1
|
Sperstad PD, Holmstrom ED. Conformational dynamics of the hepatitis C virus 3'X RNA. RNA (NEW YORK, N.Y.) 2024; 30:1151-1163. [PMID: 38834242 PMCID: PMC11331413 DOI: 10.1261/rna.079983.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
The 3' end of the hepatitis C virus genome is terminated by a highly conserved, 98 nt sequence called 3'X. This untranslated structural element is thought to regulate several essential RNA-dependent processes associated with infection. 3'X has two proposed conformations comprised of either three or two stem-loop structures that result from the different base-pairing interactions within the first 55 nt. Here, we used single-molecule Förster resonance energy transfer spectroscopy to monitor the conformational status of fluorescently labeled constructs that isolate this region of the RNA (3'X55). We observed that 3'X55 can adopt both proposed conformations and the relative abundance of them can be modulated by either solution conditions or nucleotide deletions. Furthermore, interconversion between the two conformations takes place over the course of several hours. The simultaneous existence of two slowly interconverting conformations may help prime individual copies of the viral genome for either viral protein or RNA synthesis, thereby minimizing conflicts between these two competing processes.
Collapse
Affiliation(s)
- Parker D Sperstad
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Erik D Holmstrom
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
2
|
Ramachandran V, Potoyan DA. Energy landscapes of homopolymeric RNAs revealed by deep unsupervised learning. Biophys J 2024; 123:1152-1163. [PMID: 38571310 PMCID: PMC11079944 DOI: 10.1016/j.bpj.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/03/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024] Open
Abstract
Conformational dynamics of RNA plays important roles in a variety of cellular functions such as transcriptional regulation, catalysis, scaffolding, and sensing. Recently, RNAs with low-complexity sequences have been shown to phase separate and form condensate phases similar to lowcomplexity protein domains. The affinity for phase separation and the material characteristics of RNA condensates are strongly dependent on sequence composition and patterning. We hypothesize that differences in the affinities for RNA phase separation can be uncovered by studying sequence-dependent conformational dynamics of single RNA chains. To this end, we have employed atomistic simulations and deep dimensionality reduction techniques to map temperature-dependent conformational free energy landscapes for 20 base-long homopolymeric RNA sequences: poly(U), poly(G), poly(C), and poly(A). The energy landscapes of homopolymeric RNAs reveal a plethora of metastable states with qualitatively different populations stemming from differences in base chemistry. Through detailed analysis of base, phosphate, and sugar interactions, we show that experimentally observed temperature-driven shifts in metastable state populations align with experiments on RNA phase transitions. Specifically, we find that the thermodynamics of unfolding of homopolymeric RNA follows the poly(G) > poly(A) > poly(C) > poly(U) order of stability, mirroring the propensity of RNA to form condensates. To conclude, this work shows that at least for homopolymeric RNA sequences the single-chain conformational dynamics contains sufficient information for predicting and quantifying condensate forming affinities of RNAs. Thus, we anticipate that atomically detailed studies of temeprature -dependent energy landscapes of RNAs will be a useful guide for understanding the propensity of various RNA molecules to form condensates.
Collapse
Affiliation(s)
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa; Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, Iowa.
| |
Collapse
|
3
|
Pham LV, Velázquez-Moctezuma R, Fahnøe U, Collignon L, Bajpai P, Sølund C, Weis N, Holmbeck K, Prentoe J, Bukh J. Novel HCV Genotype 4d Infectious Systems and Assessment of Direct-Acting Antivirals and Antibody Neutralization. Viruses 2022; 14:2527. [PMID: 36423136 PMCID: PMC9698709 DOI: 10.3390/v14112527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatitis C virus (HCV) genotype 4 is highly prevalent in the Middle East and parts of Africa. Subtype 4d has recently spread among high-risk groups in Europe. However, 4d infectious culture systems are not available, hampering studies of drugs, as well as neutralizing antibodies relevant for HCV vaccine development. We determined the consensus 4d sequence from a chronic hepatitis C patient by next-generation sequencing, generated a full-length clone thereof (pDH13), and demonstrated that pDH13 RNA-transcripts were viable in the human-liver chimeric mouse model, but not in Huh7.5 cells. However, a JFH1-based DH13 Core-NS5A 4d clone encoding A1671S, T1785V, and D2411G was viable in Huh7.5 cells, with efficient growth after inclusion of 10 additional substitutions [4d(C5A)-13m]. The efficacies of NS3/4A protease- and NS5A- inhibitors against genotypes 4a and 4d were similar, except for ledipasvir, which is less potent against 4d. Compared to 4a, the 4d(C5A)-13m virus was more sensitive to neutralizing monoclonal antibodies AR3A and AR5A, as well as 4a and 4d patient plasma antibodies. In conclusion, we developed the first genotype 4d infectious culture system enabling DAA efficacy testing and antibody neutralization assessment critical to optimization of DAA treatments in the clinic and for vaccine design to combat the HCV epidemic.
Collapse
Affiliation(s)
- Long V. Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rodrigo Velázquez-Moctezuma
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Laura Collignon
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Priyanka Bajpai
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Christina Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, DK-2650 Hvidovre, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, DK-2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kenn Holmbeck
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Campollo O, Amaya G, McCormick PA. Milestones in the discovery of hepatitis C. World J Gastroenterol 2022; 28:5395-5402. [PMID: 36312838 PMCID: PMC9611700 DOI: 10.3748/wjg.v28.i37.5395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
The discovery of hepatitis C has been a landmark in public health as it brought the opportunity to save millions of lives through the diagnosis, prevention and cure of the disease. The combined work of three researchers, Alter H, Houghton M and Rice C, which set the basis for the diagnosis, treatment and prevention of hepatitis C apart from laying the ground work for a new approach to study infections in general and developing new antiviral agents. This is a story of a transfusion-associated infection. A series of clinical studies demonstrated the existence of an infectious agent associated with hepatitis. That was followed by the identification of what was later known to be the hepatitis C virus (HCV) and the development of diagnostic tests. It all preceded the full molecular identification and demonstration of a causal effect. Finally it ended up with the development and discovery of a new class of therapeutic drugs, the direct acting antivirals, which are now used not only to cure the disease but most probably, to eliminate the problem. This work started with Dr Alter H who demonstrated that a new virus was responsible for the majority of post-transfusion hepatitis followed by Houghton M who cloned the virus and developed the blood test to identify those cases that carried the virus. Finally, the work of Rice C demonstrated that a cloned HCV produced after applying molecular biology techniques could cause long-standing infection and cause the same disease as the one observed in humans.
Collapse
Affiliation(s)
- Octavio Campollo
- Center of Studies on Alcohol and Addictions, Antiguo Hospital Civil de Guadalajara, Department of Medical Clinics, Universidad de Guadalajara, Guadalajara 44280, Jalisco, Mexico
| | - Gerardo Amaya
- Medical Clinics, CUCS, Universidad de Guadalajara, Guadalajara 44280, Jalisco, Mexico
| | - P Aiden McCormick
- Department of Hepatology, Saint Vincent’s University Hospital, National Liver Transplant Unit, Dublin D04, Ireland
| |
Collapse
|
5
|
Tariq M, Shoukat AB, Akbar S, Hameed S, Naqvi MZ, Azher A, Saad M, Rizwan M, Nadeem M, Javed A, Ali A, Aziz S. Epidemiology, risk factors, and pathogenesis associated with a superbug: A comprehensive literature review on hepatitis C virus infection. SAGE Open Med 2022; 10:20503121221105957. [PMID: 35795865 PMCID: PMC9252020 DOI: 10.1177/20503121221105957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/20/2022] [Indexed: 12/20/2022] Open
Abstract
Viral hepatitis is a major public health concern. It is associated with life threatening conditions including liver cirrhosis and hepatocellular carcinoma. Hepatitis C virus infects around 71 million people annually, resultantly 700,000 deaths worldwide. Extrahepatic associated chronic hepatitis C virus accounts for one fourth of total healthcare load. This review included a total of 150 studies that revealed almost 19 million people are infected with hepatitis C virus and 240,000 new cases are being reported each year. This trend is continually rising in developing countries like Pakistan where intravenous drug abuse, street barbers, unsafe blood transfusions, use of unsterilized surgical instruments and recycled syringes plays a major role in virus transmission. Almost 123–180 million people are found to be hepatitis C virus infected or carrier that accounts for 2%–3% of world’s population. The general symptoms of hepatitis C virus infection include fatigue, jaundice, dark urine, anorexia, fever malaise, nausea and constipation varying on severity and chronicity of infection. More than 90% of hepatitis C virus infected patients are treated with direct-acting antiviral agents that prevent progression of liver disease, decreasing the elevation of hepatocellular carcinoma. Standardizing the healthcare techniques, minimizing the street practices, and screening for viral hepatitis on mass levels for early diagnosis and prompt treatment may help in decreasing the burden on already fragmented healthcare system. However, more advanced studies on larger populations focusing on mode of transmission and treatment protocols are warranted to understand and minimize the overall infection and death stigma among masses.
Collapse
Affiliation(s)
- Mehlayl Tariq
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abu Bakar Shoukat
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sedrah Akbar
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Samaia Hameed
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muniba Zainab Naqvi
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Azher
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Saad
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,BreathMAT Lab, IAD, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, Pakistan
| | - Muhammad Rizwan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Nadeem
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Anum Javed
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asad Ali
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Punjab, Pakistan
| | - Shahid Aziz
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,BreathMAT Lab, IAD, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, Pakistan
| |
Collapse
|
6
|
Deymier S, Louvat C, Fiorini F, Cimarelli A. ISG20: an enigmatic antiviral RNase targeting multiple viruses. FEBS Open Bio 2022; 12:1096-1111. [PMID: 35174977 PMCID: PMC9157404 DOI: 10.1002/2211-5463.13382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Interferon-stimulated gene 20 kDa protein (ISG20) is a relatively understudied antiviral protein capable of inhibiting a broad spectrum of viruses. ISG20 exhibits strong RNase properties, and it belongs to the large family of DEDD exonucleases, present in both prokaryotes and eukaryotes. ISG20 was initially characterized as having strong RNase activity in vitro, suggesting that its inhibitory effects are mediated via direct degradation of viral RNAs. This mechanism of action has since been further elucidated and additional antiviral activities of ISG20 highlighted, including direct degradation of deaminated viral DNA and translational inhibition of viral RNA and nonself RNAs. This review focuses on the current understanding of the main molecular mechanisms of viral inhibition by ISG20 and discusses the latest developments on the features that govern specificity or resistance to its action.
Collapse
Affiliation(s)
- Séverine Deymier
- Centre International de Recherche en Infectiologie (CIRI)Université de LyonInsermU1111Université Claude Bernard Lyon 1CNRSUMR5308École Nationale Supérieur de LyonFrance
| | | | | | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI)Université de LyonInsermU1111Université Claude Bernard Lyon 1CNRSUMR5308École Nationale Supérieur de LyonFrance
| |
Collapse
|
7
|
Ciardullo S, Mantovani A, Ciaccio A, Carbone M, Invernizzi P, Perseghin G. Hepatitis C virus infection and diabetes: A complex bidirectional relationship. Diabetes Res Clin Pract 2022; 187:109870. [PMID: 35398458 DOI: 10.1016/j.diabres.2022.109870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 11/03/2022]
Abstract
Chronic hepatitis C (CHC) and diabetes represent two severe chronic conditions responsible for a considerable number of deaths worldwide. They have a complex, bidirectional relationship. On the one hand, several cohort studies have shown that chronic HCV infection increases both the risk of developing diabetes in non-diabetic subjects (by inducing insulin resistance and promoting β-cell dysfunction) as well as the risk of developing macro and microvascular complications in patients with known diabetes; on the other hand, diabetes is an independent risk factor for liver-related events among patients with CHC, including a higher incidence of hepatocellular carcinoma, liver-related death and transplantation. Importantly, sustained virological response, which can be obtained in the vast majority of patients with the use of direct antiviral agents, does not only lead to a lower rate of liver-related outcomes, but also to improvements of glycemic control and reduction in the rate of complications among patients with diabetes. The aim of this review is to summarize available clinical evidence on the association among CHC, diabetes and related clinical outcomes. We will also briefly discuss the biological mechanisms underpinning the association between CHC and diabetes, as well as the implications this relationship should have on everyday clinical practice.
Collapse
Affiliation(s)
- Stefano Ciardullo
- Department of Medicine and Rehabilitation, Monza Policlinico di Monza, Monza, Italy; Department of Medicine and Surgery, University of Milan Bicocca, Monza, Italy.
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, University of Verona
| | - Antonio Ciaccio
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Marco Carbone
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Gianluca Perseghin
- Department of Medicine and Rehabilitation, Monza Policlinico di Monza, Monza, Italy; Department of Medicine and Surgery, University of Milan Bicocca, Monza, Italy
| |
Collapse
|
8
|
Fang X, Gallego J, Wang YX. Deriving RNA topological structure from SAXS. Methods Enzymol 2022; 677:479-529. [DOI: 10.1016/bs.mie.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Leumi S, Guo M, Lu J, Wang Z, Gan T, Han L, Ngari J, Tong Y, Xiang X, Xie Q, Wang L, Zhong J. Identification of a novel replication-competent hepatitis C virus variant that confers the sofosbuvir resistance. Antiviral Res 2021; 197:105224. [PMID: 34864126 DOI: 10.1016/j.antiviral.2021.105224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
Despite the excellent antiviral potency of direct-acting antivirals (DAAs) against hepatitis C virus (HCV), emergence of drug-resistant viral mutations remains a potential challenge. Sofobuvir (SOF), a nucleotide analog targeting HCV NS5B - RNA-dependent RNA polymerase (RdRp), constitutes a key component of many anti-HCV cocktail regimens and confers a high barrier for developing drug resistance. The serine to threonine mutation at the amino acid position 282 of NS5B (S282T) is the mostly documented SOF resistance-associated substitution (RAS), but severely hampers the virus fitness. In this study, we first developed new genotype 1b (GT1b) subgenomic replicon cells, denoted PR52D4 and PR52D9, directly from a GT1b clinical isolate. Next, we obtained SOF-resistant and replication-competent PR52D4 replicon by culturing the replicon cells in the presence of SOF. Sequencing analysis showed that the selected replicon harbored two mutations K74R and S282T in NS5B. Reverse genetics analysis showed that while PR52D4 consisting of either single mutation K74R or S282T could not replicate efficiently, the engineering of the both mutations led to a replication-competent and SOF-resistant PR52D4 replicon. Furthermore, we showed that the K74R mutation could also rescue the replication deficiency of the S282T mutation in Con1, another GT1b replicon as well as in JFH1, a GT2a replicon. Structural modeling analysis suggested that K74R might help maintain an active catalytic conformation of S282T by engaging with Y296. In conclusion, we identified the combination of two NS5B mutations S282T and K74R as a novel RAS that confers a substantial resistance to SOF while retains the HCV replication capacity.
Collapse
Affiliation(s)
- Steve Leumi
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingzhe Guo
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China; ShanghaiTech University, Shanghai, 201210, China
| | - Jie Lu
- Department of Infectious Disease, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaoning Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China; The Center for Microbes, Development and Heath, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tianyu Gan
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Han
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; ShanghaiTech University, Shanghai, 201210, China
| | - Jackline Ngari
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yimin Tong
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaogang Xiang
- Department of Infectious Disease, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Xie
- Department of Infectious Disease, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lanfeng Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China; The Center for Microbes, Development and Heath, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jin Zhong
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China; ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
10
|
Hatano Y, Ideta T, Hirata A, Hatano K, Tomita H, Okada H, Shimizu M, Tanaka T, Hara A. Virus-Driven Carcinogenesis. Cancers (Basel) 2021; 13:2625. [PMID: 34071792 PMCID: PMC8198641 DOI: 10.3390/cancers13112625] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer arises from the accumulation of genetic and epigenetic alterations. Even in the era of precision oncology, carcinogens contributing to neoplastic process are still an important focus of research. Comprehensive genomic analyses have revealed various combinations of base substitutions, referred to as the mutational signatures, in cancer. Each mutational signature is believed to arise from specific DNA damage and repair processes, including carcinogens. However, as a type of carcinogen, tumor viruses increase the cancer risk by alternative mechanisms, including insertional mutagenesis, viral oncogenes, and immunosuppression. In this review, we summarize virus-driven carcinogenesis to provide a framework for the control of malignant cell proliferation. We first provide a brief overview of oncogenic viruses and describe their implication in virus-related tumors. Next, we describe tumor viruses (HPV, Human papilloma virus; HBV, Hepatitis B virus; HCV, Hepatitis C virus; EBV, Epstein-Barr virus; Kaposi sarcoma herpesvirus; MCV, Merkel cell polyoma virus; HTLV-1, Human T-cell lymphotropic virus, type-1) and tumor virus-related cancers. Lastly, we introduce emerging tumor virus candidates, human cytomegalovirus (CMV), human herpesvirus-6 (HHV-6) and adeno-associated virus-2 (AAV-2). We expect this review to be a hub in a complex network of data for virus-associated carcinogenesis.
Collapse
Affiliation(s)
- Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| | - Takayasu Ideta
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.I.); (M.S.)
- Department of Laboratory Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Akihiro Hirata
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1194, Japan;
| | - Kayoko Hatano
- Department of Obstetrics and Gynecology, Gifu University Hospital, Gifu 501-1194, Japan;
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan;
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.I.); (M.S.)
| | - Takuji Tanaka
- Department of Diagnostic Pathology (DDP) and Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, Gifu 500-8513, Japan;
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| |
Collapse
|
11
|
Baumert TF. "We can and should do better" - an interview with the 2020 Nobel prize laureates who revolutionized hepatology. J Hepatol 2021; 75:S0168-8278(21)00312-3. [PMID: 34049732 DOI: 10.1016/j.jhep.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 02/13/2023]
Affiliation(s)
- Thomas F Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, F-67000 Strasbourg, France.
| |
Collapse
|
12
|
Li HC, Yang CH, Lo SY. Hepatitis C Viral Replication Complex. Viruses 2021; 13:v13030520. [PMID: 33809897 PMCID: PMC8004249 DOI: 10.3390/v13030520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
The life cycle of the hepatitis C virus (HCV) can be divided into several stages, including viral entry, protein translation, RNA replication, viral assembly, and release. HCV genomic RNA replication occurs in the replication organelles (RO) and is tightly linked to ER membrane alterations containing replication complexes (proteins NS3 to NS5B). The amplification of HCV genomic RNA could be regulated by the RO biogenesis, the viral RNA structure (i.e., cis-acting replication elements), and both viral and cellular proteins. Studies on HCV replication have led to the development of direct-acting antivirals (DAAs) targeting the replication complex. This review article summarizes the viral and cellular factors involved in regulating HCV genomic RNA replication and the DAAs that inhibit HCV replication.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
- Correspondence: ; Tel.: +886-3-8565301 (ext. 2322)
| |
Collapse
|
13
|
De A, Chawla YK. Nobel Prize in Medicine 2020: Acknowledging the Discovery of Hepatitis C Virus. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2020. [DOI: 10.1055/s-0040-1722381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Arka De
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| | - Yogesh K. Chawla
- Kalinga Institute of Medical Sciences, Bhubaneshwar, Odisha, India
| |
Collapse
|
14
|
The Nobel Prize in Medicine 2020 for the Discovery of Hepatitis C Virus: Transforming Hepatology. J Hepatol 2020; 73:1303-1305. [PMID: 33213742 PMCID: PMC7613428 DOI: 10.1016/j.jhep.2020.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
|
15
|
Pradhan A, Tripathi SK, Das S. Discovery of Hepatitis C Virus. RESONANCE 2020. [PMCID: PMC7772059 DOI: 10.1007/s12045-020-1089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The 2020 Nobel Prize in Physiology or Medicine was awarded jointly to Harvey J. Alter of the National Institute of Health (NTH), Michael Houghton of the University of Alberta and, Charles M. Rice of Rockefeller University. The Nobel Assembly at Karolinska Institute has awarded them the Nobel Prize for the discovery of Hepatitis C virus (HCV).
Collapse
|
16
|
Affiliation(s)
- Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Gunda I Georg
- College of Pharmacy, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Shaomeng Wang
- University of Michigan, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry and Michigan Center for Therapeutic Innovation, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
17
|
HCV-2a NS5A downregulates viral translation predominantly through domain I. Biochem Biophys Res Commun 2020; 529:77-84. [PMID: 32560823 DOI: 10.1016/j.bbrc.2020.05.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 11/21/2022]
Abstract
Hepatitis C virus (HCV) non-structural protein NS5A is a multifunctional protein with critical roles in viral replication and assembly. We previously showed that HCV-1b NS5A downregulates viral translation only in the presence of the poly(U/UC) tract in 3'UTR. As NS5A of different HCV genotypes may have different functions or carry out the same functions through genotype-specific mechanisms, we investigated the effect of HCV-2a NS5A on viral translation. We found that HCV-2a NS5A downregulates RNA translation of both HCV-2a and -1b, whereas the effect of HCV-1b NS5A is limited to HCV-1b only. In addition, individual regions of 3'UTR are not required for HCV-2a NS5A to downregulate viral RNA translation. We also found that HCV-2a NS5A inhibits capped mRNA translation. Mapping experiments showed that the translation downregulation by HCV-2a NS5A is predominantly mediated by domain I. Furthermore, we found that the integrity of serine-146 residue plays an important role in translation downregulation by NS5A. Our results increased our understanding on genotype-specific functions of HCV NS5A.
Collapse
|
18
|
Tabata K, Neufeldt CJ, Bartenschlager R. Hepatitis C Virus Replication. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037093. [PMID: 31570388 DOI: 10.1101/cshperspect.a037093] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Replication and amplification of the viral genome is a key process for all viruses. For hepatitis C virus (HCV), a positive-strand RNA virus, amplification of the viral genome requires the synthesis of a negative-sense RNA template, which is in turn used for the production of new genomic RNA. This process is governed by numerous proteins, both host and viral, as well as distinct lipids and specific RNA elements within the positive- and negative-strand RNAs. Moreover, this process requires specific changes to host cell ultrastructure to create microenvironments conducive to viral replication. This review will focus on describing the processes and factors involved in facilitating or regulating HCV genome replication.
Collapse
Affiliation(s)
- Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany.,Division of Virus-Associated Carcinogenesis, German Cancer Research Center, 69120 Heidelberg, Germany.,German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Romero-López C, Berzal-Herranz A. The Role of the RNA-RNA Interactome in the Hepatitis C Virus Life Cycle. Int J Mol Sci 2020; 21:ijms21041479. [PMID: 32098260 PMCID: PMC7073135 DOI: 10.3390/ijms21041479] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023] Open
Abstract
RNA virus genomes are multifunctional entities endowed with conserved structural elements that control translation, replication and encapsidation, among other processes. The preservation of these structural RNA elements constraints the genomic sequence variability. The hepatitis C virus (HCV) genome is a positive, single-stranded RNA molecule with numerous conserved structural elements that manage different steps during the infection cycle. Their function is ensured by the association of protein factors, but also by the establishment of complex, active, long-range RNA-RNA interaction networks-the so-called HCV RNA interactome. This review describes the RNA genome functions mediated via RNA-RNA contacts, and revisits some canonical ideas regarding the role of functional high-order structures during the HCV infective cycle. By outlining the roles of long-range RNA-RNA interactions from translation to virion budding, and the functional domains involved, this work provides an overview of the HCV genome as a dynamic device that manages the course of viral infection.
Collapse
|
20
|
Selitsky SR, Marron D, Hollern D, Mose LE, Hoadley KA, Jones C, Parker JS, Dittmer DP, Perou CM. Virus expression detection reveals RNA-sequencing contamination in TCGA. BMC Genomics 2020; 21:79. [PMID: 31992194 PMCID: PMC6986043 DOI: 10.1186/s12864-020-6483-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background Contamination of reagents and cross contamination across samples is a long-recognized issue in molecular biology laboratories. While often innocuous, contamination can lead to inaccurate results. Cantalupo et al., for example, found HeLa-derived human papillomavirus 18 (H-HPV18) in several of The Cancer Genome Atlas (TCGA) RNA-sequencing samples. This work motivated us to assess a greater number of samples and determine the origin of possible contaminations using viral sequences. To detect viruses with high specificity, we developed the publicly available workflow, VirDetect, that detects virus and laboratory vector sequences in RNA-seq samples. We applied VirDetect to 9143 RNA-seq samples sequenced at one TCGA sequencing center (28/33 cancer types) over 5 years. Results We confirmed that H-HPV18 was present in many samples and determined that viral transcripts from H-HPV18 significantly co-occurred with those from xenotropic mouse leukemia virus-related virus (XMRV). Using laboratory metadata and viral transcription, we determined that the likely contaminant was a pool of cell lines known as the “common reference”, which was sequenced alongside TCGA RNA-seq samples as a control to monitor quality across technology transitions (i.e. microarray to GAII to HiSeq), and to link RNA-seq to previous generation microarrays that standardly used the “common reference”. One of the cell lines in the pool was a laboratory isolate of MCF-7, which we discovered was infected with XMRV; another constituent of the pool was likely HeLa cells. Conclusions Altogether, this indicates a multi-step contamination process. First, MCF-7 was infected with an XMRV. Second, this infected cell line was added to a pool of cell lines, which contained HeLa. Finally, RNA from this pool of cell lines contaminated several TCGA tumor samples most-likely during library construction. Thus, these human tumors with H-HPV or XMRV reads were likely not infected with H-HPV 18 or XMRV.
Collapse
Affiliation(s)
- Sara R Selitsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - David Marron
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Daniel Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Lisle E Mose
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Corbin Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA. .,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| |
Collapse
|
21
|
[Hepatitis C virus research so far and in the future]. Uirusu 2020; 70:129-134. [PMID: 34544927 DOI: 10.2222/jsv.70.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The 2020 Nobel Prize in Physiology or Medicine was awarded to three researchers who contributed to the development of the disease concept ''non-A, non-B hepatitis'' and the isolation of its causative agent, hepatitis C virus (HCV). Technologies and experimental systems to analyze HCV have been greatly improved for these three decades, and the antiviral treatments against HCV have been developed. This review summarizes the effort to elucidate the HCV biology so far and the remaining subject to be solved in the future. I also introduce the studies to identify bioactive natural products by taking advantage of the HCV infection cell culture system.
Collapse
|
22
|
Castillo-Martínez J, Ovejero T, Romero-López C, Sanmartín I, Berzal-Herranz B, Oltra E, Berzal-Herranz A, Gallego J. Structure and function analysis of the essential 3'X domain of hepatitis C virus. RNA 2019; 26:186-198. [PMID: 31694875 PMCID: PMC6961542 DOI: 10.1261/rna.073189.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023]
Abstract
The 3′X domain of hepatitis C virus has been reported to control viral replication and translation by modulating the exposure of a nucleotide segment involved in a distal base-pairing interaction with an upstream 5BSL3.2 domain. To study the mechanism of this molecular switch, we have analyzed the structure of 3′X mutants that favor one of the two previously proposed conformations comprising either two or three stem–loops. Only the two-stem conformation was found to be stable and to allow the establishment of the distal contact with 5BSL3.2, and also the formation of 3′X domain homodimers by means of a universally conserved palindromic sequence. Nucleotide changes disturbing the two-stem conformation resulted in poorer replication and translation levels, explaining the high degree of conservation detected for this sequence. The switch function attributed to the 3′X domain does not occur as a result of a transition between two- and three-stem conformations, but likely through the sequestration of the 5BSL3.2-binding sequence by formation of 3′X homodimers.
Collapse
Affiliation(s)
- Jesús Castillo-Martínez
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain.,Escuela de Doctorado, Universidad Católica de Valencia, Valencia, 46001, Spain
| | - Tamara Ovejero
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Armilla, Granada, 18016, Spain
| | - Isaías Sanmartín
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Armilla, Granada, 18016, Spain
| | - Elisa Oltra
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Armilla, Granada, 18016, Spain
| | - José Gallego
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain
| |
Collapse
|
23
|
Cantero-Camacho Á, Gallego J. An unexpected RNA distal interaction mode found in an essential region of the hepatitis C virus genome. Nucleic Acids Res 2019; 46:4200-4212. [PMID: 29409065 PMCID: PMC5934655 DOI: 10.1093/nar/gky074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
The 3’X tail is a functionally essential 98-nt sequence located at the 3′-end of the hepatitis C virus (HCV) RNA genome. The domain contains two absolutely conserved dimer linkage sequence (DLS) and k nucleotide segments involved in viral RNA dimerization and in a distal base-pairing interaction with stem-loop 5BSL3.2, respectively. We have previously shown that domain 3’X forms an elongated structure comprising two coaxially stacked SL1’ and SL2’ stem-loops. This conformation favors RNA dimerization by exposing a palindromic DLS segment in an apical loop, but buries in the upper stem of hairpin SL2’ the k nucleotides involved in the distal contact with 5BSL3.2. Using nuclear magnetic resonance spectroscopy and gel electrophoresis experiments, here we show that the establishment of the complex between domain 3’X and stem-loop 5BSL3.2 only requires a rearrangement of the nucleotides forming the upper region of subdomain SL2’. The results indicate that the interaction does not occur through a canonical kissing loop mechanism involving the unpaired nucleotides of two terminal loops, but rather involves a base-paired stem and an apical loop and may result in a kissing three-way junction. On the basis of this information we suggest how the 3’X tail switches between monomer, homodimer and heterodimer states to regulate the HCV viral cycle.
Collapse
Affiliation(s)
- Ángel Cantero-Camacho
- Facultad de Medicina, Universidad Católica de Valencia, C/Quevedo 2, 46001 Valencia, Spain
| | - José Gallego
- Facultad de Medicina, Universidad Católica de Valencia, C/Quevedo 2, 46001 Valencia, Spain
| |
Collapse
|
24
|
Luna JM, Saeed M, Rice CM. Taming a beast: lessons from the domestication of hepatitis C virus. Curr Opin Virol 2019; 35:27-34. [PMID: 30875640 PMCID: PMC6556422 DOI: 10.1016/j.coviro.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
"What I cannot create, I do not understand." Richard Feynman may have championed reasoning from first principles in his famous blackboard missive, but he could just as well have been referring to the plight of a molecular virologist. What cannot be grown in a controlled laboratory setting, we cannot fully understand. The story of the laboratory domestication of hepatitis C virus (HCV) is now a classic example of virologists applying all manner of inventive skill to create cell-based models of infection in order to clarify prospective drug targets. In this review, we highlight key successes and failures that were instructive in achieving cell-based models for HCV studies and drug development. We also emphasize the lessons learned from the ∼40 year saga that may be applicable to viruses yet unknown and uncultured.
Collapse
Affiliation(s)
- Joseph M Luna
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States
| | - Mohsan Saeed
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States
| | - Charles M Rice
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
25
|
Similarities and Differences Between HCV Pseudoparticle (HCVpp) and Cell Culture HCV (HCVcc) in the Study of HCV. Methods Mol Biol 2019; 1911:33-45. [PMID: 30593616 DOI: 10.1007/978-1-4939-8976-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For a long time, the study of the HCV infectious cycle has been a major challenge for researchers because of the difficulties in generating an efficient cell culture system leading to a productive viral infection. The development of HCVpp and later on HCVcc model allowing for functional studies of HCV in cell culture completely revolutionized HCV research. The aim of this review is to provide the reader with a brief overview of the development of these two models. We describe the advantages of each model as well as their limitations in the study of the HCV life cycle, with a particular emphasis on virus entry. A comparison between these two models is presented in terms of virion composition and their use as tools for the characterization of entry factors, envelope glycoprotein functions, and antibody neutralization. We also compare the production and biosafety level of these two types of viral particles. Globally, this review provides a general description of the most adequate applications for HCVpp and HCVcc in HCV research.
Collapse
|
26
|
Chen M, Zheng F, Yuan G, Duan X, Rong L, Liu J, Feng S, Wang Z, Wang M, Feng Y, Zhou Q, Li J, Deng K, Li C, Xia J, Rao G, Zhou Y, Fu Y, Li YP. Development of an Infectious Cell Culture System for Hepatitis C Virus Genotype 6a Clinical Isolate Using a Novel Strategy and Its Sensitivity to Direct-Acting Antivirals. Front Microbiol 2018; 9:2950. [PMID: 30564209 PMCID: PMC6288186 DOI: 10.3389/fmicb.2018.02950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is classified into seven major genotypes, and genotype 6 is commonly prevalent in Asia, thus reverse genetic system representing genotype 6 isolates in prevalence is required. Here, we developed an infectious clone for a Chinese HCV 6a isolate (CH6a) using a novel strategy. We determined CH6a consensus sequence from patient serum and assembled a CH6a full-length (CH6aFL) cDNA using overlapped PCR product-derived clones that shared the highest homology with the consensus. CH6aFL was non-infectious in hepatoma Huh7.5 cells. Next, we constructed recombinants containing Core-NS5A or 5′UTR-NS5A from CH6a and the remaining sequences from JFH1 (genotype 2a), and both were engineered with 7 mutations identified previously. However, they replicated inefficiently without virus spread in Huh7.5 cells. Addition of adaptive mutations from CH6a Core-NS2 recombinant, with JFH1 5′UTR and NS3-3′UTR, enhanced the viability of Core-NS5A recombinant and acquired replication-enhancing mutations. Combination of 22 mutations in CH6a recombinant with JFH1 5′UTR and 3′UTR (CH6aORF) enabled virus replication and recovered additional four mutations. Adding these four mutations, we generated two efficient recombinants containing 26 mutations (26m), CH6aORF_26m and CH6aFL_26m (designated “CH6acc”), releasing HCV of 104.3–104.5 focus-forming units (FFU)/ml in Huh7.5.1-VISI-mCherry and Huh7.5 cells. Seven newly identified mutations were important for HCV replication, assembly, and release. The CH6aORF_26m virus was inhibited in a dose- and genotype-dependent manner by direct-acting-antivirals targeting NS3/4A, NS5A, and NS5B. The CH6acc enriches the toolbox of HCV culture systems, and the strategy and mutations applied here will facilitate the culture development of other HCV isolates and related viruses.
Collapse
Affiliation(s)
- Mingxiao Chen
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Fuxiang Zheng
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Guosheng Yuan
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaobing Duan
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Liang Rong
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Junwei Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengjun Feng
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Ziting Wang
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Min Wang
- Guangzhou Blood Center, Guangzhou, China
| | - Yetong Feng
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Qing Zhou
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jinqian Li
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Kai Deng
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Chunna Li
- Program of Pathobiology, The Fifth Affiliated Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Jinyu Xia
- Program of Pathobiology, The Fifth Affiliated Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Guirong Rao
- Key Laboratory of Liver Disease, Center of Infectious Diseases, PLA 458 Hospital, Guangzhou, China
| | - Yuanping Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Yi-Ping Li
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Program of Pathobiology, The Fifth Affiliated Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| |
Collapse
|
27
|
Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM. Structural transitions in poly(A), poly(C), poly(U), and poly(G) and their possible biological roles. J Biomol Struct Dyn 2018; 37:2837-2866. [PMID: 30052138 DOI: 10.1080/07391102.2018.1503972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The homopolynucleotide (homo-oligonucleotide) tracts function as regulatory elements at various stages of mRNAs life cycle. Numerous cellular proteins specifically bind to these tracts. Among them are the different poly(A)-binding proteins, poly(C)-binding proteins, multifunctional fragile X mental retardation protein which binds specifically both to poly(G) and poly(U) and others. Molecular mechanisms of regulation of gene expression mediated by homopolynucleotide tracts in RNAs are not fully understood and the structural diversity of these tracts can contribute substantially to this regulation. This review summarizes current knowledge on different forms of homoribopolynucleotides, in particular, neutral and acidic forms of poly(A) and poly(C), and also biological relevance of homoribopolynucleotide (homoribo-oligonucleotide) tracts is discussed. Under physiological conditions, the acidic forms of poly(A) and poly(C) can be induced by proton transfer from acidic amino acids of proteins to adenine and cytosine bases. Finally, we present potential mechanisms for the regulation of some biological processes through the formation of intramolecular poly(A) duplexes.
Collapse
Affiliation(s)
- Margarita I Zarudnaya
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Iryna M Kolomiets
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Andriy L Potyahaylo
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv , Ukraine
| |
Collapse
|
28
|
Hepatitis C virus cell culture models: an encomium on basic research paving the road to therapy development. Med Microbiol Immunol 2018; 208:3-24. [PMID: 30298360 DOI: 10.1007/s00430-018-0566-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Chronic hepatitis C virus (HCV) infections affect 71 million people worldwide, often resulting in severe liver damage. Since 2014 highly efficient therapies based on directly acting antivirals (DAAs) are available, offering cure rates of almost 100%, if the infection is diagnosed in time. It took more than a decade to discover HCV in 1989 and another decade to establish a cell culture model. This review provides a personal view on the importance of HCV cell culture models, particularly the replicon system, in the process of therapy development, from drug screening to understanding of mode of action and resistance, with a special emphasis on the contributions of Ralf Bartenschlager's group. It summarizes the tremendous efforts of scientists in academia and industry required to achieve efficient DAAs, focusing on the main targets, protease, polymerase and NS5A. It furthermore underpins the importance of strong basic research laying the ground for translational medicine.
Collapse
|
29
|
Ramirez S, Bukh J. Current status and future development of infectious cell-culture models for the major genotypes of hepatitis C virus: Essential tools in testing of antivirals and emerging vaccine strategies. Antiviral Res 2018; 158:264-287. [PMID: 30059723 DOI: 10.1016/j.antiviral.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
In this review, we summarize the relevant scientific advances that led to the development of infectious cell culture systems for hepatitis C virus (HCV) with the corresponding challenges and successes. We also provide an overview of how these systems have contributed to the study of antiviral compounds and their relevance for the development of a much-needed vaccine against this major human pathogen. An efficient infectious system to study HCV in vitro, using human hepatoma derived cells, has only been available since 2005, and was limited to a single isolate, named JFH1, until 2012. Successive developments have been slow and cumbersome, as each available system has been the result of a systematic effort for discovering adaptive mutations conferring culture replication and propagation to patient consensus clones that are inherently non-viable in vitro. High genetic heterogeneity is a paramount characteristic of this virus, and as such, it should preferably be reflected in basic, translational, and clinical studies. The limited number of efficient viral culture systems, in the context of the vast genetic diversity of HCV, continues to represent a major hindrance for the study of this virus, posing a significant barrier towards studies of antivirals (particularly of resistance) and for advancing vaccine development. Intensive research efforts, driven by isolate-specific culture adaptation, have only led to efficient full-length infectious culture systems for a few strains of HCV genotypes 1, 2, 3, and 6. Hence research aimed at identifying novel strategies that will permit universal culture of HCV will be needed to further our understanding of this unique virus causing 400 thousand deaths annually.
Collapse
Affiliation(s)
- Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
30
|
Molecular characterization of a novel bat-associated circovirus with a poly-T tract in the 3' intergenic region. Virus Res 2018; 250:95-103. [PMID: 29689280 DOI: 10.1016/j.virusres.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
The family Circoviridae comprises a large group of small circular single-stranded DNA viruses with several members causing severe pig and poultry diseases. In recent years the number of new viruses within the family has had an explosive increase showing a high level of genetic diversity and a broad host range. In this report we describe two more circoviruses identified from bats in Yunnan and Heilongjiang provinces in China. Full genome sequencing has revealed that these bat associated circoviruses (bat ACV) should be classified as new species within the genus Circovirus based on the demarcation criteria of the International Committee on the Taxonomy of Viruses (ICTV). The most striking result is the novel finding of a 21-28 nt polythymidine (poly-T) tract in the 3' terminal intergenic region of bat ACV isolates from Heilongjiang province. To understand its role in viral replication, a wild type bat ACV and a mutated version with the entire poly-T deleted were rescued through construction of infectious clones. Replication comparison in vitro showed that the poly-T is not essential for viral replication. Identification of additional bat ACV isolates and study of their biological characteristics will be the main task in future to understand the potential roles of bats in transmission of circoviruses to terrestrial mammals and humans.
Collapse
|
31
|
Niepmann M, Shalamova LA, Gerresheim GK, Rossbach O. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication. Front Microbiol 2018; 9:395. [PMID: 29593672 PMCID: PMC5857606 DOI: 10.3389/fmicb.2018.00395] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled by the Internal Ribosome Entry Site (IRES) in the 5' untranslated region (5' UTR), while also downstream elements like the cis-replication element (CRE) in the coding region and the 3' UTR are involved in translation regulation. The cis-elements controlling replication of the viral RNA genome are located mainly in the 5'- and 3'-UTRs at the genome ends but also in the protein coding region, and in part these signals overlap with the signals controlling RNA translation. Many long-range RNA-RNA interactions (LRIs) are predicted between different regions of the HCV RNA genome, and several such LRIs are actually involved in HCV translation and replication regulation. A number of RNA cis-elements recruit cellular RNA-binding proteins that are involved in the regulation of HCV translation and replication. In addition, the liver-specific microRNA-122 (miR-122) binds to two target sites at the 5' end of the viral RNA genome as well as to at least three additional target sites in the coding region and the 3' UTR. It is involved in the regulation of HCV RNA stability, translation and replication, thereby largely contributing to the hepatotropism of HCV. However, we are still far from completely understanding all interactions that regulate HCV RNA genome translation, stability, replication and encapsidation. In particular, many conclusions on the function of cis-elements in HCV replication have been obtained using full-length HCV genomes or near-full-length replicon systems. These include both genome ends, making it difficult to decide if a cis-element in question acts on HCV replication when physically present in the plus strand genome or in the minus strand antigenome. Therefore, it may be required to use reduced systems that selectively focus on the analysis of HCV minus strand initiation and/or plus strand initiation.
Collapse
Affiliation(s)
- Michael Niepmann
- Medical Faculty, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Lyudmila A Shalamova
- Medical Faculty, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany.,Faculty of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Gesche K Gerresheim
- Medical Faculty, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany.,Faculty of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Rossbach
- Faculty of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
32
|
NS3 from Hepatitis C Virus Strain JFH-1 Is an Unusually Robust Helicase That Is Primed To Bind and Unwind Viral RNA. J Virol 2017; 92:JVI.01253-17. [PMID: 29070684 PMCID: PMC5730761 DOI: 10.1128/jvi.01253-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/10/2017] [Indexed: 01/06/2023] Open
Abstract
Hepatitis C viruses (HCV) encode a helicase enzyme that is essential for viral replication and assembly (nonstructural protein 3 [NS3]). This helicase has become the focus of extensive basic research on the general helicase mechanism, and it is also of interest as a novel drug target. Despite the importance of this protein, mechanistic work on NS3 has been conducted almost exclusively on variants from HCV genotype 1. Our understanding of NS3 from the highly active HCV strains that are used to study HCV genetics and mechanism in cell culture (such as JFH-1) is lacking. We therefore set out to determine whether NS3 from the replicatively efficient genotype 2a strain JFH-1 displays novel functional or structural properties. Using biochemical assays for RNA binding and duplex unwinding, we show that JFH-1 NS3 binds RNA much more rapidly than the previously studied NS3 variants from genotype 1b. Unlike NS3 variants from other genotypes, JFH-1 NS3 binds RNA with high affinity in a functionally active form that is capable of immediately unwinding RNA duplexes without undergoing rate-limiting conformational changes that precede activation. Unlike other superfamily 2 (SF2) helicases, JFH-1 NS3 does not require long 3′ overhangs, and it unwinds duplexes that are flanked by only a few nucleotides, as in the folded HCV genome. To understand the physical basis for this, we solved the crystal structure of JFH-1 NS3, revealing a novel conformation that contains an open, positively charged RNA binding cleft that is primed for productive interaction with RNA targets, potentially explaining robust replication by HCV JFH-1. IMPORTANCE Genotypes of HCV are as divergent as different types of flavivirus, and yet mechanistic features of HCV variants are presumed to be held in common. One of the most well-studied components of the HCV replication complex is a helicase known as nonstructural protein 3 (NS3). We set out to determine whether this important mechanical component possesses biochemical and structural properties that differ between common strains such as those of genotype 1b and a strain of HCV that replicates with exceptional efficiency (JFH-1, classified as genotype 2a). Indeed, unlike the inefficient genotype 1b NS3, which has been well studied, JFH-1 NS3 is a superhelicase with strong RNA affinity and high unwinding efficiency on a broad range of targets. Crystallographic analysis reveals architectural features that promote enhanced biochemical activity of JFH-1 NS3. These findings show that even within a single family of viruses, drift in sequence can result in the acquisition of radically new functional properties that enhance viral fitness.
Collapse
|
33
|
Lanford RE, Walker CM, Lemon SM. The Chimpanzee Model of Viral Hepatitis: Advances in Understanding the Immune Response and Treatment of Viral Hepatitis. ILAR J 2017; 58:172-189. [PMID: 29045731 PMCID: PMC5886334 DOI: 10.1093/ilar/ilx028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Chimpanzees (Pan troglodytes) have contributed to diverse fields of biomedical research due to their close genetic relationship to humans and in many instances due to the lack of any other animal model. This review focuses on the contributions of the chimpanzee model to research on hepatitis viruses where chimpanzees represented the only animal model (hepatitis B and C) or the most appropriate animal model (hepatitis A). Research with chimpanzees led to the development of vaccines for HAV and HBV that are used worldwide to protect hundreds of millions from these diseases and, where fully implemented, have provided immunity for entire generations. More recently, chimpanzee research was instrumental in the development of curative therapies for hepatitis C virus infections. Over a span of 40 years, this research would identify the causative agent of NonA,NonB hepatitis, validate the molecular tools for drug discovery, and provide safety and efficacy data on the therapies that now provide a rapid and complete cure of HCV chronic infections. Several cocktails of antivirals are FDA approved that eliminate the virus following 12 weeks of once-per-day oral therapy. This represents the first cure of a chronic viral disease and, once broadly implemented, will dramatically reduce the occurrence of cirrhosis and liver cancer. The recent contributions of chimpanzees to our current understanding of T cell immunity for HCV, development of novel therapeutics for HBV, and the biology of HAV are reviewed. Finally, a perspective is provided on the events leading to the cessation of the use of chimpanzees in research and the future of the chimpanzees previously used to bring about these amazing breakthroughs in human healthcare.
Collapse
Affiliation(s)
- Robert E Lanford
- Robert E. Lanford, PhD, is director at Southwest National Primate Research Center, Texas Biomedical Research Institute in San Antonio, Texas. Christopher M. Walker, PhD, is at the Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and College of Medicine, The Ohio State University in Columbus, Ohio. Stanley M. Lemon, MD, is at thea Department of Medicine, Division of Infectious Diseases; Lineberger Comprehensive Cancer Center; and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill in Chapel Hill, North Carolina.
| | - Christopher M Walker
- Robert E. Lanford, PhD, is director at Southwest National Primate Research Center, Texas Biomedical Research Institute in San Antonio, Texas. Christopher M. Walker, PhD, is at the Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and College of Medicine, The Ohio State University in Columbus, Ohio. Stanley M. Lemon, MD, is at thea Department of Medicine, Division of Infectious Diseases; Lineberger Comprehensive Cancer Center; and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill in Chapel Hill, North Carolina.
| | - Stanley M Lemon
- Robert E. Lanford, PhD, is director at Southwest National Primate Research Center, Texas Biomedical Research Institute in San Antonio, Texas. Christopher M. Walker, PhD, is at the Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and College of Medicine, The Ohio State University in Columbus, Ohio. Stanley M. Lemon, MD, is at thea Department of Medicine, Division of Infectious Diseases; Lineberger Comprehensive Cancer Center; and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill in Chapel Hill, North Carolina.
| |
Collapse
|
34
|
Romero-López C, Berzal-Herranz A. The 5BSL3.2 Functional RNA Domain Connects Distant Regions in the Hepatitis C Virus Genome. Front Microbiol 2017; 8:2093. [PMID: 29163393 PMCID: PMC5671509 DOI: 10.3389/fmicb.2017.02093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/12/2017] [Indexed: 02/05/2023] Open
Abstract
Viral genomes are complexly folded entities that carry all the information required for the infective cycle. The nucleotide sequence of the RNA virus genome encodes proteins and functional information contained in discrete, highly conserved structural units. These so-called functional RNA domains play essential roles in the progression of infection, which requires their preservation from one generation to the next. Numerous functional RNA domains exist in the genome of the hepatitis C virus (HCV). Among them, the 5BSL3.2 domain in the cis-acting replication element (CRE) at the 3' end of the viral open reading frame has become of particular interest given its role in HCV RNA replication and as a regulator of viral protein synthesis. These functionalities are achieved via the establishment of a complex network of long-distance RNA-RNA contacts involving (at least as known to date) the highly conserved 3'X tail, the apical loop of domain IIId in the internal ribosome entry site, and/or the so-called Alt region upstream of the CRE. Changing contacts promotes the execution of different stages of the viral cycle. The 5BSL3.2 domain thus operates at the core of a system that governs the progression of HCV infection. This review summarizes our knowledge of the long-range RNA-RNA interaction network in the HCV genome, with special attention paid to the structural and functional consequences derived from the establishment of different contacts. The potential implications of such interactions in switching between the different stages of the viral cycle are discussed.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| |
Collapse
|
35
|
Kranawetter C, Brady S, Sun L, Schroeder M, Chen SJ, Heng X. Nuclear Magnetic Resonance Study of RNA Structures at the 3'-End of the Hepatitis C Virus Genome. Biochemistry 2017; 56:4972-4984. [PMID: 28829576 DOI: 10.1021/acs.biochem.7b00573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 3'-end of the genomic RNA of the hepatitis C virus (HCV) embeds conserved elements that regulate viral RNA synthesis and protein translation by mechanisms that have yet to be elucidated. Previous studies with oligo-RNA fragments have led to multiple, mutually exclusive secondary structure predictions, indicating that HCV RNA structure may be context-dependent. Here we employed a nuclear magnetic resonance (NMR) approach that involves long-range adenosine interaction detection, coupled with site-specific 2H labeling, to probe the structure of the intact 3'-end of the HCV genome (385 nucleotides). Our data reveal that the 3'-end exists as an equilibrium mixture of two conformations: an open conformation in which the 98 nucleotides of the 3'-tail (3'X) form a two-stem-loop structure with the kissing-loop residues sequestered and a closed conformation in which the 3'X rearranges its structure and forms a long-range kissing-loop interaction with an upstream cis-acting element 5BSL3.2. The long-range kissing species is favored under high-Mg2+ conditions, and the intervening sequences do not affect the equilibrium as their secondary structures remain unchanged. The open and closed conformations are consistent with the reported function regulation of viral RNA synthesis and protein translation, respectively. Our NMR detection of these RNA conformations and the structural equilibrium in the 3'-end of the HCV genome support its roles in coordinating various steps of HCV replication.
Collapse
Affiliation(s)
- Clayton Kranawetter
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Samantha Brady
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Lizhen Sun
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri , Columbia, Missouri 65211, United States
| | - Mark Schroeder
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri , Columbia, Missouri 65211, United States
| | - Xiao Heng
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| |
Collapse
|
36
|
Cantero-Camacho Á, Fan L, Wang YX, Gallego J. Three-dimensional structure of the 3'X-tail of hepatitis C virus RNA in monomeric and dimeric states. RNA (NEW YORK, N.Y.) 2017; 23:1465-1476. [PMID: 28630140 PMCID: PMC5558915 DOI: 10.1261/rna.060632.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/12/2017] [Indexed: 06/08/2023]
Abstract
The 3'X domain is a 98-nt region located at the 3' end of hepatitis C virus genomic RNA that plays essential functions in the viral life cycle. It contains an absolutely conserved, 16-base palindromic sequence that promotes viral RNA dimerization, overlapped with a 7-nt tract implicated in a distal contact with a nearby functional sequence. Using small angle X-ray scattering measurements combined with model building guided by NMR spectroscopy, we have studied the stoichiometry, structure, and flexibility of domain 3'X and two smaller subdomain sequences as a function of ionic strength, and obtained a three-dimensional view of the full-length domain in its monomeric and dimeric states. In the monomeric form, the 3'X domain adopted an elongated conformation containing two SL1' and SL2' double-helical stems stabilized by coaxial stacking. This structure was significantly less flexible than that of isolated subdomain SL2' monomers. At higher ionic strength, the 3'X scattering envelope nearly doubled its size, reflecting the formation of extended homodimers containing an antiparallel SL2' duplex flanked by coaxially stacked SL1' helices. Formation of these dimers could initialize and/or regulate the packaging of viral RNA genomes into virions.
Collapse
Affiliation(s)
| | - Lixin Fan
- The Small-Angle X-ray Scattering Core Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, USA
| | - Yun-Xing Wang
- National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - José Gallego
- Facultad de Medicina, Universidad Católica de Valencia, 46001 Valencia, Spain
| |
Collapse
|
37
|
Profile of Charles M. Rice, Ralf F. W. Bartenschlager, and Michael J. Sofia, 2016 Lasker-DeBakey Clinical Medical Research Awardees. Proc Natl Acad Sci U S A 2016; 113:13934-13937. [PMID: 27864510 DOI: 10.1073/pnas.1616592113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Miyamura T, Lemon SM, Walker CM, Wakita T. The HCV Replicase Complex and Viral RNA Synthesis. HEPATITIS C VIRUS I 2016. [PMCID: PMC7122888 DOI: 10.1007/978-4-431-56098-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Replication of hepatitis C virus (HCV) is tightly linked to membrane alterations designated the membranous web, harboring the viral replicase complex. In this chapter we describe the morphology and 3D architecture of the HCV-induced replication organelles, mainly consisting of double membrane vesicles, which are generated by a concerted action of the nonstructural proteins NS3 to NS5B. Recent studies have furthermore identified a number of host cell proteins and lipids contributing to the biogenesis of the membranous web, which are discussed in this chapter. Viral RNA synthesis is tightly associated with these membrane alterations and mainly driven by the viral RNA dependent RNA polymerase NS5B. We summarize our current knowledge of the structure and function of NS5B, the role of cis-acting replication elements at the termini of the genome in regulating RNA synthesis and the contribution of additional viral and host factors to viral RNA synthesis, which is still ill defined.
Collapse
Affiliation(s)
- Tatsuo Miyamura
- National Institute of Infectious Diseases, Tokyo, Tokyo Japan
| | - Stanley M. Lemon
- Departments of Medicine and Microbiology & Immunology , The University of North Carolina, Chapel Hill, North Carolina USA
| | - Christopher M. Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio USA
| | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Tokyo Japan
| |
Collapse
|
39
|
The 2016 Lasker-DeBakey Clinical Medical Research Award: Innovative hepatitis C virus (HCV) replicons leading to drug development for hepatitis C cure. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1198-1201. [PMID: 27785725 DOI: 10.1007/s11427-016-0313-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/18/2016] [Indexed: 01/25/2023]
|
40
|
Williams CL. Ralf Bartenschlager, Charles Rice, and Michael Sofia are honored with the 2016 Lasker~DeBakey Clinical Medical Research Award. J Clin Invest 2016; 126:3639-3644. [PMID: 27620536 PMCID: PMC5096798 DOI: 10.1172/jci90179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
41
|
Bukh J. The history of hepatitis C virus (HCV): Basic research reveals unique features in phylogeny, evolution and the viral life cycle with new perspectives for epidemic control. J Hepatol 2016; 65:S2-S21. [PMID: 27641985 DOI: 10.1016/j.jhep.2016.07.035] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 12/11/2022]
Abstract
The discovery of hepatitis C virus (HCV) in 1989 permitted basic research to unravel critical components of a complex life cycle for this important human pathogen. HCV is a highly divergent group of viruses classified in 7 major genotypes and a great number of subtypes, and circulating in infected individuals as a continuously evolving quasispecies destined to escape host immune responses and applied antivirals. Despite the inability to culture patient viruses directly in the laboratory, efforts to define the infectious genome of HCV resulted in development of experimental recombinant in vivo and in vitro systems, including replicons and infectious cultures in human hepatoma cell lines. And HCV has become a model virus defining new paradigms in virology, immunology and biology. For example, HCV research discovered that a virus could be completely dependent on microRNA for its replication since microRNA-122 is critical for the HCV life cycle. A number of other host molecules critical for HCV entry and replication have been identified. Thus, basic HCV research revealed important molecules for development of host targeting agents (HTA). The identification and characterization of HCV encoded proteins and their functional units contributed to the development of highly effective direct acting antivirals (DAA) against the NS3 protease, NS5A and the NS5B polymerase. In combination, these inhibitors have since 2014 permitted interferon-free therapy with cure rates above 90% among patients with chronic HCV infection; however, viral resistance represents a challenge. Worldwide control of HCV will most likely require the development of a prophylactic vaccine, and numerous candidates have been pursued. Research characterizing features critical for antibody-based virus neutralization and T cell based virus elimination from infected cells is essential for this effort. If the world community promotes an ambitious approach by applying current DAA broadly, continues to develop alternative viral- and host- targeted antivirals to combat resistant variants, and invests in the development of a vaccine, it would be possible to eradicate HCV. This would prevent about 500 thousand deaths annually. However, given the nature of HCV, the millions of new infections annually, a high chronicity rate, and with over 150 million individuals with chronic infection (which are frequently unidentified), this effort remains a major challenge for basic researchers, clinicians and communities.
Collapse
Affiliation(s)
- Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
42
|
Smith DB, Becher P, Bukh J, Gould EA, Meyers G, Monath T, Muerhoff AS, Pletnev A, Rico-Hesse R, Stapleton JT, Simmonds P. Proposed update to the taxonomy of the genera Hepacivirus and Pegivirus within the Flaviviridae family. J Gen Virol 2016; 97:2894-2907. [PMID: 27692039 PMCID: PMC5770844 DOI: 10.1099/jgv.0.000612] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proposals are described for the assignment of recently reported viruses, infecting rodents, bats and other mammalian species, to new species within the Hepacivirus and Pegivirus genera (family Flaviviridae). Assignments into 14 Hepacivirus species (Hepacivirus A–N) and 11 Pegivirus species (Pegivirus A–K) are based on phylogenetic relationships and sequence distances between conserved regions extracted from complete coding sequences for members of each proposed taxon. We propose that the species Hepatitis C virus is renamed Hepacivirus C in order to acknowledge its unique historical position and so as to minimize confusion. Despite the newly documented genetic diversity of hepaciviruses and pegiviruses, members of these genera remain phylogenetically distinct, and differ in hepatotropism and the possession of a basic core protein; pegiviruses in general lack these features. However, other characteristics that were originally used to support their division into separate genera are no longer definitive; there is overlap between the two genera in the type of internal ribosomal entry site and the presence of miR-122 sites in the 5′ UTR, the predicted number of N-linked glycosylation sites in the envelope E1 and E2 proteins, the presence of poly U tracts in the 3′ UTR and the propensity of viruses to establish a persistent infection. While all classified hepaciviruses and pegiviruses have mammalian hosts, the recent description of a hepaci-/pegi-like virus from a shark and the likely existence of further homologues in other non-mammalian species indicate that further species or genera remain to be defined in the future.
Collapse
Affiliation(s)
- Donald B Smith
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Scotland, UK
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ernest A Gould
- EHESP French School of Public Health, French Institute of Research for Development (IRD), Aix Marseille Université, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas Monath
- Hookipa Biotech AG, Vienna, Austria.,PaxVax Inc., Menlo Park and Redwood City, CA, USA
| | - A Scott Muerhoff
- Abbott Diagnostics Research and Development, Abbott Park, IL, USA
| | - Alexander Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rebecca Rico-Hesse
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jack T Stapleton
- Medical Service, Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Department of Microbiology, University of Iowa, Iowa City, IA, USA
| | - Peter Simmonds
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Scotland, UK.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Abstract
This year's Lasker∼Debakey Clinical Medical Research Award honors Ralf Bartenschlager, Charles Rice, and Michael Sofia, pioneers in the development of curative and safe therapies for the 170 million people with hepatitis C virus infection.
Collapse
Affiliation(s)
- Silvia Vilarinho
- Departments of Genetics and Internal Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Richard P Lifton
- Departments of Genetics and Internal Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
44
|
Schwartz RE, Bram Y, Frankel A. Pluripotent Stem Cell-Derived Hepatocyte-like Cells: A Tool to Study Infectious Disease. CURRENT PATHOBIOLOGY REPORTS 2016; 4:147-156. [PMID: 29910973 DOI: 10.1007/s40139-016-0113-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of Review Liver disease is an important clinical and global problem and is the 16th leading cause of death worldwide and responsible for 1 million deaths worldwide each year. Infectious disease is a major cause of liver disease specifically and overall is even a greater cause of patient morbidity and mortality. Tools to study human liver disease and infectious disease have been lacking which has significantly hampered the study of liver disease generally and hepatotropic pathogens more specifically. Historically, hepatoma cell lines have been used for in vitro cell culture models to study infectious disease. Significant differences between human hepatoma cell lines and the human hepatocyte has hampered our understanding of hepatocyte pathogen infection and hepatocyte--pathogen interactions. Recent Findings Despite these limitations, great progress was made in the understanding of specific aspects of the life cycle of the canonical hepatocyte viral pathogen, Hepatitis C Virus. Over time various specific drugs targeting various proteins of the HCV virion or aspects of the HCV viral life cycle have been created that enable almost complete elimination of the virus in vitro and clinically. These drugs, direct-acting antivirals have enabled achieving sustained virologic response in over 90-95 percent of patients. Summary Despite the development of direct-acting antivirals and the extreme success in achieving sustained virologic response, there has only been limited success elucidating host-pathogen interactions largely due to the poor nature of the hepatoma platform. Alternative approaches are needed. Pluripotent stem cells are renewable, can be derived from a single donor and can be efficiently and reproducibly differentiated towards many cell types including ectodermal-, endodermal-, and mesodermal-derived lineages. The development of pluripotent stem cell-derived hepatocyte-like cells (iHLCS) changes the paradigm as robust cells with the phenotype and function of hepatocytes can be readily created on demand with a variety of genetic background or alterations. iHLCs are readily used as models to study human drug metabolism, human liver disease, and human hepatotropic infectious disease. In this review, we discuss the biology of the HCV virus, the use of iHLCs as models to study human liver disease, and review the current work on using iHLCs to study HCV infection.
Collapse
Affiliation(s)
| | - Yaron Bram
- Weill Cornell School of Medicine, New York, NY, USA
| | | |
Collapse
|
45
|
Abstract
Hepatitis C virus (HCV) is the major cause of transfusion-associated hepatitis and accounts for a significant proportion of hepatitis cases worldwide. Most, if not all, infections become persistent and about 60% of cases develop chronic liver disease with various outcomes ranging from an asymptomatic carrier state to chronic active hepatitis and liver cirrhosis, which is strongly associated with the development of hepatocellular carcinoma. Since the initial cloning of the viral genome in 1989, our knowledge of the molecular biology of HCV has increased rapidly and led to the identification of several potential targets for antiviral intervention. In contrast, the low replication of the virus in cell culture, the lack of convenient animal models and the high genome variability present major challenges for drug development. This review will describe candidate drug targets and summarize ‘classical’ and ‘novel’ approaches currently being pursued to develop efficient HCV-specific therapies.
Collapse
Affiliation(s)
- R Bartenschlager
- Institute for Virology, Johannes-Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany
| |
Collapse
|
46
|
Dixit U, Pandey AK, Mishra P, Sengupta A, Pandey VN. Staufen1 promotes HCV replication by inhibiting protein kinase R and transporting viral RNA to the site of translation and replication in the cells. Nucleic Acids Res 2016; 44:5271-87. [PMID: 27106056 PMCID: PMC4914112 DOI: 10.1093/nar/gkw312] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/14/2016] [Indexed: 01/23/2023] Open
Abstract
Persistent hepatitis C virus (HCV) infection leads to chronic hepatitis C (CHC), which often progresses to liver cirrhosis (LC) and hepatocellular carcinoma (HCC). The molecular mechanisms that establish CHC and cause its subsequent development into LC and HCC are poorly understood. We have identified a cytoplasmic double-stranded RNA binding protein, Stau1, which is crucial for HCV replication. In this study, Stau1 specifically interacted with the variable-stem-loop region in the 3′ NTR and domain IIId of the HCV-IRES in the 5′ NTR, and promoted HCV replication and translation. Stau1 coimmunoprecipitates HCV NS5B and a cell factor, protein kinase R (PKR), which is critical for interferon-induced cellular antiviral and antiproliferative responses. Like Stau1, PKR displayed binding specificity to domain IIId of HCV-IRES. Stau1 binds to PKR and strongly inhibits PKR-autophosphorylation. We demonstrated that the transport of HCV RNA on the polysomes is Stau1-dependent, being mainly localized in the monosome fractions when Stau1 is downregulated and exclusively localized in the polysomes when Stau1 is overexpressed. Our findings suggest that HCV may appropriate Stau1 to its advantage to prevent PKR-mediated inhibition of eIF2α, which is required for the synthesis of HCV proteins for translocation of viral RNA genome to the polysomes for efficient translation and replication.
Collapse
Affiliation(s)
- Updesh Dixit
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Ashutosh K Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Priya Mishra
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Amitabha Sengupta
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Virendra N Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
47
|
Abstract
RNAs are functionally diverse macromolecules whose proper functions rely strictly upon their correct tertiary structures. However, because of their high structural flexibility, correct folding of RNAs is challenging and slow. Therefore, cells and viruses encode a variety of RNA remodeling proteins, including helicases and RNA chaperones. In RNA viruses, these proteins are believed to play pivotal roles in all the processes involving viral RNAs during the life cycle. RNA helicases have been studied extensively for decades, whereas RNA chaperones, particularly virus-encoded RNA chaperones, are often overlooked. This review describes the activities of RNA chaperones encoded by RNA viruses, particularly the ones identified and characterized in recent years, and the functions of these proteins in different steps of viral life cycles, and presents an overview of this unique group of proteins.
![]()
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hongjie Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qi Qian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
48
|
The yin and yang of hepatitis C: synthesis and decay of hepatitis C virus RNA. Nat Rev Microbiol 2015; 13:544-58. [PMID: 26256788 DOI: 10.1038/nrmicro3506] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is an unusual RNA virus that has a striking capacity to persist for the remaining life of the host in the majority of infected individuals. In order to persist, HCV must balance viral RNA synthesis and decay in infected cells. In this Review, we focus on interactions between the positive-sense RNA genome of HCV and the host RNA-binding proteins and microRNAs, and describe how these interactions influence the competing processes of viral RNA synthesis and decay to achieve stable, long-term persistence of the viral genome. Furthermore, we discuss how these processes affect hepatitis C pathogenesis and therapeutic strategies against HCV.
Collapse
|
49
|
Cantero-Camacho Á, Gallego J. The conserved 3'X terminal domain of hepatitis C virus genomic RNA forms a two-stem structure that promotes viral RNA dimerization. Nucleic Acids Res 2015; 43:8529-39. [PMID: 26240378 PMCID: PMC4787799 DOI: 10.1093/nar/gkv786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/21/2015] [Indexed: 02/06/2023] Open
Abstract
The 3′X domain of hepatitis C virus is a strongly conserved structure located at the 3′ terminus of the viral genomic RNA. This domain modulates the replication and translation processes of the virus in conjunction with an upstream 5BSL3.2 stem–loop, and contains a palindromic sequence that facilitates RNA dimerization. Based on nuclear magnetic resonance spectroscopy and gel electrophoresis, we report here that domain 3′X adopts a structure composed of two stem–loops, and not three hairpins or a mixture of folds, as previously proposed. This structure exposes unpaired terminal nucleotides after a double-helical stem and palindromic bases in an apical loop, favoring genomic RNA replication and self-association. At higher ionic strength the domain forms homodimers comprising an intermolecular duplex of 110 nucleotides. The 3′X sequences can alternatively form heterodimers with 5BSL3.2. This contact, reported to favor translation, likely involves local melting of one of the 3′X stem–loops.
Collapse
Affiliation(s)
- Ángel Cantero-Camacho
- Facultad de Medicina, Universidad Católica de Valencia, C/Quevedo 2, 46001 Valencia, Spain
| | - José Gallego
- Facultad de Medicina, Universidad Católica de Valencia, C/Quevedo 2, 46001 Valencia, Spain
| |
Collapse
|
50
|
Fricke M, Dünnes N, Zayas M, Bartenschlager R, Niepmann M, Marz M. Conserved RNA secondary structures and long-range interactions in hepatitis C viruses. RNA (NEW YORK, N.Y.) 2015; 21:1219-32. [PMID: 25964384 PMCID: PMC4478341 DOI: 10.1261/rna.049338.114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/07/2015] [Indexed: 05/02/2023]
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus with a plus-strand RNA genome of ∼9.600 nt. Due to error-prone replication by its RNA-dependent RNA polymerase (RdRp) residing in nonstructural protein 5B (NS5B), HCV isolates are grouped into seven genotypes with several subtypes. By using whole-genome sequences of 106 HCV isolates and secondary structure alignments of the plus-strand genome and its minus-strand replication intermediate, we established refined secondary structures of the 5' untranslated region (UTR), the cis-acting replication element (CRE) in NS5B, and the 3' UTR. We propose an alternative structure in the 5' UTR, conserved secondary structures of 5B stem-loop (SL)1 and 5BSL2, and four possible structures of the X-tail at the very 3' end of the HCV genome. We predict several previously unknown long-range interactions, most importantly a possible circularization interaction between distinct elements in the 5' and 3' UTR, reminiscent of the cyclization elements of the related flaviviruses. Based on analogy to these viruses, we propose that the 5'-3' UTR base-pairing in the HCV genome might play an important role in viral RNA replication. These results may have important implications for our understanding of the nature of the cis-acting RNA elements in the HCV genome and their possible role in regulating the mutually exclusive processes of viral RNA translation and replication.
Collapse
Affiliation(s)
- Markus Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Nadia Dünnes
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| | - Margarita Zayas
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany FLI Leibniz Institute for Age Research, 07745 Jena, Germany
| |
Collapse
|