1
|
Ji P, Zhang H, Yangzong X, Li Z, Liu Z, Dan M, Li X, Sun X, Zhao Q, Sun Y. A highly sensitive one-step nanobody-based immunoassay to specifically detect antibodies against fowl adenovirus serotype 4. Poult Sci 2025; 104:104970. [PMID: 40043676 PMCID: PMC11926694 DOI: 10.1016/j.psj.2025.104970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025] Open
Abstract
Hepatitis-hydropericardium syndrome, caused by fowl adenovirus serotype 4 (FAdV-4), has resulted in significant economic damage to the poultry industry. To monitor viral exposure and vaccine efficacy, some traditional antibody-based immunoassays have been developed for detecting anti-FAdV-4 antibodies. However, these assays have some drawbacks including multi-step operations and higher production cost. Recently, nanobodies are regarded as a promising tool for developing immunoassays. In the study, 23 nanobodies against FAdV-4 were screened and expressed with horseradish peroxidase (HRP) in the HEK293T cells. Then, the FAdV-4-Nb28-HRP fusion protein was selected for developing competitive enzyme-linked immunoassays (cELISA) to detect anti-FAdV-4 antibodies in the chicken sera. The optimal concentrations and dilutions for the coating antigen, fusion protein and testing sera were determined to be 400 ng/well, 1:80 and 1:20, respectively. After the coated plates were vacuumized and stored, the operation of cELISA to detect clinical chicken sera was only one-step and the full time was 75 min. The cELISA also exhibited high sensitivity, specificity, reproducibility and good agreement with the commercial ELISA kit. When the sequential sera from the challenged chickens were tested, the cELISA showed superior sensitivity compared with the commercial ELISA kit. Moreover, epitope mapping revealed that the nanobody specifically recognized the sites GLN235 ASN236 SER238 of the fiber-1 protein, highly conserved among different FAdV-4 isolates and different from the FAdV-1 and -8. The results indicated that cELISA can specifically detect anti-FAdV-4 antibodies. Collectively, the developed one-step nanobody-based cELISA is an ideal method for epidemiological investigation and vaccine immune evaluation of FAdV-4.
Collapse
Affiliation(s)
- Pinpin Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Shaanxi, 712100, China
| | - Hao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Shaanxi, 712100, China
| | - Xiri Yangzong
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Shaanxi, 712100, China
| | - Ziling Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Shaanxi, 712100, China
| | - Zhixiang Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Shaanxi, 712100, China
| | - Miao Dan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Shaanxi, 712100, China
| | - Xiaoxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Shaanxi, 712100, China
| | - Xuwen Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Shaanxi, 712100, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Shaanxi, 712100, China.
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Liu Z, Xian Y, Lan J, Zhou Z, Li X, Zhou R, Chen D, Tian X. Human adenovirus species B knob proteins as immunogens for inducing cross-neutralizing antibody responses. mSphere 2025; 10:e0064424. [PMID: 39670728 PMCID: PMC11774023 DOI: 10.1128/msphere.00644-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024] Open
Abstract
The re-emerging human adenovirus (HAdV) types 3, 7, 14, and 55 of species B have caused severe or even fatal acute respiratory disease. Therefore, the development of multivalent vaccines against HAdV types 3, 7, 14, and 55 remains an important goal. In our previous study, we identified a cross-neutralizing epitope that induced broadly reactive monoclonal neutralizing antibodies against the knob proteins of HAdV types 7, 11, 14, and 55. To study the immunogenicity of HAdV species B knob proteins, we evaluated humoral immune responses to the knob proteins in vivo and in vitro. We found that the knob proteins elicited robust binding and neutralizing antibody responses after three immunizations of mice. In addition, mouse antisera raised against the knob proteins exhibited cross-neutralizing activity against original species B members. Furthermore, immunization with a mix of HAdV-3, 7, and 55 knob proteins protected Chinese tree shrews against an experimental HAdV challenge. Our results provide insight into the immunogenicity of HAdV species B knob proteins.IMPORTANCEHuman adenovirus (HAdV) species B are common pathogens causing severe pneumonia in children, and there is currently no vaccine available. Because there are many HAdV species B types, developing broad-spectrum vaccines against HAdV species B is an important research goal. Our study revealed that immunization with recombinant HAdV species B knob proteins effectively elicited cross-neutralizing antibody responses against original species B members with protective immunity. This study provides a novel insight into the immunogenicity of HAdV species B knob proteins.
Collapse
Affiliation(s)
- Zhenwei Liu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yuting Xian
- Guangdong Xinmai Biotechnology Co., Ltd, Guangzhou, China
| | - Jixian Lan
- Deep Evolution (Guangzhou) Biotechnology Co., Ltd, Guangzhou, China
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Dehui Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Wienen F, Nilson R, Allmendinger E, Peters S, Barth TF, Kochanek S, Krutzke L. An oncolytic HAdV-5 with reduced surface charge combines diminished toxicity and improved tumor targeting. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200909. [PMID: 39758252 PMCID: PMC11699628 DOI: 10.1016/j.omton.2024.200909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/12/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025]
Abstract
Human adenovirus type 5 (HAdV-5)-based oncolytic viruses hold significant promise for anti-cancer therapy. However, poor tumor-targeting and off-target organ transduction after systemic administration limit their therapeutic efficacy. In addition, the strong liver tropism of HAdV-5-based vectors poses the risk of hepatotoxicity. By genetic modification of the major capsid protein hexon we generated a HAdV-5-based oncolytic vector (HAdV-5-HexPos3) with reduced negative surface charge. Coxsackie and adenovirus receptor (CAR) binding-ablated (ΔCAR) HAdV-5-HexPos3_ΔCAR exhibited superior and CAR-independent transduction of various cancer cell lines in vitro, further enhanced in the presence of HAdV-5 naive murine plasma. Upon intravenous administration into tumor-bearing immunodeficient NSG mice, replication-deficient HAdV-5-HexPos3_ΔCAR vector particles showed significantly reduced off-target organ tropism in all tissues analyzed, including the liver. Moreover, we detected a significantly increased intratumoral vector load for HAdV-5-HexPos3_ΔCAR, leading to a 29-fold elevated tumor-to-liver ratio compared with a control vector with unmodified hexon. Intravenous injection of a conditionally replicating hexon-unmodified control vector induced severe hepatotoxicity in tumor-bearing NSG mice, while a conditionally replicating HAdV-5-HexPos3_ΔCAR vector was well tolerated and resulted in intratumoral vector presence for up to 56 days. HAdV-5-HexPos3_ΔCAR represents a promising vector platform for the generation of HAdV-5-based oncolytic viruses with reduced systemic toxicity and improved therapeutic efficacy.
Collapse
Affiliation(s)
- Frederik Wienen
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | - Robin Nilson
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | | | - Sarah Peters
- Department of Clinical Chemistry, Ulm University Medical Center, 89081 Ulm, Germany
| | - Thomas F.E. Barth
- Institute of Pathology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | - Lea Krutzke
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
4
|
Mudrick HE, Lu SC, Bhandari J, Barry ME, Hemsath JR, Andres FGM, Ma OX, Barry MA, Reddy VS. Structure-derived insights from blood factors binding to the surfaces of different adenoviruses. Nat Commun 2024; 15:9768. [PMID: 39528527 PMCID: PMC11555213 DOI: 10.1038/s41467-024-54049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The tropism of adenoviruses (Ads) is significantly influenced by the binding of various blood factors. To investigate differences in their binding, we conducted cryo-EM analysis on complexes of several human adenoviruses with human platelet factor-4 (PF4), coagulation factors FII (Prothrombin), and FX. While we observed EM densities for FII and FX bound to all the species-C adenoviruses examined, no densities were seen for PF4, even though PF4 can co-pellet with various Ads. Similar to FX, the γ-carboxyglutamic acid (Gla) domain of FII binds within the surface cavity of hexon trimers. While FII binds equally to species-C Ads: Ad5, Ad6, and Ad657, FX exhibits significantly better binding to Ad5 and Ad657 compared to Ad6. Although only the FX-Gla domain is observed at high-resolution (3.7 Å), the entire FX is visible at low-resolution bound to Ad5 in three equivalent binding modes consistent with the 3-fold symmetric hexon. Only the Gla and kringle-1 domains of FII are visible on all the species-C adenoviruses, where the rigid FII binds in an upright fashion, in contrast to the flexible and bent FX. These data suggest that differential binding of FII and FX may shield certain species-C adenoviruses differently against immune molecules, thereby modulating their tropism.
Collapse
Affiliation(s)
- Haley E Mudrick
- Molecular Pharmacology and Experimental Therapeutics Graduate Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shao-Chia Lu
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN, 55905, USA
| | - Janarjan Bhandari
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Mary E Barry
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jack R Hemsath
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN, 55905, USA
| | - Felix G M Andres
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Olivia X Ma
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Michael A Barry
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Vijay S Reddy
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA.
| |
Collapse
|
5
|
Bai R, Chen Y, Ou J, Dong W, Zhong T, Li Y, Li C, Liu C, Ji C, Li H, Luo Y, Mei YF, Wu J, Seto D, Yin A, Zhang Q, Luo M. Clinical characteristics and phylogenetic analysis of human enteric adenovirus type 41 (HAdV-F41) from children with gastroenteritis during SARS-CoV-2 pandemic. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105619. [PMID: 38906518 DOI: 10.1016/j.meegid.2024.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Human adenovirus type 41 (HAdV-F41) usually causes pediatrics gastroenteritis. However, it was reported to be associated with the outbreaks of severe acute hepatitis of unknown aetiology (SAHUA) in pediatrics during COVID-19 pandemic. In this study, we investigated the prevalence of enteric HAdV-F41 in 37,920 paediatric gastroenteritis cases from 2017 to 2022 in Guangzhou, China. All children presented were tested negative for SARS-CoV-2 during the "zero-COVID" period. The main clinical symptom of the children was diarrhea (96.5%). No fatalities nor liver abnormal symptoms was found. In 2021, one year since the pandemic of COVID-19, the prevalence of HAdV-F41 abruptly increased from 3.71% to 8.64% (P < 0.001). All of HAdV-F41 circulating worldwide were classified into eight different subtypes (G1-G8) based on the phylogenetic clustering permutation of the four capsid genes of HAdV-F41. G3 was the predominant subtype (56.2%; 77/137). CRV5 isolates from SAHUA cases belong to this subtype, in which N312D and H335D mutations in the short fiber knob were identified in both Guangzhou and CRV5 isolates, presumably changing the virus tropism by directly interacting with the heparin sulfate (HS) receptor. Additionally, a novel recombinant G6 subtype, which is unique and only circulating in China was first identified in this study. This is the first study highlighting the prevalence of HAdV-F41 in paediatric cases of gastroenteritis during COVID-19 pandemic in China. The clinical and viral evolution finding of HAdV-F41 provide insight into the clinical characteristics of children with HAdV-F41 infections as well as the uncertain role of HAdV-F41 in the cause of SAHUA.
Collapse
Affiliation(s)
- Ru Bai
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou 511443, China; The Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yanyuan Chen
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou 511443, China
| | - Junxian Ou
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wenya Dong
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou 511443, China
| | - Tianhua Zhong
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou 511443, China
| | - Yiqiang Li
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Congrong Li
- Biosafety Laboratory, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chengyi Liu
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou 511443, China
| | - Cunwei Ji
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou 511443, China
| | - Huan Li
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou 511443, China
| | - Yasha Luo
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou 511443, China
| | - Ya-Fang Mei
- Department of Clinical Microbiology, Section of Virology, Umeå University, SE-90185 Umeå, Sweden
| | - Jie Wu
- Guangdong Center for Disease Control and Prevention, Guangzhou, China
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Aihua Yin
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou 511443, China; Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou 511443, China.
| | - Qiwei Zhang
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Mingyong Luo
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou 511443, China.
| |
Collapse
|
6
|
Zhang Z, Guo X, Hou W, Zou X, Wang Y, Liu S, Lu Z. User-Friendly Replication-Competent MAdV-1 Vector System with a Cloning Capacity of 3.3 Kilobases. Viruses 2024; 16:761. [PMID: 38793642 PMCID: PMC11126015 DOI: 10.3390/v16050761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Mouse adenoviruses (MAdV) play important roles in studying host-adenovirus interaction. However, easy-to-use reverse genetics systems are still lacking for MAdV. An infectious plasmid pKRMAV1 was constructed by ligating genomic DNA of wild-type MAdV-1 with a PCR product containing a plasmid backbone through Gibson assembly. A fragment was excised from pKRMAV1 by restriction digestion and used to generate intermediate plasmid pKMAV1-ER, which contained E3, fiber, E4, and E1 regions of MAdV-1. CMV promoter-controlled GFP expression cassette was inserted downstream of the pIX gene in pKMAV1-ER and then transferred to pKRMAV1 to generate adenoviral plasmid pKMAV1-IXCG. Replacement of transgene could be conveniently carried out between dual BstZ17I sites in pKMAV1-IXCG by restriction-assembly, and a series of adenoviral plasmids were generated. Recombinant viruses were rescued after transfecting linearized adenoviral plasmids to mouse NIH/3T3 cells. MAdV-1 viruses carrying GFP or firefly luciferase genes were characterized in gene transduction, plaque-forming, and replication in vitro or in vivo by observing the expression of reporter genes. The results indicated that replication-competent vectors presented relevant properties of wild-type MAdV-1 very well. By constructing viruses bearing exogenous fragments with increasing size, it was found that MAdV-1 could tolerate an insertion up to 3.3 kb. Collectively, a replication-competent MAdV-1 vector system was established, which simplified procedures for the change of transgene or modification of E1, fiber, E3, or E4 genes.
Collapse
Affiliation(s)
- Zhichao Zhang
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Xiaojuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Wenzhe Hou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Xiaohui Zou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Yongjin Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Shuqing Liu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Zhuozhuang Lu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| |
Collapse
|
7
|
Okitsu S, Khamrin P, Hikita T, Onda Y, Ngan PTK, Hayakawa S, Maneekarn N, Ushijima H. Remarkable increase in the detection and molecular characterization of adenovirus F41 in children with acute gastroenteritis in Japan, 2017-2023. J Med Virol 2024; 96:e29615. [PMID: 38628102 DOI: 10.1002/jmv.29615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Human adenovirus (HAdV) is one of the causative viruses of acute gastroenteritis (AGE) in children worldwide. Species F is known to be enteric adenovirus (genotypes 40 and 41) detected in stool samples. In Japan, we conducted an epidemiological study and molecular characterization of HAdV before and after the COVID-19 pandemic from 2017 to 2023. Among 821 patients, HAdV was detected in 118 AGE cases (14.4%). During a period of 6 years, the HAdV detection rates for each year were relatively low at 3.7% and 0%, in 2017-2018, and 2020-2021, respectively. However, the detection rate increased to remarkably high rates, ranging from 13.3% to 27.3% in the other 4-year periods. Of these HAdV-positive strains, 83.1% were F41 genotypes and 16.9% were other genotypes (A31, B3, C1, C2/C6, and C5). Phylogenetic analyses of the nucleotide and deduced amino acid sequences of the full-length hexon gene demonstrated that HAdV-F41 strains were comprised of three clades, and each clade was distributed across the study period from 2017 to 2023. Analysis of deduced amino acid sequences of the hexon gene of the representative HAdV-F41 strains from each clade revealed numerous amino acid substitutions across hypervariable regions (HVRs) from HVR-1 to HVR-7, two insertions in HVR-1 and HVR-7, and two deletions in HVR-1 and HVR-2 of the hexon gene compared to those of the prototype strain, particularly, those of clade 3 HAdV-F41 strains. The findings suggested that the HAdV-F41 of each clade was stable, conserved, and co-circulated for over two decades in Japan.
Collapse
Affiliation(s)
- Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Pattara Khamrin
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | | | - Yuko Onda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Pham Thi Kim Ngan
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Chiba, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Wang P, Shao Y, Yang X, Zhang W, Zhou J, Huang F, Liu S, Zheng J, Wu C, Li S. Construction of a bivalent vaccine candidate against HAdV4/HAdV7 based on capsid-display strategy via Red-homologous recombination and counter-selection methodology. BIOSAFETY AND HEALTH 2024; 6:70-79. [PMID: 40078946 PMCID: PMC11895023 DOI: 10.1016/j.bsheal.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2025] Open
Abstract
Human adenoviruses (HAdVs) are major respiratory pathogens. Specifically, human adenovirus type 4 (HAdV4) and human adenovirus type 7 (HAdV7) are known for causing fever and pneumonia, with documented cases of fatalities among the population. In recent years, HAdV4/HAdV7 has been implicated in causing substantial outbreaks, leading to increased morbidity in multiple countries. Most HAdV4 and HAdV7 infections have been reported in North America, Asia, Europe, Africa, South America, Oceania, and the Middle East. Most fatalities occurred in North America (the United States) and Asia (China and Singapore). Engineered recombinant adenoviruses have played a crucial role as vaccine vectors. In this study, we constructed a recombinant adenovirus, Ad4ITRmut-Ad7E3, and evaluated it in vitro and in vivo. We observed that the replication rate of Ad4ITRmut-Ad7E3 was lower than that of the RI-67 strain, indicating that the mutation of inverted terminal repeats (ITRs) weakened the replication ability of HAdV4. Immunization of BALB/c mice with the bivalent Ad4ITRmut-Ad7E3 vaccine strain, administered by intraperitoneal injection and oral gavage, resulted in the elicitation of neutralizing antibodies targeting HAdV4 and HAdV7. This finding not only provides a novel method and technique for the efficient construction of a polyvalent recombinant adenovirus vaccine candidate against HAdV4 and HAdV7 but also against other prevalent adenovirus serotypes such as HAdV3, HAdV11, HAdV14, and HAdV55, from various regions.
Collapse
Affiliation(s)
- Peng Wang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yunting Shao
- School of Basic Medical Sciences, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Xichun Yang
- Lab of Microbiological Engineering, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Wenning Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Jianguang Zhou
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Fang Huang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Shuang Liu
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Jiping Zheng
- Lab of Microbiological Engineering, School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Chengjun Wu
- School of Basic Medical Sciences, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Shanhu Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| |
Collapse
|
9
|
Shin DH, Jiang H, Gillard AG, Kim D, Fan X, Singh SK, Nguyen TT, Sohoni SS, Lopez-Rivas AR, Parthasarathy A, Ene CI, Gumin J, Lang FF, Alonso MM, Gomez-Manzano C, Fueyo J. Chimeric oncolytic adenovirus evades neutralizing antibodies from human patients and exhibits enhanced anti-glioma efficacy in immunized mice. Mol Ther 2024; 32:722-733. [PMID: 38311852 PMCID: PMC10928285 DOI: 10.1016/j.ymthe.2024.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
Oncolytic viruses are a promising treatment for patients with high-grade gliomas, but neutralizing antibodies can limit their efficacy in patients with prior virus exposure or upon repeated virus injections. Data from a previous clinical trial using the oncolytic adenovirus Delta-24-RGD showed that generation of anti-viral neutralizing antibodies may affect the long-term survival of glioma patients. Past studies have examined the effects of neutralizing antibodies during systemic virus injections, but largely overlooked their impact during local virus injections into the brain. We found that immunoglobulins colocalized with viral proteins upon local oncolytic virotherapy of brain tumors, warranting a strategy to prevent virus neutralization and maximize oncolysis. Thus, we generated a chimeric virus, Delta-24-RGD-H43m, by replacing the capsid protein HVRs from the serotype 5-based Delta-24-RGD with those from the rare serotype 43. Delta-24-RGD-H43m evaded neutralizing anti-Ad5 antibodies and conferred a higher rate of long-term survival than Delta-24-RGD in glioma-bearing mice. Importantly, Delta-24-RGD-H43m activity was significantly more resistant to neutralizing antibodies present in sera of glioma patients treated with Delta-24-RGD during a phase 1 clinical trial. These findings provide a framework for a novel treatment of glioma patients that have developed immunity against Delta-24-RGD.
Collapse
Affiliation(s)
- Dong Ho Shin
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Jiang
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew G Gillard
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Debora Kim
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuejun Fan
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sanjay K Singh
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Teresa T Nguyen
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sagar S Sohoni
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andres R Lopez-Rivas
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Akhila Parthasarathy
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chibawanye I Ene
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joy Gumin
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Frederick F Lang
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marta M Alonso
- Department of Pediatrics, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Candelaria Gomez-Manzano
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Juan Fueyo
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Scarsella L, Ehrke-Schulz E, Paulussen M, Thal SC, Ehrhardt A, Aydin M. Advances of Recombinant Adenoviral Vectors in Preclinical and Clinical Applications. Viruses 2024; 16:377. [PMID: 38543743 PMCID: PMC10974029 DOI: 10.3390/v16030377] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 05/23/2024] Open
Abstract
Adenoviruses (Ad) have the potential to induce severe infections in vulnerable patient groups. Therefore, understanding Ad biology and antiviral processes is important to comprehend the signaling cascades during an infection and to initiate appropriate diagnostic and therapeutic interventions. In addition, Ad vector-based vaccines have revealed significant potential in generating robust immune protection and recombinant Ad vectors facilitate efficient gene transfer to treat genetic diseases and are used as oncolytic viruses to treat cancer. Continuous improvements in gene delivery capacity, coupled with advancements in production methods, have enabled widespread application in cancer therapy, vaccine development, and gene therapy on a large scale. This review provides a comprehensive overview of the virus biology, and several aspects of recombinant Ad vectors, as well as the development of Ad vector, are discussed. Moreover, we focus on those Ads that were used in preclinical and clinical applications including regenerative medicine, vaccine development, genome engineering, treatment of genetic diseases, and virotherapy in tumor treatment.
Collapse
Affiliation(s)
- Luca Scarsella
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Michael Paulussen
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
| | - Serge C. Thal
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Malik Aydin
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| |
Collapse
|
11
|
Yodmeeklin A, Kumthip K, Ukarapol N, Ushijima H, Maneekarn N, Khamrin P. Diverse genotypes of human enteric and non-enteric adenoviruses circulating in children hospitalized with acute gastroenteritis in Thailand, from 2018 to 2021. Microbiol Spectr 2023; 11:e0117323. [PMID: 37589466 PMCID: PMC10580837 DOI: 10.1128/spectrum.01173-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/28/2023] [Indexed: 08/18/2023] Open
Abstract
Human adenovirus (HAdV) is a common viral pathogen that causes diarrhea in children worldwide. The aim of this study was to investigate the prevalence and genotype diversity of HAdV strains circulating in children admitted to the hospitals with acute gastroenteritis (AGE) in Chiang Mai, Thailand, from 2018 to 2021. A total of 1,790 stool samples were screened for HAdV by PCR method, and 80 (4.5%) were positive for HAdV. Of these, children under 5 years of age accounted for 90.0% of HAdV-positive cases with the highest infection rate at the age group of 48-60 months old. The infection rate was not significantly different between boys and girls. The HAdV infection was detected sporadically throughout the year without a discrete seasonal pattern. Five species of both enteric and non-enteric HAdVs (A, B, C, E, and F) with 10 different genotypes, including HAdV-F41 (25.0%), HAdV-B3 (17.5%), HAdV-F40 (16.3%), HAdV-C1 (15.0%), HAdV-C5 (7.5%), HAdV-C2 (6.3%), HAdV-B7 (5.0%), HAdV-A12 (3.8%), HAdV-E4 (2.5%), and HAdV-B11 (1.3%), were detected in this study. In conclusion, our study reported the prevalence and seasonality of HAdV infection with a wide variety of HAdV genotypes circulating in children hospitalized with AGE during a period of 2018-2021 in Chiang Mai, Thailand. IMPORTANCE In the present study, the prevalence of human adenovirus (HAdV) infection in children with acute gastroenteritis (AGE) in Chiang Mai, Thailand, from 2018 to 2021 was detected at 4.5%. Diverse species and genotypes of HAdVs (HAdV-A12, HAdV-B3, HAdV-B7, HAdV-B11, HAdV-C1, HAdV-C2, HAdV-C5, HAdV-E4, HAdV-F40, and HAdV-F41) had been identified. The highest infection rate was found in children aged 48-60 months old. The HAdV infection was detected sporadically throughout the year. These findings imply that a wide variety of HAdV genotypes circulate in pediatric patients with AGE in Chiang Mai, Thailand.
Collapse
Affiliation(s)
- Arpaporn Yodmeeklin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Nuthapong Ukarapol
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
12
|
Huang S, Wang H, Li L, Xiang W, Song Z, Li W. Molecular epidemiology and phylogenetic analyses of human adenovirus in pediatric patients with acute respiratory infections from Hangzhou during COVID-19 pandemic. Front Pediatr 2023; 11:1237074. [PMID: 37614906 PMCID: PMC10442704 DOI: 10.3389/fped.2023.1237074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Background Acute Respiratory Infections (ARIs) are a major cause of morbidity and mortality worldwide. Human Adenovirus (HAdV), responsible for 5%-10% of children's ARIs, is one of the most prevalent pathogens. Our study aimed to analyze the epidemiology and phylogenesis of HAdV in pediatric patients with ARIs in Hangzhou during the COVID-19 pandemic. Method Between November 2020 and March 2021, we collected 1,442 nasopharyngeal swabs from children with ARIs at Children's Hospital, Zhejiang University School of Medicine. Epidemiological statistics, phylogenetic and amino acid (AA) mutation analysis were conducted. Results Our findings revealed that 386 (26.77%) samples tested positive for HAdV, with the highest rate in children aged 6-18 years and the lowest in children aged 0-1 year, indicating a different age preference of HAdV compared with pre-pandemic period. Outpatients had a significantly higher positive rate than inpatients. Moreover, patients with HAdV-coinfection exhibited more severe clinical symptoms than those with HAdV-single infection. Our phylogenetic analysis demonstrated that species HAdV-C (type 1, 2, 6) were the predominant circulating strains in Hangzhou during the COVID-19 pandemic. Further AA mutation analysis identified seventeen mutations of particular concern for biological characterization. Conclusion In conclusion, our study provides valuable epidemiological and molecular data that will aid in epidemiological surveillance, antiviral therapies and the development of specific vaccine types, leading to improve public health.
Collapse
Affiliation(s)
- Shuangshuang Huang
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hao Wang
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lin Li
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Wenqing Xiang
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhijian Song
- Department of Bioinformatics and Computational Oncology, OrigiMed, Shanghai, China
| | - Wei Li
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
13
|
Liu L, Qian Y, Han Z, Jia L, Dong H, Zhao L, Zhu R. Genetic Evolution and Variation of Human Adenovirus Serotype 31 Epidemic Strains in Beijing, China, during 2010-2022. Viruses 2023; 15:1240. [PMID: 37376540 DOI: 10.3390/v15061240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Human adenovirus serotype 31 (HAdV-31) is closely associated with gastroenteritis in children and can cause fatal systemic disseminated diseases in immunocompromised patients. The lack of genomic data for HAdV-31, especially in China, will greatly limit research on its prevention and control. Sequencing and bioinformatics analyses were performed for HAdV-31 strains from diarrheal children in Beijing, China, during 2010-2022. Three capsid protein genes (hexon, penton, and fiber) were obtained in 37 cases, including one in which the whole genome was sequenced. HAdV-31 strains clustered into three distinct clades (I-III) in a phylogenetic tree constructed based on concatenated genes and the whole genome; the endemic strains only gathered into clade II, and most of the reference strains clustered into clade I. Compared with penton and hexon, fiber had a faster evolutionary rate (1.32 × 10-4 substitutions/site/year), an earlier divergence time (1697), lower homology (98.32-100% at the amino acid level), and greater genetic variation (0.0032). Four out of the six predicted positive selection pressure codons were also in the knob of fiber. These results reveal the molecular evolution characteristics and variations of HAdV-31 in Beijing, and fiber may be one of the main evolution driving forces.
Collapse
Affiliation(s)
- Liying Liu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Beijing 100020, China
| | - Yuan Qian
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Beijing 100020, China
| | - Zhenzhi Han
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Beijing 100020, China
| | - Liping Jia
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Beijing 100020, China
| | - Huijin Dong
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Beijing 100020, China
| | - Linqing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Beijing 100020, China
| | - Runan Zhu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Beijing 100020, China
| |
Collapse
|
14
|
Marquez-Martinez S, Vijayan A, Khan S, Zahn R. Cell entry and innate sensing shape adaptive immune responses to adenovirus-based vaccines. Curr Opin Immunol 2023; 80:102282. [PMID: 36716578 DOI: 10.1016/j.coi.2023.102282] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 01/30/2023]
Abstract
Nonreplicating adenovirus-based vectors have been successfully implemented as prophylactic vaccines against infectious viral diseases and induce protective cellular and humoral responses. Differences in the mechanisms of cellular entry or endosomal escape of these vectors contribute to differences in innate immune sensing between adenovirus species. Innate immune responses to adenovirus-based vaccines, such as interferon signaling, have been reported to affect the development of adaptive responses in preclinical studies, although limited data are available in humans. Understanding the mechanisms of these early events is critical for the development of vaccines that elicit effective and durable adaptive immune responses while maintaining an acceptable reactogenicity profile.
Collapse
Affiliation(s)
- Sonia Marquez-Martinez
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands.
| | - Aneesh Vijayan
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| | - Selina Khan
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| | - Roland Zahn
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| |
Collapse
|
15
|
Tian J, Xu Z, Moitra R, Palmer DJ, Ng P, Byrnes AP. Binding of adenovirus species C hexon to prothrombin and the influence of hexon on vector properties in vitro and in vivo. PLoS Pathog 2022; 18:e1010859. [PMID: 36156097 PMCID: PMC9536601 DOI: 10.1371/journal.ppat.1010859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/06/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
The majority of adenovirus (Ad) vectors are based on human Ad type 5, which is a member of Ad species C. Species C also includes the closely-related types 1, 2, 6, 57 and 89. It is known that coagulation factors bind to Ad5 hexon and play a key role in the liver tropism of Ad5 vectors, but it is unclear how coagulation factors affect vectors derived from other species C Ads. We evaluated species C Ad vectors both in vitro and following intravenous injection in mice. To assess the impact of hexon differences, we constructed chimeric Ad5 vectors that contain the hexon hypervariable regions from other species C types, including vectors with hexon mutations that decreased coagulation factor binding. After intravenous injection into mice, vectors with Ad5 or Ad6 hexon had strong liver tropism, while vectors with chimeric hexon from other Ad types had weaker liver tropism due to inhibition by natural antibodies and complement. In addition, we discovered a novel ability of hexon to bind prothrombin, which is the most abundant coagulation factor in blood, and we found striking differences in the affinity of Ads for human, mouse and bovine coagulation factors. When compared to Ad5, vectors with non-Ad5 species C hexons had considerably higher affinity for both human and mouse prothrombin. Most of the vectors tested were strongly dependent on coagulation factors for liver transduction, but vectors with chimeric Ad6 hexon showed much less dependence on coagulation factors than other vectors. We found that in vitro neutralization experiments with mouse serum predicted in vivo behavior of Ad5 vectors, but in vitro experiments did not predict the in vivo behavior of vectors based on other Ad types. In sum, hexons from different human Ad species C viruses confer diverse properties on vectors, including differing abilities to target the liver.
Collapse
Affiliation(s)
- Jie Tian
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - Zhili Xu
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - Rituparna Moitra
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - Donna J. Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew P. Byrnes
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
Cancer is one of the leading causes of death in the world, which is the second after heart diseases. Adenoviruses (Ads) have become the promise of new therapeutic strategy for cancer treatment. The objective of this review is to discuss current advances in the applications of adenoviral vectors in cancer therapy. Adenoviral vectors can be engineered in different ways so as to change the tumor microenvironment from cold tumor to hot tumor, including; 1. by modifying Ads to deliver transgenes that codes for tumor suppressor gene (p53) and other proteins whose expression result in cell cycle arrest 2. Ads can also be modified to express tumor specific antigens, cytokines, and other immune-modulatory molecules. The other strategy to use Ads in cancer therapy is to use oncolytic adenoviruses, which directly kills tumor cells. Gendicine and Advexin are replication-defective recombinant human p53 adenoviral vectors that have been shown to be effective against several types of cancer. Gendicine was approved for treatment of squamous cell carcinoma of the head and neck by the Chinese Food and Drug Administration (FDA) agency in 2003 as a first-ever gene therapy product. Oncorine and ONYX-015 are oncolytic adenoviral vectors that have been shown to be effective against some types of cancer. The Chiness FDA agency has also approved Oncorin for the treatment of head and neck cancer. Ads that were engineered to express immune-stimulatory cytokines and other immune-modulatory molecules such as TNF-α, IL-2, BiTE, CD40L, 4-1BBL, GM-CSF, and IFN have shown promising outcome in treatment of cancer. Ads can also improve therapeutic efficacy of immune checkpoint inhibitors and adoptive cell therapy (Chimeric Antigen Receptor T Cells). In addition, different replication-deficient adenoviral vectors (Ad5-CEA, Ad5-PSA, Ad-E6E7, ChAdOx1-MVA and Ad-transduced Dendritic cells) that were tested as anticancer vaccines have been demonstrated to induce strong antitumor immune response. However, the use of adenoviral vectors in gene therapy is limited by several factors such as pre-existing immunity to adenoviral vectors and high immunogenicity of the viruses. Thus, innovative strategies must be continually developed so as to overcome the obstacles of using adenoviral vectors in gene therapy.
Collapse
Affiliation(s)
- Sintayehu Tsegaye Tseha
- Lecturer of Biomedical Sciences, Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
17
|
Species Fowl aviadenovirus B Consists of a Single Serotype despite Genetic Distance of FAdV-5 Isolates. Viruses 2022; 14:v14020248. [PMID: 35215844 PMCID: PMC8880664 DOI: 10.3390/v14020248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/08/2023] Open
Abstract
Fowl adenoviruses (FAdVs) are infectious agents, mainly of chickens, which cause economic losses to the poultry industry. Only a single serotype, namely FAdV-5, constitutes the species Fowl aviadenovirus B (FAdV-B); however, recently, phylogenetic analyses have identified divergent strains of the species, implicating a more complex scenario and possibly a novel serotype. Therefore, field isolates of the species were collected to investigate the contemporary diversification within FAdV-B, including traditional serotyping. Full genomes of fourteen FAdV-B strains were sequenced and four strains, possessing discriminatory mutations in the antigenic domains, were compared using virus cross-neutralization. Essentially, strains with identical antigenic signatures to that of the first described divergent strain were found in the complete new dataset. While chicken antiserum against FAdV-5 reference strain 340 could not neutralize any of the newly isolated viruses, low homologous/heterologous titer ratios were measured reciprocally. Although they argue against a new serotype, our results indicate the emergence of escape variants in FAdV-B. Charge-influencing amino acid substitutions accounted for only a few mutations between the strains; still, these enabled one-way cross-neutralization only. These findings underline the continued merit of the cross-neutralization test as the gold standard for serotyping, complementary to advancing sequence data, and provide a snapshot of the actual diversity and evolution of species FAdV-B.
Collapse
|
18
|
Adel A, Mohamed AAE, Samir M, Hagag NM, Erfan A, Said M, Arafa AES, Hassan WMM, El Zowalaty ME, Shahien MA. Epidemiological and molecular analysis of circulating fowl adenoviruses and emerging of serotypes 1, 3, and 8b in Egypt. Heliyon 2022; 7:e08366. [PMID: 34977398 PMCID: PMC8683735 DOI: 10.1016/j.heliyon.2021.e08366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/31/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Fowl adenoviruses (FAdVs) are a large group of viruses of different serotypes. They are responsible for inclusion body hepatitis, adenoviral gizzard erosion, and hepatitis hydropericardium syndrome. The present study presents a comprehensive overview of FAdVs in Egypt, with a focus on the epidemiological features of virus serotypes across the country. We conducted molecular investigation of multiple FAdV species based on the genetic signature of hypervariable regions 1–4 in the loop1 (L1) region of the hexon gene. Epidemiologically, the Nile Delta governorates showed high positivity of FAdVs, which were more commonly found in broilers than in layers. Genetically, species D and serotype 8a/E dominated, and the findings also revealed the emergence of new FAdV serotypes 1, 3, and 8b. The comparative analysis of hypervariable regions in the L1 region of the hexon gene revealed variables specific to each virus serotype. In silico predictions of L1 region revealed variations in the molecular structure and predicted the antigenic epitopes which may affect the cross-antigenicity between the different FAdV species and serotypes.
Collapse
Affiliation(s)
- Amany Adel
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Ahmed Abd Elhalem Mohamed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mahmoud Samir
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Naglaa M Hagag
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Ahmed Erfan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mahmoud Said
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Abd El Satar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Wafaa M M Hassan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mohamed E El Zowalaty
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE 75 123, Sweden
| | - Momtaz A Shahien
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| |
Collapse
|
19
|
Wang Y, Zhang Z, Shang L, Gao H, Du X, Li F, Gao Y, Qi G, Guo W, Qu Z, Dong T. Immunological Study of Reconstructed Common Ancestral Sequence of Adenovirus Hexon Protein. Front Microbiol 2021; 12:717047. [PMID: 34777273 PMCID: PMC8578728 DOI: 10.3389/fmicb.2021.717047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Aim: To reconstruct the ancestral sequence of human adenoviral hexon protein by combining sequence variations and structural information. And to provide a candidate hexon protein for developing new adenoviral vector capable of escaping the pre-existing immunity in healthy populations. Methods: The sequences of 74 adenovirus-type strains were used to predict the ancestral sequence of human adenovirus hexon protein using FastML and MEGA software. The three-dimensional structure model was built using homology modeling methods. The immunological features of ancestral loop 1 and loop 2 regions of sequences were tested using protein segments expressed in a prokaryotic expression system and polypeptides synthesized with human serum samples. Results: The tower region of the hexon protein had the highest sequence variability, while the neck and base regions remained constant among different types. The modern strains successfully predicted the common ancestral sequence of the human adenovirus hexon. The positive sera against neutralizing epitopes on the common ancestor of adenoviral hexon were relatively rare among healthy adults. Conclusion: The existing strains inferred the common ancestor of human adenoviruses, with epitopes never observed in the current human strains. The predicted common ancestor hexon is a good prospect in the improvement of adenovirus vectors.
Collapse
Affiliation(s)
- Yingchen Wang
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Zhe Zhang
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Lei Shang
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Hong Gao
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Xiqiao Du
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China.,Harbin Center for Disease Control and Prevention, Harbin, China
| | - Falong Li
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Ya Gao
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Guiyun Qi
- The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Weiyuan Guo
- The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhangyi Qu
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China.,Department of Natural Focus Disease Control, Institute of Environment-Associated Disease, Sino-Russia Joint Medical Research Center, Harbin Medical University, Harbin, China
| | - Tuo Dong
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Sohaimi NM, Hair-Bejo M. A recent perspective on fiber and hexon genes proteins analyses of fowl adenovirus toward virus infectivity-A review. Open Vet J 2021; 11:569-580. [PMID: 35070851 PMCID: PMC8770197 DOI: 10.5455/ovj.2021.v11.i4.6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/21/2021] [Indexed: 11/06/2022] Open
Abstract
Fowl adenovirus (FAdV) is a double-stranded DNA virus with a non-enveloped structure comprising three major proteins known as hexon, penton, and fiber. Molecular analysis which emphasizes on hexon and fiber proteins is currently the major focus of curiosity for FAdV antigenicity and pathogenicity. Recently, disease outbreaks associated with FAdV infections such as inclusion body hepatitis, hepatitis hydropericardium syndrome, and gizzard erosion, were commonly reported and continue to increase worldwide. Studies on the virulence gene of the virus were intensively conducted to provide a better understanding on the role of these major capsid proteins in the development of a safe and effective vaccine against the disease in the poultry industry. This paper highlights the variations of the fiber and hexon genes, their importance in genotypes and serotypes differentiation, and infectivity between FAdV strains. It appears that the L1 loop of hexon and the knob of fiber genes are the infectivity markers for FAdV infection. The fiber-2 protein plays a major role in FAdV pathogenicity than the hexon protein, while the fiber-1 protein is important for viral replication and assembly, regardless of virulence capability instead of infectivity. The hexon protein plays a major role in virus infectivity and tissue tropism. These findings could further enhance the knowledge of FAdV strains’ classification and evolution, diagnosis, and strategies to prevent and control FAdV infection and outbreaks in chicken farms.
Collapse
Affiliation(s)
- Norfitriah Mohamed Sohaimi
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Hair-Bejo
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
21
|
Rojas JM, Sevilla N, Martín V. A New Look at Vaccine Strategies Against PPRV Focused on Adenoviral Candidates. Front Vet Sci 2021; 8:729879. [PMID: 34568477 PMCID: PMC8455998 DOI: 10.3389/fvets.2021.729879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is a virus that mainly infects goats and sheep causing significant economic loss in Africa and Asia, but also posing a serious threat to Europe, as recent outbreaks in Georgia (2016) and Bulgaria (2018) have been reported. In order to carry out the eradication of PPRV, an objective set for 2030 by the Office International des Epizooties (OIE) and the Food and Agriculture Organization of the United Nations (FAO), close collaboration between governments, pharmaceutical companies, farmers and researchers, among others, is needed. Today, more than ever, as seen in the response to the SARS-CoV2 pandemic that we are currently experiencing, these goals are feasible. We summarize in this review the current vaccination approaches against PPRV in the field, discussing their advantages and shortfalls, as well as the development and generation of new vaccination strategies, focusing on the potential use of adenovirus as vaccine platform against PPRV and more broadly against other ruminant pathogens.
Collapse
Affiliation(s)
| | | | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
22
|
Liu L, Qian Y, Jia L, Dong H, Deng L, Huang H, Zhao L, Zhu R. Genetic diversity and molecular evolution of human adenovirus serotype 41 strains circulating in Beijing, China, during 2010-2019. INFECTION GENETICS AND EVOLUTION 2021; 95:105056. [PMID: 34481061 DOI: 10.1016/j.meegid.2021.105056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/01/2021] [Accepted: 08/29/2021] [Indexed: 11/20/2022]
Abstract
Human adenovirus serotype 41 (HAdV-F41) is an important pathogen that causes diarrhea in children. However, the data on its molecular genetic characteristics and evolutionary history are still neither comprehensive nor sufficient. Four capsid protein genes from 58 HAdV-F41-positive specimens taken from diarrheal children in Beijing during 2010-2019 were amplified and analyzed. Variant amino acids in the hexon gene (18 sites) and short fiber gene (4 sites) clustered these strains into two clades and four subclades. The deletion of 15 amino acids found in the gene seemed to have little effect on the genomic strain cluster same as to penton gene. The HAdV-F41 strains had high diversity, as assessed from the intraspecific recombination of hexon, short fiber and long fiber. The molecular evolutionary rate of HAdV-F41's concatenated genes was 4.07 × 10-5 substitutions/site/year, and it diverged from the most recent common ancestor in 1720. Apart from in the penton gene, positive selection codons were predicted in the other three genes, which may play a synergistic role in the evolution of HAdV-F41. These results provide new insights for understanding the characteristics of infectivity and developing vectors and vaccine vehicles for HAdV-F41.
Collapse
Affiliation(s)
- Liying Liu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Beijing 100020, China
| | - Yuan Qian
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Beijing 100020, China
| | - Liping Jia
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Beijing 100020, China
| | - Huijin Dong
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Beijing 100020, China
| | - Li Deng
- Infectious Department, Children's Hospital of Capital Institute of Pediatrics, 2 Yabao Road, Beijing 100020, China
| | - Hui Huang
- Infectious Department, Children's Hospital of Capital Institute of Pediatrics, 2 Yabao Road, Beijing 100020, China
| | - Linqing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Beijing 100020, China
| | - Runan Zhu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, 2 Yabao Road, Beijing 100020, China.
| |
Collapse
|
23
|
Shahryari A, Burtscher I, Nazari Z, Lickert H. Engineering Gene Therapy: Advances and Barriers. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alireza Shahryari
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- School of Medicine Department of Human Genetics Technical University of Munich Klinikum Rechts der Isar 81675 München Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
- Stem Cell Research Center Golestan University of Medical Sciences Gorgan 49341‐74515 Iran
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
| | - Zahra Nazari
- Department of Biology School of Basic Sciences Golestan University Gorgan 49361‐79142 Iran
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- School of Medicine Department of Human Genetics Technical University of Munich Klinikum Rechts der Isar 81675 München Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
| |
Collapse
|
24
|
Yan Y, Jing S, Feng L, Zhang J, Zeng Z, Li M, Zhao S, Ou J, Lan W, Guan W, Wu X, Wu J, Seto D, Zhang Q. Construction and Characterization of a Novel Recombinant Attenuated and Replication-Deficient Candidate Human Adenovirus Type 3 Vaccine: "Adenovirus Vaccine Within an Adenovirus Vector". Virol Sin 2021; 36:354-364. [PMID: 32458297 PMCID: PMC7248191 DOI: 10.1007/s12250-020-00234-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/13/2020] [Indexed: 01/09/2023] Open
Abstract
Human adenoviruses (HAdVs) are highly contagious and result in large number of acute respiratory disease (ARD) cases with severe morbidity and mortality. Human adenovirus type 3 (HAdV-3) is the most common type that causes ARD outbreaks in Asia, Europe, and the Americas. However, there is currently no vaccine approved for its general use. The hexon protein contains the main neutralizing epitopes, provoking strong and lasting immunogenicity. In this study, a novel recombinant and attenuated adenovirus vaccine candidate against HAdV-3 was constructed based on a commercially-available replication-defective HAdV-5 gene therapy and vaccine vector. The entire HAdV-3 hexon gene was integrated into the E1 region of the vector by homologous recombination using a bacterial system. The resultant recombinants expressing the HAdV-3 hexon protein were rescued in AD293 cells, identified and characterized by RT-PCR, Western blots, indirect immunofluorescence, and electron microscopy. This potential vaccine candidate had a similar replicative efficacy as the wild-type HAdV-3 strain. However, and importantly, the vaccine strain had been rendered replication-defective and was incapable of replication in A549 cells after more than twenty-generation passages in AD293 cells. This represents a significant safety feature. The mice immunized both intranasally and intramuscularly by this vaccine candidate raised significant neutralizing antibodies against HAdV-3. Therefore, this recombinant, attenuated, and safe adenovirus vaccine is a promising HAdV-3 vaccine candidate. The strategy of using a clinically approved and replication-defective HAdV-5 vector provides a novel approach to develop universal adenovirus vaccine candidates against all the other types of adenoviruses causing ARDs and perhaps other adenovirus-associated diseases.
Collapse
Affiliation(s)
- Yuqian Yan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shuping Jing
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
- Microbiological Laboratory, Zhuhai Center for Disease Control and Prevention, Zhuhai, 519000, China
| | - Liqiang Feng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Zhiwei Zeng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Min Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shan Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Junxian Ou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wendong Lan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wenyi Guan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xiaowei Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
25
|
Tufail S, Shah MA, Zafar M, Asif TA, Shehzad A, Shah MS, Habib M, Saleemi MK, Muddassar M, Mirza O, Iqbal M, Rahman M. Identification of potent epitopes on hexon capsid protein and their evaluation as vaccine candidates against infections caused by members of Adenoviridae family. Vaccine 2021; 39:3560-3564. [PMID: 34030897 DOI: 10.1016/j.vaccine.2021.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/02/2021] [Accepted: 05/07/2021] [Indexed: 11/28/2022]
Abstract
Adenoviruses cause economically important diseases in vertebrates. Effective vaccines against adenoviral diseases are currently lacking. Here, we report a highly conserved epitopic region on hexon proteins of adenoviruses that generate a strong immune response when used as a virus-like-particle (VLP) vaccine, produced by inserting the epitopic region into the core protein of hepatitis B virus. For evaluation of its protective efficacy, the epitopic region from a representative adenovirus, fowl adenovirus serotype 4 (FAdV-4), was tested as a VLP vaccine which conferred 90% protection against challenge with a virulent FAdV-4 isolate in chickens. Importantly, such a high level of protection is not achieved when the epitopic region is employed as a part of a subunit vaccine. As the sequence and the structure of the epitopic region are highly conserved in hexon proteins of adenoviruses, the epitopic region could be employed as a promising VLP vaccine candidate against adenoviral diseases, in general.
Collapse
Affiliation(s)
- Soban Tufail
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan
| | - Majid Ali Shah
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan
| | - Maryam Zafar
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan
| | - Tayyab Ali Asif
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan
| | - Aamir Shehzad
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan
| | - Muhammad Salahuddin Shah
- Vaccine Development group, Animal Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Mudasser Habib
- Vaccine Development group, Animal Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Kashif Saleemi
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS-University Islamabad, Park Road, Islamabad, Pakistan
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mazhar Iqbal
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan
| | - Moazur Rahman
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan; School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
26
|
Adenovirus Structure: What Is New? Int J Mol Sci 2021; 22:ijms22105240. [PMID: 34063479 PMCID: PMC8156859 DOI: 10.3390/ijms22105240] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Adenoviruses are large (~950 Å) and complex non-enveloped, dsDNA icosahedral viruses. They have a pseudo-T = 25 triangulation number with at least 12 different proteins composing the virion. These include the major and minor capsid proteins, core proteins, maturation protease, terminal protein, and packaging machinery. Although adenoviruses have been studied for more than 60 years, deciphering their architecture has presented a challenge for structural biology techniques. An outstanding event was the first near-atomic resolution structure of human adenovirus type 5 (HAdV-C5), solved by cryo-electron microscopy (cryo-EM) in 2010. Discovery of new adenovirus types, together with methodological advances in structural biology techniques, in particular cryo-EM, has lately produced a considerable amount of new, high-resolution data on the organization of adenoviruses belonging to different species. In spite of these advances, the organization of the non-icosahedral core is still a great unknown. Nevertheless, alternative techniques such as atomic force microscopy (AFM) are providing interesting glimpses on the role of the core proteins in genome condensation and virion stability. Here we summarize the current knowledge on adenovirus structure, with an emphasis on high-resolution structures obtained since 2010.
Collapse
|
27
|
Marabini R, Condezo GN, Krupovic M, Menéndez-Conejero R, Gómez-Blanco J, San Martín C. Near-atomic structure of an atadenovirus reveals a conserved capsid-binding motif and intergenera variations in cementing proteins. SCIENCE ADVANCES 2021; 7:eabe6008. [PMID: 33789897 PMCID: PMC8011978 DOI: 10.1126/sciadv.abe6008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Of five known adenovirus genera, high-resolution structures are available only for mammalian-infecting mastadenoviruses. We present the first high-resolution structure of an adenovirus with nonmammalian host: lizard atadenovirus LAdV-2. We find a large conformational difference in the internal vertex protein IIIa between mast- and atadenoviruses, induced by the presence of an extended polypeptide. This polypeptide, and α-helical clusters beneath the facet, likely correspond to genus-specific proteins LH2 and p32k. Another genus-specific protein, LH3, with a fold typical of bacteriophage tailspikes, contacts the capsid surface via a triskelion structure identical to that used by mastadenovirus protein IX, revealing a conserved capsid-binding motif and an ancient gene duplication event. Our data also suggest that mastadenovirus E1B-55 K was exapted from the atadenovirus-like LH3 protein. This work provides new information on the evolution of adenoviruses, emphasizing the importance of minor coat proteins for determining specific physicochemical properties of virions and most likely their tropism.
Collapse
Affiliation(s)
- Roberto Marabini
- Escuela Politécnica Superior, Universidad Autónoma de Madrid, Francisco Tomás y Valiente 11, 28049 Madrid, Spain
| | - Gabriela N Condezo
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Rosa Menéndez-Conejero
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Josué Gómez-Blanco
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carmen San Martín
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
28
|
Pérez-Illana M, Martínez M, Condezo GN, Hernando-Pérez M, Mangroo C, Brown M, Marabini R, San Martín C. Cryo-EM structure of enteric adenovirus HAdV-F41 highlights structural variations among human adenoviruses. SCIENCE ADVANCES 2021; 7:eabd9421. [PMID: 33627423 PMCID: PMC11425762 DOI: 10.1126/sciadv.abd9421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 05/24/2023]
Abstract
Enteric adenoviruses, one of the main causes of viral gastroenteritis in the world, must withstand the harsh conditions found in the gut. This requirement suggests that capsid stability must be different from that of other adenoviruses. We report the 4-Å-resolution structure of a human enteric adenovirus, HAdV-F41, and compare it with that of other adenoviruses with respiratory (HAdV-C5) and ocular (HAdV-D26) tropisms. While the overall structures of hexon, penton base, and internal minor coat proteins IIIa and VIII are conserved, we observe partially ordered elements reinforcing the vertex region, which suggests their role in enhancing the physicochemical capsid stability of HAdV-F41. Unexpectedly, we find an organization of the external minor coat protein IX different from all previously characterized human and nonhuman mastadenoviruses. Knowledge of the structure of enteric adenoviruses provides a starting point for the design of vectors suitable for oral delivery or intestinal targeting.
Collapse
Affiliation(s)
- Marta Pérez-Illana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Marta Martínez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gabriela N Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Mercedes Hernando-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Casandra Mangroo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Martha Brown
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Roberto Marabini
- Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
29
|
Chen SY, Liu W, Xu Y, Qiu S, Chen Y, Tian X, Zhou R. Epidemiology and Genetic Variabilities of Human Adenovirus Type 55 Reveal Relative Genome Stability Across Time and Geographic Space in China. Front Microbiol 2020; 11:606195. [PMID: 33343550 PMCID: PMC7738467 DOI: 10.3389/fmicb.2020.606195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
After the first outbreak in China in 2006, human adenovirus type 55 (HAdV-B55) has become a common pathogen causing life threatening pneumonia in northern China. However, HAdV-B55 infection has been rarely reported in southern China. Here, we collected throat swabs from 3,192 hospitalized children with acute respiratory disease (ARD) from May 2017 to April 2019 in Guangzhou, southern China, tested them for HAdV-B55 infection. Only one of 1,399 patients from May 2017 to April 2018 was HAdV-B55 positive; HAdV-B55 infections significantly increased with 10 of 1,792 patients testing positive since May 2018. HAdV-B55-267, isolated from a case of death, was sequenced for whole genomic analysis. Three other strains, HAdV-B55-Y16, -TY12, and -TY26, isolated earlier in patients from Shanxi, northern China, were also sequenced and analyzed. The four HAdV-B55 strains formed similar plaques, grew to similar titers, and resulted in similar typical cell pathogenic effects. HAdV-B55-267 formed a subclade with the prototype strain QS-DLL; strains HAdV-B55-Y16, -TY12, and -TY26 were closely related to strain QZ01. HAdV-B55 could be divided into two subtypes (HAdV-B55-a and -b) according to the presence or absence of the insertion of "CCATATCCGTGTT"; all strains isolated from China except for strain BJ01 belong to subtype b. HAdV-B55-267 had only one non-synonymous substitution comparing with strain QS-DLL, and all HAdV-B55 strains had highly conserved capsid proteins and few non-synonymous substitutions. This study suggests that HAdV-B55 is an important pathogen associated with ARD in Guangzhou since 2018, exhibiting the relative genome stability across time and geographic space in China.
Collapse
Affiliation(s)
| | | | | | | | | | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
Nguyen TTH, Le TA, Nguyen VH, Nguyen TU, Nguyen PT, Tran TTA, Nguyen QH, Hoang AT, Hoang MH, Le TS, Nguyen VS. Molecular typing of conjunctivitis-causing adenoviruses in Hanoi, Vietnam from 2017 to 2019 and complete genome analysis of the most prevalent type (HAdV-8). J Med Virol 2020; 92:3100-3110. [PMID: 32266999 DOI: 10.1002/jmv.25844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/12/2020] [Accepted: 04/06/2020] [Indexed: 11/11/2022]
Abstract
Adenoviral conjunctivitis is a common epidemic worldwide. In Vietnam, up to 80,000 patients are infected with adenoviral conjunctivitis annually. However, there are few investigations on the pathogenic adenoviruses that cause conjunctivitis. In total, 120 eye-swab samples were collected from patients with viral conjunctivitis symptoms in Hanoi, Vietnam from 2017 to 2019. Human adenoviruse (HAdV) was detected in 67 samples (55.83%) using polymerase chain reaction amplification of at least one of three HAdV-specific marker genes (hexon, penton, and fiber). Of the 67 HAdV samples, 46 samples could be analyzed by all three marker genes. DNA sequence analysis and phylogenetic tree building based on the three marker genes from the 46 HAdV samples revealed five different HAdV types associated with conjunctivitis in Hanoi, including HAdV-3 (4.3%), HAdV-4 (2.2%), HAdV-8 (89.1%), HAdV-37 (2.2%), and a potential recombinant type between types HAdV-8 and HAdV-3 (2.2%). This showed that HAdV-8 was the most common type identified in Hanoi. Complete genome analysis of HAdV-8 isolated from a Vietnamese patient (VN2017) using Sanger sequencing revealed 34 unique nucleotide changes, indicating that the adenovirus continuously accumulates new mutations. Hence, continuous surveillance of HAdV-8 changes in Vietnam is necessary in the future.
Collapse
MESH Headings
- Humans
- Vietnam/epidemiology
- Adenoviruses, Human/genetics
- Adenoviruses, Human/classification
- Adenoviruses, Human/isolation & purification
- Phylogeny
- Adenovirus Infections, Human/virology
- Adenovirus Infections, Human/epidemiology
- Genome, Viral/genetics
- Molecular Typing
- Male
- Conjunctivitis, Viral/virology
- Conjunctivitis, Viral/epidemiology
- Female
- Adult
- Whole Genome Sequencing
- Middle Aged
- Prevalence
- Sequence Analysis, DNA
- DNA, Viral/genetics
- Young Adult
- Genotype
- Adolescent
- Child
Collapse
Affiliation(s)
- Thi Thu Huyen Nguyen
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Tuan Anh Le
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Viet Ha Nguyen
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Thi Uyen Nguyen
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Phuong Thao Nguyen
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Thi Thuy Anh Tran
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Quang Hung Nguyen
- Faculty of General Diagnostic, National Hospital of Ophthalmology, Hanoi, Vietnam
| | - Anh Tuan Hoang
- Faculty of General Diagnostic, National Hospital of Ophthalmology, Hanoi, Vietnam
| | - My Hanh Hoang
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Tho Son Le
- Department of Molecular Genetics and Gene Technology, College of Forestry Biotechnology, Vietnam National Forestry University, Hanoi, Vietnam
| | - Van Sang Nguyen
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- Molecular and Cellular Biology Laboratory, Center for Life Science, Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
31
|
Panda S, Banik U, Adhikary AK. Bioinformatics analysis reveals four major hexon variants of human adenovirus type-3 (HAdV-3) as the potential strains for development of vaccine and siRNA-based therapeutics against HAdV-3 respiratory infections. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104439. [PMID: 32585339 PMCID: PMC7308778 DOI: 10.1016/j.meegid.2020.104439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/24/2020] [Accepted: 06/20/2020] [Indexed: 11/25/2022]
Abstract
Human adenovirus type 3 (HAdV-3) encompasses 15-87% of all adenoviral respiratory infections. The significant morbidity and mortality, especially among the neonates and immunosuppressed patients, demand the need for a vaccine or a targeted antiviral against this type. However, due to the existence of multiple hexon variants (3Hv-1 to 3Hv-25), the selection of vaccine strains of HAdV-3 is challenging. This study was designed to evaluate HAdV-3 hexon variants for the selection of potential vaccine candidates and the use of hexon gene as a target for designing siRNA that can be used as a therapy. Based on the data of worldwide distribution, duration of circulation, co-circulation and their percentage among all the variants, 3Hv-1 to 3Hv-4 were categorized as the major hexon variants. Phylogenetic analysis and the percentage of homology in the hypervariable regions followed by multi-sequence alignment, zPicture analysis and restriction enzyme analysis were carried out. In the phylogram, the variants were arranged in different clusters. The HVR encoding regions of hexon of 3Hv-1 to 3Hv-4 showed 16 point mutations resulting in 12 amino acids substitutions. The homology in HVRs was 81.81-100%. Therefore, the major hexon variants are substantially different from each other which justifies their inclusion as the potential vaccine candidates. Interestingly, despite the significant differences in the DNA sequence, there were many conserved areas in the HVRs, and we have designed functional siRNAs form those locations. We have also designed immunogenic vaccine peptide epitopes from the hexon protein using bioinformatics prediction tool. We hope that our developed siRNAs and immunogenic vaccine peptide epitopes could be used in the future development of siRNA-based therapy and designing a vaccine against HAdV-3.
Collapse
Affiliation(s)
- Somnath Panda
- Unit of Microbiology, AIMST University, Faculty of Medicine, Jalan Bedong Semeling, 08100 Bedong, Kedah, Malaysia.
| | - Urmila Banik
- Unit of Pathology, AIMST University, Faculty of Medicine, Jalan Bedong Semeling, 08100 Bedong, Kedah, Malaysia
| | - Arun K. Adhikary
- Unit of Microbiology, AIMST University, Faculty of Medicine, Jalan Bedong Semeling, 08100 Bedong, Kedah, Malaysia
| |
Collapse
|
32
|
Chung YH, Beiss V, Fiering SN, Steinmetz NF. COVID-19 Vaccine Frontrunners and Their Nanotechnology Design. ACS NANO 2020; 14:12522-12537. [PMID: 33034449 PMCID: PMC7553041 DOI: 10.1021/acsnano.0c07197] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 05/18/2023]
Abstract
Humanity is experiencing a catastrophic pandemic. SARS-CoV-2 has spread globally to cause significant morbidity and mortality, and there still remain unknowns about the biology and pathology of the virus. Even with testing, tracing, and social distancing, many countries are struggling to contain SARS-CoV-2. COVID-19 will only be suppressible when herd immunity develops, either because of an effective vaccine or if the population has been infected and is resistant to reinfection. There is virtually no chance of a return to pre-COVID-19 societal behavior until there is an effective vaccine. Concerted efforts by physicians, academic laboratories, and companies around the world have improved detection and treatment and made promising early steps, developing many vaccine candidates at a pace that has been unmatched for prior diseases. As of August 11, 2020, 28 of these companies have advanced into clinical trials with Moderna, CanSino, the University of Oxford, BioNTech, Sinovac, Sinopharm, Anhui Zhifei Longcom, Inovio, Novavax, Vaxine, Zydus Cadila, Institute of Medical Biology, and the Gamaleya Research Institute having moved beyond their initial safety and immunogenicity studies. This review analyzes these frontrunners in the vaccine development space and delves into their posted results while highlighting the role of the nanotechnologies applied by all the vaccine developers.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University
of California San Diego, La Jolla, California 92093, United
States
| | - Veronique Beiss
- Department of NanoEngineering, University
of California San Diego, La Jolla, California 92093, United
States
| | - Steven N. Fiering
- Geisel School of Medicine, Dartmouth
College, Hanover, New Hampshire 03755, United
States
- Norris Cotton Cancer Center,
Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766,
United States
| | - Nicole F. Steinmetz
- Department of Bioengineering, University
of California San Diego, La Jolla, California 92093, United
States
- Department of NanoEngineering, University
of California San Diego, La Jolla, California 92093, United
States
- Department of Radiology, University of
California San Diego, La Jolla, California 92093, United
States
- Moores Cancer Center, University of California
San Diego, La Jolla, California 92093, United
States
- Center for Nano-ImmunoEngineering,
University of California San Diego, La Jolla, California
92093, United States
| |
Collapse
|
33
|
Rogers DL, Ruiz JC, Baze WB, McClure GB, Smith C, Urbanowski R, Boston T, Simmons JH, Williams L, Abee CR, Vanchiere JA. Epidemiological and molecular characterization of a novel adenovirus of squirrel monkeys after fatal infection during immunosuppression. Microb Genom 2020; 6:mgen000395. [PMID: 32614763 PMCID: PMC7643968 DOI: 10.1099/mgen.0.000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/29/2020] [Indexed: 11/18/2022] Open
Abstract
Adenoviruses are a frequent cause of acute upper respiratory tract infections that can also cause disseminated disease in immunosuppressed patients. We identified a novel adenovirus, squirrel monkey adenovirus 1 (SqMAdV-1), as the cause of fatal infection in an immunocompromised squirrel monkey (Saimiri boliviensis) at the Keeling Center for Comparative Medicine and Research (KCCMR). Sequencing of SqMAdV-1 revealed that it is most closely related (80.4 % pairwise nucleotide identity) to the titi monkey (Plecturocebus cupreus) adenovirus (TMAdV). Although identified in the titi monkey, TMAdV is highly lethal in these monkeys, and they are not thought to be the natural host. While SqMAdV-1 is similar to other primate adenoviruses in size and genomic characteristics, a nucleotide polymorphism at the expected stop codon of the DNA polymerase gene results in a 126 amino acid extension at the carboxy terminus, a feature not previously observed among other primate adenoviruses. PCR testing and partial sequencing of 95 archived faecal samples from other squirrel monkeys (Saimiri boliviensis and Saimiri sciureus) housed at the KCCMR revealed the presence of three distinct, and apparently endemic species of adenoviruses. A grouping of ten squirrel monkey adenovirus variants has high similarity to SqMAdV-1. A single adenovirus variant (designated SqMAdV-3), detected in five monkeys, has similarity to tufted capuchin (Sapajus apella) adenoviruses. The largest group of adenovirus variants detected (designated SqMAdV-2.0-2.16) has very high similarity (93-99 %) to the TMAdV, suggesting that squirrel monkeys may be the natural host of the TMAdV.
Collapse
Affiliation(s)
- Donna L. Rogers
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Julio C. Ruiz
- Keeling Center for Comparative Medicine Research, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Wallace B. Baze
- Keeling Center for Comparative Medicine Research, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Gloria B. McClure
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Carolyn Smith
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ricky Urbanowski
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Theresa Boston
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Joe H. Simmons
- Keeling Center for Comparative Medicine Research, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Lawrence Williams
- Keeling Center for Comparative Medicine Research, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Christian R. Abee
- Keeling Center for Comparative Medicine Research, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - John A. Vanchiere
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Keeling Center for Comparative Medicine Research, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| |
Collapse
|
34
|
Palomino-Tapia V, Mitevski D, Inglis T, van der Meer F, Abdul-Careem MF. Molecular Characterization of Hemorrhagic Enteritis Virus (HEV) Obtained from Clinical Samples in Western Canada 2017-2018. Viruses 2020; 12:v12090941. [PMID: 32858877 PMCID: PMC7551992 DOI: 10.3390/v12090941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 11/25/2022] Open
Abstract
Hemorrhagic enteritis virus (HEV) is an immunosuppressive adenovirus that causes an acute clinical disease characterized by hemorrhagic gastroenteritis in 4-week-old turkeys and older. Recurrent incidence of secondary infections (e.g., systemic bacterial infections, cellulitis, and elevated mortality), may be associated with the presence of field-type HEV in Canadian turkey farms. We speculate that field-type HEV and vaccine/vaccine-like strains can be differentiated through analysis of the viral genomes, hexon genes, and the specific virulence factors (e.g., ORF1, E3, and fib knob domain). Nine out of sixteen spleens obtained from cases suspected of immunosuppression by HEV were analyzed. The limited data obtained showed that: (1) field-type HEV circulates in many non-vaccinated western Canadian flocks; (2) field-type HEV circulates in vaccinated flocks with increased recurrent bacterial infections; and (3) the existence of novel point mutations in hexon, ORF1, E3, and specially fib knob domains. This is the first publication showing the circulation of wild-type HEV in HEV-vaccinated flocks in Western Canada, and the usefulness of a novel procedure that allows whole genome sequencing of HEV directly from spleens, without passaging in cell culture or passaging in vivo. Further studies focusing more samples are required to confirm our observations and investigate possible vaccination failure.
Collapse
Affiliation(s)
- Victor Palomino-Tapia
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (V.P.-T.); (F.v.d.M.)
| | - Darko Mitevski
- Poultry Health Services, 1-4 East Lake Ave NE, Airdrie, AB T4A 2G8, Canada;
| | - Tom Inglis
- The Institute of Applied Poultry Technologies, 201–151 East Lake Blvd, Airdrie, AB T4A 2G1, Canada;
| | - Frank van der Meer
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (V.P.-T.); (F.v.d.M.)
| | - Mohamed Faizal Abdul-Careem
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (V.P.-T.); (F.v.d.M.)
- Correspondence: ; Tel.: +1-403-220-4462; Fax: +1-403-210-9740
| |
Collapse
|
35
|
Goradel NH, Negahdari B, Ghorghanlu S, Jahangiri S, Arashkia A. Strategies for enhancing intratumoral spread of oncolytic adenoviruses. Pharmacol Ther 2020; 213:107586. [PMID: 32479843 DOI: 10.1016/j.pharmthera.2020.107586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses, effectively replicate viruses within malignant cells to lyse them without affecting normal ones, have recently shown great promise in developing therapeutic options for cancer. Adenoviruses (Ads) are one of the candidates in oncolytic virotheraoy due to its easily manipulated genomic DNA and expression of wide rane of its receptors on the various cancers. Although systematic delivery of oncolytic adenoviruses can target both primary and metastatic tumors, there are some drawbacks in the effective systematic delivery of oncolytic adenoviruses, including pre-existing antibodies and liver tropism. To overcome these limitations, intratumural (IT) administration of oncolytic viruses have been proposed. However, IT injection of Ads leaves much of the tumor mass unaffected and Ads are not able to disperse more in the tumor microenvironment (TME). To this end, various strategies have been developed to enhance the IT spread of oncolytic adenoviruses, such as using extracellular matrix degradation enzymes, junction opening peptides, and fusogenic proteins. In the present paper, we reviewed different oncolytic adenoviruses, their application in the clinical trials, and strategies for enhancing their IT spread.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sajjad Ghorghanlu
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Jahangiri
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
36
|
Shen Y, Liu J, Zhang Y, Ma X, Yue H, Tang C. Prevalence and characteristics of a novel bovine adenovirus type 3 with a natural deletion fiber gene. INFECTION GENETICS AND EVOLUTION 2020; 83:104348. [PMID: 32380313 DOI: 10.1016/j.meegid.2020.104348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/29/2022]
Abstract
Bovine adenovirus type 3 (BAdV-3) is an important pathogen causing bovine respiratory disease complex (BRDC). From Jun 2016 to Jun 2018, 108 nose swab samples were collected from cattle with BRDC from 11 farms in five cities, and 78.7% (85/108) samples were detected as BAdV-3 positive by Real-time PCR. Interestingly, the sequences of 7/10 fiber (852 bp) and hexon (785 bp) fragments cloned from 10 positive samples from eight farms were clustered into a single branch of the evolutionary tree. A BAdV-3 strain (BO/YB24/17/CH) was successfully isolated. The isolate caused pathological changes of lung, trachea and spleen in BALB/c mice. Notably, 79 amino acid deletions in the shaft domain and 74 unique amino acid mutations were found in the fiber gene of the isolate compared with the available complete sequences for fiber genes in the GenBank database. These characteristics indicated that the isolate may represent a novel fiber genotype of BAdV-3. A pair of specific primers covering the deletion region in the fiber gene was designed to screen the prevalence of BAdV-3 encoding the novel fiber gene. The results showed that 7 of the 10 strains possessed the novel fiber gene, and these novel fiber strains were detected from six farms in which calves were just imported from five provinces, indicating that this BAdV-3 with the natural deletion fiber gene has a wide geographical distribution in China. In conclusion, our results reveal that BAdV-3 is widespread in China and a pathogenic BAdV-3 strain with a novel fiber gene has been detected at high frequency, which is beneficial to understand the prevalence and genetic evolution of BAdV-3.
Collapse
Affiliation(s)
- Yan Shen
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Jie Liu
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Chengdu, China
| | - Yinghui Zhang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Xiaoyu Ma
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Hua Yue
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Chengdu, China
| | - Cheng Tang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Chengdu, China.
| |
Collapse
|
37
|
Isakova-Sivak I, Matyushenko V, Stepanova E, Matushkina A, Kotomina T, Mezhenskaya D, Prokopenko P, Kudryavtsev I, Kopeykin P, Sivak K, Rudenko L. Recombinant Live Attenuated Influenza Vaccine Viruses Carrying Conserved T-cell Epitopes of Human Adenoviruses Induce Functional Cytotoxic T-Cell Responses and Protect Mice against Both Infections. Vaccines (Basel) 2020; 8:E196. [PMID: 32344618 PMCID: PMC7349758 DOI: 10.3390/vaccines8020196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023] Open
Abstract
Human adenoviruses (AdVs) are one of the most common causes of acute respiratory viral infections worldwide. Multiple AdV serotypes with low cross-reactivity circulate in the human population, making the development of an effective vaccine very challenging. In the current study, we designed a cross-reactive AdV vaccine based on the T-cell epitopes conserved among various AdV serotypes, which were inserted into the genome of a licensed cold-adapted live attenuated influenza vaccine (LAIV) backbone. We rescued two recombinant LAIV-AdV vaccines by inserting the selected AdV T-cell epitopes into the open reading frame of full-length NA and truncated the NS1 proteins of the H7N9 LAIV virus. We then tested the bivalent vaccines for their efficacy against influenza and human AdV5 in a mouse model. The vaccine viruses were attenuated in C57BL/6J mice and induced a strong influenza-specific antibody and cell-mediated immunity, fully protecting the mice against virulent influenza virus infection. The CD8 T-cell responses induced by both LAIV-AdV candidates were functional and efficiently killed the target cells loaded either with influenza NP366 or AdV DBP418 peptides. In addition, high levels of recall memory T cells targeted to an immunodominant H2b-restricted CD8 T-cell epitope were detected in the immunized mice after the AdV5 challenge, and the magnitude of these responses correlated with the level of protection against pulmonary pathology caused by the AdV5 infection. Our findings suggest that the developed recombinant vaccines can be used for combined protection against influenza and human adenoviruses and warrant further evaluation on humanized animal models and subsequent human trials.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Victoria Matyushenko
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Ekaterina Stepanova
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Anastasia Matushkina
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Tatiana Kotomina
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Daria Mezhenskaya
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Polina Prokopenko
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Igor Kudryavtsev
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Pavel Kopeykin
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia;
| | - Larisa Rudenko
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| |
Collapse
|
38
|
Mystery eye: Human adenovirus and the enigma of epidemic keratoconjunctivitis. Prog Retin Eye Res 2019; 76:100826. [PMID: 31891773 DOI: 10.1016/j.preteyeres.2019.100826] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022]
Abstract
Known to occur in widespread outbreaks, epidemic keratoconjunctivitis (EKC) is a severe ocular surface infection with a strong historical association with human adenovirus (HAdV). While the conjunctival manifestations can vary from mild follicular conjunctivitis to hyper-acute, exudative conjunctivitis with formation of conjunctival membranes, EKC is distinct as the only form of adenovirus conjunctivitis in which the cornea is also involved, likely due to the specific corneal epithelial tropism of its causative viral agents. The initial development of a punctate or geographic epithelial keratitis may herald the later formation of stromal keratitis, and manifest as subepithelial infiltrates which often persist or recur for months to years after the acute infection has resolved. The chronic keratitis in EKC is associated with foreign body sensation, photophobia, glare, and reduced vision. However, over a century since the first clinical descriptions of EKC, and over 60 years since the first causative agent, human adenovirus type 8, was identified, our understanding of this disorder remains limited. This is underscored by a current lack of effective diagnostic tools and treatments. In part, stasis in our knowledge base has been encouraged by the continued acceptance, and indeed propagation of, inaccurate paradigms pertaining to disease etiology and pathogenesis, particularly with regard to mechanisms of innate and adaptive immunity within the cornea. Owing to its often persistent and medically refractory visual sequelae, reconsideration of key aspects of EKC disease biology is warranted to identify new treatment targets to curb its worldwide socioeconomic burden.
Collapse
|
39
|
Nemerow G, Flint J. Lessons learned from adenovirus (1970-2019). FEBS Lett 2019; 593:3395-3418. [PMID: 31777951 DOI: 10.1002/1873-3468.13700] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/24/2019] [Accepted: 11/24/2019] [Indexed: 12/11/2022]
Abstract
Animal viruses are well recognized for their ability to uncover fundamental cell and molecular processes, and adenovirus certainly provides a prime example. This review illustrates the lessons learned from studying adenovirus over the past five decades. We take a look back at the key studies of adenovirus structure and biophysical properties, which revealed the mechanisms of adenovirus association with antibody, cell receptor, and immune molecules that regulate infection. In addition, we discuss the critical contribution of studies of adenovirus gene expression to elucidation of fundamental reactions in pre-mRNA processing and its regulation. Other pioneering studies furnished the first examples of protein-primed initiation of DNA synthesis and viral small RNAs. As a nonenveloped virus, adenoviruses have furnished insights into the modes of virus attachment, entry, and penetration of host cells, and we discuss the diversity of cell receptors that support these processes, as well as membrane penetration. As a result of these extensive studies, adenovirus vectors were among the first to be developed for therapeutic applications. We highlight some of the early (unsuccessful) trials and the lessons learned from them.
Collapse
Affiliation(s)
- Glen Nemerow
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Jane Flint
- Department of Molecular Biology, Princeton University, NJ, USA
| |
Collapse
|
40
|
Ismail AM, Zhou X, Dyer DW, Seto D, Rajaiya J, Chodosh J. Genomic foundations of evolution and ocular pathogenesis in human adenovirus species D. FEBS Lett 2019; 593:3583-3608. [PMID: 31769017 PMCID: PMC7185199 DOI: 10.1002/1873-3468.13693] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
Human adenovirus commonly causes infections of respiratory, gastrointestinal, genitourinary, and ocular surface mucosae. Although most adenovirus eye infections are mild and self-limited, specific viruses within human adenovirus species D are associated with epidemic keratoconjunctivitis (EKC), a severe and highly contagious ocular surface infection, which can lead to chronic and/or recurrent, visually disabling keratitis. In this review, we discuss the links between adenovirus ontogeny, genomics, immune responses, and corneal pathogenesis, for those viruses that cause EKC.
Collapse
Affiliation(s)
- Ashrafali M. Ismail
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaohong Zhou
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Jaya Rajaiya
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - James Chodosh
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Allen RJ, Byrnes AP. Interaction of adenovirus with antibodies, complement, and coagulation factors. FEBS Lett 2019; 593:3449-3460. [PMID: 31660588 DOI: 10.1002/1873-3468.13649] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
Adenovirus (AdV) is one of the most widely used vectors for gene therapy and vaccine studies due to its excellent transduction efficiency, capacity for large transgenes, and high levels of gene expression. When administered intravascularly, the fate of AdV vectors is heavily influenced by interactions with host plasma proteins. Some plasma proteins can neutralize AdV, but AdV can also specifically bind plasma proteins that protect against neutralization and preserve activity. This review summarizes the plasma proteins that interact with AdV, including antibodies, complement, and vitamin K-dependent coagulation factors. We will also review the complex interactions of these plasma proteins with each other and with cellular proteins, as well as strategies for developing better AdV vectors that evade or manipulate plasma proteins.
Collapse
Affiliation(s)
- Rondine J Allen
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| | - Andrew P Byrnes
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| |
Collapse
|
42
|
Kaján GL, Doszpoly A, Tarján ZL, Vidovszky MZ, Papp T. Virus-Host Coevolution with a Focus on Animal and Human DNA Viruses. J Mol Evol 2019; 88:41-56. [PMID: 31599342 PMCID: PMC6943099 DOI: 10.1007/s00239-019-09913-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/23/2019] [Indexed: 01/21/2023]
Abstract
Viruses have been infecting their host cells since the dawn of life, and this extremely long-term coevolution gave rise to some surprising consequences for the entire tree of life. It is hypothesised that viruses might have contributed to the formation of the first cellular life form, or that even the eukaryotic cell nucleus originates from an infection by a coated virus. The continuous struggle between viruses and their hosts to maintain at least a constant fitness level led to the development of an unceasing arms race, where weapons are often shuttled between the participants. In this literature review we try to give a short insight into some general consequences or traits of virus–host coevolution, and after this we zoom in to the viral clades of adenoviruses, herpesviruses, nucleo-cytoplasmic large DNA viruses, polyomaviruses and, finally, circoviruses.
Collapse
Affiliation(s)
- Győző L Kaján
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary.
| | - Andor Doszpoly
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Zoltán László Tarján
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Márton Z Vidovszky
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Tibor Papp
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| |
Collapse
|
43
|
Mao N, Zhu Z, Rivailler P, Yang J, Li Q, Han G, Yin J, Yu D, Sun L, Jiang H, Zhan Z, Xiang X, Mei H, Wang X, Zhang B, Yu P, Li H, Lei Z, Xu W. Multiple divergent Human mastadenovirus C co-circulating in mainland of China. INFECTION GENETICS AND EVOLUTION 2019; 76:104035. [PMID: 31505276 DOI: 10.1016/j.meegid.2019.104035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 01/22/2023]
Abstract
The human mastadenovirus C (HAdV-C) cause respiratory infections in children. Homologous recombination was clearly involved in the molecular evolution of HAdV-A, B, and D, but little is known about the molecular evolution of HAdV-C. From 2000 to 2016, 201 HAdV-C strains were collected from nine provinces covering six administrative regions of mainland of China via 3 existing surveillance programs, namely the febrile respiratory syndrome surveillance, the acute flaccid paralysis surveillance, and the hand, foot, and mouth disease surveillance system. The genes coding for the capsid protein (penton base, hexon, and fiber) of 201 HAdV-C strains were sequenced and compared with representative sequences publicly available. In addition, the whole genome sequence of 24 representative strains of HAdV-C was generated for further recombination analysis. Phylogenetic analysis of the penton base sequences of HAdV-C revealed six genetic groups (labelled as Px1-6), which showed that the penton base had more variation than previously thought. Based on the penton base, hexon, and fiber gene sequences, 16 new genetic patterns of HAdV-C circulating in mainland of China were identified in this study. Whole genome sequence analysis revealed frequent recombination events among HAdV-C genomes. This study is highly beneficial for case classification, tracking the transmission chain, and further epidemiological exploration of HAdV-C-related severe clinical diseases in the near future. Our data demonstrated that multiple newly divergent HAdV-C co-circulated across mainland China during the research period.
Collapse
Affiliation(s)
- Naiying Mao
- WHO WPRO Regional Reference Measles, Rubella Laboratory and Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Zhen Zhu
- WHO WPRO Regional Reference Measles, Rubella Laboratory and Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Pierre Rivailler
- WHO WPRO Regional Reference Measles, Rubella Laboratory and Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Jianfang Yang
- Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| | - Qi Li
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, China
| | - Guangyue Han
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, China
| | - Jie Yin
- Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Deshan Yu
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Liwei Sun
- Changchun Children's Hospital, Changchun, China
| | | | - Zhifei Zhan
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Xingyu Xiang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Hong Mei
- Xizang Provincial Center for Disease Control and Prevention, Lasa, China
| | - Xianjun Wang
- Shandong Provincial Center for Disease Control and Prevention, Jinan, China
| | - Bo Zhang
- Shandong Provincial Center for Disease Control and Prevention, Jinan, China
| | - Pengbo Yu
- Shaanxi Provincial Center for Disease Control and Prevention, Xian, China
| | - Hong Li
- WHO WPRO Regional Reference Measles, Rubella Laboratory and Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China; Anhui University of Science and Technology, Huainan, China
| | - Zhenqiang Lei
- WHO WPRO Regional Reference Measles, Rubella Laboratory and Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Wenbo Xu
- WHO WPRO Regional Reference Measles, Rubella Laboratory and Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
44
|
A Zoonotic Adenoviral Human Pathogen Emerged through Genomic Recombination among Human and Nonhuman Simian Hosts. J Virol 2019; 93:JVI.00564-19. [PMID: 31243128 DOI: 10.1128/jvi.00564-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Genomics analysis of a historically intriguing and predicted emergent human adenovirus (HAdV) pathogen, which caused pneumonia and death, provides insight into a novel molecular evolution pathway involving "ping-pong" zoonosis and anthroponosis. The genome of this promiscuous pathogen is embedded with evidence of unprecedented multiple, multidirectional, stable, and reciprocal cross-species infections of hosts from three species (human, chimpanzee, and bonobo). This recombinant genome, typed as HAdV-B76, is identical to two recently reported simian AdV (SAdV) genomes isolated from chimpanzees and bonobos. Additionally, the presence of a critical adenoviral replication element found in HAdV genomes, in addition to genes that are highly similar to counterparts in other HAdVs, reinforces its potential as a human pathogen. Reservoirs in nonhuman hosts may explain periods of apparent absence and then reemergence of human adenoviral pathogens, as well as present pathways for the genesis of those thought to be newly emergent. The nature of the HAdV-D76 genome has implications for the use of SAdVs as gene delivery vectors in human gene therapy and vaccines, selected to avoid preexisting and potentially fatal host immune responses to HAdV.IMPORTANCE An emergent adenoviral human pathogen, HAdV-B76, associated with a fatality in 1965, shows a remarkable degree of genome identity with two recently isolated simian adenoviruses that contain cross-species genome recombination events from three hosts: human, chimpanzee, and bonobo. Zoonosis (nonhuman-to-human transmission) and anthroponosis (human to nonhuman transmission) may play significant roles in the emergence of human adenoviral pathogens.
Collapse
|
45
|
Arashkia A, Bahrami F, Farsi M, Nejati B, Jalilvand S, Nateghian A, Rahbarimanesh A, Shoja Z. Molecular analysis of human adenoviruses in hospitalized children <5 years old with acute gastroenteritis in Tehran, Iran. J Med Virol 2019; 91:1930-1936. [PMID: 31283018 DOI: 10.1002/jmv.25539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 07/03/2019] [Indexed: 12/28/2022]
Abstract
Human adenoviruses (HAdVs), especially AdV-40 and 41, are common causes of nonbacterial sporadic and outbreak gastroenteritis in children. The present study aimed to describe the frequency and genetic analysis of HAdVs in hospitalized children <5 years old with acute gastroenteritis. A total of 376 stool samples obtained from June 2015 to December 2017 were investigated for the presence of HAdVs by polymerase chain reaction. The HAdV DNA was detected in 16 (4.3%) out of 376 stool samples. Based on the hexon hypervariable region (HVR), B, C, and F HADV species including five types HAdV-1, 2, 3, 6, and 41 were identified, among which enteric AdV species F (EAdV-41) was the most dominant. Moreover, our findings showed the presence of genomic type cluster 1 (GTC1) pattern in Iranian type 41 strains, which was closely similar to the D1 prototype strain (Tak) and D28. In this regard, a recombination was found in AdV-41 strains presenting the hexon sequence that belonged to GTC1, while fiber sequence clustered with GTC2.
Collapse
Affiliation(s)
- Arash Arashkia
- Virology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Ferial Bahrami
- Virology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mahsa Farsi
- Biology Department, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Behrooz Nejati
- Biology Department, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Somayeh Jalilvand
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Nateghian
- Ali-Asghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Rahbarimanesh
- Department of Pediatric Infectious Diseases, Bahrami Children Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
46
|
Chiman K, Gholamreza K, Shahram J, Mohammad KB, Reza T, Maryam T, Haghighi SB, Makvandi M. Immuno- and bio-informatic analysis of hexon protein in human adenovirus D8 isolated from patients with keratoconjunctivitis. Future Virol 2019. [DOI: 10.2217/fvl-2018-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: In silico analysis of the hexon protein of human adenovirus serotype D-8 isolated from a patients with keratoconjunctivitis in Iran. Materials & methods: The hexon gene of HAdV-D8 was amplified by PCR. HAdV-D8 recovered from EKC outbreak was isolated by growing in A549 cells. Results: The hexon gene isolated from a patient with EKC comprised 2829 nt and 942 aa. The analyses of selected B-cell epitopes prediction (KTFQPEPQIGENNWQD) and T-cell epitopes prediction (TENFDIDLAFFDIPQ), showed high score immunogenicity, which may prove this to be a promising candidate for epitope vaccine development. Conclusion: In silico analysis of selected B-cell epitopes prediction (KTFQPEPQIGENNWQD) and T-cell epitopes prediction (TENFDIDLAFFDIPQ) are immunogenic and provoke B- and T-cell responses.
Collapse
Affiliation(s)
- Karami Chiman
- Infectious & Tropical Disease Research Center, Health Research Institute, & Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Jalilian Shahram
- Infectious & Tropical Disease Research Center, Health Research Institute, & Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Karimi B Mohammad
- Department of Medical Biotechnology, Faculty of Advance Medical Sciences, Tabriz University of Medical Sciences, East Azerbaijan, Iran
| | - Taherkhani Reza
- Department of Microbiology & Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Tabasi Maryam
- Infectious & Tropical Disease Research Center, Health Research Institute, & Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh B Haghighi
- Department of General Courses, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Manoochehr Makvandi
- Infectious & Tropical Disease Research Center, Health Research Institute, & Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
47
|
Chandra N, Liu Y, Liu JX, Frängsmyr L, Wu N, Silva LM, Lindström M, Chai W, Pedrosa Domellöf F, Feizi T, Arnberg N. Sulfated Glycosaminoglycans as Viral Decoy Receptors for Human Adenovirus Type 37. Viruses 2019; 11:E247. [PMID: 30871026 PMCID: PMC6466042 DOI: 10.3390/v11030247] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/13/2022] Open
Abstract
Glycans on plasma membranes and in secretions play important roles in infection by many viruses. Species D human adenovirus type 37 (HAdV-D37) is a major cause of epidemic keratoconjunctivitis (EKC) and infects target cells by interacting with sialic acid (SA)-containing glycans via the fiber knob domain of the viral fiber protein. HAdV-D37 also interacts with sulfated glycosaminoglycans (GAGs), but the outcome of this interaction remains unknown. Here, we investigated the molecular requirements of HAdV-D37 fiber knob:GAG interactions using a GAG microarray and demonstrated that fiber knob interacts with a broad range of sulfated GAGs. These interactions were corroborated in cell-based assays and by surface plasmon resonance analysis. Removal of heparan sulfate (HS) and sulfate groups from human corneal epithelial (HCE) cells by heparinase III and sodium chlorate treatments, respectively, reduced HAdV-D37 binding to cells. Remarkably, removal of HS by heparinase III enhanced the virus infection. Our results suggest that interaction of HAdV-D37 with sulfated GAGs in secretions and on plasma membranes prevents/delays the virus binding to SA-containing receptors and inhibits subsequent infection. We also found abundant HS in the basement membrane of the human corneal epithelium, which may act as a barrier to sub-epithelial infection. Collectively, our findings provide novel insights into the role of GAGs as viral decoy receptors and highlight the therapeutic potential of GAGs and/or GAG-mimetics in HAdV-D37 infection.
Collapse
Affiliation(s)
- Naresh Chandra
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden.
| | - Yan Liu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College of London, Hammersmith Campus, London W12 0NN, UK.
| | - Jing-Xia Liu
- Department of Integrative Medical Biology, Umeå University, SE-90185 Umeå, Sweden.
- Department of Clinical Science, Ophthalmology, Umeå University, SE-90185 Umeå, Sweden.
| | - Lars Frängsmyr
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden.
| | - Nian Wu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College of London, Hammersmith Campus, London W12 0NN, UK.
| | - Lisete M Silva
- Glycosciences Laboratory, Faculty of Medicine, Imperial College of London, Hammersmith Campus, London W12 0NN, UK.
| | - Mona Lindström
- Department of Integrative Medical Biology, Umeå University, SE-90185 Umeå, Sweden.
- Department of Clinical Science, Ophthalmology, Umeå University, SE-90185 Umeå, Sweden.
| | - Wengang Chai
- Glycosciences Laboratory, Faculty of Medicine, Imperial College of London, Hammersmith Campus, London W12 0NN, UK.
| | - Fatima Pedrosa Domellöf
- Department of Integrative Medical Biology, Umeå University, SE-90185 Umeå, Sweden.
- Department of Clinical Science, Ophthalmology, Umeå University, SE-90185 Umeå, Sweden.
| | - Ten Feizi
- Glycosciences Laboratory, Faculty of Medicine, Imperial College of London, Hammersmith Campus, London W12 0NN, UK.
| | - Niklas Arnberg
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden.
| |
Collapse
|
48
|
Recombination analysis of Human mastadenovirus C whole genomes. Sci Rep 2019; 9:2182. [PMID: 30778154 PMCID: PMC6379361 DOI: 10.1038/s41598-019-38719-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/07/2019] [Indexed: 11/26/2022] Open
Abstract
This study aims at analyzing all publicly available HAdV-C whole genome sequences (WGSs) and describes the genetic relationships between these genomes as well as identifies potential hotspots for recombination throughout the viral genome. In addition to the 4 prototypical genomic sequences, this analysis identified 20 HAdV-C WGSs which should be relevant for future recombination analysis of HAdV-C. This report confirmed the recombinogenic property of HAdV-C genomes and identified two main regions for breakpoints, within the hexon gene and around the fiber genomic region. No obvious recombination was detected between HAdV-Cs and non-human mastadenoviruses or non-C HAdVs. Finally, it highlighted the need for a surveillance of HAdVs in order to detect novel recombinant types that might represent health risks and develop possible prevention measures. Genetic analyses of recombination between recently collected HAdV-Cs and the assessment of their potential virulence are necessary steps towards the establishment of a surveillance of HAdVs in the future.
Collapse
|
49
|
Haddad-Boubaker S, Joffret ML, Pérot P, Bessaud M, Meddeb Z, Touzi H, Delpeyroux F, Triki H, Eloit M. Metagenomic analysis identifies human adenovirus 31 in children with acute flaccid paralysis in Tunisia. Arch Virol 2019; 164:747-755. [DOI: 10.1007/s00705-018-04141-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/29/2018] [Indexed: 01/24/2023]
|
50
|
Deep analysis of Loop L1 HVRs1-4 region of the hexon gene of adenovirus field strains isolated in Poland. PLoS One 2018; 13:e0207668. [PMID: 30481218 PMCID: PMC6258537 DOI: 10.1371/journal.pone.0207668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/05/2018] [Indexed: 01/20/2023] Open
Abstract
Background To date, studies on loop L1 HVRs1-4 region of the hexon gene in fowl adenovirus genome (FAdVs) lack comprehensive molecular data. In this study detailed prospectively obtained sequences from field adenovirus strains, NVRI, Poland have been analyzed. Methods Overall hundred and thirty seven adenovirus strains were collected, evaluated, and examined of hyper variable loop L1 region HVRs1-4 of the hexon gene for the presence of similarity, mutations, tertiary structure, and spinal conformation. Results Sequences were characterized, and divided for five species and seven types, FAdV-A-E/FAdV-1/2/4/5/7/8a/8b/11. The presence of predicted tertiary structure depending on type/species were determined. Analysis of specific selected sequences: GQMTN 1/A, 7/E, and 8b/E, GQMTT 2/11/D, GQLSN 4/C, GQMTH 5/B, and GQMSN 8a/E in examined HVRs1-4 Loop L1 region of hexon gene compared to tertiary structure indicated that this visibly conservative region represents the antigenic binging activity. Conclusion This is the first molecular study on tertiary structure on HVRs1-4 region in adenovirus genome conducted in Poland. Analysis indicated specific sequence in Loop L1 HVR1-4 region which is strictly responsible for antibodies binding. This information could assist during the process connected with specific preventive strategies based on their molecular genome investigation and new facilitate studies. This study will help to better understand the mechanisms of pathogenicity of adenovirus strains provide a guide for disease control in birds.
Collapse
|