microtubules is a vital part of the infection process for many viruses. A variety of viral proteins have been identified that interact with microtubules, either directly or via a microtubule-associated motor protein. Here, we report that Ebola virus associates with microtubules via the matrix protein VP40. When transfected into mammalian cells, a fraction of VP40 colocalized with microtubule bundles and VP40 coimmunoprecipitated with tubulin. The degree of colocalization and microtubule bundling in cells was markedly intensified by truncation of the C terminus to a length of 317 amino acids. Further truncation to 308 or fewer amino acids abolished the association with microtubules. Both the full-length and the 317-amino-acid truncation mutant stabilized microtubules against depolymerization with nocodazole. Direct physical interaction between purified VP40 and tubulin proteins was demonstrated in vitro. A region of moderate homology to the tubulin binding motif of the microtubule-associated protein MAP2 was identified in VP40. Deleting this region resulted in loss of microtubule stabilization against drug-induced depolymerization. The presence of VP40-associated microtubules in cells continuously treated with nocodazole suggested that VP40 promotes tubulin polymerization. Using an in vitro polymerization assay, we demonstrated that VP40 directly enhances tubulin polymerization without any cellular mediators. These results suggest that microtubules may play an important role in the Ebola virus life cycle and potentially provide a novel target for therapeutic intervention against this highly pathogenic virus.
Collapse
|
46
|
Abstract
Morbilliviruses are a group of viruses that belong to the family Paramyxoviridae. The most instantly recognizable member is measles virus (MV) and individuals acutely infected with the virus exhibit a wide range of clinical symptoms ranging from a characteristic mild self-limiting infection to death. Canine distemper virus (CDV) and rinderpest virus (RPV) cause a similar but distinctive pathology in dogs and cattle, respectively, and these, alongside experimental MV infection of primates, have been useful models for MV pathogenesis. Traditionally, viruses were identified because a distinctive disease was observed in man or animals; an infectious agent was subsequently isolated, cultured, and this could be used to recapitulate the disease in an experimentally infected host. Thus, satisfying Koch's postulates has been the norm. More recently, particularly due to the advent of exceedingly sensitive molecular biological assays, many researchers have looked for infectious agents in disease conditions for which a viral aetiology has not been previously established. For these cases, the modified Koch's postulates of Bradford Hill have been developed as criteria to link a virus to a specific disease. Only in a few cases have these conditions been fulfilled. Therefore, many viruses have over the years been definitely and tentatively linked to human diseases and in this respect the morbilliviruses are no different. In this review, human diseases associated with morbillivirus infection have been grouped into three broad categories: (1) those which are definitely caused by the infection; (2) those which may be exacerbated or facilitated by an infection; and (3) those which currently have limited, weak, unsubstantiated or no credible scientific evidence to support any link to a morbillivirus. Thus, an attempt has been made to clarify the published data and separate human diseases actually linked to morbilliviruses from those that are merely anecdotally associated.
Collapse
Affiliation(s)
- Bertus K Rima
- School of Biomedical Sciences and Centre for Cancer Research and Cell Biology, The Queen's University of Belfast, UK.
| | | |
Collapse
|
47
|
Ogino T, Iwama M, Ohsawa Y, Mizumoto K. Interaction of cellular tubulin with Sendai virus M protein regulates transcription of viral genome. Biochem Biophys Res Commun 2004; 311:283-93. [PMID: 14592411 DOI: 10.1016/j.bbrc.2003.09.205] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cellular tubulin has been shown to activate in vitro transcription with Sendai virus (SeV) particles. In this study, the molecular basis for the transcriptional activation by tubulin was investigated. We showed that tubulin dissociates viral matrix (M) protein, which acts as a negative regulator for transcription, from viral ribonucleoprotein (RNP) consisting of L, P, N proteins, and the genome RNA. Both alpha and beta subunits of human tubulin, which were expressed as GST fusion proteins, were found to stimulate viral mRNA synthesis similar to native alpha/beta-heterodimer tubulin. Pull-down assay using GST-tubulin subunits demonstrated that M protein is released from the RNP as a complex with each tubulin subunit. In vitro-binding analyses revealed that M protein directly interacts with tubulin as well as microtubules. These findings suggest that interaction of M protein with tubulin may have an important role in the regulation of SeV transcription.
Collapse
Affiliation(s)
- Tomoaki Ogino
- Department of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | | | | | | |
Collapse
|
48
|
Finke S, Mueller-Waldeck R, Conzelmann KK. Rabies virus matrix protein regulates the balance of virus transcription and replication. J Gen Virol 2003; 84:1613-1621. [PMID: 12771432 DOI: 10.1099/vir.0.19128-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA synthesis by negative-strand RNA viruses (NSVs) involves transcription of subgenomic mRNAs and replication of ribonucleoprotein complexes. In this study, the envelope matrix (M) protein of rabies virus (RV) was identified as a factor which inhibits transcription and stimulates replication. Transcription, but not replication, of RV minigenomes or of full-length RV was decreased by expression of heterologous M. Since RV assembly involving M and the glycoprotein G renders virus synthetically quiescent, an RV was generated with the M and G genes substituted by placeholders. Surprisingly, RNA synthesis by this recombinant was characterized not only by an increased transcription rate but also by a diminished accumulation of replication products. This phenotype was reversed in a dose-dependent manner by providing M in trans, showing that M is a replication-stimulatory factor. The role of M in determining the balance of replication and transcription was further exploited by generation of a recombinant RV with attenuated M expression, which is highly active in transcription. Regulation of RNA synthesis by matrix proteins may represent a general mechanism of nonsegmented NSVs, which is probably obscured by the silencing activity of M during virus assembly.
Collapse
Affiliation(s)
- Stefan Finke
- Max von Pettenkofer Institute and Gene Center, Ludwig Maximilians University Munich, Feodor Lynen Str. 25, D-81377 Munich, Germany
| | - Roland Mueller-Waldeck
- Max von Pettenkofer Institute and Gene Center, Ludwig Maximilians University Munich, Feodor Lynen Str. 25, D-81377 Munich, Germany
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer Institute and Gene Center, Ludwig Maximilians University Munich, Feodor Lynen Str. 25, D-81377 Munich, Germany
| |
Collapse
|
49
|
Karlin D, Longhi S, Canard B. Substitution of two residues in the measles virus nucleoprotein results in an impaired self-association. Virology 2002; 302:420-32. [PMID: 12441086 DOI: 10.1006/viro.2002.1634] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleoprotein (N) of measles virus encapsidates viral genomic RNA to form a helical nucleocapsid. Its strong self-association is a major hurdle in determining its high-resolution structure using X-ray crystallography. We report the bacterial expression, purification, and characterization of a variant N that has lost its ability to form nucleocapsid-like structures after substitution of two residues by polar residues. Using immunoprecipitation, circular dichroism, and limited proteolysis studies, we show that this nucleoprotein retains a folding similar to wild-type N. Furthermore, the variant N binds the phosphoprotein, indicating that it retains biochemical relevance. We also present evidence indicating that the N-terminus of N lies at the surface of the nucleocapsid. Beyond the identification of one region of N involved in self-association, our results should facilitate structural studies of N using X-ray crystallography.
Collapse
Affiliation(s)
- David Karlin
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Université Aix-Marseilles I et II, ESIL, Campus de Luminy, 13288 Marseilles Cedex 09, France
| | | | | |
Collapse
|
50
|
Vincent S, Tigaud I, Schneider H, Buchholz CJ, Yanagi Y, Gerlier D. Restriction of measles virus RNA synthesis by a mouse host cell line: trans-complementation by polymerase components or a human cellular factor(s). J Virol 2002; 76:6121-30. [PMID: 12021345 PMCID: PMC136230 DOI: 10.1128/jvi.76.12.6121-6130.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse epithelial MODE-K cell line expressing human CD46 or CD150 cellular receptors was found to be nonpermissive for measles virus (MV) replication. The virus binding and membrane fusion steps were unimpaired, but only very limited amounts of virus protein and RNA synthesized were detected after the infection. In a minigenome chloramphenicol acetyltransferase assay, MODE-K cells were as able as the permissive HeLa cells in supporting MV polymerase activity. The restriction phenotype of MODE-K cells could be alleviated by providing, in trans, either N-P-L or N-P functional protein complexes but not by P-L complexes or individual N, P, and L proteins. Several human x mouse (HeLa x MODE-K) somatic hybrid clones expressing human CD46 were isolated and found to be either nonpermissive or permissive according to their human chromosomal contents. The MV-restricted phenotype exhibited by the MODE-K cell line suggests that a cellular factor(s) can control MV transcription, possibly by stabilizing the incoming virus polymerase templates.
Collapse
Affiliation(s)
- Séverine Vincent
- Immunité & Infections Virales, CNRS-UCBL UMR 5537, IFR62, Faculté de Médecine Lyon RTH Laennec, 69372 Lyon Cedex 08, France
| | | | | | | | | | | |
Collapse
|