1
|
Kapusinszky B, Mulvaney U, Jasinska AJ, Deng X, Freimer N, Delwart E. Local Virus Extinctions following a Host Population Bottleneck. J Virol 2015; 89:8152-61. [PMID: 26018153 PMCID: PMC4524239 DOI: 10.1128/jvi.00671-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A small number of African green monkeys (AGMs) were introduced into the Caribbean from West Africa in the 1600s. To determine the impact of this population bottleneck on the AGM virome, we used metagenomics to compare the viral nucleic acids in the plasma of 43 wild AGMs from West Africa (Gambia) to those in 44 AGMs from the Caribbean (St. Kitts and Nevis). Three viruses were detected in the blood of Gambian primates: simian immunodeficiency virus (SIVagm; in 42% of animals), a novel simian pegivirus (SPgVagm; in 7% of animals), and numerous novel simian anelloviruses (in 100% of animals). Only anelloviruses were detected in the Caribbean AGMs with a prevalence and levels of viral genetic diversity similar to those in the Gambian animals. A host population bottleneck therefore resulted in the exclusion of adult-acquired SIV and pegivirus from the Caribbean AGMs. The successful importation of AGM anelloviruses into the Caribbean may be the result of their early transmission to infants, very high prevalence in African AGMs, and frequent coinfections with as many as 11 distinct variants. IMPORTANCE The extent to which viruses can persist in small isolated populations depends on multiple host, viral, and environmental factors. The absence of prior infections may put an immunologically naive population at risk for disease outbreaks. Isolated populations originating from a small number of founder individuals are therefore considered at increased risk following contact with populations with a greater variety of viruses. Here, we compared the plasma virome of West African green monkeys to that in their descendants after importation of a small number of animals to the Caribbean. A lentivirus and a pegivirus were found in the West African population but not in the Caribbean population. Highly diverse anelloviruses were found in both populations. A small founder population, limited to infants and young juvenile monkeys, may have eliminated the sexually transmitted viruses from the Caribbean AGMs, while anelloviruses, acquired at an earlier age, persisted through the host population bottleneck.
Collapse
Affiliation(s)
- Beatrix Kapusinszky
- Blood Systems Research Institute, San Francisco, California, USA Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California, USA
| | - Usha Mulvaney
- Blood Systems Research Institute, San Francisco, California, USA University of San Francisco, Department of Biology, San Francisco, California, USA
| | - Anna J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, California, USA
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, USA Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California, USA
| | - Nelson Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, California, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, USA Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Aghokeng AF, Ayouba A, Mpoudi-Ngole E, Loul S, Liegeois F, Delaporte E, Peeters M. Extensive survey on the prevalence and genetic diversity of SIVs in primate bushmeat provides insights into risks for potential new cross-species transmissions. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2010; 10:386-96. [PMID: 19393772 PMCID: PMC2844463 DOI: 10.1016/j.meegid.2009.04.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 01/31/2023]
Abstract
To evaluate the risk of cross-species transmissions of SIVs from non-human primates to humans at the primate/hunter interface, a total of 2586 samples, derived from primate bushmeat representing 11 different primate species, were collected at 6 distinct remote forest sites in southeastern Cameroon and in Yaoundé, the capital city. SIV prevalences were estimated with an updated SIV lineage specific gp41 peptide ELISA covering the major part of the SIV diversity. SIV positive samples were confirmed by PCR and sequence analysis of partial pol fragments. The updated SIV ELISA showed good performance with overall sensitivity and specificity of 96% and 97.5% respectively. The overall SIV seroprevalence was low, 2.93% (76/2586) and ranged between 0.0% and 5.7% at forest sites, and reached up to 10.3% in Yaoundé. SIV infection was documented in 8 of the 11 species with significantly different prevalence rates per species: 9/859 (1.0%) in Cercopithecus nictitans, 9/864 (1.0%) Cercopithecus cephus, 10/60 (16.7%) Miopithecus ogouensis, 14/78 (17.9%) Colobus guereza, 15/37 (40.5%) Cercopithecus neglectus, 10/27 (33.3%) Mandrillus sphinx, 6/12 (50%) Cercocebus torquatus, and 3/6 (50%) Chlorocebus tantalus. No SIV infection was identified in Cercopithecus pogonias (n=293), Lophocebus albigena (n=168) and Cercocebus agilis (n=182). The SIV prevalences also seem to vary within species according to the sampling site, but most importantly, the highest SIV prevalences are observed in the primate species which represent only 8.5% of the overall primate bushmeat. The phylogenetic tree of partial pol sequences illustrates the high genetic diversity of SIVs between and within different primate species. The tree also showed some interesting features within the SIVdeb lineage suggesting phylogeographic clusters. Overall, the risk for additional cross-species transmissions is not equal throughout southern Cameroon and depends on the hunted species and SIV prevalences in each species. However, humans are still exposed to a high diversity of SIVs as illustrated by the high inter and intra SIV lineage genetic diversity.
Collapse
Affiliation(s)
- Avelin F. Aghokeng
- Laboratoire Retrovirus, IRD - UMR 145 “VIH et Maladies Associées” and the Department of International Health, University of Montpellier I, Montpellier, France
| | - Ahidjo Ayouba
- Laboratoire Retrovirus, IRD - UMR 145 “VIH et Maladies Associées” and the Department of International Health, University of Montpellier I, Montpellier, France
| | - Eitel Mpoudi-Ngole
- Project PRESICA (Prévention du Sida au Cameroun), Military Hospital, Yaoundé, Cameroon
| | - Severin Loul
- Project PRESICA (Prévention du Sida au Cameroun), Military Hospital, Yaoundé, Cameroon
| | - Florian Liegeois
- Laboratoire Retrovirus, IRD - UMR 145 “VIH et Maladies Associées” and the Department of International Health, University of Montpellier I, Montpellier, France
| | - Eric Delaporte
- Laboratoire Retrovirus, IRD - UMR 145 “VIH et Maladies Associées” and the Department of International Health, University of Montpellier I, Montpellier, France
| | - Martine Peeters
- Laboratoire Retrovirus, IRD - UMR 145 “VIH et Maladies Associées” and the Department of International Health, University of Montpellier I, Montpellier, France
| |
Collapse
|
3
|
Full-length genome characterization of a novel simian immunodeficiency virus lineage (SIVolc) from olive Colobus (Procolobus verus) and new SIVwrcPbb strains from Western Red Colobus (Piliocolobus badius badius) from the Tai Forest in Ivory Coast. J Virol 2008; 83:428-39. [PMID: 18922864 DOI: 10.1128/jvi.01725-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency viruses (SIVs) are found in an extensive number of African primates and humans continue to be exposed to these viruses by hunting and handling of primate bushmeat. Full-length genome sequences were obtained from SIVs derived from two Colobinae species inhabiting the Taï forest, Ivory Coast, each belonging to a different genus: SIVwrc from western red colobus (Piliocolobus badius badius) (SIVwrcPbb-98CI04 and SIVwrcPbb-97CI14) and SIVolc (SIVolc-97CI12) from olive colobus (Procolobus verus). Phylogenetic analysis showed that western red colobus are the natural hosts of SIVwrc, and SIVolc is also a distinct species-specific lineage, although distantly related to the SIVwrc lineage across the entire length of its genome. Overall, both SIVwrc and SIVolc, are also distantly related to the SIVlho/sun lineage across the whole genome. Similar to the group of SIVs (SIVsyk, SIVdeb, SIVden, SIVgsn, SIVmus, and SIVmon) infecting members of the Cercopithecus genus, SIVs derived from western red and olive colobus, L'Hoest and suntailed monkeys, and SIVmnd-1 from mandrills form a second group of viruses that cluster consistently together in phylogenetic trees. Interestingly, the divergent SIVcol lineage, from mantled guerezas (Colobus guereza) in Cameroon, is also closely related to SIVwrc, SIVolc, and the SIVlho/sun lineage in the 5' part of Pol. Overall, these results suggest an ancestral link between these different lentiviruses and highlight once more the complexity of the natural history and evolution of primate lentiviruses.
Collapse
|
4
|
Locatelli S, Liegeois F, Lafay B, Roeder AD, Bruford MW, Formenty P, Noë R, Delaporte E, Peeters M. Prevalence and genetic diversity of simian immunodeficiency virus infection in wild-living red colobus monkeys (Piliocolobus badius badius) from the Taï forest, Côte d'Ivoire SIVwrc in wild-living western red colobus monkeys. INFECTION GENETICS AND EVOLUTION 2007; 8:1-14. [PMID: 17916449 DOI: 10.1016/j.meegid.2007.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/29/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
Numerous African primates are infected with simian immunodeficiency viruses (SIVs). It is now well established that the clade of SIVs infecting west-central African chimpanzees (Pan troglodytes troglodytes) and western gorillas (Gorilla gorilla gorilla) represent the progenitors of human immunodeficiency virus type 1 (HIV-1), whereas HIV-2 results from different cross-species transmissions of SIVsmm from sooty mangabeys (Cercocebus atys atys). We present here the first molecular epidemiological survey of simian immunodeficiency virus (SIVwrc) in wild-living western red colobus monkeys (Piliocolobus badius badius) which are frequently hunted by the human population and represent a favourite prey of western chimpanzees (Pan troglodytes verus). We collected faecal samples (n=88) and we assessed individual discrimination by microsatellite analyses and visual observation. We tested the inferred 53 adult individuals belonging to two neighbouring habituated groups for presence of SIVwrc infection by viral RNA (vRNA) detection. We amplified viral polymerase (pol) (650 bp) and/or envelope (env) (570 bp) sequences in 14 individuals, resulting in a minimal prevalence of 26% among the individuals sampled, possibly reaching 50% when considering the relatively low sensitivity of viral RNA detection in faecal samples. With a few exceptions, phylogenetic analysis of pol and env sequences revealed a low degree of intragroup genetic diversity and a general viral clustering related to the social group of origin. However, we found a higher intergroup diversity. Behavioural and demographic data collected previously from these communities indicate that red colobus monkeys live in promiscuous multi-male societies, where females leave their natal group at the sub-adult stage of their lives and where extra-group copulations or male immigration have been rarely observed. The phylogenetic data we obtained seem to reflect these behavioural characteristics. Overall, our results indicate that wild-living red colobus represent a substantial reservoir of SIVwrc. Moreover, because of their frequent association with other monkey species, the predation pressure exerted by chimpanzees (Pan troglodytes verus) and by poachers around and inside the park, simian to simian and simian to human SIVwrc cross-species transmission cannot be excluded.
Collapse
Affiliation(s)
- Sabrina Locatelli
- UMR 145, Institut de Recherche pour le Développement, and University of Montpellier 1, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Aghokeng AF, Bailes E, Loul S, Courgnaud V, Mpoudi-Ngolle E, Sharp PM, Delaporte E, Peeters. M. Full-length sequence analysis of SIVmus in wild populations of mustached monkeys (Cercopithecus cephus) from Cameroon provides evidence for two co-circulating SIVmus lineages. Virology 2006; 360:407-18. [PMID: 17156809 PMCID: PMC1900428 DOI: 10.1016/j.virol.2006.10.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/03/2006] [Accepted: 10/28/2006] [Indexed: 11/29/2022]
Abstract
Mustached monkeys (Cercopithecus cephus), which form a significant component of primate bushmeat in west central Africa, are infected with simian immunodeficiency virus (SIVmus). We identified and genetically characterized five new SIVmus strains infecting wild living mustached monkeys from Cameroon. Phylogenetic analysis of partial pol sequences revealed that SIVmus strains form two distinct groups within the clade comprised of lentiviruses isolated from Cercopithecus nictitans (SIVgsn), Cercopithecus mona (SIVmon) and C. cephus (SIVmus). Characterisation of three full-length SIVmus genomes confirmed the presence of two distinct lineages infecting mustached monkeys. These two variants of SIVmus, here designated SIVmus-1 and SIVmus-2, were isolated from animals sharing habitats within the same geographic region. Phylogenetic analyses showed that the diversification of SIVmus, SIVgsn and SIVmon involved inter-lineage recombination, and suggested that one of the SIVmus lineages likely resulted from cross-species transmission and recombination involving SIVmus and an as yet uncharacterized SIV. These results indicate that cross-species transmission and recombination play a major role in the evolution of primate lentiviruses among sympatric primate species.
Collapse
Affiliation(s)
- Avelin F. Aghokeng
- Laboratoire Retrovirus, UMR 145, IRD and the Department of International Health, University of Montpellier I, Montpellier, France
| | - Elizabeth Bailes
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Severin Loul
- Project PRESICA (Prévention du Sida au Cameroun), Military Hospital, Yaoundé, Cameroon
| | - Valerie Courgnaud
- Laboratoire Retrovirus, UMR 145, IRD and the Department of International Health, University of Montpellier I, Montpellier, France
| | - Eitel Mpoudi-Ngolle
- Project PRESICA (Prévention du Sida au Cameroun), Military Hospital, Yaoundé, Cameroon
| | - Paul M. Sharp
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Eric Delaporte
- Laboratoire Retrovirus, UMR 145, IRD and the Department of International Health, University of Montpellier I, Montpellier, France
| | - Martine Peeters.
- Laboratoire Retrovirus, UMR 145, IRD and the Department of International Health, University of Montpellier I, Montpellier, France
- * Corresponding author and address: UMR 145 – Laboratoire Retrovirus, IRD, 911 Ave. Agropolis, BP 64501, 34394 Montpellier cedex 5, France. Phone: +33 4 67 41 62 97. Fax: +33 4 67 41 61 46. E-mail:
| |
Collapse
|
6
|
Aghokeng AF, Liu W, Bibollet-Ruche F, Loul S, Mpoudi-Ngole E, Laurent C, Mwenda JM, Langat DK, Chege GK, McClure HM, Delaporte E, Shaw GM, Hahn BH, Peeters M. Widely varying SIV prevalence rates in naturally infected primate species from Cameroon. Virology 2005; 345:174-89. [PMID: 16257029 DOI: 10.1016/j.virol.2005.09.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 08/31/2005] [Accepted: 09/12/2005] [Indexed: 12/13/2022]
Abstract
Although it is now well established that a substantial proportion of wild-living primates in sub-Saharan Africa harbor SIV, no study to date has examined to what extent the various species are naturally infected. In this study, we first describe the development and validation of sensitive and specific SIV antibody detection assays representing all major known primate lentiviral lineages on a panel of 207 sera from 11 different primate species with known infection status. The newly developed assays were then used to determine SIV prevalence rates in nine primate species native to Cameroon. Analysis of 722 sera revealed widely varying prevalence rates, ranging from an apparent absence of SIV infection in crested mona (0/70), grey cheeked (0/36) and agile mangabeys (0/92), to prevalence rates of 3%, 4%, 11%, 27%, 39% and 52% for mustached (6/203), greater spot-nosed (8/193), northern talapoin (3/26), mantled guereza (14/52), De Brazza's (9/23) and mandrill (14/27) monkeys, respectively. The epidemiology of naturally occurring SIV infections is thus more complex than previously appreciated and the various non-human primate hosts seem to differ in their susceptibility to SIV infection. The newly developed assays should now permit to define with greater accuracy existing SIV reservoirs and associated human zoonotic risk.
Collapse
Affiliation(s)
- Avelin F Aghokeng
- Laboratoire Retrovirus, UMR145, IRD, Institute for Research and Development, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Switzer WM, Parekh B, Shanmugam V, Bhullar V, Phillips S, Ely JJ, Heneine W. The epidemiology of simian immunodeficiency virus infection in a large number of wild- and captive-born chimpanzees: evidence for a recent introduction following chimpanzee divergence. AIDS Res Hum Retroviruses 2005; 21:335-42. [PMID: 15929695 DOI: 10.1089/aid.2005.21.335] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Simian immunodeficiency virus (SIVcpz) from the chimpanzee subspecies Pan troglodytes troglodytes has been linked phylogenetically to the origin of HIV-1. Related but distinct SIVcpz strains have also been found in P. t. schweinfurthii , suggesting that SIVcpz may have coevolved among the four chimpanzee subspecies. However, SIVcpz strains from P. t. verus and P. t. vellerosus have not yet been identified. To better understand the epidemiology and natural history of SIVcpz among chimpanzees, we tested serum samples from 1415 chimpanzees housed at eight U.S. research centers and six zoos. Records indicated that 264 (18.6%) of the chimpanzees were African-born. Subspecies identities for 161 chimpanzees, based on analysis of mitochondrial DNA sequences, were found to be P. t. troglodytes (n = 14), P. t. schweinfurthii (n = 3), P. t. verus (n = 143), and P. t. vellerosus (n = 1). All samples were screened for HIV/SIV antibodies by using an HIV-1/2 peptide- based enzyme immunoassay (EIA). Reactive samples were tested further by Western blot (WB). Eight sera (0.57%) were EIA reactive, but none was HIV-1/2 WB positive. Two samples were HIV-1 WB indeterminate. Both samples tested negative for SIVcpz and HIV-1 sequences by reverse transcriptase PCR, suggesting an absence of infection. We also tested sera available from 8 male sexual partners, 6 offspring, and 12 cage mates of a known SIVcpz-infected chimpanzee. All samples were negative, suggesting that SIVcpz may not be easily transmitted to close contacts. Our data show that this large population of chimpanzees is not infected with SIVcpz. The absence of SIVcpz infection in P. t. verus suggests that SIVcpz may not be endemic to this subspecies and implies that SIVcpz may have been introduced more recently into the chimpanzee subspecies following divergence.
Collapse
Affiliation(s)
- William M Switzer
- HIV and Retrovirology Branch, Division of HIV/AIDS Prevention, National Center for HIV, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Bibollet-Ruche F, Bailes E, Gao F, Pourrut X, Barlow KL, Clewley JP, Mwenda JM, Langat DK, Chege GK, McClure HM, Mpoudi-Ngole E, Delaporte E, Peeters M, Shaw GM, Sharp PM, Hahn BH. New simian immunodeficiency virus infecting De Brazza's monkeys (Cercopithecus neglectus): evidence for a cercopithecus monkey virus clade. J Virol 2004; 78:7748-62. [PMID: 15220449 PMCID: PMC434087 DOI: 10.1128/jvi.78.14.7748-7762.2004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nearly complete sequences of simian immunodeficiency viruses (SIVs) infecting 18 different nonhuman primate species in sub-Saharan Africa have now been reported; yet, our understanding of the origins, evolutionary history, and geographic distribution of these viruses still remains fragmentary. Here, we report the molecular characterization of a lentivirus (SIVdeb) naturally infecting De Brazza's monkeys (Cercopithecus neglectus). Complete SIVdeb genomes (9,158 and 9227 bp in length) were amplified from uncultured blood mononuclear cell DNA of two wild-caught De Brazza's monkeys from Cameroon. In addition, partial pol sequences (650 bp) were amplified from four offspring of De Brazza's monkeys originally caught in the wild in Uganda. Full-length (9068 bp) and partial pol (650 bp) SIVsyk sequences were also amplified from Sykes's monkeys (Cercopithecus albogularis) from Kenya. Analysis of these sequences identified a new SIV clade (SIVdeb), which differed from previously characterized SIVs at 40 to 50% of sites in Pol protein sequences. The viruses most closely related to SIVdeb were SIVsyk and members of the SIVgsn/SIVmus/SIVmon group of viruses infecting greater spot-nosed monkeys (Cercopithecus nictitans), mustached monkeys (Cercopithecus cephus), and mona monkeys (Cercopithecus mona), respectively. In phylogenetic trees of concatenated protein sequences, SIVdeb, SIVsyk, and SIVgsn/SIVmus/SIVmon clustered together, and this relationship was highly significant in all major coding regions. Members of this virus group also shared the same number of cysteine residues in their extracellular envelope glycoprotein and a high-affinity AIP1 binding site (YPD/SL) in their p6 Gag protein, as well as a unique transactivation response element in their viral long terminal repeat; however, SIVdeb and SIVsyk, unlike SIVgsn, SIVmon, and SIVmus, did not encode a vpu gene. These data indicate that De Brazza's monkeys are naturally infected with SIVdeb, that this infection is prevalent in different areas of the species' habitat, and that geographically diverse SIVdeb strains cluster in a single virus group. The consistent clustering of SIVdeb with SIVsyk and the SIVmon/SIVmus/SIVgsn group also suggests that these viruses have evolved from a common ancestor that likely infected a Cercopithecus host in the distant past. The vpu gene appears to have been acquired by a subset of these Cercopithecus viruses after the divergence of SIVdeb and SIVsyk.
Collapse
|
9
|
Edgeworth RL, San JH, Rosenzweig JA, Nguyen NL, Boyer JD, Ugen KE. Vaccine development against HIV-1: current perspectives and future directions. Immunol Res 2002; 25:53-74. [PMID: 11868934 DOI: 10.1385/ir:25:1:53] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of an efficacious vaccine against the human immunodeficiency virus (HIV) is of great urgency, because it is accepted that vaccination is the only means capable of controlling the AIDS pandemic. The foundation of HIV vaccine development is the analysis of immune responses during natural infection and the utilization of this knowledge for the development of protective immunization strategies. Initial vaccine development and experimentation are usually in animal models, including murine, feline, and nonhuman primates. Experimental vaccine candidates are closely studied for both efficacy and safety before proceeding to human clinical trials. There are a number of different therapeutic and prophylactic vaccine strategies currently being studied in human clinical trials. Vaccine strategies that are being tested, or have previously been tested, in humans include subunit, DNA plasmid, and viral vector, and combinations of these various strategies. Some of the results of these trials are promising, and additional research has focused on the development of appropriate chemical and genetic adjuvants as well as methods of vaccine delivery to improve the host immune response. This review summarizes the vaccine strategies that have been tested in both animal models and human clinical trials.
Collapse
Affiliation(s)
- Rebecca L Edgeworth
- Department of Medical Microbiology and Immunology, University of South Florida, College of Medicine, Tampa 33612, USA
| | | | | | | | | | | |
Collapse
|
10
|
Holznagel E, Norley S, Holzammer S, Coulibaly C, Kurth R. Immunological changes in simian immunodeficiency virus (SIV(agm))-infected African green monkeys (AGM): expanded cytotoxic T lymphocyte, natural killer and B cell subsets in the natural host of SIV(agm). J Gen Virol 2002; 83:631-640. [PMID: 11842258 DOI: 10.1099/0022-1317-83-3-631] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The African green monkey (AGM) model system for simian immunodeficiency virus (SIV(agm)) has been used to examine why prolonged infection with the relevant virus does not result in the development of immunodeficiency in its natural host. Blood lymphocyte subset values were determined in uninfected (n=88) and naturally SIV(agm)-infected AGMs (n=74). A number of blood cell subsets, such as CD8alpha(+)CD3(+)CD28(neg), CD8alpha(+)CD3(neg) and CD20(+) cells, were expanded significantly in clinically asymptomatic animals carrying a relatively high plasma load of viral RNA (10(4)-10(7) RNA copies/ml plasma). The expanded CD8alpha(+)CD3(+)CD28(neg) subpopulation (1094 +/- 986 cells/microl blood in infected animals versus 402 +/- 364 cells/microl blood, P=0.03) comprised cells that resembled terminally differentiated effector CD8 T cells (CD27(neg) and CD11a(+)). In SIV(agm)-infected animals, the expanded CD8alpha(+)CD3(neg) cell subset shared identity with the CD16(+) population (natural killer cells). These results demonstrate for the first time that apathogenic SIV(agm) infection causes significant changes in the immune system of its natural host. Although previous studies had indicated that noncytotoxic mechanisms might play an important role in the suppression of virus replication in the natural host of SIV(agm), this study sheds new light on the possible role of cytotoxic T lymphocytes, the innate immune system and double-positive T helper cells (CD4(+)CD8alpha(+)CD3(+)) in suppressing virus replication in this animal model of AIDS.
Collapse
Affiliation(s)
- Edgar Holznagel
- Paul-Ehrlich-Institute, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany1
| | - Stephen Norley
- Paul-Ehrlich-Institute, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany1
| | - Silke Holzammer
- Paul-Ehrlich-Institute, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany1
| | - Cheick Coulibaly
- Paul-Ehrlich-Institute, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany1
| | - Reinhard Kurth
- Paul-Ehrlich-Institute, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany1
| |
Collapse
|
11
|
Kuhmann SE, Madani N, Diop OM, Platt EJ, Morvan J, Müller-Trutwin MC, Barré-Sinoussi F, Kabat D. Frequent substitution polymorphisms in African green monkey CCR5 cluster at critical sites for infections by simian immunodeficiency virus SIVagm, implying ancient virus-host coevolution. J Virol 2001; 75:8449-60. [PMID: 11507190 PMCID: PMC115090 DOI: 10.1128/jvi.75.18.8449-8460.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to humans, several primate species are believed to have harbored simian immunodeficiency viruses (SIVs) since ancient times. In particular, the geographically dispersed species of African green monkeys (AGMs) are all infected with highly diversified SIVagm viruses at high prevalences (greater than 50% of sexually mature individuals) without evident diseases, implying that the progenitor monkeys were infected prior to their dispersal. If this is correct, AGMs would be expected to have accumulated frequent resistance-conferring polymorphisms in host genes that are important for SIV replication. Accordingly, we analyzed the coding sequences of the CCR5 coreceptors from 26 AGMs (52 alleles) in distinct populations of the four species. These samples contained 29 nonsynonymous coding changes and only 15 synonymous nucleotide substitutions, implying intense functional selection. Moreover, 24 of the resulting amino acid substitutions were tightly clustered in the CCR5 amino terminus (D13N in the vervets and Y14N in the tantalus species) or in the first extracellular loop (Q93R and Q93K in all species). The Y14N substitution was extremely frequent in the 12 wild-born African tantalus, with 7 monkeys being homozygous for this substitution and 4 being heterozygous. Although two of these heterozygotes and the only wild-type homozygote were naturally infected with SIVagm, none of the Y14N homozygotes were naturally infected. A focal infectivity assay for SIVagm indicated that all five tested SIVagms efficiently use CCR5 as a coreceptor and that they also use CXCR6 (STRL33/Bonzo) and GPR15 (BOB) with lower efficiencies but not CXCR4. Interestingly, the D13N, Y14N, Q93R, and Q93K substitutions in AGM CCR5 all strongly inhibited infections by the SIVagm isolates in vitro. The Y14N substitution eliminates a tyrosine sulfation site that is important for infections and results in partial N-linked glycosylation (i.e., 60% efficiency) at this position. Nevertheless, the CCR5(Y14N) component that lacks an N-linked oligosaccharide binds the chemokine MIP-lbeta with a normal affinity and is fully active in signal transduction. Similarly, D13N and Q93R substitutions did not interfere with signal transduction. Thus, the common substitution polymorphisms in AGM CCR5 strongly inhibit SIVagm infections while substantially preserving chemokine signaling. In contrast, polymorphisms of human CCR5 are relatively infrequent, and the amino acid substitutions are randomly situated and generally without effects on coreceptor function. These results support an ancient coevolution of AGMs and SIVagm viruses and establish AGMs as a highly informative model for learning about host proteins that play critical roles in immunodeficiency virus infections.
Collapse
Affiliation(s)
- S E Kuhmann
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Broussard SR, Staprans SI, White R, Whitehead EM, Feinberg MB, Allan JS. Simian immunodeficiency virus replicates to high levels in naturally infected African green monkeys without inducing immunologic or neurologic disease. J Virol 2001; 75:2262-75. [PMID: 11160730 PMCID: PMC114810 DOI: 10.1128/jvi.75.5.2262-2275.2001] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African green monkeys can maintain long-term persistent infection with simian immunodeficiency viruses (SIVagm) without developing AIDS and thus provide an important model for understanding mechanisms of natural host resistance to disease. This study assessed the levels and anatomic distribution of SIVagm in healthy, naturally infected monkeys. Quantitative competitive reverse transcriptase PCR assays developed to measure SIVagm from two African green monkey subspecies demonstrated high levels of SIV RNA in plasma (>6 x 10(6) RNA copies/ml) in sabaeus and vervet monkeys. Infectious virus was readily recovered from plasma and peripheral blood mononuclear cells and shown to be highly cytopathic in human cell lines and macrophages. SIVagm DNA levels were highest in the gastrointestinal tract, suggesting that the gut is a major site for SIVagm replication in vivo. Appreciable levels of virus were also found within the brain parenchyma and the cerebrospinal fluid (CSF), with lower levels detected in peripheral blood cells and lymph nodes. Virus isolates from the CSF and brain parenchyma readily infected macrophages in culture, whereas lymph node isolates were more restricted to growth in human T-cell lines. Comparison of env V2-C4 sequences showed extensive amino acid diversity between SIVagm recovered from the central nervous system and that recovered from lymphoid tissues. Homology between brain and CSF viruses, macrophage tropism, and active replication suggest compartmentalization in the central nervous system without associated neuropathology in naturally infected monkeys. These studies provide evidence that the nonpathogenic nature of SIVagm in the natural host can be attributed neither to more effective host control over viral replication nor to differences in the tissue and cell tropism from those for human immunodeficiency virus type 1-infected humans or SIV-infected macaques.
Collapse
Affiliation(s)
- S R Broussard
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas 78227, USA
| | | | | | | | | | | |
Collapse
|
13
|
Edinger AL, Blanpain C, Kunstman KJ, Wolinsky SM, Parmentier M, Doms RW. Functional dissection of CCR5 coreceptor function through the use of CD4-independent simian immunodeficiency virus strains. J Virol 1999; 73:4062-73. [PMID: 10196302 PMCID: PMC104185 DOI: 10.1128/jvi.73.5.4062-4073.1999] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/1998] [Accepted: 02/01/1999] [Indexed: 11/20/2022] Open
Abstract
With rare exceptions, all simian immunodeficiency virus (SIV) strains can use CCR5 as a coreceptor along with CD4 for viral infection. In addition, many SIV strains are capable of using CCR5 as a primary receptor to infect CD4-negative cells such as rhesus brain capillary endothelial cells. By using coupled fluorescence-activated cell sorter (FACS) and infection assays, we found that even very low levels of CCR5 expression could support CD4-independent virus infection. CD4-independent viruses represent valuable tools for finely dissecting interactions between Env and CCR5 which may otherwise be masked due to the stabilization of these contacts by Env-CD4 binding. Based on the ability of SIV Env to bind to and mediate infection of cells expressing CCR5 chimeras and mutants, we identified the N terminus of CCR5 as a critical domain for direct Env binding and for supporting CD4-independent virus infection. However, the activity of N-terminal domain CCR5 mutants could be rescued by the presence of CD4, indicating that other regions of CCR5 are important for post-binding events that lead to viral entry. Rhesus CCR5 supported CD4-independent infection and direct Env binding more efficiently than did human CCR5 due to a single amino acid difference in the N terminus. Interestingly, uncleaved, oligomeric SIV Env protein bound to both CD4 and CCR5 less efficiently than did monomeric gp120. Finally, several mutations present in chronically infected monkey populations are shown to decrease the ability of CCR5 to serve as a primary viral receptor for the SIV isolates examined.
Collapse
Affiliation(s)
- A L Edinger
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
14
|
Bibollet-Ruche F, Loussert-Ajaka I, Simon F, Mboup S, Ngole EM, Saman E, Delaporte E, Peeters M. Genetic characterization of accessory genes from human immunodeficiency virus type 1 group O strains. AIDS Res Hum Retroviruses 1998; 14:951-61. [PMID: 9686641 DOI: 10.1089/aid.1998.14.951] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) group O strains have been described as highly divergent, compared with the vast majority of the viruses involved in the worldwide AIDS pandemic, classified in group M. To gain new insights into the diversity and genetic characteristics of group O, we have sequenced the accessory gene region (from vif to vpu) of 14 isolates. Analyses of the deduced amino acid sequences for Vif, Vpr, the first exon of Tat, and Vpu indicate that most of the functional domains of these proteins, as described for group M viruses, are highly conserved and retained among all the group O strains we have characterized. The only difference concerns the Vif phosphorylation sites, which are absent in all of the group O isolates we have sequenced; in contrast, they are well conserved in nearly all of the group M isolates, in which they play critical roles in the regulation of viral replication and infectivity. As already observed for group M isolates, the Vpu protein is also highly diverse among group O strains. Phylogenetic analyses of these sequences indicate that HIV-1 group O can be separated into four different clusters, containing most of the strains we have characterized (except one, which clusters outside of the analyzed viruses). Taking into account the criteria used for clades in group M, we were not able to define group O clades definitively.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Consensus Sequence
- DNA, Viral/analysis
- Female
- Gene Products, tat/chemistry
- Gene Products, tat/genetics
- Gene Products, vif/chemistry
- Gene Products, vif/genetics
- Gene Products, vpr/chemistry
- Gene Products, vpr/genetics
- Genes, Viral
- HIV Infections/virology
- HIV-1/classification
- HIV-1/genetics
- Human Immunodeficiency Virus Proteins
- Humans
- Male
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction/methods
- Sequence Analysis, DNA
- Viral Regulatory and Accessory Proteins/chemistry
- Viral Regulatory and Accessory Proteins/genetics
- tat Gene Products, Human Immunodeficiency Virus
- vif Gene Products, Human Immunodeficiency Virus
- vpr Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- F Bibollet-Ruche
- Project SIDAK, Laboratoire Rétrovirus, ORSTOM, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Bibollet-Ruche F, Cuny G, Pourrut X, Brengues C, Galat-Luong A, Galat G, Delaporte E. Multiply spliced env and nef transcripts of simian immunodeficiency virus from West African green monkey (SIVagm-sab). AIDS Res Hum Retroviruses 1998; 14:515-9. [PMID: 9566554 DOI: 10.1089/aid.1998.14.515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have characterized the spliced transcripts of nef and envelope genes of SIVagm from African green monkey of the sabaeus subspecies. Most of the transcripts we have studied, representing the most abundant mRNA species in our assay, have undergone a specific splicing event that removes a part of the trans-activation response (TAR) element. This region is predicted to form a stable secondary structure (four stem-loop elements in SIVagm-sab) that affects the trans-activation of viral gene expression by Tat and the translation of the viral transcripts. Contrary to what is observed in other viruses, in which this R-region splicing has also been described (e.g., HIV-2), the LTR splicing in SIVagm-sab removes part of the first stem-loop and the following ones, nearly completely disrupting the TAR element secondary structure. Because LTR splicing seems to be a conserved feature among the strains we have characterized, these results suggest that this phenomenon could have important consequences for virus replication, pathogenicity, and latency.
Collapse
|
16
|
Kuhmann SE, Platt EJ, Kozak SL, Kabat D. Polymorphisms in the CCR5 genes of African green monkeys and mice implicate specific amino acids in infections by simian and human immunodeficiency viruses. J Virol 1997; 71:8642-56. [PMID: 9343222 PMCID: PMC192328 DOI: 10.1128/jvi.71.11.8642-8656.1997] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CCR5, a receptor for the CC chemokines RANTES, Mip1alpha, and Mip1beta, has been identified as a coreceptor for infections by macrophage-tropic isolates of human immunodeficiency virus type 1 (HIV-1). To study its structure and function, we isolated cDNA clones of human, African green monkey (AGM), and NIH/Swiss mouse CCR5s, and we quantitatively analyzed infections by macrophage-tropic HIV-1 and SIVmac251 after transfecting human HeLa-CD4 cells with the CCR5 expression vectors. The AGM and NIH/Swiss mouse CCR5 proteins are 97.7 to 98.3% and 79.8% identical to the human protein, respectively. In addition, we analyzed site-directed mutants and chimeras of these CCR5s. Cell surface expression of CCR5 proteins was monitored by using a specific rabbit antiserum and by binding the chemokine [125I]Mip1beta. Our major results were as follows. (i) Two distinct AGM CCR5 sequences were reproducibly found in DNA from CV-1 cells. The AGM clone 1 CCR5 protein differs from that of clone 2 by two substitutions, Y14N in the amino-terminal extracellular region and L352F at the carboxyl terminus. Interestingly, AGM clone 1 CCR5 was inactive as a coreceptor for all tested macrophage-tropic isolates of HIV-1, whereas AGM clone 2 CCR5 was active. As shown by chimera studies and site-directed mutagenesis, the Y14N substitution in AGM clone 1 CCR5 was solely responsible for blocking HIV-1 infections. In contrast, both AGM CCR5 clones were active coreceptors for SIVmac251. Studies of DNA samples from other AGMs indicated frequent additional CCR5 polymorphisms, and we cloned an AGM clone 2 variant with a Q93R substitution in the extracellular loop 1 from one heterozygote. This variant CCR5 was active as a coreceptor for SIVmac251 but was only weakly active for macrophage-tropic isolates of HIV-1. In addition, SIVmac251 appeared to be dependent on the extracellular amino terminus and loop 2 regions of human CCR5 for maximal infection. Our results suggest major differences in the interactions of SIVmac251 and macrophage-tropic HIV-1 isolates with 19, N13, and Y14 in the amino terminus; with Q93 in extracellular loop 1; and with extracellular loop 2 of human CCR5. (ii) The NIH/Swiss mouse CCR5 protein differs at multiple positions from sequences recently reported for other inbred strains of mice. This CCR5 was inactive as a coreceptor for HIV-1 and SIVmac251. Studies of chimeras that contained different portions of NIH/Swiss mouse CCR5 substituted into human CCR5, as well as the reciprocal chimeras, indicated that the amino-terminal region and extracellular loops 1 and 2 of human CCR5 contribute to its coreceptor activity for macrophage-tropic isolates of HIV-1. Specific differences with previous CCR5 chimera results occurred because the NIH/Swiss mouse CCR5 contains a unique substitution corresponding to P183L in extracellular loop 2 that is nonpermissive for coreceptor activity. We conclude that diverse CCR5 sequences occur in AGMs and mice, that SIVmac251 and macrophage-tropic HIV-1 isolates interact differently with specific CCR5 amino acids, and that multiple regions of human CCR5 contribute to its coreceptor functions. In addition, we have identified naturally occurring amino acid polymorphisms in three extracellular regions of CCR5 (Y14N, Q93R, and P183L) that do not interfere with cell surface expression or Mip1beta binding but prevent infections by macrophage-tropic isolates of HIV-1. In contrast to previous evidence, these results suggest that CCR5 contains critical sites that are essential for HIV-1 infections.
Collapse
Affiliation(s)
- S E Kuhmann
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | | | |
Collapse
|